1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existent name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
do_getname(const char __user * filename,char * page)117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
getname_flags(const char __user * filename,int flags)139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 				__putname(tmp);
152 				result = ERR_PTR(retval);
153 			}
154 		}
155 	}
156 	audit_getname(result);
157 	return result;
158 }
159 
getname(const char __user * filename)160 char *getname(const char __user * filename)
161 {
162 	return getname_flags(filename, 0);
163 }
164 
165 #ifdef CONFIG_AUDITSYSCALL
putname(const char * name)166 void putname(const char *name)
167 {
168 	if (unlikely(!audit_dummy_context()))
169 		audit_putname(name);
170 	else
171 		__putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175 
176 /*
177  * This does basic POSIX ACL permission checking
178  */
acl_permission_check(struct inode * inode,int mask,unsigned int flags,int (* check_acl)(struct inode * inode,int mask,unsigned int flags))179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 		int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
181 {
182 	unsigned int mode = inode->i_mode;
183 
184 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185 
186 	if (current_user_ns() != inode_userns(inode))
187 		goto other_perms;
188 
189 	if (current_fsuid() == inode->i_uid)
190 		mode >>= 6;
191 	else {
192 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 			int error = check_acl(inode, mask, flags);
194 			if (error != -EAGAIN)
195 				return error;
196 		}
197 
198 		if (in_group_p(inode->i_gid))
199 			mode >>= 3;
200 	}
201 
202 other_perms:
203 	/*
204 	 * If the DACs are ok we don't need any capability check.
205 	 */
206 	if ((mask & ~mode) == 0)
207 		return 0;
208 	return -EACCES;
209 }
210 
211 /**
212  * generic_permission -  check for access rights on a Posix-like filesystem
213  * @inode:	inode to check access rights for
214  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
215  * @check_acl:	optional callback to check for Posix ACLs
216  * @flags:	IPERM_FLAG_ flags.
217  *
218  * Used to check for read/write/execute permissions on a file.
219  * We use "fsuid" for this, letting us set arbitrary permissions
220  * for filesystem access without changing the "normal" uids which
221  * are used for other things.
222  *
223  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224  * request cannot be satisfied (eg. requires blocking or too much complexity).
225  * It would then be called again in ref-walk mode.
226  */
generic_permission(struct inode * inode,int mask,unsigned int flags,int (* check_acl)(struct inode * inode,int mask,unsigned int flags))227 int generic_permission(struct inode *inode, int mask, unsigned int flags,
228 	int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
229 {
230 	int ret;
231 
232 	/*
233 	 * Do the basic POSIX ACL permission checks.
234 	 */
235 	ret = acl_permission_check(inode, mask, flags, check_acl);
236 	if (ret != -EACCES)
237 		return ret;
238 
239 	/*
240 	 * Read/write DACs are always overridable.
241 	 * Executable DACs are overridable if at least one exec bit is set.
242 	 */
243 	if (!(mask & MAY_EXEC) || execute_ok(inode))
244 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 			return 0;
246 
247 	/*
248 	 * Searching includes executable on directories, else just read.
249 	 */
250 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 			return 0;
254 
255 	return -EACCES;
256 }
257 
258 /**
259  * inode_permission  -  check for access rights to a given inode
260  * @inode:	inode to check permission on
261  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
262  *
263  * Used to check for read/write/execute permissions on an inode.
264  * We use "fsuid" for this, letting us set arbitrary permissions
265  * for filesystem access without changing the "normal" uids which
266  * are used for other things.
267  */
inode_permission(struct inode * inode,int mask)268 int inode_permission(struct inode *inode, int mask)
269 {
270 	int retval;
271 
272 	if (mask & MAY_WRITE) {
273 		umode_t mode = inode->i_mode;
274 
275 		/*
276 		 * Nobody gets write access to a read-only fs.
277 		 */
278 		if (IS_RDONLY(inode) &&
279 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 			return -EROFS;
281 
282 		/*
283 		 * Nobody gets write access to an immutable file.
284 		 */
285 		if (IS_IMMUTABLE(inode))
286 			return -EACCES;
287 	}
288 
289 	if (inode->i_op->permission)
290 		retval = inode->i_op->permission(inode, mask, 0);
291 	else
292 		retval = generic_permission(inode, mask, 0,
293 				inode->i_op->check_acl);
294 
295 	if (retval)
296 		return retval;
297 
298 	retval = devcgroup_inode_permission(inode, mask);
299 	if (retval)
300 		return retval;
301 
302 	return security_inode_permission(inode, mask);
303 }
304 
305 /**
306  * file_permission  -  check for additional access rights to a given file
307  * @file:	file to check access rights for
308  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
309  *
310  * Used to check for read/write/execute permissions on an already opened
311  * file.
312  *
313  * Note:
314  *	Do not use this function in new code.  All access checks should
315  *	be done using inode_permission().
316  */
file_permission(struct file * file,int mask)317 int file_permission(struct file *file, int mask)
318 {
319 	return inode_permission(file->f_path.dentry->d_inode, mask);
320 }
321 
322 /*
323  * get_write_access() gets write permission for a file.
324  * put_write_access() releases this write permission.
325  * This is used for regular files.
326  * We cannot support write (and maybe mmap read-write shared) accesses and
327  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
328  * can have the following values:
329  * 0: no writers, no VM_DENYWRITE mappings
330  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
331  * > 0: (i_writecount) users are writing to the file.
332  *
333  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
334  * except for the cases where we don't hold i_writecount yet. Then we need to
335  * use {get,deny}_write_access() - these functions check the sign and refuse
336  * to do the change if sign is wrong. Exclusion between them is provided by
337  * the inode->i_lock spinlock.
338  */
339 
get_write_access(struct inode * inode)340 int get_write_access(struct inode * inode)
341 {
342 	spin_lock(&inode->i_lock);
343 	if (atomic_read(&inode->i_writecount) < 0) {
344 		spin_unlock(&inode->i_lock);
345 		return -ETXTBSY;
346 	}
347 	atomic_inc(&inode->i_writecount);
348 	spin_unlock(&inode->i_lock);
349 
350 	return 0;
351 }
352 
deny_write_access(struct file * file)353 int deny_write_access(struct file * file)
354 {
355 	struct inode *inode = file->f_path.dentry->d_inode;
356 
357 	spin_lock(&inode->i_lock);
358 	if (atomic_read(&inode->i_writecount) > 0) {
359 		spin_unlock(&inode->i_lock);
360 		return -ETXTBSY;
361 	}
362 	atomic_dec(&inode->i_writecount);
363 	spin_unlock(&inode->i_lock);
364 
365 	return 0;
366 }
367 
368 /**
369  * path_get - get a reference to a path
370  * @path: path to get the reference to
371  *
372  * Given a path increment the reference count to the dentry and the vfsmount.
373  */
path_get(struct path * path)374 void path_get(struct path *path)
375 {
376 	mntget(path->mnt);
377 	dget(path->dentry);
378 }
379 EXPORT_SYMBOL(path_get);
380 
381 /**
382  * path_put - put a reference to a path
383  * @path: path to put the reference to
384  *
385  * Given a path decrement the reference count to the dentry and the vfsmount.
386  */
path_put(struct path * path)387 void path_put(struct path *path)
388 {
389 	dput(path->dentry);
390 	mntput(path->mnt);
391 }
392 EXPORT_SYMBOL(path_put);
393 
394 /**
395  * nameidata_drop_rcu - drop this nameidata out of rcu-walk
396  * @nd: nameidata pathwalk data to drop
397  * Returns: 0 on success, -ECHILD on failure
398  *
399  * Path walking has 2 modes, rcu-walk and ref-walk (see
400  * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
401  * to drop out of rcu-walk mode and take normal reference counts on dentries
402  * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
403  * refcounts at the last known good point before rcu-walk got stuck, so
404  * ref-walk may continue from there. If this is not successful (eg. a seqcount
405  * has changed), then failure is returned and path walk restarts from the
406  * beginning in ref-walk mode.
407  *
408  * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
409  * ref-walk. Must be called from rcu-walk context.
410  */
nameidata_drop_rcu(struct nameidata * nd)411 static int nameidata_drop_rcu(struct nameidata *nd)
412 {
413 	struct fs_struct *fs = current->fs;
414 	struct dentry *dentry = nd->path.dentry;
415 	int want_root = 0;
416 
417 	BUG_ON(!(nd->flags & LOOKUP_RCU));
418 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
419 		want_root = 1;
420 		spin_lock(&fs->lock);
421 		if (nd->root.mnt != fs->root.mnt ||
422 				nd->root.dentry != fs->root.dentry)
423 			goto err_root;
424 	}
425 	spin_lock(&dentry->d_lock);
426 	if (!__d_rcu_to_refcount(dentry, nd->seq))
427 		goto err;
428 	BUG_ON(nd->inode != dentry->d_inode);
429 	spin_unlock(&dentry->d_lock);
430 	if (want_root) {
431 		path_get(&nd->root);
432 		spin_unlock(&fs->lock);
433 	}
434 	mntget(nd->path.mnt);
435 
436 	rcu_read_unlock();
437 	br_read_unlock(vfsmount_lock);
438 	nd->flags &= ~LOOKUP_RCU;
439 	return 0;
440 err:
441 	spin_unlock(&dentry->d_lock);
442 err_root:
443 	if (want_root)
444 		spin_unlock(&fs->lock);
445 	return -ECHILD;
446 }
447 
448 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
nameidata_drop_rcu_maybe(struct nameidata * nd)449 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
450 {
451 	if (nd->flags & LOOKUP_RCU)
452 		return nameidata_drop_rcu(nd);
453 	return 0;
454 }
455 
456 /**
457  * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
458  * @nd: nameidata pathwalk data to drop
459  * @dentry: dentry to drop
460  * Returns: 0 on success, -ECHILD on failure
461  *
462  * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
463  * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
464  * @nd. Must be called from rcu-walk context.
465  */
nameidata_dentry_drop_rcu(struct nameidata * nd,struct dentry * dentry)466 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
467 {
468 	struct fs_struct *fs = current->fs;
469 	struct dentry *parent = nd->path.dentry;
470 	int want_root = 0;
471 
472 	BUG_ON(!(nd->flags & LOOKUP_RCU));
473 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
474 		want_root = 1;
475 		spin_lock(&fs->lock);
476 		if (nd->root.mnt != fs->root.mnt ||
477 				nd->root.dentry != fs->root.dentry)
478 			goto err_root;
479 	}
480 	spin_lock(&parent->d_lock);
481 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
482 	if (!__d_rcu_to_refcount(dentry, nd->seq))
483 		goto err;
484 	/*
485 	 * If the sequence check on the child dentry passed, then the child has
486 	 * not been removed from its parent. This means the parent dentry must
487 	 * be valid and able to take a reference at this point.
488 	 */
489 	BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
490 	BUG_ON(!parent->d_count);
491 	parent->d_count++;
492 	spin_unlock(&dentry->d_lock);
493 	spin_unlock(&parent->d_lock);
494 	if (want_root) {
495 		path_get(&nd->root);
496 		spin_unlock(&fs->lock);
497 	}
498 	mntget(nd->path.mnt);
499 
500 	rcu_read_unlock();
501 	br_read_unlock(vfsmount_lock);
502 	nd->flags &= ~LOOKUP_RCU;
503 	return 0;
504 err:
505 	spin_unlock(&dentry->d_lock);
506 	spin_unlock(&parent->d_lock);
507 err_root:
508 	if (want_root)
509 		spin_unlock(&fs->lock);
510 	return -ECHILD;
511 }
512 
513 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
nameidata_dentry_drop_rcu_maybe(struct nameidata * nd,struct dentry * dentry)514 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
515 {
516 	if (nd->flags & LOOKUP_RCU) {
517 		if (unlikely(nameidata_dentry_drop_rcu(nd, dentry))) {
518 			nd->flags &= ~LOOKUP_RCU;
519 			if (!(nd->flags & LOOKUP_ROOT))
520 				nd->root.mnt = NULL;
521 			rcu_read_unlock();
522 			br_read_unlock(vfsmount_lock);
523 			return -ECHILD;
524 		}
525 	}
526 	return 0;
527 }
528 
529 /**
530  * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
531  * @nd: nameidata pathwalk data to drop
532  * Returns: 0 on success, -ECHILD on failure
533  *
534  * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
535  * nd->path should be the final element of the lookup, so nd->root is discarded.
536  * Must be called from rcu-walk context.
537  */
nameidata_drop_rcu_last(struct nameidata * nd)538 static int nameidata_drop_rcu_last(struct nameidata *nd)
539 {
540 	struct dentry *dentry = nd->path.dentry;
541 
542 	BUG_ON(!(nd->flags & LOOKUP_RCU));
543 	nd->flags &= ~LOOKUP_RCU;
544 	if (!(nd->flags & LOOKUP_ROOT))
545 		nd->root.mnt = NULL;
546 	spin_lock(&dentry->d_lock);
547 	if (!__d_rcu_to_refcount(dentry, nd->seq))
548 		goto err_unlock;
549 	BUG_ON(nd->inode != dentry->d_inode);
550 	spin_unlock(&dentry->d_lock);
551 
552 	mntget(nd->path.mnt);
553 
554 	rcu_read_unlock();
555 	br_read_unlock(vfsmount_lock);
556 
557 	return 0;
558 
559 err_unlock:
560 	spin_unlock(&dentry->d_lock);
561 	rcu_read_unlock();
562 	br_read_unlock(vfsmount_lock);
563 	return -ECHILD;
564 }
565 
566 /**
567  * release_open_intent - free up open intent resources
568  * @nd: pointer to nameidata
569  */
release_open_intent(struct nameidata * nd)570 void release_open_intent(struct nameidata *nd)
571 {
572 	struct file *file = nd->intent.open.file;
573 
574 	if (file && !IS_ERR(file)) {
575 		if (file->f_path.dentry == NULL)
576 			put_filp(file);
577 		else
578 			fput(file);
579 	}
580 }
581 
d_revalidate(struct dentry * dentry,struct nameidata * nd)582 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
583 {
584 	return dentry->d_op->d_revalidate(dentry, nd);
585 }
586 
587 static struct dentry *
do_revalidate(struct dentry * dentry,struct nameidata * nd)588 do_revalidate(struct dentry *dentry, struct nameidata *nd)
589 {
590 	int status = d_revalidate(dentry, nd);
591 	if (unlikely(status <= 0)) {
592 		/*
593 		 * The dentry failed validation.
594 		 * If d_revalidate returned 0 attempt to invalidate
595 		 * the dentry otherwise d_revalidate is asking us
596 		 * to return a fail status.
597 		 */
598 		if (status < 0) {
599 			dput(dentry);
600 			dentry = ERR_PTR(status);
601 		} else if (!d_invalidate(dentry)) {
602 			dput(dentry);
603 			dentry = NULL;
604 		}
605 	}
606 	return dentry;
607 }
608 
609 /*
610  * handle_reval_path - force revalidation of a dentry
611  *
612  * In some situations the path walking code will trust dentries without
613  * revalidating them. This causes problems for filesystems that depend on
614  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
615  * (which indicates that it's possible for the dentry to go stale), force
616  * a d_revalidate call before proceeding.
617  *
618  * Returns 0 if the revalidation was successful. If the revalidation fails,
619  * either return the error returned by d_revalidate or -ESTALE if the
620  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
621  * invalidate the dentry. It's up to the caller to handle putting references
622  * to the path if necessary.
623  */
handle_reval_path(struct nameidata * nd)624 static inline int handle_reval_path(struct nameidata *nd)
625 {
626 	struct dentry *dentry = nd->path.dentry;
627 	int status;
628 
629 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
630 		return 0;
631 
632 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
633 		return 0;
634 
635 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
636 		return 0;
637 
638 	/* Note: we do not d_invalidate() */
639 	status = d_revalidate(dentry, nd);
640 	if (status > 0)
641 		return 0;
642 
643 	if (!status)
644 		status = -ESTALE;
645 
646 	return status;
647 }
648 
649 /*
650  * Short-cut version of permission(), for calling on directories
651  * during pathname resolution.  Combines parts of permission()
652  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
653  *
654  * If appropriate, check DAC only.  If not appropriate, or
655  * short-cut DAC fails, then call ->permission() to do more
656  * complete permission check.
657  */
exec_permission(struct inode * inode,unsigned int flags)658 static inline int exec_permission(struct inode *inode, unsigned int flags)
659 {
660 	int ret;
661 	struct user_namespace *ns = inode_userns(inode);
662 
663 	if (inode->i_op->permission) {
664 		ret = inode->i_op->permission(inode, MAY_EXEC, flags);
665 	} else {
666 		ret = acl_permission_check(inode, MAY_EXEC, flags,
667 				inode->i_op->check_acl);
668 	}
669 	if (likely(!ret))
670 		goto ok;
671 	if (ret == -ECHILD)
672 		return ret;
673 
674 	if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
675 			ns_capable(ns, CAP_DAC_READ_SEARCH))
676 		goto ok;
677 
678 	return ret;
679 ok:
680 	return security_inode_exec_permission(inode, flags);
681 }
682 
set_root(struct nameidata * nd)683 static __always_inline void set_root(struct nameidata *nd)
684 {
685 	if (!nd->root.mnt)
686 		get_fs_root(current->fs, &nd->root);
687 }
688 
689 static int link_path_walk(const char *, struct nameidata *);
690 
set_root_rcu(struct nameidata * nd)691 static __always_inline void set_root_rcu(struct nameidata *nd)
692 {
693 	if (!nd->root.mnt) {
694 		struct fs_struct *fs = current->fs;
695 		unsigned seq;
696 
697 		do {
698 			seq = read_seqcount_begin(&fs->seq);
699 			nd->root = fs->root;
700 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
701 		} while (read_seqcount_retry(&fs->seq, seq));
702 	}
703 }
704 
__vfs_follow_link(struct nameidata * nd,const char * link)705 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
706 {
707 	int ret;
708 
709 	if (IS_ERR(link))
710 		goto fail;
711 
712 	if (*link == '/') {
713 		set_root(nd);
714 		path_put(&nd->path);
715 		nd->path = nd->root;
716 		path_get(&nd->root);
717 		nd->flags |= LOOKUP_JUMPED;
718 	}
719 	nd->inode = nd->path.dentry->d_inode;
720 
721 	ret = link_path_walk(link, nd);
722 	return ret;
723 fail:
724 	path_put(&nd->path);
725 	return PTR_ERR(link);
726 }
727 
path_put_conditional(struct path * path,struct nameidata * nd)728 static void path_put_conditional(struct path *path, struct nameidata *nd)
729 {
730 	dput(path->dentry);
731 	if (path->mnt != nd->path.mnt)
732 		mntput(path->mnt);
733 }
734 
path_to_nameidata(const struct path * path,struct nameidata * nd)735 static inline void path_to_nameidata(const struct path *path,
736 					struct nameidata *nd)
737 {
738 	if (!(nd->flags & LOOKUP_RCU)) {
739 		dput(nd->path.dentry);
740 		if (nd->path.mnt != path->mnt)
741 			mntput(nd->path.mnt);
742 	}
743 	nd->path.mnt = path->mnt;
744 	nd->path.dentry = path->dentry;
745 }
746 
put_link(struct nameidata * nd,struct path * link,void * cookie)747 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
748 {
749 	struct inode *inode = link->dentry->d_inode;
750 	if (!IS_ERR(cookie) && inode->i_op->put_link)
751 		inode->i_op->put_link(link->dentry, nd, cookie);
752 	path_put(link);
753 }
754 
755 static __always_inline int
follow_link(struct path * link,struct nameidata * nd,void ** p)756 follow_link(struct path *link, struct nameidata *nd, void **p)
757 {
758 	int error;
759 	struct dentry *dentry = link->dentry;
760 
761 	BUG_ON(nd->flags & LOOKUP_RCU);
762 
763 	if (link->mnt == nd->path.mnt)
764 		mntget(link->mnt);
765 
766 	if (unlikely(current->total_link_count >= 40)) {
767 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
768 		path_put(&nd->path);
769 		return -ELOOP;
770 	}
771 	cond_resched();
772 	current->total_link_count++;
773 
774 	touch_atime(link->mnt, dentry);
775 	nd_set_link(nd, NULL);
776 
777 	error = security_inode_follow_link(link->dentry, nd);
778 	if (error) {
779 		*p = ERR_PTR(error); /* no ->put_link(), please */
780 		path_put(&nd->path);
781 		return error;
782 	}
783 
784 	nd->last_type = LAST_BIND;
785 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
786 	error = PTR_ERR(*p);
787 	if (!IS_ERR(*p)) {
788 		char *s = nd_get_link(nd);
789 		error = 0;
790 		if (s)
791 			error = __vfs_follow_link(nd, s);
792 		else if (nd->last_type == LAST_BIND) {
793 			nd->flags |= LOOKUP_JUMPED;
794 			nd->inode = nd->path.dentry->d_inode;
795 			if (nd->inode->i_op->follow_link) {
796 				/* stepped on a _really_ weird one */
797 				path_put(&nd->path);
798 				error = -ELOOP;
799 			}
800 		}
801 	}
802 	return error;
803 }
804 
follow_up_rcu(struct path * path)805 static int follow_up_rcu(struct path *path)
806 {
807 	struct vfsmount *parent;
808 	struct dentry *mountpoint;
809 
810 	parent = path->mnt->mnt_parent;
811 	if (parent == path->mnt)
812 		return 0;
813 	mountpoint = path->mnt->mnt_mountpoint;
814 	path->dentry = mountpoint;
815 	path->mnt = parent;
816 	return 1;
817 }
818 
follow_up(struct path * path)819 int follow_up(struct path *path)
820 {
821 	struct vfsmount *parent;
822 	struct dentry *mountpoint;
823 
824 	br_read_lock(vfsmount_lock);
825 	parent = path->mnt->mnt_parent;
826 	if (parent == path->mnt) {
827 		br_read_unlock(vfsmount_lock);
828 		return 0;
829 	}
830 	mntget(parent);
831 	mountpoint = dget(path->mnt->mnt_mountpoint);
832 	br_read_unlock(vfsmount_lock);
833 	dput(path->dentry);
834 	path->dentry = mountpoint;
835 	mntput(path->mnt);
836 	path->mnt = parent;
837 	return 1;
838 }
839 
840 /*
841  * Perform an automount
842  * - return -EISDIR to tell follow_managed() to stop and return the path we
843  *   were called with.
844  */
follow_automount(struct path * path,unsigned flags,bool * need_mntput)845 static int follow_automount(struct path *path, unsigned flags,
846 			    bool *need_mntput)
847 {
848 	struct vfsmount *mnt;
849 	int err;
850 
851 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
852 		return -EREMOTE;
853 
854 	/* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
855 	 * and this is the terminal part of the path.
856 	 */
857 	if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
858 		return -EISDIR; /* we actually want to stop here */
859 
860 	/* We want to mount if someone is trying to open/create a file of any
861 	 * type under the mountpoint, wants to traverse through the mountpoint
862 	 * or wants to open the mounted directory.
863 	 *
864 	 * We don't want to mount if someone's just doing a stat and they've
865 	 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
866 	 * appended a '/' to the name.
867 	 */
868 	if (!(flags & LOOKUP_FOLLOW) &&
869 	    !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
870 		       LOOKUP_OPEN | LOOKUP_CREATE)))
871 		return -EISDIR;
872 
873 	current->total_link_count++;
874 	if (current->total_link_count >= 40)
875 		return -ELOOP;
876 
877 	mnt = path->dentry->d_op->d_automount(path);
878 	if (IS_ERR(mnt)) {
879 		/*
880 		 * The filesystem is allowed to return -EISDIR here to indicate
881 		 * it doesn't want to automount.  For instance, autofs would do
882 		 * this so that its userspace daemon can mount on this dentry.
883 		 *
884 		 * However, we can only permit this if it's a terminal point in
885 		 * the path being looked up; if it wasn't then the remainder of
886 		 * the path is inaccessible and we should say so.
887 		 */
888 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
889 			return -EREMOTE;
890 		return PTR_ERR(mnt);
891 	}
892 
893 	if (!mnt) /* mount collision */
894 		return 0;
895 
896 	err = finish_automount(mnt, path);
897 
898 	switch (err) {
899 	case -EBUSY:
900 		/* Someone else made a mount here whilst we were busy */
901 		return 0;
902 	case 0:
903 		dput(path->dentry);
904 		if (*need_mntput)
905 			mntput(path->mnt);
906 		path->mnt = mnt;
907 		path->dentry = dget(mnt->mnt_root);
908 		*need_mntput = true;
909 		return 0;
910 	default:
911 		return err;
912 	}
913 
914 }
915 
916 /*
917  * Handle a dentry that is managed in some way.
918  * - Flagged for transit management (autofs)
919  * - Flagged as mountpoint
920  * - Flagged as automount point
921  *
922  * This may only be called in refwalk mode.
923  *
924  * Serialization is taken care of in namespace.c
925  */
follow_managed(struct path * path,unsigned flags)926 static int follow_managed(struct path *path, unsigned flags)
927 {
928 	unsigned managed;
929 	bool need_mntput = false;
930 	int ret;
931 
932 	/* Given that we're not holding a lock here, we retain the value in a
933 	 * local variable for each dentry as we look at it so that we don't see
934 	 * the components of that value change under us */
935 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
936 	       managed &= DCACHE_MANAGED_DENTRY,
937 	       unlikely(managed != 0)) {
938 		/* Allow the filesystem to manage the transit without i_mutex
939 		 * being held. */
940 		if (managed & DCACHE_MANAGE_TRANSIT) {
941 			BUG_ON(!path->dentry->d_op);
942 			BUG_ON(!path->dentry->d_op->d_manage);
943 			ret = path->dentry->d_op->d_manage(path->dentry, false);
944 			if (ret < 0)
945 				return ret == -EISDIR ? 0 : ret;
946 		}
947 
948 		/* Transit to a mounted filesystem. */
949 		if (managed & DCACHE_MOUNTED) {
950 			struct vfsmount *mounted = lookup_mnt(path);
951 			if (mounted) {
952 				dput(path->dentry);
953 				if (need_mntput)
954 					mntput(path->mnt);
955 				path->mnt = mounted;
956 				path->dentry = dget(mounted->mnt_root);
957 				need_mntput = true;
958 				continue;
959 			}
960 
961 			/* Something is mounted on this dentry in another
962 			 * namespace and/or whatever was mounted there in this
963 			 * namespace got unmounted before we managed to get the
964 			 * vfsmount_lock */
965 		}
966 
967 		/* Handle an automount point */
968 		if (managed & DCACHE_NEED_AUTOMOUNT) {
969 			ret = follow_automount(path, flags, &need_mntput);
970 			if (ret < 0)
971 				return ret == -EISDIR ? 0 : ret;
972 			continue;
973 		}
974 
975 		/* We didn't change the current path point */
976 		break;
977 	}
978 	return 0;
979 }
980 
follow_down_one(struct path * path)981 int follow_down_one(struct path *path)
982 {
983 	struct vfsmount *mounted;
984 
985 	mounted = lookup_mnt(path);
986 	if (mounted) {
987 		dput(path->dentry);
988 		mntput(path->mnt);
989 		path->mnt = mounted;
990 		path->dentry = dget(mounted->mnt_root);
991 		return 1;
992 	}
993 	return 0;
994 }
995 
managed_dentry_might_block(struct dentry * dentry)996 static inline bool managed_dentry_might_block(struct dentry *dentry)
997 {
998 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
999 		dentry->d_op->d_manage(dentry, true) < 0);
1000 }
1001 
1002 /*
1003  * Skip to top of mountpoint pile in rcuwalk mode.  We abort the rcu-walk if we
1004  * meet a managed dentry and we're not walking to "..".  True is returned to
1005  * continue, false to abort.
1006  */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,bool reverse_transit)1007 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1008 			       struct inode **inode, bool reverse_transit)
1009 {
1010 	for (;;) {
1011 		struct vfsmount *mounted;
1012 		/*
1013 		 * Don't forget we might have a non-mountpoint managed dentry
1014 		 * that wants to block transit.
1015 		 */
1016 		*inode = path->dentry->d_inode;
1017 		if (!reverse_transit &&
1018 		     unlikely(managed_dentry_might_block(path->dentry)))
1019 			return false;
1020 
1021 		if (!d_mountpoint(path->dentry))
1022 			break;
1023 
1024 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1025 		if (!mounted)
1026 			break;
1027 		path->mnt = mounted;
1028 		path->dentry = mounted->mnt_root;
1029 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1030 	}
1031 
1032 	if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1033 		return reverse_transit;
1034 	return true;
1035 }
1036 
follow_dotdot_rcu(struct nameidata * nd)1037 static int follow_dotdot_rcu(struct nameidata *nd)
1038 {
1039 	struct inode *inode = nd->inode;
1040 
1041 	set_root_rcu(nd);
1042 
1043 	while (1) {
1044 		if (nd->path.dentry == nd->root.dentry &&
1045 		    nd->path.mnt == nd->root.mnt) {
1046 			break;
1047 		}
1048 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1049 			struct dentry *old = nd->path.dentry;
1050 			struct dentry *parent = old->d_parent;
1051 			unsigned seq;
1052 
1053 			seq = read_seqcount_begin(&parent->d_seq);
1054 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1055 				goto failed;
1056 			inode = parent->d_inode;
1057 			nd->path.dentry = parent;
1058 			nd->seq = seq;
1059 			break;
1060 		}
1061 		if (!follow_up_rcu(&nd->path))
1062 			break;
1063 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1064 		inode = nd->path.dentry->d_inode;
1065 	}
1066 	__follow_mount_rcu(nd, &nd->path, &inode, true);
1067 	nd->inode = inode;
1068 	return 0;
1069 
1070 failed:
1071 	nd->flags &= ~LOOKUP_RCU;
1072 	if (!(nd->flags & LOOKUP_ROOT))
1073 		nd->root.mnt = NULL;
1074 	rcu_read_unlock();
1075 	br_read_unlock(vfsmount_lock);
1076 	return -ECHILD;
1077 }
1078 
1079 /*
1080  * Follow down to the covering mount currently visible to userspace.  At each
1081  * point, the filesystem owning that dentry may be queried as to whether the
1082  * caller is permitted to proceed or not.
1083  *
1084  * Care must be taken as namespace_sem may be held (indicated by mounting_here
1085  * being true).
1086  */
follow_down(struct path * path)1087 int follow_down(struct path *path)
1088 {
1089 	unsigned managed;
1090 	int ret;
1091 
1092 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1093 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1094 		/* Allow the filesystem to manage the transit without i_mutex
1095 		 * being held.
1096 		 *
1097 		 * We indicate to the filesystem if someone is trying to mount
1098 		 * something here.  This gives autofs the chance to deny anyone
1099 		 * other than its daemon the right to mount on its
1100 		 * superstructure.
1101 		 *
1102 		 * The filesystem may sleep at this point.
1103 		 */
1104 		if (managed & DCACHE_MANAGE_TRANSIT) {
1105 			BUG_ON(!path->dentry->d_op);
1106 			BUG_ON(!path->dentry->d_op->d_manage);
1107 			ret = path->dentry->d_op->d_manage(
1108 				path->dentry, false);
1109 			if (ret < 0)
1110 				return ret == -EISDIR ? 0 : ret;
1111 		}
1112 
1113 		/* Transit to a mounted filesystem. */
1114 		if (managed & DCACHE_MOUNTED) {
1115 			struct vfsmount *mounted = lookup_mnt(path);
1116 			if (!mounted)
1117 				break;
1118 			dput(path->dentry);
1119 			mntput(path->mnt);
1120 			path->mnt = mounted;
1121 			path->dentry = dget(mounted->mnt_root);
1122 			continue;
1123 		}
1124 
1125 		/* Don't handle automount points here */
1126 		break;
1127 	}
1128 	return 0;
1129 }
1130 
1131 /*
1132  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1133  */
follow_mount(struct path * path)1134 static void follow_mount(struct path *path)
1135 {
1136 	while (d_mountpoint(path->dentry)) {
1137 		struct vfsmount *mounted = lookup_mnt(path);
1138 		if (!mounted)
1139 			break;
1140 		dput(path->dentry);
1141 		mntput(path->mnt);
1142 		path->mnt = mounted;
1143 		path->dentry = dget(mounted->mnt_root);
1144 	}
1145 }
1146 
follow_dotdot(struct nameidata * nd)1147 static void follow_dotdot(struct nameidata *nd)
1148 {
1149 	set_root(nd);
1150 
1151 	while(1) {
1152 		struct dentry *old = nd->path.dentry;
1153 
1154 		if (nd->path.dentry == nd->root.dentry &&
1155 		    nd->path.mnt == nd->root.mnt) {
1156 			break;
1157 		}
1158 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1159 			/* rare case of legitimate dget_parent()... */
1160 			nd->path.dentry = dget_parent(nd->path.dentry);
1161 			dput(old);
1162 			break;
1163 		}
1164 		if (!follow_up(&nd->path))
1165 			break;
1166 	}
1167 	follow_mount(&nd->path);
1168 	nd->inode = nd->path.dentry->d_inode;
1169 }
1170 
1171 /*
1172  * Allocate a dentry with name and parent, and perform a parent
1173  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1174  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1175  * have verified that no child exists while under i_mutex.
1176  */
d_alloc_and_lookup(struct dentry * parent,struct qstr * name,struct nameidata * nd)1177 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1178 				struct qstr *name, struct nameidata *nd)
1179 {
1180 	struct inode *inode = parent->d_inode;
1181 	struct dentry *dentry;
1182 	struct dentry *old;
1183 
1184 	/* Don't create child dentry for a dead directory. */
1185 	if (unlikely(IS_DEADDIR(inode)))
1186 		return ERR_PTR(-ENOENT);
1187 
1188 	dentry = d_alloc(parent, name);
1189 	if (unlikely(!dentry))
1190 		return ERR_PTR(-ENOMEM);
1191 
1192 	old = inode->i_op->lookup(inode, dentry, nd);
1193 	if (unlikely(old)) {
1194 		dput(dentry);
1195 		dentry = old;
1196 	}
1197 	return dentry;
1198 }
1199 
1200 /*
1201  *  It's more convoluted than I'd like it to be, but... it's still fairly
1202  *  small and for now I'd prefer to have fast path as straight as possible.
1203  *  It _is_ time-critical.
1204  */
do_lookup(struct nameidata * nd,struct qstr * name,struct path * path,struct inode ** inode)1205 static int do_lookup(struct nameidata *nd, struct qstr *name,
1206 			struct path *path, struct inode **inode)
1207 {
1208 	struct vfsmount *mnt = nd->path.mnt;
1209 	struct dentry *dentry, *parent = nd->path.dentry;
1210 	int need_reval = 1;
1211 	int status = 1;
1212 	int err;
1213 
1214 	/*
1215 	 * Rename seqlock is not required here because in the off chance
1216 	 * of a false negative due to a concurrent rename, we're going to
1217 	 * do the non-racy lookup, below.
1218 	 */
1219 	if (nd->flags & LOOKUP_RCU) {
1220 		unsigned seq;
1221 		*inode = nd->inode;
1222 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1223 		if (!dentry)
1224 			goto unlazy;
1225 
1226 		/* Memory barrier in read_seqcount_begin of child is enough */
1227 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1228 			return -ECHILD;
1229 		nd->seq = seq;
1230 
1231 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1232 			status = d_revalidate(dentry, nd);
1233 			if (unlikely(status <= 0)) {
1234 				if (status != -ECHILD)
1235 					need_reval = 0;
1236 				goto unlazy;
1237 			}
1238 		}
1239 		path->mnt = mnt;
1240 		path->dentry = dentry;
1241 		if (likely(__follow_mount_rcu(nd, path, inode, false)))
1242 			return 0;
1243 unlazy:
1244 		if (dentry) {
1245 			if (nameidata_dentry_drop_rcu(nd, dentry))
1246 				return -ECHILD;
1247 		} else {
1248 			if (nameidata_drop_rcu(nd))
1249 				return -ECHILD;
1250 		}
1251 	} else {
1252 		dentry = __d_lookup(parent, name);
1253 	}
1254 
1255 retry:
1256 	if (unlikely(!dentry)) {
1257 		struct inode *dir = parent->d_inode;
1258 		BUG_ON(nd->inode != dir);
1259 
1260 		mutex_lock(&dir->i_mutex);
1261 		dentry = d_lookup(parent, name);
1262 		if (likely(!dentry)) {
1263 			dentry = d_alloc_and_lookup(parent, name, nd);
1264 			if (IS_ERR(dentry)) {
1265 				mutex_unlock(&dir->i_mutex);
1266 				return PTR_ERR(dentry);
1267 			}
1268 			/* known good */
1269 			need_reval = 0;
1270 			status = 1;
1271 		}
1272 		mutex_unlock(&dir->i_mutex);
1273 	}
1274 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1275 		status = d_revalidate(dentry, nd);
1276 	if (unlikely(status <= 0)) {
1277 		if (status < 0) {
1278 			dput(dentry);
1279 			return status;
1280 		}
1281 		if (!d_invalidate(dentry)) {
1282 			dput(dentry);
1283 			dentry = NULL;
1284 			need_reval = 1;
1285 			goto retry;
1286 		}
1287 	}
1288 
1289 	path->mnt = mnt;
1290 	path->dentry = dentry;
1291 	err = follow_managed(path, nd->flags);
1292 	if (unlikely(err < 0)) {
1293 		path_put_conditional(path, nd);
1294 		return err;
1295 	}
1296 	*inode = path->dentry->d_inode;
1297 	return 0;
1298 }
1299 
may_lookup(struct nameidata * nd)1300 static inline int may_lookup(struct nameidata *nd)
1301 {
1302 	if (nd->flags & LOOKUP_RCU) {
1303 		int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1304 		if (err != -ECHILD)
1305 			return err;
1306 		if (nameidata_drop_rcu(nd))
1307 			return -ECHILD;
1308 	}
1309 	return exec_permission(nd->inode, 0);
1310 }
1311 
handle_dots(struct nameidata * nd,int type)1312 static inline int handle_dots(struct nameidata *nd, int type)
1313 {
1314 	if (type == LAST_DOTDOT) {
1315 		if (nd->flags & LOOKUP_RCU) {
1316 			if (follow_dotdot_rcu(nd))
1317 				return -ECHILD;
1318 		} else
1319 			follow_dotdot(nd);
1320 	}
1321 	return 0;
1322 }
1323 
terminate_walk(struct nameidata * nd)1324 static void terminate_walk(struct nameidata *nd)
1325 {
1326 	if (!(nd->flags & LOOKUP_RCU)) {
1327 		path_put(&nd->path);
1328 	} else {
1329 		nd->flags &= ~LOOKUP_RCU;
1330 		if (!(nd->flags & LOOKUP_ROOT))
1331 			nd->root.mnt = NULL;
1332 		rcu_read_unlock();
1333 		br_read_unlock(vfsmount_lock);
1334 	}
1335 }
1336 
walk_component(struct nameidata * nd,struct path * path,struct qstr * name,int type,int follow)1337 static inline int walk_component(struct nameidata *nd, struct path *path,
1338 		struct qstr *name, int type, int follow)
1339 {
1340 	struct inode *inode;
1341 	int err;
1342 	/*
1343 	 * "." and ".." are special - ".." especially so because it has
1344 	 * to be able to know about the current root directory and
1345 	 * parent relationships.
1346 	 */
1347 	if (unlikely(type != LAST_NORM))
1348 		return handle_dots(nd, type);
1349 	err = do_lookup(nd, name, path, &inode);
1350 	if (unlikely(err)) {
1351 		terminate_walk(nd);
1352 		return err;
1353 	}
1354 	if (!inode) {
1355 		path_to_nameidata(path, nd);
1356 		terminate_walk(nd);
1357 		return -ENOENT;
1358 	}
1359 	if (unlikely(inode->i_op->follow_link) && follow) {
1360 		if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
1361 			return -ECHILD;
1362 		BUG_ON(inode != path->dentry->d_inode);
1363 		return 1;
1364 	}
1365 	path_to_nameidata(path, nd);
1366 	nd->inode = inode;
1367 	return 0;
1368 }
1369 
1370 /*
1371  * This limits recursive symlink follows to 8, while
1372  * limiting consecutive symlinks to 40.
1373  *
1374  * Without that kind of total limit, nasty chains of consecutive
1375  * symlinks can cause almost arbitrarily long lookups.
1376  */
nested_symlink(struct path * path,struct nameidata * nd)1377 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1378 {
1379 	int res;
1380 
1381 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1382 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1383 		path_put_conditional(path, nd);
1384 		path_put(&nd->path);
1385 		return -ELOOP;
1386 	}
1387 
1388 	nd->depth++;
1389 	current->link_count++;
1390 
1391 	do {
1392 		struct path link = *path;
1393 		void *cookie;
1394 
1395 		res = follow_link(&link, nd, &cookie);
1396 		if (!res)
1397 			res = walk_component(nd, path, &nd->last,
1398 					     nd->last_type, LOOKUP_FOLLOW);
1399 		put_link(nd, &link, cookie);
1400 	} while (res > 0);
1401 
1402 	current->link_count--;
1403 	nd->depth--;
1404 	return res;
1405 }
1406 
1407 /*
1408  * Name resolution.
1409  * This is the basic name resolution function, turning a pathname into
1410  * the final dentry. We expect 'base' to be positive and a directory.
1411  *
1412  * Returns 0 and nd will have valid dentry and mnt on success.
1413  * Returns error and drops reference to input namei data on failure.
1414  */
link_path_walk(const char * name,struct nameidata * nd)1415 static int link_path_walk(const char *name, struct nameidata *nd)
1416 {
1417 	struct path next;
1418 	int err;
1419 	unsigned int lookup_flags = nd->flags;
1420 
1421 	while (*name=='/')
1422 		name++;
1423 	if (!*name)
1424 		return 0;
1425 
1426 	/* At this point we know we have a real path component. */
1427 	for(;;) {
1428 		unsigned long hash;
1429 		struct qstr this;
1430 		unsigned int c;
1431 		int type;
1432 
1433 		nd->flags |= LOOKUP_CONTINUE;
1434 
1435 		err = may_lookup(nd);
1436  		if (err)
1437 			break;
1438 
1439 		this.name = name;
1440 		c = *(const unsigned char *)name;
1441 
1442 		hash = init_name_hash();
1443 		do {
1444 			name++;
1445 			hash = partial_name_hash(c, hash);
1446 			c = *(const unsigned char *)name;
1447 		} while (c && (c != '/'));
1448 		this.len = name - (const char *) this.name;
1449 		this.hash = end_name_hash(hash);
1450 
1451 		type = LAST_NORM;
1452 		if (this.name[0] == '.') switch (this.len) {
1453 			case 2:
1454 				if (this.name[1] == '.') {
1455 					type = LAST_DOTDOT;
1456 					nd->flags |= LOOKUP_JUMPED;
1457 				}
1458 				break;
1459 			case 1:
1460 				type = LAST_DOT;
1461 		}
1462 		if (likely(type == LAST_NORM)) {
1463 			struct dentry *parent = nd->path.dentry;
1464 			nd->flags &= ~LOOKUP_JUMPED;
1465 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1466 				err = parent->d_op->d_hash(parent, nd->inode,
1467 							   &this);
1468 				if (err < 0)
1469 					break;
1470 			}
1471 		}
1472 
1473 		/* remove trailing slashes? */
1474 		if (!c)
1475 			goto last_component;
1476 		while (*++name == '/');
1477 		if (!*name)
1478 			goto last_component;
1479 
1480 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1481 		if (err < 0)
1482 			return err;
1483 
1484 		if (err) {
1485 			err = nested_symlink(&next, nd);
1486 			if (err)
1487 				return err;
1488 		}
1489 		err = -ENOTDIR;
1490 		if (!nd->inode->i_op->lookup)
1491 			break;
1492 		continue;
1493 		/* here ends the main loop */
1494 
1495 last_component:
1496 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
1497 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1498 		nd->last = this;
1499 		nd->last_type = type;
1500 		return 0;
1501 	}
1502 	terminate_walk(nd);
1503 	return err;
1504 }
1505 
path_init(int dfd,const char * name,unsigned int flags,struct nameidata * nd,struct file ** fp)1506 static int path_init(int dfd, const char *name, unsigned int flags,
1507 		     struct nameidata *nd, struct file **fp)
1508 {
1509 	int retval = 0;
1510 	int fput_needed;
1511 	struct file *file;
1512 
1513 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1514 	nd->flags = flags | LOOKUP_JUMPED;
1515 	nd->depth = 0;
1516 	if (flags & LOOKUP_ROOT) {
1517 		struct inode *inode = nd->root.dentry->d_inode;
1518 		if (*name) {
1519 			if (!inode->i_op->lookup)
1520 				return -ENOTDIR;
1521 			retval = inode_permission(inode, MAY_EXEC);
1522 			if (retval)
1523 				return retval;
1524 		}
1525 		nd->path = nd->root;
1526 		nd->inode = inode;
1527 		if (flags & LOOKUP_RCU) {
1528 			br_read_lock(vfsmount_lock);
1529 			rcu_read_lock();
1530 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1531 		} else {
1532 			path_get(&nd->path);
1533 		}
1534 		return 0;
1535 	}
1536 
1537 	nd->root.mnt = NULL;
1538 
1539 	if (*name=='/') {
1540 		if (flags & LOOKUP_RCU) {
1541 			br_read_lock(vfsmount_lock);
1542 			rcu_read_lock();
1543 			set_root_rcu(nd);
1544 		} else {
1545 			set_root(nd);
1546 			path_get(&nd->root);
1547 		}
1548 		nd->path = nd->root;
1549 	} else if (dfd == AT_FDCWD) {
1550 		if (flags & LOOKUP_RCU) {
1551 			struct fs_struct *fs = current->fs;
1552 			unsigned seq;
1553 
1554 			br_read_lock(vfsmount_lock);
1555 			rcu_read_lock();
1556 
1557 			do {
1558 				seq = read_seqcount_begin(&fs->seq);
1559 				nd->path = fs->pwd;
1560 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1561 			} while (read_seqcount_retry(&fs->seq, seq));
1562 		} else {
1563 			get_fs_pwd(current->fs, &nd->path);
1564 		}
1565 	} else {
1566 		struct dentry *dentry;
1567 
1568 		file = fget_raw_light(dfd, &fput_needed);
1569 		retval = -EBADF;
1570 		if (!file)
1571 			goto out_fail;
1572 
1573 		dentry = file->f_path.dentry;
1574 
1575 		if (*name) {
1576 			retval = -ENOTDIR;
1577 			if (!S_ISDIR(dentry->d_inode->i_mode))
1578 				goto fput_fail;
1579 
1580 			retval = file_permission(file, MAY_EXEC);
1581 			if (retval)
1582 				goto fput_fail;
1583 		}
1584 
1585 		nd->path = file->f_path;
1586 		if (flags & LOOKUP_RCU) {
1587 			if (fput_needed)
1588 				*fp = file;
1589 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1590 			br_read_lock(vfsmount_lock);
1591 			rcu_read_lock();
1592 		} else {
1593 			path_get(&file->f_path);
1594 			fput_light(file, fput_needed);
1595 		}
1596 	}
1597 
1598 	nd->inode = nd->path.dentry->d_inode;
1599 	return 0;
1600 
1601 fput_fail:
1602 	fput_light(file, fput_needed);
1603 out_fail:
1604 	return retval;
1605 }
1606 
lookup_last(struct nameidata * nd,struct path * path)1607 static inline int lookup_last(struct nameidata *nd, struct path *path)
1608 {
1609 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1610 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1611 
1612 	nd->flags &= ~LOOKUP_PARENT;
1613 	return walk_component(nd, path, &nd->last, nd->last_type,
1614 					nd->flags & LOOKUP_FOLLOW);
1615 }
1616 
1617 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1618 static int path_lookupat(int dfd, const char *name,
1619 				unsigned int flags, struct nameidata *nd)
1620 {
1621 	struct file *base = NULL;
1622 	struct path path;
1623 	int err;
1624 
1625 	/*
1626 	 * Path walking is largely split up into 2 different synchronisation
1627 	 * schemes, rcu-walk and ref-walk (explained in
1628 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1629 	 * path walk code, but some things particularly setup, cleanup, and
1630 	 * following mounts are sufficiently divergent that functions are
1631 	 * duplicated. Typically there is a function foo(), and its RCU
1632 	 * analogue, foo_rcu().
1633 	 *
1634 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1635 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1636 	 * be handled by restarting a traditional ref-walk (which will always
1637 	 * be able to complete).
1638 	 */
1639 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1640 
1641 	if (unlikely(err))
1642 		return err;
1643 
1644 	current->total_link_count = 0;
1645 	err = link_path_walk(name, nd);
1646 
1647 	if (!err && !(flags & LOOKUP_PARENT)) {
1648 		err = lookup_last(nd, &path);
1649 		while (err > 0) {
1650 			void *cookie;
1651 			struct path link = path;
1652 			nd->flags |= LOOKUP_PARENT;
1653 			err = follow_link(&link, nd, &cookie);
1654 			if (!err)
1655 				err = lookup_last(nd, &path);
1656 			put_link(nd, &link, cookie);
1657 		}
1658 	}
1659 
1660 	if (nd->flags & LOOKUP_RCU) {
1661 		/* went all way through without dropping RCU */
1662 		BUG_ON(err);
1663 		if (nameidata_drop_rcu_last(nd))
1664 			err = -ECHILD;
1665 	}
1666 
1667 	if (!err) {
1668 		err = handle_reval_path(nd);
1669 		if (err)
1670 			path_put(&nd->path);
1671 	}
1672 
1673 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1674 		if (!nd->inode->i_op->lookup) {
1675 			path_put(&nd->path);
1676 			err = -ENOTDIR;
1677 		}
1678 	}
1679 
1680 	if (base)
1681 		fput(base);
1682 
1683 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1684 		path_put(&nd->root);
1685 		nd->root.mnt = NULL;
1686 	}
1687 	return err;
1688 }
1689 
do_path_lookup(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1690 static int do_path_lookup(int dfd, const char *name,
1691 				unsigned int flags, struct nameidata *nd)
1692 {
1693 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1694 	if (unlikely(retval == -ECHILD))
1695 		retval = path_lookupat(dfd, name, flags, nd);
1696 	if (unlikely(retval == -ESTALE))
1697 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1698 
1699 	if (likely(!retval)) {
1700 		if (unlikely(!audit_dummy_context())) {
1701 			if (nd->path.dentry && nd->inode)
1702 				audit_inode(name, nd->path.dentry);
1703 		}
1704 	}
1705 	return retval;
1706 }
1707 
kern_path_parent(const char * name,struct nameidata * nd)1708 int kern_path_parent(const char *name, struct nameidata *nd)
1709 {
1710 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1711 }
1712 
kern_path(const char * name,unsigned int flags,struct path * path)1713 int kern_path(const char *name, unsigned int flags, struct path *path)
1714 {
1715 	struct nameidata nd;
1716 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1717 	if (!res)
1718 		*path = nd.path;
1719 	return res;
1720 }
1721 
1722 /**
1723  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1724  * @dentry:  pointer to dentry of the base directory
1725  * @mnt: pointer to vfs mount of the base directory
1726  * @name: pointer to file name
1727  * @flags: lookup flags
1728  * @nd: pointer to nameidata
1729  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct nameidata * nd)1730 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1731 		    const char *name, unsigned int flags,
1732 		    struct nameidata *nd)
1733 {
1734 	nd->root.dentry = dentry;
1735 	nd->root.mnt = mnt;
1736 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1737 	return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1738 }
1739 
__lookup_hash(struct qstr * name,struct dentry * base,struct nameidata * nd)1740 static struct dentry *__lookup_hash(struct qstr *name,
1741 		struct dentry *base, struct nameidata *nd)
1742 {
1743 	struct inode *inode = base->d_inode;
1744 	struct dentry *dentry;
1745 	int err;
1746 
1747 	err = exec_permission(inode, 0);
1748 	if (err)
1749 		return ERR_PTR(err);
1750 
1751 	/*
1752 	 * Don't bother with __d_lookup: callers are for creat as
1753 	 * well as unlink, so a lot of the time it would cost
1754 	 * a double lookup.
1755 	 */
1756 	dentry = d_lookup(base, name);
1757 
1758 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1759 		dentry = do_revalidate(dentry, nd);
1760 
1761 	if (!dentry)
1762 		dentry = d_alloc_and_lookup(base, name, nd);
1763 
1764 	return dentry;
1765 }
1766 
1767 /*
1768  * Restricted form of lookup. Doesn't follow links, single-component only,
1769  * needs parent already locked. Doesn't follow mounts.
1770  * SMP-safe.
1771  */
lookup_hash(struct nameidata * nd)1772 static struct dentry *lookup_hash(struct nameidata *nd)
1773 {
1774 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1775 }
1776 
1777 /**
1778  * lookup_one_len - filesystem helper to lookup single pathname component
1779  * @name:	pathname component to lookup
1780  * @base:	base directory to lookup from
1781  * @len:	maximum length @len should be interpreted to
1782  *
1783  * Note that this routine is purely a helper for filesystem usage and should
1784  * not be called by generic code.  Also note that by using this function the
1785  * nameidata argument is passed to the filesystem methods and a filesystem
1786  * using this helper needs to be prepared for that.
1787  */
lookup_one_len(const char * name,struct dentry * base,int len)1788 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1789 {
1790 	struct qstr this;
1791 	unsigned long hash;
1792 	unsigned int c;
1793 
1794 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1795 
1796 	this.name = name;
1797 	this.len = len;
1798 	if (!len)
1799 		return ERR_PTR(-EACCES);
1800 
1801 	hash = init_name_hash();
1802 	while (len--) {
1803 		c = *(const unsigned char *)name++;
1804 		if (c == '/' || c == '\0')
1805 			return ERR_PTR(-EACCES);
1806 		hash = partial_name_hash(c, hash);
1807 	}
1808 	this.hash = end_name_hash(hash);
1809 	/*
1810 	 * See if the low-level filesystem might want
1811 	 * to use its own hash..
1812 	 */
1813 	if (base->d_flags & DCACHE_OP_HASH) {
1814 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1815 		if (err < 0)
1816 			return ERR_PTR(err);
1817 	}
1818 
1819 	return __lookup_hash(&this, base, NULL);
1820 }
1821 
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)1822 int user_path_at(int dfd, const char __user *name, unsigned flags,
1823 		 struct path *path)
1824 {
1825 	struct nameidata nd;
1826 	char *tmp = getname_flags(name, flags);
1827 	int err = PTR_ERR(tmp);
1828 	if (!IS_ERR(tmp)) {
1829 
1830 		BUG_ON(flags & LOOKUP_PARENT);
1831 
1832 		err = do_path_lookup(dfd, tmp, flags, &nd);
1833 		putname(tmp);
1834 		if (!err)
1835 			*path = nd.path;
1836 	}
1837 	return err;
1838 }
1839 
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,char ** name)1840 static int user_path_parent(int dfd, const char __user *path,
1841 			struct nameidata *nd, char **name)
1842 {
1843 	char *s = getname(path);
1844 	int error;
1845 
1846 	if (IS_ERR(s))
1847 		return PTR_ERR(s);
1848 
1849 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1850 	if (error)
1851 		putname(s);
1852 	else
1853 		*name = s;
1854 
1855 	return error;
1856 }
1857 
1858 /*
1859  * It's inline, so penalty for filesystems that don't use sticky bit is
1860  * minimal.
1861  */
check_sticky(struct inode * dir,struct inode * inode)1862 static inline int check_sticky(struct inode *dir, struct inode *inode)
1863 {
1864 	uid_t fsuid = current_fsuid();
1865 
1866 	if (!(dir->i_mode & S_ISVTX))
1867 		return 0;
1868 	if (current_user_ns() != inode_userns(inode))
1869 		goto other_userns;
1870 	if (inode->i_uid == fsuid)
1871 		return 0;
1872 	if (dir->i_uid == fsuid)
1873 		return 0;
1874 
1875 other_userns:
1876 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1877 }
1878 
1879 /*
1880  *	Check whether we can remove a link victim from directory dir, check
1881  *  whether the type of victim is right.
1882  *  1. We can't do it if dir is read-only (done in permission())
1883  *  2. We should have write and exec permissions on dir
1884  *  3. We can't remove anything from append-only dir
1885  *  4. We can't do anything with immutable dir (done in permission())
1886  *  5. If the sticky bit on dir is set we should either
1887  *	a. be owner of dir, or
1888  *	b. be owner of victim, or
1889  *	c. have CAP_FOWNER capability
1890  *  6. If the victim is append-only or immutable we can't do antyhing with
1891  *     links pointing to it.
1892  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1893  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1894  *  9. We can't remove a root or mountpoint.
1895  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1896  *     nfs_async_unlink().
1897  */
may_delete(struct inode * dir,struct dentry * victim,int isdir)1898 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1899 {
1900 	int error;
1901 
1902 	if (!victim->d_inode)
1903 		return -ENOENT;
1904 
1905 	BUG_ON(victim->d_parent->d_inode != dir);
1906 	audit_inode_child(victim, dir);
1907 
1908 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1909 	if (error)
1910 		return error;
1911 	if (IS_APPEND(dir))
1912 		return -EPERM;
1913 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1914 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1915 		return -EPERM;
1916 	if (isdir) {
1917 		if (!S_ISDIR(victim->d_inode->i_mode))
1918 			return -ENOTDIR;
1919 		if (IS_ROOT(victim))
1920 			return -EBUSY;
1921 	} else if (S_ISDIR(victim->d_inode->i_mode))
1922 		return -EISDIR;
1923 	if (IS_DEADDIR(dir))
1924 		return -ENOENT;
1925 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1926 		return -EBUSY;
1927 	return 0;
1928 }
1929 
1930 /*	Check whether we can create an object with dentry child in directory
1931  *  dir.
1932  *  1. We can't do it if child already exists (open has special treatment for
1933  *     this case, but since we are inlined it's OK)
1934  *  2. We can't do it if dir is read-only (done in permission())
1935  *  3. We should have write and exec permissions on dir
1936  *  4. We can't do it if dir is immutable (done in permission())
1937  */
may_create(struct inode * dir,struct dentry * child)1938 static inline int may_create(struct inode *dir, struct dentry *child)
1939 {
1940 	if (child->d_inode)
1941 		return -EEXIST;
1942 	if (IS_DEADDIR(dir))
1943 		return -ENOENT;
1944 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1945 }
1946 
1947 /*
1948  * p1 and p2 should be directories on the same fs.
1949  */
lock_rename(struct dentry * p1,struct dentry * p2)1950 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1951 {
1952 	struct dentry *p;
1953 
1954 	if (p1 == p2) {
1955 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1956 		return NULL;
1957 	}
1958 
1959 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1960 
1961 	p = d_ancestor(p2, p1);
1962 	if (p) {
1963 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1964 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1965 		return p;
1966 	}
1967 
1968 	p = d_ancestor(p1, p2);
1969 	if (p) {
1970 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1971 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1972 		return p;
1973 	}
1974 
1975 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1976 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1977 	return NULL;
1978 }
1979 
unlock_rename(struct dentry * p1,struct dentry * p2)1980 void unlock_rename(struct dentry *p1, struct dentry *p2)
1981 {
1982 	mutex_unlock(&p1->d_inode->i_mutex);
1983 	if (p1 != p2) {
1984 		mutex_unlock(&p2->d_inode->i_mutex);
1985 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1986 	}
1987 }
1988 
vfs_create(struct inode * dir,struct dentry * dentry,int mode,struct nameidata * nd)1989 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1990 		struct nameidata *nd)
1991 {
1992 	int error = may_create(dir, dentry);
1993 
1994 	if (error)
1995 		return error;
1996 
1997 	if (!dir->i_op->create)
1998 		return -EACCES;	/* shouldn't it be ENOSYS? */
1999 	mode &= S_IALLUGO;
2000 	mode |= S_IFREG;
2001 	error = security_inode_create(dir, dentry, mode);
2002 	if (error)
2003 		return error;
2004 	error = dir->i_op->create(dir, dentry, mode, nd);
2005 	if (!error)
2006 		fsnotify_create(dir, dentry);
2007 	return error;
2008 }
2009 
may_open(struct path * path,int acc_mode,int flag)2010 static int may_open(struct path *path, int acc_mode, int flag)
2011 {
2012 	struct dentry *dentry = path->dentry;
2013 	struct inode *inode = dentry->d_inode;
2014 	int error;
2015 
2016 	/* O_PATH? */
2017 	if (!acc_mode)
2018 		return 0;
2019 
2020 	if (!inode)
2021 		return -ENOENT;
2022 
2023 	switch (inode->i_mode & S_IFMT) {
2024 	case S_IFLNK:
2025 		return -ELOOP;
2026 	case S_IFDIR:
2027 		if (acc_mode & MAY_WRITE)
2028 			return -EISDIR;
2029 		break;
2030 	case S_IFBLK:
2031 	case S_IFCHR:
2032 		if (path->mnt->mnt_flags & MNT_NODEV)
2033 			return -EACCES;
2034 		/*FALLTHRU*/
2035 	case S_IFIFO:
2036 	case S_IFSOCK:
2037 		flag &= ~O_TRUNC;
2038 		break;
2039 	}
2040 
2041 	error = inode_permission(inode, acc_mode);
2042 	if (error)
2043 		return error;
2044 
2045 	/*
2046 	 * An append-only file must be opened in append mode for writing.
2047 	 */
2048 	if (IS_APPEND(inode)) {
2049 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2050 			return -EPERM;
2051 		if (flag & O_TRUNC)
2052 			return -EPERM;
2053 	}
2054 
2055 	/* O_NOATIME can only be set by the owner or superuser */
2056 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2057 		return -EPERM;
2058 
2059 	/*
2060 	 * Ensure there are no outstanding leases on the file.
2061 	 */
2062 	return break_lease(inode, flag);
2063 }
2064 
handle_truncate(struct file * filp)2065 static int handle_truncate(struct file *filp)
2066 {
2067 	struct path *path = &filp->f_path;
2068 	struct inode *inode = path->dentry->d_inode;
2069 	int error = get_write_access(inode);
2070 	if (error)
2071 		return error;
2072 	/*
2073 	 * Refuse to truncate files with mandatory locks held on them.
2074 	 */
2075 	error = locks_verify_locked(inode);
2076 	if (!error)
2077 		error = security_path_truncate(path);
2078 	if (!error) {
2079 		error = do_truncate(path->dentry, 0,
2080 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2081 				    filp);
2082 	}
2083 	put_write_access(inode);
2084 	return error;
2085 }
2086 
2087 /*
2088  * Note that while the flag value (low two bits) for sys_open means:
2089  *	00 - read-only
2090  *	01 - write-only
2091  *	10 - read-write
2092  *	11 - special
2093  * it is changed into
2094  *	00 - no permissions needed
2095  *	01 - read-permission
2096  *	10 - write-permission
2097  *	11 - read-write
2098  * for the internal routines (ie open_namei()/follow_link() etc)
2099  * This is more logical, and also allows the 00 "no perm needed"
2100  * to be used for symlinks (where the permissions are checked
2101  * later).
2102  *
2103 */
open_to_namei_flags(int flag)2104 static inline int open_to_namei_flags(int flag)
2105 {
2106 	if ((flag+1) & O_ACCMODE)
2107 		flag++;
2108 	return flag;
2109 }
2110 
2111 /*
2112  * Handle the last step of open()
2113  */
do_last(struct nameidata * nd,struct path * path,const struct open_flags * op,const char * pathname)2114 static struct file *do_last(struct nameidata *nd, struct path *path,
2115 			    const struct open_flags *op, const char *pathname)
2116 {
2117 	struct dentry *dir = nd->path.dentry;
2118 	struct dentry *dentry;
2119 	int open_flag = op->open_flag;
2120 	int will_truncate = open_flag & O_TRUNC;
2121 	int want_write = 0;
2122 	int acc_mode = op->acc_mode;
2123 	struct file *filp;
2124 	int error;
2125 
2126 	nd->flags &= ~LOOKUP_PARENT;
2127 	nd->flags |= op->intent;
2128 
2129 	switch (nd->last_type) {
2130 	case LAST_DOTDOT:
2131 	case LAST_DOT:
2132 		error = handle_dots(nd, nd->last_type);
2133 		if (error)
2134 			return ERR_PTR(error);
2135 		/* fallthrough */
2136 	case LAST_ROOT:
2137 		if (nd->flags & LOOKUP_RCU) {
2138 			if (nameidata_drop_rcu_last(nd))
2139 				return ERR_PTR(-ECHILD);
2140 		}
2141 		error = handle_reval_path(nd);
2142 		if (error)
2143 			goto exit;
2144 		audit_inode(pathname, nd->path.dentry);
2145 		if (open_flag & O_CREAT) {
2146 			error = -EISDIR;
2147 			goto exit;
2148 		}
2149 		goto ok;
2150 	case LAST_BIND:
2151 		/* can't be RCU mode here */
2152 		error = handle_reval_path(nd);
2153 		if (error)
2154 			goto exit;
2155 		audit_inode(pathname, dir);
2156 		goto ok;
2157 	}
2158 
2159 	if (!(open_flag & O_CREAT)) {
2160 		int symlink_ok = 0;
2161 		if (nd->last.name[nd->last.len])
2162 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2163 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2164 			symlink_ok = 1;
2165 		/* we _can_ be in RCU mode here */
2166 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2167 					!symlink_ok);
2168 		if (error < 0)
2169 			return ERR_PTR(error);
2170 		if (error) /* symlink */
2171 			return NULL;
2172 		/* sayonara */
2173 		if (nd->flags & LOOKUP_RCU) {
2174 			if (nameidata_drop_rcu_last(nd))
2175 				return ERR_PTR(-ECHILD);
2176 		}
2177 
2178 		error = -ENOTDIR;
2179 		if (nd->flags & LOOKUP_DIRECTORY) {
2180 			if (!nd->inode->i_op->lookup)
2181 				goto exit;
2182 		}
2183 		audit_inode(pathname, nd->path.dentry);
2184 		goto ok;
2185 	}
2186 
2187 	/* create side of things */
2188 
2189 	if (nd->flags & LOOKUP_RCU) {
2190 		if (nameidata_drop_rcu_last(nd))
2191 			return ERR_PTR(-ECHILD);
2192 	}
2193 
2194 	audit_inode(pathname, dir);
2195 	error = -EISDIR;
2196 	/* trailing slashes? */
2197 	if (nd->last.name[nd->last.len])
2198 		goto exit;
2199 
2200 	mutex_lock(&dir->d_inode->i_mutex);
2201 
2202 	dentry = lookup_hash(nd);
2203 	error = PTR_ERR(dentry);
2204 	if (IS_ERR(dentry)) {
2205 		mutex_unlock(&dir->d_inode->i_mutex);
2206 		goto exit;
2207 	}
2208 
2209 	path->dentry = dentry;
2210 	path->mnt = nd->path.mnt;
2211 
2212 	/* Negative dentry, just create the file */
2213 	if (!dentry->d_inode) {
2214 		int mode = op->mode;
2215 		if (!IS_POSIXACL(dir->d_inode))
2216 			mode &= ~current_umask();
2217 		/*
2218 		 * This write is needed to ensure that a
2219 		 * rw->ro transition does not occur between
2220 		 * the time when the file is created and when
2221 		 * a permanent write count is taken through
2222 		 * the 'struct file' in nameidata_to_filp().
2223 		 */
2224 		error = mnt_want_write(nd->path.mnt);
2225 		if (error)
2226 			goto exit_mutex_unlock;
2227 		want_write = 1;
2228 		/* Don't check for write permission, don't truncate */
2229 		open_flag &= ~O_TRUNC;
2230 		will_truncate = 0;
2231 		acc_mode = MAY_OPEN;
2232 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2233 		if (error)
2234 			goto exit_mutex_unlock;
2235 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2236 		if (error)
2237 			goto exit_mutex_unlock;
2238 		mutex_unlock(&dir->d_inode->i_mutex);
2239 		dput(nd->path.dentry);
2240 		nd->path.dentry = dentry;
2241 		goto common;
2242 	}
2243 
2244 	/*
2245 	 * It already exists.
2246 	 */
2247 	mutex_unlock(&dir->d_inode->i_mutex);
2248 	audit_inode(pathname, path->dentry);
2249 
2250 	error = -EEXIST;
2251 	if (open_flag & O_EXCL)
2252 		goto exit_dput;
2253 
2254 	error = follow_managed(path, nd->flags);
2255 	if (error < 0)
2256 		goto exit_dput;
2257 
2258 	error = -ENOENT;
2259 	if (!path->dentry->d_inode)
2260 		goto exit_dput;
2261 
2262 	if (path->dentry->d_inode->i_op->follow_link)
2263 		return NULL;
2264 
2265 	path_to_nameidata(path, nd);
2266 	nd->inode = path->dentry->d_inode;
2267 	error = -EISDIR;
2268 	if (S_ISDIR(nd->inode->i_mode))
2269 		goto exit;
2270 ok:
2271 	if (!S_ISREG(nd->inode->i_mode))
2272 		will_truncate = 0;
2273 
2274 	if (will_truncate) {
2275 		error = mnt_want_write(nd->path.mnt);
2276 		if (error)
2277 			goto exit;
2278 		want_write = 1;
2279 	}
2280 common:
2281 	error = may_open(&nd->path, acc_mode, open_flag);
2282 	if (error)
2283 		goto exit;
2284 	filp = nameidata_to_filp(nd);
2285 	if (!IS_ERR(filp)) {
2286 		error = ima_file_check(filp, op->acc_mode);
2287 		if (error) {
2288 			fput(filp);
2289 			filp = ERR_PTR(error);
2290 		}
2291 	}
2292 	if (!IS_ERR(filp)) {
2293 		if (will_truncate) {
2294 			error = handle_truncate(filp);
2295 			if (error) {
2296 				fput(filp);
2297 				filp = ERR_PTR(error);
2298 			}
2299 		}
2300 	}
2301 out:
2302 	if (want_write)
2303 		mnt_drop_write(nd->path.mnt);
2304 	path_put(&nd->path);
2305 	return filp;
2306 
2307 exit_mutex_unlock:
2308 	mutex_unlock(&dir->d_inode->i_mutex);
2309 exit_dput:
2310 	path_put_conditional(path, nd);
2311 exit:
2312 	filp = ERR_PTR(error);
2313 	goto out;
2314 }
2315 
path_openat(int dfd,const char * pathname,struct nameidata * nd,const struct open_flags * op,int flags)2316 static struct file *path_openat(int dfd, const char *pathname,
2317 		struct nameidata *nd, const struct open_flags *op, int flags)
2318 {
2319 	struct file *base = NULL;
2320 	struct file *filp;
2321 	struct path path;
2322 	int error;
2323 
2324 	filp = get_empty_filp();
2325 	if (!filp)
2326 		return ERR_PTR(-ENFILE);
2327 
2328 	filp->f_flags = op->open_flag;
2329 	nd->intent.open.file = filp;
2330 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2331 	nd->intent.open.create_mode = op->mode;
2332 
2333 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2334 	if (unlikely(error))
2335 		goto out_filp;
2336 
2337 	current->total_link_count = 0;
2338 	error = link_path_walk(pathname, nd);
2339 	if (unlikely(error))
2340 		goto out_filp;
2341 
2342 	filp = do_last(nd, &path, op, pathname);
2343 	while (unlikely(!filp)) { /* trailing symlink */
2344 		struct path link = path;
2345 		void *cookie;
2346 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2347 			path_put_conditional(&path, nd);
2348 			path_put(&nd->path);
2349 			filp = ERR_PTR(-ELOOP);
2350 			break;
2351 		}
2352 		nd->flags |= LOOKUP_PARENT;
2353 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2354 		error = follow_link(&link, nd, &cookie);
2355 		if (unlikely(error))
2356 			filp = ERR_PTR(error);
2357 		else
2358 			filp = do_last(nd, &path, op, pathname);
2359 		put_link(nd, &link, cookie);
2360 	}
2361 out:
2362 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2363 		path_put(&nd->root);
2364 	if (base)
2365 		fput(base);
2366 	release_open_intent(nd);
2367 	return filp;
2368 
2369 out_filp:
2370 	filp = ERR_PTR(error);
2371 	goto out;
2372 }
2373 
do_filp_open(int dfd,const char * pathname,const struct open_flags * op,int flags)2374 struct file *do_filp_open(int dfd, const char *pathname,
2375 		const struct open_flags *op, int flags)
2376 {
2377 	struct nameidata nd;
2378 	struct file *filp;
2379 
2380 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2381 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2382 		filp = path_openat(dfd, pathname, &nd, op, flags);
2383 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2384 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2385 	return filp;
2386 }
2387 
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op,int flags)2388 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2389 		const char *name, const struct open_flags *op, int flags)
2390 {
2391 	struct nameidata nd;
2392 	struct file *file;
2393 
2394 	nd.root.mnt = mnt;
2395 	nd.root.dentry = dentry;
2396 
2397 	flags |= LOOKUP_ROOT;
2398 
2399 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2400 		return ERR_PTR(-ELOOP);
2401 
2402 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2403 	if (unlikely(file == ERR_PTR(-ECHILD)))
2404 		file = path_openat(-1, name, &nd, op, flags);
2405 	if (unlikely(file == ERR_PTR(-ESTALE)))
2406 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2407 	return file;
2408 }
2409 
2410 /**
2411  * lookup_create - lookup a dentry, creating it if it doesn't exist
2412  * @nd: nameidata info
2413  * @is_dir: directory flag
2414  *
2415  * Simple function to lookup and return a dentry and create it
2416  * if it doesn't exist.  Is SMP-safe.
2417  *
2418  * Returns with nd->path.dentry->d_inode->i_mutex locked.
2419  */
lookup_create(struct nameidata * nd,int is_dir)2420 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2421 {
2422 	struct dentry *dentry = ERR_PTR(-EEXIST);
2423 
2424 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2425 	/*
2426 	 * Yucky last component or no last component at all?
2427 	 * (foo/., foo/.., /////)
2428 	 */
2429 	if (nd->last_type != LAST_NORM)
2430 		goto fail;
2431 	nd->flags &= ~LOOKUP_PARENT;
2432 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2433 	nd->intent.open.flags = O_EXCL;
2434 
2435 	/*
2436 	 * Do the final lookup.
2437 	 */
2438 	dentry = lookup_hash(nd);
2439 	if (IS_ERR(dentry))
2440 		goto fail;
2441 
2442 	if (dentry->d_inode)
2443 		goto eexist;
2444 	/*
2445 	 * Special case - lookup gave negative, but... we had foo/bar/
2446 	 * From the vfs_mknod() POV we just have a negative dentry -
2447 	 * all is fine. Let's be bastards - you had / on the end, you've
2448 	 * been asking for (non-existent) directory. -ENOENT for you.
2449 	 */
2450 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2451 		dput(dentry);
2452 		dentry = ERR_PTR(-ENOENT);
2453 	}
2454 	return dentry;
2455 eexist:
2456 	dput(dentry);
2457 	dentry = ERR_PTR(-EEXIST);
2458 fail:
2459 	return dentry;
2460 }
2461 EXPORT_SYMBOL_GPL(lookup_create);
2462 
vfs_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t dev)2463 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2464 {
2465 	int error = may_create(dir, dentry);
2466 
2467 	if (error)
2468 		return error;
2469 
2470 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2471 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2472 		return -EPERM;
2473 
2474 	if (!dir->i_op->mknod)
2475 		return -EPERM;
2476 
2477 	error = devcgroup_inode_mknod(mode, dev);
2478 	if (error)
2479 		return error;
2480 
2481 	error = security_inode_mknod(dir, dentry, mode, dev);
2482 	if (error)
2483 		return error;
2484 
2485 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2486 	if (!error)
2487 		fsnotify_create(dir, dentry);
2488 	return error;
2489 }
2490 
may_mknod(mode_t mode)2491 static int may_mknod(mode_t mode)
2492 {
2493 	switch (mode & S_IFMT) {
2494 	case S_IFREG:
2495 	case S_IFCHR:
2496 	case S_IFBLK:
2497 	case S_IFIFO:
2498 	case S_IFSOCK:
2499 	case 0: /* zero mode translates to S_IFREG */
2500 		return 0;
2501 	case S_IFDIR:
2502 		return -EPERM;
2503 	default:
2504 		return -EINVAL;
2505 	}
2506 }
2507 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,int,mode,unsigned,dev)2508 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2509 		unsigned, dev)
2510 {
2511 	int error;
2512 	char *tmp;
2513 	struct dentry *dentry;
2514 	struct nameidata nd;
2515 
2516 	if (S_ISDIR(mode))
2517 		return -EPERM;
2518 
2519 	error = user_path_parent(dfd, filename, &nd, &tmp);
2520 	if (error)
2521 		return error;
2522 
2523 	dentry = lookup_create(&nd, 0);
2524 	if (IS_ERR(dentry)) {
2525 		error = PTR_ERR(dentry);
2526 		goto out_unlock;
2527 	}
2528 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2529 		mode &= ~current_umask();
2530 	error = may_mknod(mode);
2531 	if (error)
2532 		goto out_dput;
2533 	error = mnt_want_write(nd.path.mnt);
2534 	if (error)
2535 		goto out_dput;
2536 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2537 	if (error)
2538 		goto out_drop_write;
2539 	switch (mode & S_IFMT) {
2540 		case 0: case S_IFREG:
2541 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2542 			break;
2543 		case S_IFCHR: case S_IFBLK:
2544 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2545 					new_decode_dev(dev));
2546 			break;
2547 		case S_IFIFO: case S_IFSOCK:
2548 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2549 			break;
2550 	}
2551 out_drop_write:
2552 	mnt_drop_write(nd.path.mnt);
2553 out_dput:
2554 	dput(dentry);
2555 out_unlock:
2556 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2557 	path_put(&nd.path);
2558 	putname(tmp);
2559 
2560 	return error;
2561 }
2562 
SYSCALL_DEFINE3(mknod,const char __user *,filename,int,mode,unsigned,dev)2563 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2564 {
2565 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2566 }
2567 
vfs_mkdir(struct inode * dir,struct dentry * dentry,int mode)2568 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2569 {
2570 	int error = may_create(dir, dentry);
2571 
2572 	if (error)
2573 		return error;
2574 
2575 	if (!dir->i_op->mkdir)
2576 		return -EPERM;
2577 
2578 	mode &= (S_IRWXUGO|S_ISVTX);
2579 	error = security_inode_mkdir(dir, dentry, mode);
2580 	if (error)
2581 		return error;
2582 
2583 	error = dir->i_op->mkdir(dir, dentry, mode);
2584 	if (!error)
2585 		fsnotify_mkdir(dir, dentry);
2586 	return error;
2587 }
2588 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,int,mode)2589 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2590 {
2591 	int error = 0;
2592 	char * tmp;
2593 	struct dentry *dentry;
2594 	struct nameidata nd;
2595 
2596 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2597 	if (error)
2598 		goto out_err;
2599 
2600 	dentry = lookup_create(&nd, 1);
2601 	error = PTR_ERR(dentry);
2602 	if (IS_ERR(dentry))
2603 		goto out_unlock;
2604 
2605 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2606 		mode &= ~current_umask();
2607 	error = mnt_want_write(nd.path.mnt);
2608 	if (error)
2609 		goto out_dput;
2610 	error = security_path_mkdir(&nd.path, dentry, mode);
2611 	if (error)
2612 		goto out_drop_write;
2613 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2614 out_drop_write:
2615 	mnt_drop_write(nd.path.mnt);
2616 out_dput:
2617 	dput(dentry);
2618 out_unlock:
2619 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2620 	path_put(&nd.path);
2621 	putname(tmp);
2622 out_err:
2623 	return error;
2624 }
2625 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,int,mode)2626 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2627 {
2628 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2629 }
2630 
2631 /*
2632  * We try to drop the dentry early: we should have
2633  * a usage count of 2 if we're the only user of this
2634  * dentry, and if that is true (possibly after pruning
2635  * the dcache), then we drop the dentry now.
2636  *
2637  * A low-level filesystem can, if it choses, legally
2638  * do a
2639  *
2640  *	if (!d_unhashed(dentry))
2641  *		return -EBUSY;
2642  *
2643  * if it cannot handle the case of removing a directory
2644  * that is still in use by something else..
2645  */
dentry_unhash(struct dentry * dentry)2646 void dentry_unhash(struct dentry *dentry)
2647 {
2648 	dget(dentry);
2649 	shrink_dcache_parent(dentry);
2650 	spin_lock(&dentry->d_lock);
2651 	if (dentry->d_count == 2)
2652 		__d_drop(dentry);
2653 	spin_unlock(&dentry->d_lock);
2654 }
2655 
vfs_rmdir(struct inode * dir,struct dentry * dentry)2656 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2657 {
2658 	int error = may_delete(dir, dentry, 1);
2659 
2660 	if (error)
2661 		return error;
2662 
2663 	if (!dir->i_op->rmdir)
2664 		return -EPERM;
2665 
2666 	mutex_lock(&dentry->d_inode->i_mutex);
2667 	dentry_unhash(dentry);
2668 	if (d_mountpoint(dentry))
2669 		error = -EBUSY;
2670 	else {
2671 		error = security_inode_rmdir(dir, dentry);
2672 		if (!error) {
2673 			error = dir->i_op->rmdir(dir, dentry);
2674 			if (!error) {
2675 				dentry->d_inode->i_flags |= S_DEAD;
2676 				dont_mount(dentry);
2677 			}
2678 		}
2679 	}
2680 	mutex_unlock(&dentry->d_inode->i_mutex);
2681 	if (!error) {
2682 		d_delete(dentry);
2683 	}
2684 	dput(dentry);
2685 
2686 	return error;
2687 }
2688 
do_rmdir(int dfd,const char __user * pathname)2689 static long do_rmdir(int dfd, const char __user *pathname)
2690 {
2691 	int error = 0;
2692 	char * name;
2693 	struct dentry *dentry;
2694 	struct nameidata nd;
2695 
2696 	error = user_path_parent(dfd, pathname, &nd, &name);
2697 	if (error)
2698 		return error;
2699 
2700 	switch(nd.last_type) {
2701 	case LAST_DOTDOT:
2702 		error = -ENOTEMPTY;
2703 		goto exit1;
2704 	case LAST_DOT:
2705 		error = -EINVAL;
2706 		goto exit1;
2707 	case LAST_ROOT:
2708 		error = -EBUSY;
2709 		goto exit1;
2710 	}
2711 
2712 	nd.flags &= ~LOOKUP_PARENT;
2713 
2714 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2715 	dentry = lookup_hash(&nd);
2716 	error = PTR_ERR(dentry);
2717 	if (IS_ERR(dentry))
2718 		goto exit2;
2719 	error = mnt_want_write(nd.path.mnt);
2720 	if (error)
2721 		goto exit3;
2722 	error = security_path_rmdir(&nd.path, dentry);
2723 	if (error)
2724 		goto exit4;
2725 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2726 exit4:
2727 	mnt_drop_write(nd.path.mnt);
2728 exit3:
2729 	dput(dentry);
2730 exit2:
2731 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2732 exit1:
2733 	path_put(&nd.path);
2734 	putname(name);
2735 	return error;
2736 }
2737 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)2738 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2739 {
2740 	return do_rmdir(AT_FDCWD, pathname);
2741 }
2742 
vfs_unlink(struct inode * dir,struct dentry * dentry)2743 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2744 {
2745 	int error = may_delete(dir, dentry, 0);
2746 
2747 	if (error)
2748 		return error;
2749 
2750 	if (!dir->i_op->unlink)
2751 		return -EPERM;
2752 
2753 	mutex_lock(&dentry->d_inode->i_mutex);
2754 	if (d_mountpoint(dentry))
2755 		error = -EBUSY;
2756 	else {
2757 		error = security_inode_unlink(dir, dentry);
2758 		if (!error) {
2759 			error = dir->i_op->unlink(dir, dentry);
2760 			if (!error)
2761 				dont_mount(dentry);
2762 		}
2763 	}
2764 	mutex_unlock(&dentry->d_inode->i_mutex);
2765 
2766 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2767 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2768 		fsnotify_link_count(dentry->d_inode);
2769 		d_delete(dentry);
2770 	}
2771 
2772 	return error;
2773 }
2774 
2775 /*
2776  * Make sure that the actual truncation of the file will occur outside its
2777  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2778  * writeout happening, and we don't want to prevent access to the directory
2779  * while waiting on the I/O.
2780  */
do_unlinkat(int dfd,const char __user * pathname)2781 static long do_unlinkat(int dfd, const char __user *pathname)
2782 {
2783 	int error;
2784 	char *name;
2785 	struct dentry *dentry;
2786 	struct nameidata nd;
2787 	struct inode *inode = NULL;
2788 
2789 	error = user_path_parent(dfd, pathname, &nd, &name);
2790 	if (error)
2791 		return error;
2792 
2793 	error = -EISDIR;
2794 	if (nd.last_type != LAST_NORM)
2795 		goto exit1;
2796 
2797 	nd.flags &= ~LOOKUP_PARENT;
2798 
2799 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2800 	dentry = lookup_hash(&nd);
2801 	error = PTR_ERR(dentry);
2802 	if (!IS_ERR(dentry)) {
2803 		/* Why not before? Because we want correct error value */
2804 		if (nd.last.name[nd.last.len])
2805 			goto slashes;
2806 		inode = dentry->d_inode;
2807 		if (inode)
2808 			ihold(inode);
2809 		error = mnt_want_write(nd.path.mnt);
2810 		if (error)
2811 			goto exit2;
2812 		error = security_path_unlink(&nd.path, dentry);
2813 		if (error)
2814 			goto exit3;
2815 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2816 exit3:
2817 		mnt_drop_write(nd.path.mnt);
2818 	exit2:
2819 		dput(dentry);
2820 	}
2821 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2822 	if (inode)
2823 		iput(inode);	/* truncate the inode here */
2824 exit1:
2825 	path_put(&nd.path);
2826 	putname(name);
2827 	return error;
2828 
2829 slashes:
2830 	error = !dentry->d_inode ? -ENOENT :
2831 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2832 	goto exit2;
2833 }
2834 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)2835 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2836 {
2837 	if ((flag & ~AT_REMOVEDIR) != 0)
2838 		return -EINVAL;
2839 
2840 	if (flag & AT_REMOVEDIR)
2841 		return do_rmdir(dfd, pathname);
2842 
2843 	return do_unlinkat(dfd, pathname);
2844 }
2845 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)2846 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2847 {
2848 	return do_unlinkat(AT_FDCWD, pathname);
2849 }
2850 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)2851 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2852 {
2853 	int error = may_create(dir, dentry);
2854 
2855 	if (error)
2856 		return error;
2857 
2858 	if (!dir->i_op->symlink)
2859 		return -EPERM;
2860 
2861 	error = security_inode_symlink(dir, dentry, oldname);
2862 	if (error)
2863 		return error;
2864 
2865 	error = dir->i_op->symlink(dir, dentry, oldname);
2866 	if (!error)
2867 		fsnotify_create(dir, dentry);
2868 	return error;
2869 }
2870 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)2871 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2872 		int, newdfd, const char __user *, newname)
2873 {
2874 	int error;
2875 	char *from;
2876 	char *to;
2877 	struct dentry *dentry;
2878 	struct nameidata nd;
2879 
2880 	from = getname(oldname);
2881 	if (IS_ERR(from))
2882 		return PTR_ERR(from);
2883 
2884 	error = user_path_parent(newdfd, newname, &nd, &to);
2885 	if (error)
2886 		goto out_putname;
2887 
2888 	dentry = lookup_create(&nd, 0);
2889 	error = PTR_ERR(dentry);
2890 	if (IS_ERR(dentry))
2891 		goto out_unlock;
2892 
2893 	error = mnt_want_write(nd.path.mnt);
2894 	if (error)
2895 		goto out_dput;
2896 	error = security_path_symlink(&nd.path, dentry, from);
2897 	if (error)
2898 		goto out_drop_write;
2899 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2900 out_drop_write:
2901 	mnt_drop_write(nd.path.mnt);
2902 out_dput:
2903 	dput(dentry);
2904 out_unlock:
2905 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2906 	path_put(&nd.path);
2907 	putname(to);
2908 out_putname:
2909 	putname(from);
2910 	return error;
2911 }
2912 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)2913 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2914 {
2915 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2916 }
2917 
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2918 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2919 {
2920 	struct inode *inode = old_dentry->d_inode;
2921 	int error;
2922 
2923 	if (!inode)
2924 		return -ENOENT;
2925 
2926 	error = may_create(dir, new_dentry);
2927 	if (error)
2928 		return error;
2929 
2930 	if (dir->i_sb != inode->i_sb)
2931 		return -EXDEV;
2932 
2933 	/*
2934 	 * A link to an append-only or immutable file cannot be created.
2935 	 */
2936 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2937 		return -EPERM;
2938 	if (!dir->i_op->link)
2939 		return -EPERM;
2940 	if (S_ISDIR(inode->i_mode))
2941 		return -EPERM;
2942 
2943 	error = security_inode_link(old_dentry, dir, new_dentry);
2944 	if (error)
2945 		return error;
2946 
2947 	mutex_lock(&inode->i_mutex);
2948 	/* Make sure we don't allow creating hardlink to an unlinked file */
2949 	if (inode->i_nlink == 0)
2950 		error =  -ENOENT;
2951 	else
2952 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2953 	mutex_unlock(&inode->i_mutex);
2954 	if (!error)
2955 		fsnotify_link(dir, inode, new_dentry);
2956 	return error;
2957 }
2958 
2959 /*
2960  * Hardlinks are often used in delicate situations.  We avoid
2961  * security-related surprises by not following symlinks on the
2962  * newname.  --KAB
2963  *
2964  * We don't follow them on the oldname either to be compatible
2965  * with linux 2.0, and to avoid hard-linking to directories
2966  * and other special files.  --ADM
2967  */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)2968 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2969 		int, newdfd, const char __user *, newname, int, flags)
2970 {
2971 	struct dentry *new_dentry;
2972 	struct nameidata nd;
2973 	struct path old_path;
2974 	int how = 0;
2975 	int error;
2976 	char *to;
2977 
2978 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2979 		return -EINVAL;
2980 	/*
2981 	 * To use null names we require CAP_DAC_READ_SEARCH
2982 	 * This ensures that not everyone will be able to create
2983 	 * handlink using the passed filedescriptor.
2984 	 */
2985 	if (flags & AT_EMPTY_PATH) {
2986 		if (!capable(CAP_DAC_READ_SEARCH))
2987 			return -ENOENT;
2988 		how = LOOKUP_EMPTY;
2989 	}
2990 
2991 	if (flags & AT_SYMLINK_FOLLOW)
2992 		how |= LOOKUP_FOLLOW;
2993 
2994 	error = user_path_at(olddfd, oldname, how, &old_path);
2995 	if (error)
2996 		return error;
2997 
2998 	error = user_path_parent(newdfd, newname, &nd, &to);
2999 	if (error)
3000 		goto out;
3001 	error = -EXDEV;
3002 	if (old_path.mnt != nd.path.mnt)
3003 		goto out_release;
3004 	new_dentry = lookup_create(&nd, 0);
3005 	error = PTR_ERR(new_dentry);
3006 	if (IS_ERR(new_dentry))
3007 		goto out_unlock;
3008 	error = mnt_want_write(nd.path.mnt);
3009 	if (error)
3010 		goto out_dput;
3011 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3012 	if (error)
3013 		goto out_drop_write;
3014 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3015 out_drop_write:
3016 	mnt_drop_write(nd.path.mnt);
3017 out_dput:
3018 	dput(new_dentry);
3019 out_unlock:
3020 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3021 out_release:
3022 	path_put(&nd.path);
3023 	putname(to);
3024 out:
3025 	path_put(&old_path);
3026 
3027 	return error;
3028 }
3029 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)3030 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3031 {
3032 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3033 }
3034 
3035 /*
3036  * The worst of all namespace operations - renaming directory. "Perverted"
3037  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3038  * Problems:
3039  *	a) we can get into loop creation. Check is done in is_subdir().
3040  *	b) race potential - two innocent renames can create a loop together.
3041  *	   That's where 4.4 screws up. Current fix: serialization on
3042  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3043  *	   story.
3044  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3045  *	   And that - after we got ->i_mutex on parents (until then we don't know
3046  *	   whether the target exists).  Solution: try to be smart with locking
3047  *	   order for inodes.  We rely on the fact that tree topology may change
3048  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3049  *	   move will be locked.  Thus we can rank directories by the tree
3050  *	   (ancestors first) and rank all non-directories after them.
3051  *	   That works since everybody except rename does "lock parent, lookup,
3052  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3053  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3054  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3055  *	   we'd better make sure that there's no link(2) for them.
3056  *	d) some filesystems don't support opened-but-unlinked directories,
3057  *	   either because of layout or because they are not ready to deal with
3058  *	   all cases correctly. The latter will be fixed (taking this sort of
3059  *	   stuff into VFS), but the former is not going away. Solution: the same
3060  *	   trick as in rmdir().
3061  *	e) conversion from fhandle to dentry may come in the wrong moment - when
3062  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3063  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3064  *	   ->i_mutex on parents, which works but leads to some truly excessive
3065  *	   locking].
3066  */
vfs_rename_dir(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3067 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3068 			  struct inode *new_dir, struct dentry *new_dentry)
3069 {
3070 	int error = 0;
3071 	struct inode *target;
3072 
3073 	/*
3074 	 * If we are going to change the parent - check write permissions,
3075 	 * we'll need to flip '..'.
3076 	 */
3077 	if (new_dir != old_dir) {
3078 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3079 		if (error)
3080 			return error;
3081 	}
3082 
3083 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3084 	if (error)
3085 		return error;
3086 
3087 	target = new_dentry->d_inode;
3088 	if (target)
3089 		mutex_lock(&target->i_mutex);
3090 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3091 		error = -EBUSY;
3092 	else {
3093 		if (target)
3094 			dentry_unhash(new_dentry);
3095 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3096 	}
3097 	if (target) {
3098 		if (!error) {
3099 			target->i_flags |= S_DEAD;
3100 			dont_mount(new_dentry);
3101 		}
3102 		mutex_unlock(&target->i_mutex);
3103 		if (d_unhashed(new_dentry))
3104 			d_rehash(new_dentry);
3105 		dput(new_dentry);
3106 	}
3107 	if (!error)
3108 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3109 			d_move(old_dentry,new_dentry);
3110 	return error;
3111 }
3112 
vfs_rename_other(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3113 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3114 			    struct inode *new_dir, struct dentry *new_dentry)
3115 {
3116 	struct inode *target;
3117 	int error;
3118 
3119 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3120 	if (error)
3121 		return error;
3122 
3123 	dget(new_dentry);
3124 	target = new_dentry->d_inode;
3125 	if (target)
3126 		mutex_lock(&target->i_mutex);
3127 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3128 		error = -EBUSY;
3129 	else
3130 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3131 	if (!error) {
3132 		if (target)
3133 			dont_mount(new_dentry);
3134 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3135 			d_move(old_dentry, new_dentry);
3136 	}
3137 	if (target)
3138 		mutex_unlock(&target->i_mutex);
3139 	dput(new_dentry);
3140 	return error;
3141 }
3142 
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3143 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3144 	       struct inode *new_dir, struct dentry *new_dentry)
3145 {
3146 	int error;
3147 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3148 	const unsigned char *old_name;
3149 
3150 	if (old_dentry->d_inode == new_dentry->d_inode)
3151  		return 0;
3152 
3153 	error = may_delete(old_dir, old_dentry, is_dir);
3154 	if (error)
3155 		return error;
3156 
3157 	if (!new_dentry->d_inode)
3158 		error = may_create(new_dir, new_dentry);
3159 	else
3160 		error = may_delete(new_dir, new_dentry, is_dir);
3161 	if (error)
3162 		return error;
3163 
3164 	if (!old_dir->i_op->rename)
3165 		return -EPERM;
3166 
3167 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3168 
3169 	if (is_dir)
3170 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3171 	else
3172 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3173 	if (!error)
3174 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3175 			      new_dentry->d_inode, old_dentry);
3176 	fsnotify_oldname_free(old_name);
3177 
3178 	return error;
3179 }
3180 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)3181 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3182 		int, newdfd, const char __user *, newname)
3183 {
3184 	struct dentry *old_dir, *new_dir;
3185 	struct dentry *old_dentry, *new_dentry;
3186 	struct dentry *trap;
3187 	struct nameidata oldnd, newnd;
3188 	char *from;
3189 	char *to;
3190 	int error;
3191 
3192 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3193 	if (error)
3194 		goto exit;
3195 
3196 	error = user_path_parent(newdfd, newname, &newnd, &to);
3197 	if (error)
3198 		goto exit1;
3199 
3200 	error = -EXDEV;
3201 	if (oldnd.path.mnt != newnd.path.mnt)
3202 		goto exit2;
3203 
3204 	old_dir = oldnd.path.dentry;
3205 	error = -EBUSY;
3206 	if (oldnd.last_type != LAST_NORM)
3207 		goto exit2;
3208 
3209 	new_dir = newnd.path.dentry;
3210 	if (newnd.last_type != LAST_NORM)
3211 		goto exit2;
3212 
3213 	oldnd.flags &= ~LOOKUP_PARENT;
3214 	newnd.flags &= ~LOOKUP_PARENT;
3215 	newnd.flags |= LOOKUP_RENAME_TARGET;
3216 
3217 	trap = lock_rename(new_dir, old_dir);
3218 
3219 	old_dentry = lookup_hash(&oldnd);
3220 	error = PTR_ERR(old_dentry);
3221 	if (IS_ERR(old_dentry))
3222 		goto exit3;
3223 	/* source must exist */
3224 	error = -ENOENT;
3225 	if (!old_dentry->d_inode)
3226 		goto exit4;
3227 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3228 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3229 		error = -ENOTDIR;
3230 		if (oldnd.last.name[oldnd.last.len])
3231 			goto exit4;
3232 		if (newnd.last.name[newnd.last.len])
3233 			goto exit4;
3234 	}
3235 	/* source should not be ancestor of target */
3236 	error = -EINVAL;
3237 	if (old_dentry == trap)
3238 		goto exit4;
3239 	new_dentry = lookup_hash(&newnd);
3240 	error = PTR_ERR(new_dentry);
3241 	if (IS_ERR(new_dentry))
3242 		goto exit4;
3243 	/* target should not be an ancestor of source */
3244 	error = -ENOTEMPTY;
3245 	if (new_dentry == trap)
3246 		goto exit5;
3247 
3248 	error = mnt_want_write(oldnd.path.mnt);
3249 	if (error)
3250 		goto exit5;
3251 	error = security_path_rename(&oldnd.path, old_dentry,
3252 				     &newnd.path, new_dentry);
3253 	if (error)
3254 		goto exit6;
3255 	error = vfs_rename(old_dir->d_inode, old_dentry,
3256 				   new_dir->d_inode, new_dentry);
3257 exit6:
3258 	mnt_drop_write(oldnd.path.mnt);
3259 exit5:
3260 	dput(new_dentry);
3261 exit4:
3262 	dput(old_dentry);
3263 exit3:
3264 	unlock_rename(new_dir, old_dir);
3265 exit2:
3266 	path_put(&newnd.path);
3267 	putname(to);
3268 exit1:
3269 	path_put(&oldnd.path);
3270 	putname(from);
3271 exit:
3272 	return error;
3273 }
3274 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)3275 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3276 {
3277 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3278 }
3279 
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen,const char * link)3280 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3281 {
3282 	int len;
3283 
3284 	len = PTR_ERR(link);
3285 	if (IS_ERR(link))
3286 		goto out;
3287 
3288 	len = strlen(link);
3289 	if (len > (unsigned) buflen)
3290 		len = buflen;
3291 	if (copy_to_user(buffer, link, len))
3292 		len = -EFAULT;
3293 out:
3294 	return len;
3295 }
3296 
3297 /*
3298  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3299  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3300  * using) it for any given inode is up to filesystem.
3301  */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)3302 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3303 {
3304 	struct nameidata nd;
3305 	void *cookie;
3306 	int res;
3307 
3308 	nd.depth = 0;
3309 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3310 	if (IS_ERR(cookie))
3311 		return PTR_ERR(cookie);
3312 
3313 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3314 	if (dentry->d_inode->i_op->put_link)
3315 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3316 	return res;
3317 }
3318 
vfs_follow_link(struct nameidata * nd,const char * link)3319 int vfs_follow_link(struct nameidata *nd, const char *link)
3320 {
3321 	return __vfs_follow_link(nd, link);
3322 }
3323 
3324 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)3325 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3326 {
3327 	char *kaddr;
3328 	struct page *page;
3329 	struct address_space *mapping = dentry->d_inode->i_mapping;
3330 	page = read_mapping_page(mapping, 0, NULL);
3331 	if (IS_ERR(page))
3332 		return (char*)page;
3333 	*ppage = page;
3334 	kaddr = kmap(page);
3335 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3336 	return kaddr;
3337 }
3338 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)3339 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3340 {
3341 	struct page *page = NULL;
3342 	char *s = page_getlink(dentry, &page);
3343 	int res = vfs_readlink(dentry,buffer,buflen,s);
3344 	if (page) {
3345 		kunmap(page);
3346 		page_cache_release(page);
3347 	}
3348 	return res;
3349 }
3350 
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)3351 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3352 {
3353 	struct page *page = NULL;
3354 	nd_set_link(nd, page_getlink(dentry, &page));
3355 	return page;
3356 }
3357 
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)3358 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3359 {
3360 	struct page *page = cookie;
3361 
3362 	if (page) {
3363 		kunmap(page);
3364 		page_cache_release(page);
3365 	}
3366 }
3367 
3368 /*
3369  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3370  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)3371 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3372 {
3373 	struct address_space *mapping = inode->i_mapping;
3374 	struct page *page;
3375 	void *fsdata;
3376 	int err;
3377 	char *kaddr;
3378 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3379 	if (nofs)
3380 		flags |= AOP_FLAG_NOFS;
3381 
3382 retry:
3383 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3384 				flags, &page, &fsdata);
3385 	if (err)
3386 		goto fail;
3387 
3388 	kaddr = kmap_atomic(page, KM_USER0);
3389 	memcpy(kaddr, symname, len-1);
3390 	kunmap_atomic(kaddr, KM_USER0);
3391 
3392 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3393 							page, fsdata);
3394 	if (err < 0)
3395 		goto fail;
3396 	if (err < len-1)
3397 		goto retry;
3398 
3399 	mark_inode_dirty(inode);
3400 	return 0;
3401 fail:
3402 	return err;
3403 }
3404 
page_symlink(struct inode * inode,const char * symname,int len)3405 int page_symlink(struct inode *inode, const char *symname, int len)
3406 {
3407 	return __page_symlink(inode, symname, len,
3408 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3409 }
3410 
3411 const struct inode_operations page_symlink_inode_operations = {
3412 	.readlink	= generic_readlink,
3413 	.follow_link	= page_follow_link_light,
3414 	.put_link	= page_put_link,
3415 };
3416 
3417 EXPORT_SYMBOL(user_path_at);
3418 EXPORT_SYMBOL(follow_down_one);
3419 EXPORT_SYMBOL(follow_down);
3420 EXPORT_SYMBOL(follow_up);
3421 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3422 EXPORT_SYMBOL(getname);
3423 EXPORT_SYMBOL(lock_rename);
3424 EXPORT_SYMBOL(lookup_one_len);
3425 EXPORT_SYMBOL(page_follow_link_light);
3426 EXPORT_SYMBOL(page_put_link);
3427 EXPORT_SYMBOL(page_readlink);
3428 EXPORT_SYMBOL(__page_symlink);
3429 EXPORT_SYMBOL(page_symlink);
3430 EXPORT_SYMBOL(page_symlink_inode_operations);
3431 EXPORT_SYMBOL(kern_path_parent);
3432 EXPORT_SYMBOL(kern_path);
3433 EXPORT_SYMBOL(vfs_path_lookup);
3434 EXPORT_SYMBOL(inode_permission);
3435 EXPORT_SYMBOL(file_permission);
3436 EXPORT_SYMBOL(unlock_rename);
3437 EXPORT_SYMBOL(vfs_create);
3438 EXPORT_SYMBOL(vfs_follow_link);
3439 EXPORT_SYMBOL(vfs_link);
3440 EXPORT_SYMBOL(vfs_mkdir);
3441 EXPORT_SYMBOL(vfs_mknod);
3442 EXPORT_SYMBOL(generic_permission);
3443 EXPORT_SYMBOL(vfs_readlink);
3444 EXPORT_SYMBOL(vfs_rename);
3445 EXPORT_SYMBOL(vfs_rmdir);
3446 EXPORT_SYMBOL(vfs_symlink);
3447 EXPORT_SYMBOL(vfs_unlink);
3448 EXPORT_SYMBOL(dentry_unhash);
3449 EXPORT_SYMBOL(generic_readlink);
3450