1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015, 2016 ARM Ltd.
4 */
5
6 #include <linux/irqchip/arm-gic.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <kvm/arm_vgic.h>
10 #include <asm/kvm_mmu.h>
11
12 #include "vgic.h"
13
vgic_v2_write_lr(int lr,u32 val)14 static inline void vgic_v2_write_lr(int lr, u32 val)
15 {
16 void __iomem *base = kvm_vgic_global_state.vctrl_base;
17
18 writel_relaxed(val, base + GICH_LR0 + (lr * 4));
19 }
20
vgic_v2_init_lrs(void)21 void vgic_v2_init_lrs(void)
22 {
23 int i;
24
25 for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
26 vgic_v2_write_lr(i, 0);
27 }
28
vgic_v2_set_underflow(struct kvm_vcpu * vcpu)29 void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
30 {
31 struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
32
33 cpuif->vgic_hcr |= GICH_HCR_UIE;
34 }
35
lr_signals_eoi_mi(u32 lr_val)36 static bool lr_signals_eoi_mi(u32 lr_val)
37 {
38 return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
39 !(lr_val & GICH_LR_HW);
40 }
41
42 /*
43 * transfer the content of the LRs back into the corresponding ap_list:
44 * - active bit is transferred as is
45 * - pending bit is
46 * - transferred as is in case of edge sensitive IRQs
47 * - set to the line-level (resample time) for level sensitive IRQs
48 */
vgic_v2_fold_lr_state(struct kvm_vcpu * vcpu)49 void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
50 {
51 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
52 struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
53 int lr;
54
55 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
56
57 cpuif->vgic_hcr &= ~GICH_HCR_UIE;
58
59 for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) {
60 u32 val = cpuif->vgic_lr[lr];
61 u32 cpuid, intid = val & GICH_LR_VIRTUALID;
62 struct vgic_irq *irq;
63 bool deactivated;
64
65 /* Extract the source vCPU id from the LR */
66 cpuid = val & GICH_LR_PHYSID_CPUID;
67 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
68 cpuid &= 7;
69
70 /* Notify fds when the guest EOI'ed a level-triggered SPI */
71 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
72 kvm_notify_acked_irq(vcpu->kvm, 0,
73 intid - VGIC_NR_PRIVATE_IRQS);
74
75 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
76
77 raw_spin_lock(&irq->irq_lock);
78
79 /* Always preserve the active bit, note deactivation */
80 deactivated = irq->active && !(val & GICH_LR_ACTIVE_BIT);
81 irq->active = !!(val & GICH_LR_ACTIVE_BIT);
82
83 if (irq->active && vgic_irq_is_sgi(intid))
84 irq->active_source = cpuid;
85
86 /* Edge is the only case where we preserve the pending bit */
87 if (irq->config == VGIC_CONFIG_EDGE &&
88 (val & GICH_LR_PENDING_BIT)) {
89 irq->pending_latch = true;
90
91 if (vgic_irq_is_sgi(intid))
92 irq->source |= (1 << cpuid);
93 }
94
95 /*
96 * Clear soft pending state when level irqs have been acked.
97 */
98 if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE))
99 irq->pending_latch = false;
100
101 /* Handle resampling for mapped interrupts if required */
102 vgic_irq_handle_resampling(irq, deactivated, val & GICH_LR_PENDING_BIT);
103
104 raw_spin_unlock(&irq->irq_lock);
105 vgic_put_irq(vcpu->kvm, irq);
106 }
107
108 cpuif->used_lrs = 0;
109 }
110
111 /*
112 * Populates the particular LR with the state of a given IRQ:
113 * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
114 * - for a level sensitive IRQ the pending state value is unchanged;
115 * it is dictated directly by the input level
116 *
117 * If @irq describes an SGI with multiple sources, we choose the
118 * lowest-numbered source VCPU and clear that bit in the source bitmap.
119 *
120 * The irq_lock must be held by the caller.
121 */
vgic_v2_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)122 void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
123 {
124 u32 val = irq->intid;
125 bool allow_pending = true;
126
127 if (irq->active) {
128 val |= GICH_LR_ACTIVE_BIT;
129 if (vgic_irq_is_sgi(irq->intid))
130 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
131 if (vgic_irq_is_multi_sgi(irq)) {
132 allow_pending = false;
133 val |= GICH_LR_EOI;
134 }
135 }
136
137 if (irq->group)
138 val |= GICH_LR_GROUP1;
139
140 if (irq->hw && !vgic_irq_needs_resampling(irq)) {
141 val |= GICH_LR_HW;
142 val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
143 /*
144 * Never set pending+active on a HW interrupt, as the
145 * pending state is kept at the physical distributor
146 * level.
147 */
148 if (irq->active)
149 allow_pending = false;
150 } else {
151 if (irq->config == VGIC_CONFIG_LEVEL) {
152 val |= GICH_LR_EOI;
153
154 /*
155 * Software resampling doesn't work very well
156 * if we allow P+A, so let's not do that.
157 */
158 if (irq->active)
159 allow_pending = false;
160 }
161 }
162
163 if (allow_pending && irq_is_pending(irq)) {
164 val |= GICH_LR_PENDING_BIT;
165
166 if (irq->config == VGIC_CONFIG_EDGE)
167 irq->pending_latch = false;
168
169 if (vgic_irq_is_sgi(irq->intid)) {
170 u32 src = ffs(irq->source);
171
172 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
173 irq->intid))
174 return;
175
176 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
177 irq->source &= ~(1 << (src - 1));
178 if (irq->source) {
179 irq->pending_latch = true;
180 val |= GICH_LR_EOI;
181 }
182 }
183 }
184
185 /*
186 * Level-triggered mapped IRQs are special because we only observe
187 * rising edges as input to the VGIC. We therefore lower the line
188 * level here, so that we can take new virtual IRQs. See
189 * vgic_v2_fold_lr_state for more info.
190 */
191 if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
192 irq->line_level = false;
193
194 /* The GICv2 LR only holds five bits of priority. */
195 val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
196
197 vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
198 }
199
vgic_v2_clear_lr(struct kvm_vcpu * vcpu,int lr)200 void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
201 {
202 vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
203 }
204
vgic_v2_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)205 void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
206 {
207 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
208 u32 vmcr;
209
210 vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) &
211 GICH_VMCR_ENABLE_GRP0_MASK;
212 vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) &
213 GICH_VMCR_ENABLE_GRP1_MASK;
214 vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) &
215 GICH_VMCR_ACK_CTL_MASK;
216 vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) &
217 GICH_VMCR_FIQ_EN_MASK;
218 vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) &
219 GICH_VMCR_CBPR_MASK;
220 vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) &
221 GICH_VMCR_EOI_MODE_MASK;
222 vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
223 GICH_VMCR_ALIAS_BINPOINT_MASK;
224 vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
225 GICH_VMCR_BINPOINT_MASK;
226 vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) <<
227 GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
228
229 cpu_if->vgic_vmcr = vmcr;
230 }
231
vgic_v2_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)232 void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
233 {
234 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
235 u32 vmcr;
236
237 vmcr = cpu_if->vgic_vmcr;
238
239 vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >>
240 GICH_VMCR_ENABLE_GRP0_SHIFT;
241 vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >>
242 GICH_VMCR_ENABLE_GRP1_SHIFT;
243 vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >>
244 GICH_VMCR_ACK_CTL_SHIFT;
245 vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >>
246 GICH_VMCR_FIQ_EN_SHIFT;
247 vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >>
248 GICH_VMCR_CBPR_SHIFT;
249 vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >>
250 GICH_VMCR_EOI_MODE_SHIFT;
251
252 vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
253 GICH_VMCR_ALIAS_BINPOINT_SHIFT;
254 vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
255 GICH_VMCR_BINPOINT_SHIFT;
256 vmcrp->pmr = ((vmcr & GICH_VMCR_PRIMASK_MASK) >>
257 GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT;
258 }
259
vgic_v2_enable(struct kvm_vcpu * vcpu)260 void vgic_v2_enable(struct kvm_vcpu *vcpu)
261 {
262 /*
263 * By forcing VMCR to zero, the GIC will restore the binary
264 * points to their reset values. Anything else resets to zero
265 * anyway.
266 */
267 vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
268
269 /* Get the show on the road... */
270 vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
271 }
272
273 /* check for overlapping regions and for regions crossing the end of memory */
vgic_v2_check_base(gpa_t dist_base,gpa_t cpu_base)274 static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
275 {
276 if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
277 return false;
278 if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
279 return false;
280
281 if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
282 return true;
283 if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
284 return true;
285
286 return false;
287 }
288
vgic_v2_map_resources(struct kvm * kvm)289 int vgic_v2_map_resources(struct kvm *kvm)
290 {
291 struct vgic_dist *dist = &kvm->arch.vgic;
292 int ret = 0;
293
294 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
295 IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
296 kvm_debug("Need to set vgic cpu and dist addresses first\n");
297 return -ENXIO;
298 }
299
300 if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
301 kvm_debug("VGIC CPU and dist frames overlap\n");
302 return -EINVAL;
303 }
304
305 /*
306 * Initialize the vgic if this hasn't already been done on demand by
307 * accessing the vgic state from userspace.
308 */
309 ret = vgic_init(kvm);
310 if (ret) {
311 kvm_err("Unable to initialize VGIC dynamic data structures\n");
312 return ret;
313 }
314
315 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2);
316 if (ret) {
317 kvm_err("Unable to register VGIC MMIO regions\n");
318 return ret;
319 }
320
321 if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
322 ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
323 kvm_vgic_global_state.vcpu_base,
324 KVM_VGIC_V2_CPU_SIZE, true);
325 if (ret) {
326 kvm_err("Unable to remap VGIC CPU to VCPU\n");
327 return ret;
328 }
329 }
330
331 return 0;
332 }
333
334 DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);
335
336 /**
337 * vgic_v2_probe - probe for a VGICv2 compatible interrupt controller
338 * @info: pointer to the GIC description
339 *
340 * Returns 0 if the VGICv2 has been probed successfully, returns an error code
341 * otherwise
342 */
vgic_v2_probe(const struct gic_kvm_info * info)343 int vgic_v2_probe(const struct gic_kvm_info *info)
344 {
345 int ret;
346 u32 vtr;
347
348 if (is_protected_kvm_enabled()) {
349 kvm_err("GICv2 not supported in protected mode\n");
350 return -ENXIO;
351 }
352
353 if (!info->vctrl.start) {
354 kvm_err("GICH not present in the firmware table\n");
355 return -ENXIO;
356 }
357
358 if (!PAGE_ALIGNED(info->vcpu.start) ||
359 !PAGE_ALIGNED(resource_size(&info->vcpu))) {
360 kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
361
362 ret = create_hyp_io_mappings(info->vcpu.start,
363 resource_size(&info->vcpu),
364 &kvm_vgic_global_state.vcpu_base_va,
365 &kvm_vgic_global_state.vcpu_hyp_va);
366 if (ret) {
367 kvm_err("Cannot map GICV into hyp\n");
368 goto out;
369 }
370
371 static_branch_enable(&vgic_v2_cpuif_trap);
372 }
373
374 ret = create_hyp_io_mappings(info->vctrl.start,
375 resource_size(&info->vctrl),
376 &kvm_vgic_global_state.vctrl_base,
377 &kvm_vgic_global_state.vctrl_hyp);
378 if (ret) {
379 kvm_err("Cannot map VCTRL into hyp\n");
380 goto out;
381 }
382
383 vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
384 kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
385
386 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
387 if (ret) {
388 kvm_err("Cannot register GICv2 KVM device\n");
389 goto out;
390 }
391
392 kvm_vgic_global_state.can_emulate_gicv2 = true;
393 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
394 kvm_vgic_global_state.type = VGIC_V2;
395 kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
396
397 kvm_debug("vgic-v2@%llx\n", info->vctrl.start);
398
399 return 0;
400 out:
401 if (kvm_vgic_global_state.vctrl_base)
402 iounmap(kvm_vgic_global_state.vctrl_base);
403 if (kvm_vgic_global_state.vcpu_base_va)
404 iounmap(kvm_vgic_global_state.vcpu_base_va);
405
406 return ret;
407 }
408
save_lrs(struct kvm_vcpu * vcpu,void __iomem * base)409 static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
410 {
411 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
412 u64 used_lrs = cpu_if->used_lrs;
413 u64 elrsr;
414 int i;
415
416 elrsr = readl_relaxed(base + GICH_ELRSR0);
417 if (unlikely(used_lrs > 32))
418 elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32;
419
420 for (i = 0; i < used_lrs; i++) {
421 if (elrsr & (1UL << i))
422 cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
423 else
424 cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4));
425
426 writel_relaxed(0, base + GICH_LR0 + (i * 4));
427 }
428 }
429
vgic_v2_save_state(struct kvm_vcpu * vcpu)430 void vgic_v2_save_state(struct kvm_vcpu *vcpu)
431 {
432 void __iomem *base = kvm_vgic_global_state.vctrl_base;
433 u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
434
435 if (!base)
436 return;
437
438 if (used_lrs) {
439 save_lrs(vcpu, base);
440 writel_relaxed(0, base + GICH_HCR);
441 }
442 }
443
vgic_v2_restore_state(struct kvm_vcpu * vcpu)444 void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
445 {
446 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
447 void __iomem *base = kvm_vgic_global_state.vctrl_base;
448 u64 used_lrs = cpu_if->used_lrs;
449 int i;
450
451 if (!base)
452 return;
453
454 if (used_lrs) {
455 writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
456 for (i = 0; i < used_lrs; i++) {
457 writel_relaxed(cpu_if->vgic_lr[i],
458 base + GICH_LR0 + (i * 4));
459 }
460 }
461 }
462
vgic_v2_load(struct kvm_vcpu * vcpu)463 void vgic_v2_load(struct kvm_vcpu *vcpu)
464 {
465 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
466
467 writel_relaxed(cpu_if->vgic_vmcr,
468 kvm_vgic_global_state.vctrl_base + GICH_VMCR);
469 writel_relaxed(cpu_if->vgic_apr,
470 kvm_vgic_global_state.vctrl_base + GICH_APR);
471 }
472
vgic_v2_vmcr_sync(struct kvm_vcpu * vcpu)473 void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu)
474 {
475 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
476
477 cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
478 }
479
vgic_v2_put(struct kvm_vcpu * vcpu)480 void vgic_v2_put(struct kvm_vcpu *vcpu)
481 {
482 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
483
484 vgic_v2_vmcr_sync(vcpu);
485 cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
486 }
487