1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGICv2 MMIO handling functions
4 */
5
6 #include <linux/irqchip/arm-gic.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <linux/nospec.h>
10
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include "vgic.h"
15 #include "vgic-mmio.h"
16
17 /*
18 * The Revision field in the IIDR have the following meanings:
19 *
20 * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
21 * Revision 2: Interrupt groups are guest-configurable and signaled using
22 * their configured groups.
23 */
24
vgic_mmio_read_v2_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)25 static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
26 gpa_t addr, unsigned int len)
27 {
28 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
29 u32 value;
30
31 switch (addr & 0x0c) {
32 case GIC_DIST_CTRL:
33 value = vgic->enabled ? GICD_ENABLE : 0;
34 break;
35 case GIC_DIST_CTR:
36 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
37 value = (value >> 5) - 1;
38 value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
39 break;
40 case GIC_DIST_IIDR:
41 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
42 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
43 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
44 break;
45 default:
46 return 0;
47 }
48
49 return value;
50 }
51
vgic_mmio_write_v2_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)52 static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
53 gpa_t addr, unsigned int len,
54 unsigned long val)
55 {
56 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
57 bool was_enabled = dist->enabled;
58
59 switch (addr & 0x0c) {
60 case GIC_DIST_CTRL:
61 dist->enabled = val & GICD_ENABLE;
62 if (!was_enabled && dist->enabled)
63 vgic_kick_vcpus(vcpu->kvm);
64 break;
65 case GIC_DIST_CTR:
66 case GIC_DIST_IIDR:
67 /* Nothing to do */
68 return;
69 }
70 }
71
vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)72 static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
73 gpa_t addr, unsigned int len,
74 unsigned long val)
75 {
76 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
77 u32 reg;
78
79 switch (addr & 0x0c) {
80 case GIC_DIST_IIDR:
81 reg = vgic_mmio_read_v2_misc(vcpu, addr, len);
82 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
83 return -EINVAL;
84
85 /*
86 * If we observe a write to GICD_IIDR we know that userspace
87 * has been updated and has had a chance to cope with older
88 * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
89 * interrupts as group 1, and therefore we now allow groups to
90 * be user writable. Doing this by default would break
91 * migration from old kernels to new kernels with legacy
92 * userspace.
93 */
94 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
95 switch (reg) {
96 case KVM_VGIC_IMP_REV_2:
97 case KVM_VGIC_IMP_REV_3:
98 vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
99 dist->implementation_rev = reg;
100 return 0;
101 default:
102 return -EINVAL;
103 }
104 }
105
106 vgic_mmio_write_v2_misc(vcpu, addr, len, val);
107 return 0;
108 }
109
vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)110 static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
111 gpa_t addr, unsigned int len,
112 unsigned long val)
113 {
114 if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
115 vgic_mmio_write_group(vcpu, addr, len, val);
116
117 return 0;
118 }
119
vgic_mmio_write_sgir(struct kvm_vcpu * source_vcpu,gpa_t addr,unsigned int len,unsigned long val)120 static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
121 gpa_t addr, unsigned int len,
122 unsigned long val)
123 {
124 int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
125 int intid = val & 0xf;
126 int targets = (val >> 16) & 0xff;
127 int mode = (val >> 24) & 0x03;
128 struct kvm_vcpu *vcpu;
129 unsigned long flags, c;
130
131 switch (mode) {
132 case 0x0: /* as specified by targets */
133 break;
134 case 0x1:
135 targets = (1U << nr_vcpus) - 1; /* all, ... */
136 targets &= ~(1U << source_vcpu->vcpu_id); /* but self */
137 break;
138 case 0x2: /* this very vCPU only */
139 targets = (1U << source_vcpu->vcpu_id);
140 break;
141 case 0x3: /* reserved */
142 return;
143 }
144
145 kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
146 struct vgic_irq *irq;
147
148 if (!(targets & (1U << c)))
149 continue;
150
151 irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
152
153 raw_spin_lock_irqsave(&irq->irq_lock, flags);
154 irq->pending_latch = true;
155 irq->source |= 1U << source_vcpu->vcpu_id;
156
157 vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
158 vgic_put_irq(source_vcpu->kvm, irq);
159 }
160 }
161
vgic_mmio_read_target(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)162 static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
163 gpa_t addr, unsigned int len)
164 {
165 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
166 int i;
167 u64 val = 0;
168
169 for (i = 0; i < len; i++) {
170 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
171
172 val |= (u64)irq->targets << (i * 8);
173
174 vgic_put_irq(vcpu->kvm, irq);
175 }
176
177 return val;
178 }
179
vgic_mmio_write_target(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)180 static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
181 gpa_t addr, unsigned int len,
182 unsigned long val)
183 {
184 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
185 u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
186 int i;
187 unsigned long flags;
188
189 /* GICD_ITARGETSR[0-7] are read-only */
190 if (intid < VGIC_NR_PRIVATE_IRQS)
191 return;
192
193 for (i = 0; i < len; i++) {
194 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
195 int target;
196
197 raw_spin_lock_irqsave(&irq->irq_lock, flags);
198
199 irq->targets = (val >> (i * 8)) & cpu_mask;
200 target = irq->targets ? __ffs(irq->targets) : 0;
201 irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
202
203 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
204 vgic_put_irq(vcpu->kvm, irq);
205 }
206 }
207
vgic_mmio_read_sgipend(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)208 static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
209 gpa_t addr, unsigned int len)
210 {
211 u32 intid = addr & 0x0f;
212 int i;
213 u64 val = 0;
214
215 for (i = 0; i < len; i++) {
216 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
217
218 val |= (u64)irq->source << (i * 8);
219
220 vgic_put_irq(vcpu->kvm, irq);
221 }
222 return val;
223 }
224
vgic_mmio_write_sgipendc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)225 static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
226 gpa_t addr, unsigned int len,
227 unsigned long val)
228 {
229 u32 intid = addr & 0x0f;
230 int i;
231 unsigned long flags;
232
233 for (i = 0; i < len; i++) {
234 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
235
236 raw_spin_lock_irqsave(&irq->irq_lock, flags);
237
238 irq->source &= ~((val >> (i * 8)) & 0xff);
239 if (!irq->source)
240 irq->pending_latch = false;
241
242 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
243 vgic_put_irq(vcpu->kvm, irq);
244 }
245 }
246
vgic_mmio_write_sgipends(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)247 static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
248 gpa_t addr, unsigned int len,
249 unsigned long val)
250 {
251 u32 intid = addr & 0x0f;
252 int i;
253 unsigned long flags;
254
255 for (i = 0; i < len; i++) {
256 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
257
258 raw_spin_lock_irqsave(&irq->irq_lock, flags);
259
260 irq->source |= (val >> (i * 8)) & 0xff;
261
262 if (irq->source) {
263 irq->pending_latch = true;
264 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
265 } else {
266 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
267 }
268 vgic_put_irq(vcpu->kvm, irq);
269 }
270 }
271
272 #define GICC_ARCH_VERSION_V2 0x2
273
274 /* These are for userland accesses only, there is no guest-facing emulation. */
vgic_mmio_read_vcpuif(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)275 static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
276 gpa_t addr, unsigned int len)
277 {
278 struct vgic_vmcr vmcr;
279 u32 val;
280
281 vgic_get_vmcr(vcpu, &vmcr);
282
283 switch (addr & 0xff) {
284 case GIC_CPU_CTRL:
285 val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
286 val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
287 val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
288 val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
289 val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
290 val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
291
292 break;
293 case GIC_CPU_PRIMASK:
294 /*
295 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
296 * PMR field as GICH_VMCR.VMPriMask rather than
297 * GICC_PMR.Priority, so we expose the upper five bits of
298 * priority mask to userspace using the lower bits in the
299 * unsigned long.
300 */
301 val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
302 GICV_PMR_PRIORITY_SHIFT;
303 break;
304 case GIC_CPU_BINPOINT:
305 val = vmcr.bpr;
306 break;
307 case GIC_CPU_ALIAS_BINPOINT:
308 val = vmcr.abpr;
309 break;
310 case GIC_CPU_IDENT:
311 val = ((PRODUCT_ID_KVM << 20) |
312 (GICC_ARCH_VERSION_V2 << 16) |
313 IMPLEMENTER_ARM);
314 break;
315 default:
316 return 0;
317 }
318
319 return val;
320 }
321
vgic_mmio_write_vcpuif(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)322 static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
323 gpa_t addr, unsigned int len,
324 unsigned long val)
325 {
326 struct vgic_vmcr vmcr;
327
328 vgic_get_vmcr(vcpu, &vmcr);
329
330 switch (addr & 0xff) {
331 case GIC_CPU_CTRL:
332 vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
333 vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
334 vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
335 vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
336 vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
337 vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
338
339 break;
340 case GIC_CPU_PRIMASK:
341 /*
342 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
343 * PMR field as GICH_VMCR.VMPriMask rather than
344 * GICC_PMR.Priority, so we expose the upper five bits of
345 * priority mask to userspace using the lower bits in the
346 * unsigned long.
347 */
348 vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
349 GICV_PMR_PRIORITY_MASK;
350 break;
351 case GIC_CPU_BINPOINT:
352 vmcr.bpr = val;
353 break;
354 case GIC_CPU_ALIAS_BINPOINT:
355 vmcr.abpr = val;
356 break;
357 }
358
359 vgic_set_vmcr(vcpu, &vmcr);
360 }
361
vgic_mmio_read_apr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)362 static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
363 gpa_t addr, unsigned int len)
364 {
365 int n; /* which APRn is this */
366
367 n = (addr >> 2) & 0x3;
368
369 if (kvm_vgic_global_state.type == VGIC_V2) {
370 /* GICv2 hardware systems support max. 32 groups */
371 if (n != 0)
372 return 0;
373 return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
374 } else {
375 struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
376
377 if (n > vgic_v3_max_apr_idx(vcpu))
378 return 0;
379
380 n = array_index_nospec(n, 4);
381
382 /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
383 return vgicv3->vgic_ap1r[n];
384 }
385 }
386
vgic_mmio_write_apr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)387 static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
388 gpa_t addr, unsigned int len,
389 unsigned long val)
390 {
391 int n; /* which APRn is this */
392
393 n = (addr >> 2) & 0x3;
394
395 if (kvm_vgic_global_state.type == VGIC_V2) {
396 /* GICv2 hardware systems support max. 32 groups */
397 if (n != 0)
398 return;
399 vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
400 } else {
401 struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
402
403 if (n > vgic_v3_max_apr_idx(vcpu))
404 return;
405
406 n = array_index_nospec(n, 4);
407
408 /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
409 vgicv3->vgic_ap1r[n] = val;
410 }
411 }
412
413 static const struct vgic_register_region vgic_v2_dist_registers[] = {
414 REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
415 vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
416 NULL, vgic_mmio_uaccess_write_v2_misc,
417 12, VGIC_ACCESS_32bit),
418 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
419 vgic_mmio_read_group, vgic_mmio_write_group,
420 NULL, vgic_mmio_uaccess_write_v2_group, 1,
421 VGIC_ACCESS_32bit),
422 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
423 vgic_mmio_read_enable, vgic_mmio_write_senable,
424 NULL, vgic_uaccess_write_senable, 1,
425 VGIC_ACCESS_32bit),
426 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
427 vgic_mmio_read_enable, vgic_mmio_write_cenable,
428 NULL, vgic_uaccess_write_cenable, 1,
429 VGIC_ACCESS_32bit),
430 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
431 vgic_mmio_read_pending, vgic_mmio_write_spending,
432 vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1,
433 VGIC_ACCESS_32bit),
434 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
435 vgic_mmio_read_pending, vgic_mmio_write_cpending,
436 vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1,
437 VGIC_ACCESS_32bit),
438 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
439 vgic_mmio_read_active, vgic_mmio_write_sactive,
440 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
441 VGIC_ACCESS_32bit),
442 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
443 vgic_mmio_read_active, vgic_mmio_write_cactive,
444 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
445 VGIC_ACCESS_32bit),
446 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
447 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
448 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
449 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
450 vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
451 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
452 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
453 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
454 VGIC_ACCESS_32bit),
455 REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
456 vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
457 VGIC_ACCESS_32bit),
458 REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
459 vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
460 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
461 REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
462 vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
463 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
464 };
465
466 static const struct vgic_register_region vgic_v2_cpu_registers[] = {
467 REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
468 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
469 VGIC_ACCESS_32bit),
470 REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
471 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
472 VGIC_ACCESS_32bit),
473 REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
474 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
475 VGIC_ACCESS_32bit),
476 REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
477 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
478 VGIC_ACCESS_32bit),
479 REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
480 vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
481 VGIC_ACCESS_32bit),
482 REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
483 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
484 VGIC_ACCESS_32bit),
485 };
486
vgic_v2_init_dist_iodev(struct vgic_io_device * dev)487 unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
488 {
489 dev->regions = vgic_v2_dist_registers;
490 dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
491
492 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
493
494 return SZ_4K;
495 }
496
vgic_v2_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)497 int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
498 {
499 const struct vgic_register_region *region;
500 struct vgic_io_device iodev;
501 struct vgic_reg_attr reg_attr;
502 struct kvm_vcpu *vcpu;
503 gpa_t addr;
504 int ret;
505
506 ret = vgic_v2_parse_attr(dev, attr, ®_attr);
507 if (ret)
508 return ret;
509
510 vcpu = reg_attr.vcpu;
511 addr = reg_attr.addr;
512
513 switch (attr->group) {
514 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
515 iodev.regions = vgic_v2_dist_registers;
516 iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
517 iodev.base_addr = 0;
518 break;
519 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
520 iodev.regions = vgic_v2_cpu_registers;
521 iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
522 iodev.base_addr = 0;
523 break;
524 default:
525 return -ENXIO;
526 }
527
528 /* We only support aligned 32-bit accesses. */
529 if (addr & 3)
530 return -ENXIO;
531
532 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
533 if (!region)
534 return -ENXIO;
535
536 return 0;
537 }
538
vgic_v2_cpuif_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)539 int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
540 int offset, u32 *val)
541 {
542 struct vgic_io_device dev = {
543 .regions = vgic_v2_cpu_registers,
544 .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
545 .iodev_type = IODEV_CPUIF,
546 };
547
548 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
549 }
550
vgic_v2_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)551 int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
552 int offset, u32 *val)
553 {
554 struct vgic_io_device dev = {
555 .regions = vgic_v2_dist_registers,
556 .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
557 .iodev_type = IODEV_DIST,
558 };
559
560 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
561 }
562