1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/irqchip/arm-gic-v3.h>
4 #include <linux/irq.h>
5 #include <linux/irqdomain.h>
6 #include <linux/kvm.h>
7 #include <linux/kvm_host.h>
8 #include <kvm/arm_vgic.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_asm.h>
12 
13 #include "vgic.h"
14 
15 static bool group0_trap;
16 static bool group1_trap;
17 static bool common_trap;
18 static bool dir_trap;
19 static bool gicv4_enable;
20 
vgic_v3_set_underflow(struct kvm_vcpu * vcpu)21 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
22 {
23 	struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
24 
25 	cpuif->vgic_hcr |= ICH_HCR_UIE;
26 }
27 
lr_signals_eoi_mi(u64 lr_val)28 static bool lr_signals_eoi_mi(u64 lr_val)
29 {
30 	return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
31 	       !(lr_val & ICH_LR_HW);
32 }
33 
vgic_v3_fold_lr_state(struct kvm_vcpu * vcpu)34 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
35 {
36 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
37 	struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
38 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
39 	int lr;
40 
41 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
42 
43 	cpuif->vgic_hcr &= ~ICH_HCR_UIE;
44 
45 	for (lr = 0; lr < cpuif->used_lrs; lr++) {
46 		u64 val = cpuif->vgic_lr[lr];
47 		u32 intid, cpuid;
48 		struct vgic_irq *irq;
49 		bool is_v2_sgi = false;
50 		bool deactivated;
51 
52 		cpuid = val & GICH_LR_PHYSID_CPUID;
53 		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
54 
55 		if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
56 			intid = val & ICH_LR_VIRTUAL_ID_MASK;
57 		} else {
58 			intid = val & GICH_LR_VIRTUALID;
59 			is_v2_sgi = vgic_irq_is_sgi(intid);
60 		}
61 
62 		/* Notify fds when the guest EOI'ed a level-triggered IRQ */
63 		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
64 			kvm_notify_acked_irq(vcpu->kvm, 0,
65 					     intid - VGIC_NR_PRIVATE_IRQS);
66 
67 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
68 		if (!irq)	/* An LPI could have been unmapped. */
69 			continue;
70 
71 		raw_spin_lock(&irq->irq_lock);
72 
73 		/* Always preserve the active bit, note deactivation */
74 		deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT);
75 		irq->active = !!(val & ICH_LR_ACTIVE_BIT);
76 
77 		if (irq->active && is_v2_sgi)
78 			irq->active_source = cpuid;
79 
80 		/* Edge is the only case where we preserve the pending bit */
81 		if (irq->config == VGIC_CONFIG_EDGE &&
82 		    (val & ICH_LR_PENDING_BIT)) {
83 			irq->pending_latch = true;
84 
85 			if (is_v2_sgi)
86 				irq->source |= (1 << cpuid);
87 		}
88 
89 		/*
90 		 * Clear soft pending state when level irqs have been acked.
91 		 */
92 		if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
93 			irq->pending_latch = false;
94 
95 		/* Handle resampling for mapped interrupts if required */
96 		vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT);
97 
98 		raw_spin_unlock(&irq->irq_lock);
99 		vgic_put_irq(vcpu->kvm, irq);
100 	}
101 
102 	cpuif->used_lrs = 0;
103 }
104 
105 /* Requires the irq to be locked already */
vgic_v3_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)106 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
107 {
108 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
109 	u64 val = irq->intid;
110 	bool allow_pending = true, is_v2_sgi;
111 
112 	is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
113 		     model == KVM_DEV_TYPE_ARM_VGIC_V2);
114 
115 	if (irq->active) {
116 		val |= ICH_LR_ACTIVE_BIT;
117 		if (is_v2_sgi)
118 			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
119 		if (vgic_irq_is_multi_sgi(irq)) {
120 			allow_pending = false;
121 			val |= ICH_LR_EOI;
122 		}
123 	}
124 
125 	if (irq->hw && !vgic_irq_needs_resampling(irq)) {
126 		val |= ICH_LR_HW;
127 		val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
128 		/*
129 		 * Never set pending+active on a HW interrupt, as the
130 		 * pending state is kept at the physical distributor
131 		 * level.
132 		 */
133 		if (irq->active)
134 			allow_pending = false;
135 	} else {
136 		if (irq->config == VGIC_CONFIG_LEVEL) {
137 			val |= ICH_LR_EOI;
138 
139 			/*
140 			 * Software resampling doesn't work very well
141 			 * if we allow P+A, so let's not do that.
142 			 */
143 			if (irq->active)
144 				allow_pending = false;
145 		}
146 	}
147 
148 	if (allow_pending && irq_is_pending(irq)) {
149 		val |= ICH_LR_PENDING_BIT;
150 
151 		if (irq->config == VGIC_CONFIG_EDGE)
152 			irq->pending_latch = false;
153 
154 		if (vgic_irq_is_sgi(irq->intid) &&
155 		    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
156 			u32 src = ffs(irq->source);
157 
158 			if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
159 					   irq->intid))
160 				return;
161 
162 			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
163 			irq->source &= ~(1 << (src - 1));
164 			if (irq->source) {
165 				irq->pending_latch = true;
166 				val |= ICH_LR_EOI;
167 			}
168 		}
169 	}
170 
171 	/*
172 	 * Level-triggered mapped IRQs are special because we only observe
173 	 * rising edges as input to the VGIC.  We therefore lower the line
174 	 * level here, so that we can take new virtual IRQs.  See
175 	 * vgic_v3_fold_lr_state for more info.
176 	 */
177 	if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
178 		irq->line_level = false;
179 
180 	if (irq->group)
181 		val |= ICH_LR_GROUP;
182 
183 	val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
184 
185 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
186 }
187 
vgic_v3_clear_lr(struct kvm_vcpu * vcpu,int lr)188 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
189 {
190 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
191 }
192 
vgic_v3_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)193 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
194 {
195 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
196 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
197 	u32 vmcr;
198 
199 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
200 		vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
201 			ICH_VMCR_ACK_CTL_MASK;
202 		vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
203 			ICH_VMCR_FIQ_EN_MASK;
204 	} else {
205 		/*
206 		 * When emulating GICv3 on GICv3 with SRE=1 on the
207 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
208 		 */
209 		vmcr = ICH_VMCR_FIQ_EN_MASK;
210 	}
211 
212 	vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
213 	vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
214 	vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
215 	vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
216 	vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
217 	vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
218 	vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
219 
220 	cpu_if->vgic_vmcr = vmcr;
221 }
222 
vgic_v3_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)223 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
224 {
225 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
226 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
227 	u32 vmcr;
228 
229 	vmcr = cpu_if->vgic_vmcr;
230 
231 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
232 		vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
233 			ICH_VMCR_ACK_CTL_SHIFT;
234 		vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
235 			ICH_VMCR_FIQ_EN_SHIFT;
236 	} else {
237 		/*
238 		 * When emulating GICv3 on GICv3 with SRE=1 on the
239 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
240 		 */
241 		vmcrp->fiqen = 1;
242 		vmcrp->ackctl = 0;
243 	}
244 
245 	vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
246 	vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
247 	vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
248 	vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
249 	vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
250 	vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
251 	vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
252 }
253 
254 #define INITIAL_PENDBASER_VALUE						  \
255 	(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)		| \
256 	GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)	| \
257 	GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
258 
vgic_v3_enable(struct kvm_vcpu * vcpu)259 void vgic_v3_enable(struct kvm_vcpu *vcpu)
260 {
261 	struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
262 
263 	/*
264 	 * By forcing VMCR to zero, the GIC will restore the binary
265 	 * points to their reset values. Anything else resets to zero
266 	 * anyway.
267 	 */
268 	vgic_v3->vgic_vmcr = 0;
269 
270 	/*
271 	 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
272 	 * way, so we force SRE to 1 to demonstrate this to the guest.
273 	 * Also, we don't support any form of IRQ/FIQ bypass.
274 	 * This goes with the spec allowing the value to be RAO/WI.
275 	 */
276 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
277 		vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
278 				     ICC_SRE_EL1_DFB |
279 				     ICC_SRE_EL1_SRE);
280 		vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
281 	} else {
282 		vgic_v3->vgic_sre = 0;
283 	}
284 
285 	vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
286 					   ICH_VTR_ID_BITS_MASK) >>
287 					   ICH_VTR_ID_BITS_SHIFT;
288 	vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
289 					    ICH_VTR_PRI_BITS_MASK) >>
290 					    ICH_VTR_PRI_BITS_SHIFT) + 1;
291 
292 	/* Get the show on the road... */
293 	vgic_v3->vgic_hcr = ICH_HCR_EN;
294 	if (group0_trap)
295 		vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
296 	if (group1_trap)
297 		vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
298 	if (common_trap)
299 		vgic_v3->vgic_hcr |= ICH_HCR_TC;
300 	if (dir_trap)
301 		vgic_v3->vgic_hcr |= ICH_HCR_TDIR;
302 }
303 
vgic_v3_lpi_sync_pending_status(struct kvm * kvm,struct vgic_irq * irq)304 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
305 {
306 	struct kvm_vcpu *vcpu;
307 	int byte_offset, bit_nr;
308 	gpa_t pendbase, ptr;
309 	bool status;
310 	u8 val;
311 	int ret;
312 	unsigned long flags;
313 
314 retry:
315 	vcpu = irq->target_vcpu;
316 	if (!vcpu)
317 		return 0;
318 
319 	pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320 
321 	byte_offset = irq->intid / BITS_PER_BYTE;
322 	bit_nr = irq->intid % BITS_PER_BYTE;
323 	ptr = pendbase + byte_offset;
324 
325 	ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
326 	if (ret)
327 		return ret;
328 
329 	status = val & (1 << bit_nr);
330 
331 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
332 	if (irq->target_vcpu != vcpu) {
333 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
334 		goto retry;
335 	}
336 	irq->pending_latch = status;
337 	vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
338 
339 	if (status) {
340 		/* clear consumed data */
341 		val &= ~(1 << bit_nr);
342 		ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
343 		if (ret)
344 			return ret;
345 	}
346 	return 0;
347 }
348 
349 /*
350  * The deactivation of the doorbell interrupt will trigger the
351  * unmapping of the associated vPE.
352  */
unmap_all_vpes(struct kvm * kvm)353 static void unmap_all_vpes(struct kvm *kvm)
354 {
355 	struct vgic_dist *dist = &kvm->arch.vgic;
356 	int i;
357 
358 	for (i = 0; i < dist->its_vm.nr_vpes; i++)
359 		free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i));
360 }
361 
map_all_vpes(struct kvm * kvm)362 static void map_all_vpes(struct kvm *kvm)
363 {
364 	struct vgic_dist *dist = &kvm->arch.vgic;
365 	int i;
366 
367 	for (i = 0; i < dist->its_vm.nr_vpes; i++)
368 		WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i),
369 						dist->its_vm.vpes[i]->irq));
370 }
371 
372 /**
373  * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
374  * kvm lock and all vcpu lock must be held
375  */
vgic_v3_save_pending_tables(struct kvm * kvm)376 int vgic_v3_save_pending_tables(struct kvm *kvm)
377 {
378 	struct vgic_dist *dist = &kvm->arch.vgic;
379 	struct vgic_irq *irq;
380 	gpa_t last_ptr = ~(gpa_t)0;
381 	bool vlpi_avail = false;
382 	int ret = 0;
383 	u8 val;
384 
385 	if (unlikely(!vgic_initialized(kvm)))
386 		return -ENXIO;
387 
388 	/*
389 	 * A preparation for getting any VLPI states.
390 	 * The above vgic initialized check also ensures that the allocation
391 	 * and enabling of the doorbells have already been done.
392 	 */
393 	if (kvm_vgic_global_state.has_gicv4_1) {
394 		unmap_all_vpes(kvm);
395 		vlpi_avail = true;
396 	}
397 
398 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
399 		int byte_offset, bit_nr;
400 		struct kvm_vcpu *vcpu;
401 		gpa_t pendbase, ptr;
402 		bool is_pending;
403 		bool stored;
404 
405 		vcpu = irq->target_vcpu;
406 		if (!vcpu)
407 			continue;
408 
409 		pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
410 
411 		byte_offset = irq->intid / BITS_PER_BYTE;
412 		bit_nr = irq->intid % BITS_PER_BYTE;
413 		ptr = pendbase + byte_offset;
414 
415 		if (ptr != last_ptr) {
416 			ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
417 			if (ret)
418 				goto out;
419 			last_ptr = ptr;
420 		}
421 
422 		stored = val & (1U << bit_nr);
423 
424 		is_pending = irq->pending_latch;
425 
426 		if (irq->hw && vlpi_avail)
427 			vgic_v4_get_vlpi_state(irq, &is_pending);
428 
429 		if (stored == is_pending)
430 			continue;
431 
432 		if (is_pending)
433 			val |= 1 << bit_nr;
434 		else
435 			val &= ~(1 << bit_nr);
436 
437 		ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
438 		if (ret)
439 			goto out;
440 	}
441 
442 out:
443 	if (vlpi_avail)
444 		map_all_vpes(kvm);
445 
446 	return ret;
447 }
448 
449 /**
450  * vgic_v3_rdist_overlap - check if a region overlaps with any
451  * existing redistributor region
452  *
453  * @kvm: kvm handle
454  * @base: base of the region
455  * @size: size of region
456  *
457  * Return: true if there is an overlap
458  */
vgic_v3_rdist_overlap(struct kvm * kvm,gpa_t base,size_t size)459 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
460 {
461 	struct vgic_dist *d = &kvm->arch.vgic;
462 	struct vgic_redist_region *rdreg;
463 
464 	list_for_each_entry(rdreg, &d->rd_regions, list) {
465 		if ((base + size > rdreg->base) &&
466 			(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
467 			return true;
468 	}
469 	return false;
470 }
471 
472 /*
473  * Check for overlapping regions and for regions crossing the end of memory
474  * for base addresses which have already been set.
475  */
vgic_v3_check_base(struct kvm * kvm)476 bool vgic_v3_check_base(struct kvm *kvm)
477 {
478 	struct vgic_dist *d = &kvm->arch.vgic;
479 	struct vgic_redist_region *rdreg;
480 
481 	if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
482 	    d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
483 		return false;
484 
485 	list_for_each_entry(rdreg, &d->rd_regions, list) {
486 		size_t sz = vgic_v3_rd_region_size(kvm, rdreg);
487 
488 		if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF,
489 				       rdreg->base, SZ_64K, sz))
490 			return false;
491 	}
492 
493 	if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
494 		return true;
495 
496 	return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
497 				      KVM_VGIC_V3_DIST_SIZE);
498 }
499 
500 /**
501  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
502  * which has free space to put a new rdist region.
503  *
504  * @rd_regions: redistributor region list head
505  *
506  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
507  * Stride between redistributors is 0 and regions are filled in the index order.
508  *
509  * Return: the redist region handle, if any, that has space to map a new rdist
510  * region.
511  */
vgic_v3_rdist_free_slot(struct list_head * rd_regions)512 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
513 {
514 	struct vgic_redist_region *rdreg;
515 
516 	list_for_each_entry(rdreg, rd_regions, list) {
517 		if (!vgic_v3_redist_region_full(rdreg))
518 			return rdreg;
519 	}
520 	return NULL;
521 }
522 
vgic_v3_rdist_region_from_index(struct kvm * kvm,u32 index)523 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
524 							   u32 index)
525 {
526 	struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
527 	struct vgic_redist_region *rdreg;
528 
529 	list_for_each_entry(rdreg, rd_regions, list) {
530 		if (rdreg->index == index)
531 			return rdreg;
532 	}
533 	return NULL;
534 }
535 
536 
vgic_v3_map_resources(struct kvm * kvm)537 int vgic_v3_map_resources(struct kvm *kvm)
538 {
539 	struct vgic_dist *dist = &kvm->arch.vgic;
540 	struct kvm_vcpu *vcpu;
541 	int ret = 0;
542 	unsigned long c;
543 
544 	kvm_for_each_vcpu(c, vcpu, kvm) {
545 		struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
546 
547 		if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
548 			kvm_debug("vcpu %ld redistributor base not set\n", c);
549 			return -ENXIO;
550 		}
551 	}
552 
553 	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
554 		kvm_debug("Need to set vgic distributor addresses first\n");
555 		return -ENXIO;
556 	}
557 
558 	if (!vgic_v3_check_base(kvm)) {
559 		kvm_debug("VGIC redist and dist frames overlap\n");
560 		return -EINVAL;
561 	}
562 
563 	/*
564 	 * For a VGICv3 we require the userland to explicitly initialize
565 	 * the VGIC before we need to use it.
566 	 */
567 	if (!vgic_initialized(kvm)) {
568 		return -EBUSY;
569 	}
570 
571 	ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
572 	if (ret) {
573 		kvm_err("Unable to register VGICv3 dist MMIO regions\n");
574 		return ret;
575 	}
576 
577 	if (kvm_vgic_global_state.has_gicv4_1)
578 		vgic_v4_configure_vsgis(kvm);
579 
580 	return 0;
581 }
582 
583 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
584 
early_group0_trap_cfg(char * buf)585 static int __init early_group0_trap_cfg(char *buf)
586 {
587 	return strtobool(buf, &group0_trap);
588 }
589 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
590 
early_group1_trap_cfg(char * buf)591 static int __init early_group1_trap_cfg(char *buf)
592 {
593 	return strtobool(buf, &group1_trap);
594 }
595 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
596 
early_common_trap_cfg(char * buf)597 static int __init early_common_trap_cfg(char *buf)
598 {
599 	return strtobool(buf, &common_trap);
600 }
601 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
602 
early_gicv4_enable(char * buf)603 static int __init early_gicv4_enable(char *buf)
604 {
605 	return strtobool(buf, &gicv4_enable);
606 }
607 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
608 
609 static const struct midr_range broken_seis[] = {
610 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
611 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
612 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO),
613 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO),
614 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX),
615 	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX),
616 	{},
617 };
618 
vgic_v3_broken_seis(void)619 static bool vgic_v3_broken_seis(void)
620 {
621 	return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) &&
622 		is_midr_in_range_list(read_cpuid_id(), broken_seis));
623 }
624 
625 /**
626  * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
627  * @info:	pointer to the GIC description
628  *
629  * Returns 0 if the VGICv3 has been probed successfully, returns an error code
630  * otherwise
631  */
vgic_v3_probe(const struct gic_kvm_info * info)632 int vgic_v3_probe(const struct gic_kvm_info *info)
633 {
634 	u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
635 	bool has_v2;
636 	int ret;
637 
638 	has_v2 = ich_vtr_el2 >> 63;
639 	ich_vtr_el2 = (u32)ich_vtr_el2;
640 
641 	/*
642 	 * The ListRegs field is 5 bits, but there is an architectural
643 	 * maximum of 16 list registers. Just ignore bit 4...
644 	 */
645 	kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
646 	kvm_vgic_global_state.can_emulate_gicv2 = false;
647 	kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
648 
649 	/* GICv4 support? */
650 	if (info->has_v4) {
651 		kvm_vgic_global_state.has_gicv4 = gicv4_enable;
652 		kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
653 		kvm_info("GICv4%s support %sabled\n",
654 			 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
655 			 gicv4_enable ? "en" : "dis");
656 	}
657 
658 	kvm_vgic_global_state.vcpu_base = 0;
659 
660 	if (!info->vcpu.start) {
661 		kvm_info("GICv3: no GICV resource entry\n");
662 	} else if (!has_v2) {
663 		pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
664 	} else if (!PAGE_ALIGNED(info->vcpu.start)) {
665 		pr_warn("GICV physical address 0x%llx not page aligned\n",
666 			(unsigned long long)info->vcpu.start);
667 	} else if (kvm_get_mode() != KVM_MODE_PROTECTED) {
668 		kvm_vgic_global_state.vcpu_base = info->vcpu.start;
669 		kvm_vgic_global_state.can_emulate_gicv2 = true;
670 		ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
671 		if (ret) {
672 			kvm_err("Cannot register GICv2 KVM device.\n");
673 			return ret;
674 		}
675 		kvm_info("vgic-v2@%llx\n", info->vcpu.start);
676 	}
677 	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
678 	if (ret) {
679 		kvm_err("Cannot register GICv3 KVM device.\n");
680 		kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
681 		return ret;
682 	}
683 
684 	if (kvm_vgic_global_state.vcpu_base == 0)
685 		kvm_info("disabling GICv2 emulation\n");
686 
687 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
688 		group0_trap = true;
689 		group1_trap = true;
690 	}
691 
692 	if (vgic_v3_broken_seis()) {
693 		kvm_info("GICv3 with broken locally generated SEI\n");
694 
695 		kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK;
696 		group0_trap = true;
697 		group1_trap = true;
698 		if (ich_vtr_el2 & ICH_VTR_TDS_MASK)
699 			dir_trap = true;
700 		else
701 			common_trap = true;
702 	}
703 
704 	if (group0_trap || group1_trap || common_trap | dir_trap) {
705 		kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n",
706 			 group0_trap ? "G0" : "",
707 			 group1_trap ? "G1" : "",
708 			 common_trap ? "C"  : "",
709 			 dir_trap    ? "D"  : "");
710 		static_branch_enable(&vgic_v3_cpuif_trap);
711 	}
712 
713 	kvm_vgic_global_state.vctrl_base = NULL;
714 	kvm_vgic_global_state.type = VGIC_V3;
715 	kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
716 
717 	return 0;
718 }
719 
vgic_v3_load(struct kvm_vcpu * vcpu)720 void vgic_v3_load(struct kvm_vcpu *vcpu)
721 {
722 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
723 
724 	/*
725 	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
726 	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
727 	 * VMCR_EL2 save/restore in the world switch.
728 	 */
729 	if (likely(cpu_if->vgic_sre))
730 		kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
731 
732 	kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if);
733 
734 	if (has_vhe())
735 		__vgic_v3_activate_traps(cpu_if);
736 
737 	WARN_ON(vgic_v4_load(vcpu));
738 }
739 
vgic_v3_vmcr_sync(struct kvm_vcpu * vcpu)740 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
741 {
742 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
743 
744 	if (likely(cpu_if->vgic_sre))
745 		cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
746 }
747 
vgic_v3_put(struct kvm_vcpu * vcpu)748 void vgic_v3_put(struct kvm_vcpu *vcpu)
749 {
750 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
751 
752 	WARN_ON(vgic_v4_put(vcpu, false));
753 
754 	vgic_v3_vmcr_sync(vcpu);
755 
756 	kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
757 
758 	if (has_vhe())
759 		__vgic_v3_deactivate_traps(cpu_if);
760 }
761