1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existent name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
do_getname(const char __user * filename,char * page)117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
getname_flags(const char __user * filename,int flags)139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 }
156 audit_getname(result);
157 return result;
158 }
159
getname(const char __user * filename)160 char *getname(const char __user * filename)
161 {
162 return getname_flags(filename, 0);
163 }
164
165 #ifdef CONFIG_AUDITSYSCALL
putname(const char * name)166 void putname(const char *name)
167 {
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175
176 /*
177 * This does basic POSIX ACL permission checking
178 */
acl_permission_check(struct inode * inode,int mask,unsigned int flags,int (* check_acl)(struct inode * inode,int mask,unsigned int flags))179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
181 {
182 unsigned int mode = inode->i_mode;
183
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185
186 if (current_user_ns() != inode_userns(inode))
187 goto other_perms;
188
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask, flags);
194 if (error != -EAGAIN)
195 return error;
196 }
197
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
200 }
201
202 other_perms:
203 /*
204 * If the DACs are ok we don't need any capability check.
205 */
206 if ((mask & ~mode) == 0)
207 return 0;
208 return -EACCES;
209 }
210
211 /**
212 * generic_permission - check for access rights on a Posix-like filesystem
213 * @inode: inode to check access rights for
214 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
215 * @check_acl: optional callback to check for Posix ACLs
216 * @flags: IPERM_FLAG_ flags.
217 *
218 * Used to check for read/write/execute permissions on a file.
219 * We use "fsuid" for this, letting us set arbitrary permissions
220 * for filesystem access without changing the "normal" uids which
221 * are used for other things.
222 *
223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224 * request cannot be satisfied (eg. requires blocking or too much complexity).
225 * It would then be called again in ref-walk mode.
226 */
generic_permission(struct inode * inode,int mask,unsigned int flags,int (* check_acl)(struct inode * inode,int mask,unsigned int flags))227 int generic_permission(struct inode *inode, int mask, unsigned int flags,
228 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
229 {
230 int ret;
231
232 /*
233 * Do the basic POSIX ACL permission checks.
234 */
235 ret = acl_permission_check(inode, mask, flags, check_acl);
236 if (ret != -EACCES)
237 return ret;
238
239 /*
240 * Read/write DACs are always overridable.
241 * Executable DACs are overridable if at least one exec bit is set.
242 */
243 if (!(mask & MAY_EXEC) || execute_ok(inode))
244 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 return 0;
246
247 /*
248 * Searching includes executable on directories, else just read.
249 */
250 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 return 0;
254
255 return -EACCES;
256 }
257
258 /**
259 * inode_permission - check for access rights to a given inode
260 * @inode: inode to check permission on
261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
262 *
263 * Used to check for read/write/execute permissions on an inode.
264 * We use "fsuid" for this, letting us set arbitrary permissions
265 * for filesystem access without changing the "normal" uids which
266 * are used for other things.
267 */
inode_permission(struct inode * inode,int mask)268 int inode_permission(struct inode *inode, int mask)
269 {
270 int retval;
271
272 if (mask & MAY_WRITE) {
273 umode_t mode = inode->i_mode;
274
275 /*
276 * Nobody gets write access to a read-only fs.
277 */
278 if (IS_RDONLY(inode) &&
279 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 return -EROFS;
281
282 /*
283 * Nobody gets write access to an immutable file.
284 */
285 if (IS_IMMUTABLE(inode))
286 return -EACCES;
287 }
288
289 if (inode->i_op->permission)
290 retval = inode->i_op->permission(inode, mask, 0);
291 else
292 retval = generic_permission(inode, mask, 0,
293 inode->i_op->check_acl);
294
295 if (retval)
296 return retval;
297
298 retval = devcgroup_inode_permission(inode, mask);
299 if (retval)
300 return retval;
301
302 return security_inode_permission(inode, mask);
303 }
304
305 /**
306 * file_permission - check for additional access rights to a given file
307 * @file: file to check access rights for
308 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
309 *
310 * Used to check for read/write/execute permissions on an already opened
311 * file.
312 *
313 * Note:
314 * Do not use this function in new code. All access checks should
315 * be done using inode_permission().
316 */
file_permission(struct file * file,int mask)317 int file_permission(struct file *file, int mask)
318 {
319 return inode_permission(file->f_path.dentry->d_inode, mask);
320 }
321
322 /*
323 * get_write_access() gets write permission for a file.
324 * put_write_access() releases this write permission.
325 * This is used for regular files.
326 * We cannot support write (and maybe mmap read-write shared) accesses and
327 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
328 * can have the following values:
329 * 0: no writers, no VM_DENYWRITE mappings
330 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
331 * > 0: (i_writecount) users are writing to the file.
332 *
333 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
334 * except for the cases where we don't hold i_writecount yet. Then we need to
335 * use {get,deny}_write_access() - these functions check the sign and refuse
336 * to do the change if sign is wrong. Exclusion between them is provided by
337 * the inode->i_lock spinlock.
338 */
339
get_write_access(struct inode * inode)340 int get_write_access(struct inode * inode)
341 {
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) < 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
346 }
347 atomic_inc(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
349
350 return 0;
351 }
352
deny_write_access(struct file * file)353 int deny_write_access(struct file * file)
354 {
355 struct inode *inode = file->f_path.dentry->d_inode;
356
357 spin_lock(&inode->i_lock);
358 if (atomic_read(&inode->i_writecount) > 0) {
359 spin_unlock(&inode->i_lock);
360 return -ETXTBSY;
361 }
362 atomic_dec(&inode->i_writecount);
363 spin_unlock(&inode->i_lock);
364
365 return 0;
366 }
367
368 /**
369 * path_get - get a reference to a path
370 * @path: path to get the reference to
371 *
372 * Given a path increment the reference count to the dentry and the vfsmount.
373 */
path_get(struct path * path)374 void path_get(struct path *path)
375 {
376 mntget(path->mnt);
377 dget(path->dentry);
378 }
379 EXPORT_SYMBOL(path_get);
380
381 /**
382 * path_put - put a reference to a path
383 * @path: path to put the reference to
384 *
385 * Given a path decrement the reference count to the dentry and the vfsmount.
386 */
path_put(struct path * path)387 void path_put(struct path *path)
388 {
389 dput(path->dentry);
390 mntput(path->mnt);
391 }
392 EXPORT_SYMBOL(path_put);
393
394 /**
395 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
396 * @nd: nameidata pathwalk data to drop
397 * Returns: 0 on success, -ECHILD on failure
398 *
399 * Path walking has 2 modes, rcu-walk and ref-walk (see
400 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
401 * to drop out of rcu-walk mode and take normal reference counts on dentries
402 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
403 * refcounts at the last known good point before rcu-walk got stuck, so
404 * ref-walk may continue from there. If this is not successful (eg. a seqcount
405 * has changed), then failure is returned and path walk restarts from the
406 * beginning in ref-walk mode.
407 *
408 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
409 * ref-walk. Must be called from rcu-walk context.
410 */
nameidata_drop_rcu(struct nameidata * nd)411 static int nameidata_drop_rcu(struct nameidata *nd)
412 {
413 struct fs_struct *fs = current->fs;
414 struct dentry *dentry = nd->path.dentry;
415 int want_root = 0;
416
417 BUG_ON(!(nd->flags & LOOKUP_RCU));
418 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
419 want_root = 1;
420 spin_lock(&fs->lock);
421 if (nd->root.mnt != fs->root.mnt ||
422 nd->root.dentry != fs->root.dentry)
423 goto err_root;
424 }
425 spin_lock(&dentry->d_lock);
426 if (!__d_rcu_to_refcount(dentry, nd->seq))
427 goto err;
428 BUG_ON(nd->inode != dentry->d_inode);
429 spin_unlock(&dentry->d_lock);
430 if (want_root) {
431 path_get(&nd->root);
432 spin_unlock(&fs->lock);
433 }
434 mntget(nd->path.mnt);
435
436 rcu_read_unlock();
437 br_read_unlock(vfsmount_lock);
438 nd->flags &= ~LOOKUP_RCU;
439 return 0;
440 err:
441 spin_unlock(&dentry->d_lock);
442 err_root:
443 if (want_root)
444 spin_unlock(&fs->lock);
445 return -ECHILD;
446 }
447
448 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
nameidata_drop_rcu_maybe(struct nameidata * nd)449 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
450 {
451 if (nd->flags & LOOKUP_RCU)
452 return nameidata_drop_rcu(nd);
453 return 0;
454 }
455
456 /**
457 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
458 * @nd: nameidata pathwalk data to drop
459 * @dentry: dentry to drop
460 * Returns: 0 on success, -ECHILD on failure
461 *
462 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
463 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
464 * @nd. Must be called from rcu-walk context.
465 */
nameidata_dentry_drop_rcu(struct nameidata * nd,struct dentry * dentry)466 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
467 {
468 struct fs_struct *fs = current->fs;
469 struct dentry *parent = nd->path.dentry;
470 int want_root = 0;
471
472 BUG_ON(!(nd->flags & LOOKUP_RCU));
473 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
474 want_root = 1;
475 spin_lock(&fs->lock);
476 if (nd->root.mnt != fs->root.mnt ||
477 nd->root.dentry != fs->root.dentry)
478 goto err_root;
479 }
480 spin_lock(&parent->d_lock);
481 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
482 if (!__d_rcu_to_refcount(dentry, nd->seq))
483 goto err;
484 /*
485 * If the sequence check on the child dentry passed, then the child has
486 * not been removed from its parent. This means the parent dentry must
487 * be valid and able to take a reference at this point.
488 */
489 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
490 BUG_ON(!parent->d_count);
491 parent->d_count++;
492 spin_unlock(&dentry->d_lock);
493 spin_unlock(&parent->d_lock);
494 if (want_root) {
495 path_get(&nd->root);
496 spin_unlock(&fs->lock);
497 }
498 mntget(nd->path.mnt);
499
500 rcu_read_unlock();
501 br_read_unlock(vfsmount_lock);
502 nd->flags &= ~LOOKUP_RCU;
503 return 0;
504 err:
505 spin_unlock(&dentry->d_lock);
506 spin_unlock(&parent->d_lock);
507 err_root:
508 if (want_root)
509 spin_unlock(&fs->lock);
510 return -ECHILD;
511 }
512
513 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
nameidata_dentry_drop_rcu_maybe(struct nameidata * nd,struct dentry * dentry)514 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
515 {
516 if (nd->flags & LOOKUP_RCU) {
517 if (unlikely(nameidata_dentry_drop_rcu(nd, dentry))) {
518 nd->flags &= ~LOOKUP_RCU;
519 if (!(nd->flags & LOOKUP_ROOT))
520 nd->root.mnt = NULL;
521 rcu_read_unlock();
522 br_read_unlock(vfsmount_lock);
523 return -ECHILD;
524 }
525 }
526 return 0;
527 }
528
529 /**
530 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
531 * @nd: nameidata pathwalk data to drop
532 * Returns: 0 on success, -ECHILD on failure
533 *
534 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
535 * nd->path should be the final element of the lookup, so nd->root is discarded.
536 * Must be called from rcu-walk context.
537 */
nameidata_drop_rcu_last(struct nameidata * nd)538 static int nameidata_drop_rcu_last(struct nameidata *nd)
539 {
540 struct dentry *dentry = nd->path.dentry;
541
542 BUG_ON(!(nd->flags & LOOKUP_RCU));
543 nd->flags &= ~LOOKUP_RCU;
544 if (!(nd->flags & LOOKUP_ROOT))
545 nd->root.mnt = NULL;
546 spin_lock(&dentry->d_lock);
547 if (!__d_rcu_to_refcount(dentry, nd->seq))
548 goto err_unlock;
549 BUG_ON(nd->inode != dentry->d_inode);
550 spin_unlock(&dentry->d_lock);
551
552 mntget(nd->path.mnt);
553
554 rcu_read_unlock();
555 br_read_unlock(vfsmount_lock);
556
557 return 0;
558
559 err_unlock:
560 spin_unlock(&dentry->d_lock);
561 rcu_read_unlock();
562 br_read_unlock(vfsmount_lock);
563 return -ECHILD;
564 }
565
566 /**
567 * release_open_intent - free up open intent resources
568 * @nd: pointer to nameidata
569 */
release_open_intent(struct nameidata * nd)570 void release_open_intent(struct nameidata *nd)
571 {
572 struct file *file = nd->intent.open.file;
573
574 if (file && !IS_ERR(file)) {
575 if (file->f_path.dentry == NULL)
576 put_filp(file);
577 else
578 fput(file);
579 }
580 }
581
d_revalidate(struct dentry * dentry,struct nameidata * nd)582 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
583 {
584 return dentry->d_op->d_revalidate(dentry, nd);
585 }
586
587 static struct dentry *
do_revalidate(struct dentry * dentry,struct nameidata * nd)588 do_revalidate(struct dentry *dentry, struct nameidata *nd)
589 {
590 int status = d_revalidate(dentry, nd);
591 if (unlikely(status <= 0)) {
592 /*
593 * The dentry failed validation.
594 * If d_revalidate returned 0 attempt to invalidate
595 * the dentry otherwise d_revalidate is asking us
596 * to return a fail status.
597 */
598 if (status < 0) {
599 dput(dentry);
600 dentry = ERR_PTR(status);
601 } else if (!d_invalidate(dentry)) {
602 dput(dentry);
603 dentry = NULL;
604 }
605 }
606 return dentry;
607 }
608
609 /*
610 * handle_reval_path - force revalidation of a dentry
611 *
612 * In some situations the path walking code will trust dentries without
613 * revalidating them. This causes problems for filesystems that depend on
614 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
615 * (which indicates that it's possible for the dentry to go stale), force
616 * a d_revalidate call before proceeding.
617 *
618 * Returns 0 if the revalidation was successful. If the revalidation fails,
619 * either return the error returned by d_revalidate or -ESTALE if the
620 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
621 * invalidate the dentry. It's up to the caller to handle putting references
622 * to the path if necessary.
623 */
handle_reval_path(struct nameidata * nd)624 static inline int handle_reval_path(struct nameidata *nd)
625 {
626 struct dentry *dentry = nd->path.dentry;
627 int status;
628
629 if (likely(!(nd->flags & LOOKUP_JUMPED)))
630 return 0;
631
632 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
633 return 0;
634
635 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
636 return 0;
637
638 /* Note: we do not d_invalidate() */
639 status = d_revalidate(dentry, nd);
640 if (status > 0)
641 return 0;
642
643 if (!status)
644 status = -ESTALE;
645
646 return status;
647 }
648
649 /*
650 * Short-cut version of permission(), for calling on directories
651 * during pathname resolution. Combines parts of permission()
652 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
653 *
654 * If appropriate, check DAC only. If not appropriate, or
655 * short-cut DAC fails, then call ->permission() to do more
656 * complete permission check.
657 */
exec_permission(struct inode * inode,unsigned int flags)658 static inline int exec_permission(struct inode *inode, unsigned int flags)
659 {
660 int ret;
661 struct user_namespace *ns = inode_userns(inode);
662
663 if (inode->i_op->permission) {
664 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
665 } else {
666 ret = acl_permission_check(inode, MAY_EXEC, flags,
667 inode->i_op->check_acl);
668 }
669 if (likely(!ret))
670 goto ok;
671 if (ret == -ECHILD)
672 return ret;
673
674 if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
675 ns_capable(ns, CAP_DAC_READ_SEARCH))
676 goto ok;
677
678 return ret;
679 ok:
680 return security_inode_exec_permission(inode, flags);
681 }
682
set_root(struct nameidata * nd)683 static __always_inline void set_root(struct nameidata *nd)
684 {
685 if (!nd->root.mnt)
686 get_fs_root(current->fs, &nd->root);
687 }
688
689 static int link_path_walk(const char *, struct nameidata *);
690
set_root_rcu(struct nameidata * nd)691 static __always_inline void set_root_rcu(struct nameidata *nd)
692 {
693 if (!nd->root.mnt) {
694 struct fs_struct *fs = current->fs;
695 unsigned seq;
696
697 do {
698 seq = read_seqcount_begin(&fs->seq);
699 nd->root = fs->root;
700 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
701 } while (read_seqcount_retry(&fs->seq, seq));
702 }
703 }
704
__vfs_follow_link(struct nameidata * nd,const char * link)705 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
706 {
707 int ret;
708
709 if (IS_ERR(link))
710 goto fail;
711
712 if (*link == '/') {
713 set_root(nd);
714 path_put(&nd->path);
715 nd->path = nd->root;
716 path_get(&nd->root);
717 nd->flags |= LOOKUP_JUMPED;
718 }
719 nd->inode = nd->path.dentry->d_inode;
720
721 ret = link_path_walk(link, nd);
722 return ret;
723 fail:
724 path_put(&nd->path);
725 return PTR_ERR(link);
726 }
727
path_put_conditional(struct path * path,struct nameidata * nd)728 static void path_put_conditional(struct path *path, struct nameidata *nd)
729 {
730 dput(path->dentry);
731 if (path->mnt != nd->path.mnt)
732 mntput(path->mnt);
733 }
734
path_to_nameidata(const struct path * path,struct nameidata * nd)735 static inline void path_to_nameidata(const struct path *path,
736 struct nameidata *nd)
737 {
738 if (!(nd->flags & LOOKUP_RCU)) {
739 dput(nd->path.dentry);
740 if (nd->path.mnt != path->mnt)
741 mntput(nd->path.mnt);
742 }
743 nd->path.mnt = path->mnt;
744 nd->path.dentry = path->dentry;
745 }
746
put_link(struct nameidata * nd,struct path * link,void * cookie)747 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
748 {
749 struct inode *inode = link->dentry->d_inode;
750 if (!IS_ERR(cookie) && inode->i_op->put_link)
751 inode->i_op->put_link(link->dentry, nd, cookie);
752 path_put(link);
753 }
754
755 static __always_inline int
follow_link(struct path * link,struct nameidata * nd,void ** p)756 follow_link(struct path *link, struct nameidata *nd, void **p)
757 {
758 int error;
759 struct dentry *dentry = link->dentry;
760
761 BUG_ON(nd->flags & LOOKUP_RCU);
762
763 if (link->mnt == nd->path.mnt)
764 mntget(link->mnt);
765
766 if (unlikely(current->total_link_count >= 40)) {
767 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
768 path_put(&nd->path);
769 return -ELOOP;
770 }
771 cond_resched();
772 current->total_link_count++;
773
774 touch_atime(link->mnt, dentry);
775 nd_set_link(nd, NULL);
776
777 error = security_inode_follow_link(link->dentry, nd);
778 if (error) {
779 *p = ERR_PTR(error); /* no ->put_link(), please */
780 path_put(&nd->path);
781 return error;
782 }
783
784 nd->last_type = LAST_BIND;
785 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
786 error = PTR_ERR(*p);
787 if (!IS_ERR(*p)) {
788 char *s = nd_get_link(nd);
789 error = 0;
790 if (s)
791 error = __vfs_follow_link(nd, s);
792 else if (nd->last_type == LAST_BIND) {
793 nd->flags |= LOOKUP_JUMPED;
794 nd->inode = nd->path.dentry->d_inode;
795 if (nd->inode->i_op->follow_link) {
796 /* stepped on a _really_ weird one */
797 path_put(&nd->path);
798 error = -ELOOP;
799 }
800 }
801 }
802 return error;
803 }
804
follow_up_rcu(struct path * path)805 static int follow_up_rcu(struct path *path)
806 {
807 struct vfsmount *parent;
808 struct dentry *mountpoint;
809
810 parent = path->mnt->mnt_parent;
811 if (parent == path->mnt)
812 return 0;
813 mountpoint = path->mnt->mnt_mountpoint;
814 path->dentry = mountpoint;
815 path->mnt = parent;
816 return 1;
817 }
818
follow_up(struct path * path)819 int follow_up(struct path *path)
820 {
821 struct vfsmount *parent;
822 struct dentry *mountpoint;
823
824 br_read_lock(vfsmount_lock);
825 parent = path->mnt->mnt_parent;
826 if (parent == path->mnt) {
827 br_read_unlock(vfsmount_lock);
828 return 0;
829 }
830 mntget(parent);
831 mountpoint = dget(path->mnt->mnt_mountpoint);
832 br_read_unlock(vfsmount_lock);
833 dput(path->dentry);
834 path->dentry = mountpoint;
835 mntput(path->mnt);
836 path->mnt = parent;
837 return 1;
838 }
839
840 /*
841 * Perform an automount
842 * - return -EISDIR to tell follow_managed() to stop and return the path we
843 * were called with.
844 */
follow_automount(struct path * path,unsigned flags,bool * need_mntput)845 static int follow_automount(struct path *path, unsigned flags,
846 bool *need_mntput)
847 {
848 struct vfsmount *mnt;
849 int err;
850
851 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
852 return -EREMOTE;
853
854 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
855 * and this is the terminal part of the path.
856 */
857 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
858 return -EISDIR; /* we actually want to stop here */
859
860 /* We want to mount if someone is trying to open/create a file of any
861 * type under the mountpoint, wants to traverse through the mountpoint
862 * or wants to open the mounted directory.
863 *
864 * We don't want to mount if someone's just doing a stat and they've
865 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
866 * appended a '/' to the name.
867 */
868 if (!(flags & LOOKUP_FOLLOW) &&
869 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
870 LOOKUP_OPEN | LOOKUP_CREATE)))
871 return -EISDIR;
872
873 current->total_link_count++;
874 if (current->total_link_count >= 40)
875 return -ELOOP;
876
877 mnt = path->dentry->d_op->d_automount(path);
878 if (IS_ERR(mnt)) {
879 /*
880 * The filesystem is allowed to return -EISDIR here to indicate
881 * it doesn't want to automount. For instance, autofs would do
882 * this so that its userspace daemon can mount on this dentry.
883 *
884 * However, we can only permit this if it's a terminal point in
885 * the path being looked up; if it wasn't then the remainder of
886 * the path is inaccessible and we should say so.
887 */
888 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
889 return -EREMOTE;
890 return PTR_ERR(mnt);
891 }
892
893 if (!mnt) /* mount collision */
894 return 0;
895
896 err = finish_automount(mnt, path);
897
898 switch (err) {
899 case -EBUSY:
900 /* Someone else made a mount here whilst we were busy */
901 return 0;
902 case 0:
903 dput(path->dentry);
904 if (*need_mntput)
905 mntput(path->mnt);
906 path->mnt = mnt;
907 path->dentry = dget(mnt->mnt_root);
908 *need_mntput = true;
909 return 0;
910 default:
911 return err;
912 }
913
914 }
915
916 /*
917 * Handle a dentry that is managed in some way.
918 * - Flagged for transit management (autofs)
919 * - Flagged as mountpoint
920 * - Flagged as automount point
921 *
922 * This may only be called in refwalk mode.
923 *
924 * Serialization is taken care of in namespace.c
925 */
follow_managed(struct path * path,unsigned flags)926 static int follow_managed(struct path *path, unsigned flags)
927 {
928 unsigned managed;
929 bool need_mntput = false;
930 int ret;
931
932 /* Given that we're not holding a lock here, we retain the value in a
933 * local variable for each dentry as we look at it so that we don't see
934 * the components of that value change under us */
935 while (managed = ACCESS_ONCE(path->dentry->d_flags),
936 managed &= DCACHE_MANAGED_DENTRY,
937 unlikely(managed != 0)) {
938 /* Allow the filesystem to manage the transit without i_mutex
939 * being held. */
940 if (managed & DCACHE_MANAGE_TRANSIT) {
941 BUG_ON(!path->dentry->d_op);
942 BUG_ON(!path->dentry->d_op->d_manage);
943 ret = path->dentry->d_op->d_manage(path->dentry, false);
944 if (ret < 0)
945 return ret == -EISDIR ? 0 : ret;
946 }
947
948 /* Transit to a mounted filesystem. */
949 if (managed & DCACHE_MOUNTED) {
950 struct vfsmount *mounted = lookup_mnt(path);
951 if (mounted) {
952 dput(path->dentry);
953 if (need_mntput)
954 mntput(path->mnt);
955 path->mnt = mounted;
956 path->dentry = dget(mounted->mnt_root);
957 need_mntput = true;
958 continue;
959 }
960
961 /* Something is mounted on this dentry in another
962 * namespace and/or whatever was mounted there in this
963 * namespace got unmounted before we managed to get the
964 * vfsmount_lock */
965 }
966
967 /* Handle an automount point */
968 if (managed & DCACHE_NEED_AUTOMOUNT) {
969 ret = follow_automount(path, flags, &need_mntput);
970 if (ret < 0)
971 return ret == -EISDIR ? 0 : ret;
972 continue;
973 }
974
975 /* We didn't change the current path point */
976 break;
977 }
978 return 0;
979 }
980
follow_down_one(struct path * path)981 int follow_down_one(struct path *path)
982 {
983 struct vfsmount *mounted;
984
985 mounted = lookup_mnt(path);
986 if (mounted) {
987 dput(path->dentry);
988 mntput(path->mnt);
989 path->mnt = mounted;
990 path->dentry = dget(mounted->mnt_root);
991 return 1;
992 }
993 return 0;
994 }
995
managed_dentry_might_block(struct dentry * dentry)996 static inline bool managed_dentry_might_block(struct dentry *dentry)
997 {
998 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
999 dentry->d_op->d_manage(dentry, true) < 0);
1000 }
1001
1002 /*
1003 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1004 * meet a managed dentry and we're not walking to "..". True is returned to
1005 * continue, false to abort.
1006 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,bool reverse_transit)1007 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1008 struct inode **inode, bool reverse_transit)
1009 {
1010 for (;;) {
1011 struct vfsmount *mounted;
1012 /*
1013 * Don't forget we might have a non-mountpoint managed dentry
1014 * that wants to block transit.
1015 */
1016 *inode = path->dentry->d_inode;
1017 if (!reverse_transit &&
1018 unlikely(managed_dentry_might_block(path->dentry)))
1019 return false;
1020
1021 if (!d_mountpoint(path->dentry))
1022 break;
1023
1024 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1025 if (!mounted)
1026 break;
1027 path->mnt = mounted;
1028 path->dentry = mounted->mnt_root;
1029 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1030 }
1031
1032 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1033 return reverse_transit;
1034 return true;
1035 }
1036
follow_dotdot_rcu(struct nameidata * nd)1037 static int follow_dotdot_rcu(struct nameidata *nd)
1038 {
1039 struct inode *inode = nd->inode;
1040
1041 set_root_rcu(nd);
1042
1043 while (1) {
1044 if (nd->path.dentry == nd->root.dentry &&
1045 nd->path.mnt == nd->root.mnt) {
1046 break;
1047 }
1048 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1049 struct dentry *old = nd->path.dentry;
1050 struct dentry *parent = old->d_parent;
1051 unsigned seq;
1052
1053 seq = read_seqcount_begin(&parent->d_seq);
1054 if (read_seqcount_retry(&old->d_seq, nd->seq))
1055 goto failed;
1056 inode = parent->d_inode;
1057 nd->path.dentry = parent;
1058 nd->seq = seq;
1059 break;
1060 }
1061 if (!follow_up_rcu(&nd->path))
1062 break;
1063 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1064 inode = nd->path.dentry->d_inode;
1065 }
1066 __follow_mount_rcu(nd, &nd->path, &inode, true);
1067 nd->inode = inode;
1068 return 0;
1069
1070 failed:
1071 nd->flags &= ~LOOKUP_RCU;
1072 if (!(nd->flags & LOOKUP_ROOT))
1073 nd->root.mnt = NULL;
1074 rcu_read_unlock();
1075 br_read_unlock(vfsmount_lock);
1076 return -ECHILD;
1077 }
1078
1079 /*
1080 * Follow down to the covering mount currently visible to userspace. At each
1081 * point, the filesystem owning that dentry may be queried as to whether the
1082 * caller is permitted to proceed or not.
1083 *
1084 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1085 * being true).
1086 */
follow_down(struct path * path)1087 int follow_down(struct path *path)
1088 {
1089 unsigned managed;
1090 int ret;
1091
1092 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1093 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1094 /* Allow the filesystem to manage the transit without i_mutex
1095 * being held.
1096 *
1097 * We indicate to the filesystem if someone is trying to mount
1098 * something here. This gives autofs the chance to deny anyone
1099 * other than its daemon the right to mount on its
1100 * superstructure.
1101 *
1102 * The filesystem may sleep at this point.
1103 */
1104 if (managed & DCACHE_MANAGE_TRANSIT) {
1105 BUG_ON(!path->dentry->d_op);
1106 BUG_ON(!path->dentry->d_op->d_manage);
1107 ret = path->dentry->d_op->d_manage(
1108 path->dentry, false);
1109 if (ret < 0)
1110 return ret == -EISDIR ? 0 : ret;
1111 }
1112
1113 /* Transit to a mounted filesystem. */
1114 if (managed & DCACHE_MOUNTED) {
1115 struct vfsmount *mounted = lookup_mnt(path);
1116 if (!mounted)
1117 break;
1118 dput(path->dentry);
1119 mntput(path->mnt);
1120 path->mnt = mounted;
1121 path->dentry = dget(mounted->mnt_root);
1122 continue;
1123 }
1124
1125 /* Don't handle automount points here */
1126 break;
1127 }
1128 return 0;
1129 }
1130
1131 /*
1132 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1133 */
follow_mount(struct path * path)1134 static void follow_mount(struct path *path)
1135 {
1136 while (d_mountpoint(path->dentry)) {
1137 struct vfsmount *mounted = lookup_mnt(path);
1138 if (!mounted)
1139 break;
1140 dput(path->dentry);
1141 mntput(path->mnt);
1142 path->mnt = mounted;
1143 path->dentry = dget(mounted->mnt_root);
1144 }
1145 }
1146
follow_dotdot(struct nameidata * nd)1147 static void follow_dotdot(struct nameidata *nd)
1148 {
1149 set_root(nd);
1150
1151 while(1) {
1152 struct dentry *old = nd->path.dentry;
1153
1154 if (nd->path.dentry == nd->root.dentry &&
1155 nd->path.mnt == nd->root.mnt) {
1156 break;
1157 }
1158 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1159 /* rare case of legitimate dget_parent()... */
1160 nd->path.dentry = dget_parent(nd->path.dentry);
1161 dput(old);
1162 break;
1163 }
1164 if (!follow_up(&nd->path))
1165 break;
1166 }
1167 follow_mount(&nd->path);
1168 nd->inode = nd->path.dentry->d_inode;
1169 }
1170
1171 /*
1172 * Allocate a dentry with name and parent, and perform a parent
1173 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1174 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1175 * have verified that no child exists while under i_mutex.
1176 */
d_alloc_and_lookup(struct dentry * parent,struct qstr * name,struct nameidata * nd)1177 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1178 struct qstr *name, struct nameidata *nd)
1179 {
1180 struct inode *inode = parent->d_inode;
1181 struct dentry *dentry;
1182 struct dentry *old;
1183
1184 /* Don't create child dentry for a dead directory. */
1185 if (unlikely(IS_DEADDIR(inode)))
1186 return ERR_PTR(-ENOENT);
1187
1188 dentry = d_alloc(parent, name);
1189 if (unlikely(!dentry))
1190 return ERR_PTR(-ENOMEM);
1191
1192 old = inode->i_op->lookup(inode, dentry, nd);
1193 if (unlikely(old)) {
1194 dput(dentry);
1195 dentry = old;
1196 }
1197 return dentry;
1198 }
1199
1200 /*
1201 * It's more convoluted than I'd like it to be, but... it's still fairly
1202 * small and for now I'd prefer to have fast path as straight as possible.
1203 * It _is_ time-critical.
1204 */
do_lookup(struct nameidata * nd,struct qstr * name,struct path * path,struct inode ** inode)1205 static int do_lookup(struct nameidata *nd, struct qstr *name,
1206 struct path *path, struct inode **inode)
1207 {
1208 struct vfsmount *mnt = nd->path.mnt;
1209 struct dentry *dentry, *parent = nd->path.dentry;
1210 int need_reval = 1;
1211 int status = 1;
1212 int err;
1213
1214 /*
1215 * Rename seqlock is not required here because in the off chance
1216 * of a false negative due to a concurrent rename, we're going to
1217 * do the non-racy lookup, below.
1218 */
1219 if (nd->flags & LOOKUP_RCU) {
1220 unsigned seq;
1221 *inode = nd->inode;
1222 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1223 if (!dentry)
1224 goto unlazy;
1225
1226 /* Memory barrier in read_seqcount_begin of child is enough */
1227 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1228 return -ECHILD;
1229 nd->seq = seq;
1230
1231 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1232 status = d_revalidate(dentry, nd);
1233 if (unlikely(status <= 0)) {
1234 if (status != -ECHILD)
1235 need_reval = 0;
1236 goto unlazy;
1237 }
1238 }
1239 path->mnt = mnt;
1240 path->dentry = dentry;
1241 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1242 return 0;
1243 unlazy:
1244 if (dentry) {
1245 if (nameidata_dentry_drop_rcu(nd, dentry))
1246 return -ECHILD;
1247 } else {
1248 if (nameidata_drop_rcu(nd))
1249 return -ECHILD;
1250 }
1251 } else {
1252 dentry = __d_lookup(parent, name);
1253 }
1254
1255 retry:
1256 if (unlikely(!dentry)) {
1257 struct inode *dir = parent->d_inode;
1258 BUG_ON(nd->inode != dir);
1259
1260 mutex_lock(&dir->i_mutex);
1261 dentry = d_lookup(parent, name);
1262 if (likely(!dentry)) {
1263 dentry = d_alloc_and_lookup(parent, name, nd);
1264 if (IS_ERR(dentry)) {
1265 mutex_unlock(&dir->i_mutex);
1266 return PTR_ERR(dentry);
1267 }
1268 /* known good */
1269 need_reval = 0;
1270 status = 1;
1271 }
1272 mutex_unlock(&dir->i_mutex);
1273 }
1274 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1275 status = d_revalidate(dentry, nd);
1276 if (unlikely(status <= 0)) {
1277 if (status < 0) {
1278 dput(dentry);
1279 return status;
1280 }
1281 if (!d_invalidate(dentry)) {
1282 dput(dentry);
1283 dentry = NULL;
1284 need_reval = 1;
1285 goto retry;
1286 }
1287 }
1288
1289 path->mnt = mnt;
1290 path->dentry = dentry;
1291 err = follow_managed(path, nd->flags);
1292 if (unlikely(err < 0)) {
1293 path_put_conditional(path, nd);
1294 return err;
1295 }
1296 *inode = path->dentry->d_inode;
1297 return 0;
1298 }
1299
may_lookup(struct nameidata * nd)1300 static inline int may_lookup(struct nameidata *nd)
1301 {
1302 if (nd->flags & LOOKUP_RCU) {
1303 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1304 if (err != -ECHILD)
1305 return err;
1306 if (nameidata_drop_rcu(nd))
1307 return -ECHILD;
1308 }
1309 return exec_permission(nd->inode, 0);
1310 }
1311
handle_dots(struct nameidata * nd,int type)1312 static inline int handle_dots(struct nameidata *nd, int type)
1313 {
1314 if (type == LAST_DOTDOT) {
1315 if (nd->flags & LOOKUP_RCU) {
1316 if (follow_dotdot_rcu(nd))
1317 return -ECHILD;
1318 } else
1319 follow_dotdot(nd);
1320 }
1321 return 0;
1322 }
1323
terminate_walk(struct nameidata * nd)1324 static void terminate_walk(struct nameidata *nd)
1325 {
1326 if (!(nd->flags & LOOKUP_RCU)) {
1327 path_put(&nd->path);
1328 } else {
1329 nd->flags &= ~LOOKUP_RCU;
1330 if (!(nd->flags & LOOKUP_ROOT))
1331 nd->root.mnt = NULL;
1332 rcu_read_unlock();
1333 br_read_unlock(vfsmount_lock);
1334 }
1335 }
1336
walk_component(struct nameidata * nd,struct path * path,struct qstr * name,int type,int follow)1337 static inline int walk_component(struct nameidata *nd, struct path *path,
1338 struct qstr *name, int type, int follow)
1339 {
1340 struct inode *inode;
1341 int err;
1342 /*
1343 * "." and ".." are special - ".." especially so because it has
1344 * to be able to know about the current root directory and
1345 * parent relationships.
1346 */
1347 if (unlikely(type != LAST_NORM))
1348 return handle_dots(nd, type);
1349 err = do_lookup(nd, name, path, &inode);
1350 if (unlikely(err)) {
1351 terminate_walk(nd);
1352 return err;
1353 }
1354 if (!inode) {
1355 path_to_nameidata(path, nd);
1356 terminate_walk(nd);
1357 return -ENOENT;
1358 }
1359 if (unlikely(inode->i_op->follow_link) && follow) {
1360 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
1361 return -ECHILD;
1362 BUG_ON(inode != path->dentry->d_inode);
1363 return 1;
1364 }
1365 path_to_nameidata(path, nd);
1366 nd->inode = inode;
1367 return 0;
1368 }
1369
1370 /*
1371 * This limits recursive symlink follows to 8, while
1372 * limiting consecutive symlinks to 40.
1373 *
1374 * Without that kind of total limit, nasty chains of consecutive
1375 * symlinks can cause almost arbitrarily long lookups.
1376 */
nested_symlink(struct path * path,struct nameidata * nd)1377 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1378 {
1379 int res;
1380
1381 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1382 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1383 path_put_conditional(path, nd);
1384 path_put(&nd->path);
1385 return -ELOOP;
1386 }
1387
1388 nd->depth++;
1389 current->link_count++;
1390
1391 do {
1392 struct path link = *path;
1393 void *cookie;
1394
1395 res = follow_link(&link, nd, &cookie);
1396 if (!res)
1397 res = walk_component(nd, path, &nd->last,
1398 nd->last_type, LOOKUP_FOLLOW);
1399 put_link(nd, &link, cookie);
1400 } while (res > 0);
1401
1402 current->link_count--;
1403 nd->depth--;
1404 return res;
1405 }
1406
1407 /*
1408 * Name resolution.
1409 * This is the basic name resolution function, turning a pathname into
1410 * the final dentry. We expect 'base' to be positive and a directory.
1411 *
1412 * Returns 0 and nd will have valid dentry and mnt on success.
1413 * Returns error and drops reference to input namei data on failure.
1414 */
link_path_walk(const char * name,struct nameidata * nd)1415 static int link_path_walk(const char *name, struct nameidata *nd)
1416 {
1417 struct path next;
1418 int err;
1419 unsigned int lookup_flags = nd->flags;
1420
1421 while (*name=='/')
1422 name++;
1423 if (!*name)
1424 return 0;
1425
1426 /* At this point we know we have a real path component. */
1427 for(;;) {
1428 unsigned long hash;
1429 struct qstr this;
1430 unsigned int c;
1431 int type;
1432
1433 nd->flags |= LOOKUP_CONTINUE;
1434
1435 err = may_lookup(nd);
1436 if (err)
1437 break;
1438
1439 this.name = name;
1440 c = *(const unsigned char *)name;
1441
1442 hash = init_name_hash();
1443 do {
1444 name++;
1445 hash = partial_name_hash(c, hash);
1446 c = *(const unsigned char *)name;
1447 } while (c && (c != '/'));
1448 this.len = name - (const char *) this.name;
1449 this.hash = end_name_hash(hash);
1450
1451 type = LAST_NORM;
1452 if (this.name[0] == '.') switch (this.len) {
1453 case 2:
1454 if (this.name[1] == '.') {
1455 type = LAST_DOTDOT;
1456 nd->flags |= LOOKUP_JUMPED;
1457 }
1458 break;
1459 case 1:
1460 type = LAST_DOT;
1461 }
1462 if (likely(type == LAST_NORM)) {
1463 struct dentry *parent = nd->path.dentry;
1464 nd->flags &= ~LOOKUP_JUMPED;
1465 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1466 err = parent->d_op->d_hash(parent, nd->inode,
1467 &this);
1468 if (err < 0)
1469 break;
1470 }
1471 }
1472
1473 /* remove trailing slashes? */
1474 if (!c)
1475 goto last_component;
1476 while (*++name == '/');
1477 if (!*name)
1478 goto last_component;
1479
1480 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1481 if (err < 0)
1482 return err;
1483
1484 if (err) {
1485 err = nested_symlink(&next, nd);
1486 if (err)
1487 return err;
1488 }
1489 err = -ENOTDIR;
1490 if (!nd->inode->i_op->lookup)
1491 break;
1492 continue;
1493 /* here ends the main loop */
1494
1495 last_component:
1496 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1497 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1498 nd->last = this;
1499 nd->last_type = type;
1500 return 0;
1501 }
1502 terminate_walk(nd);
1503 return err;
1504 }
1505
path_init(int dfd,const char * name,unsigned int flags,struct nameidata * nd,struct file ** fp)1506 static int path_init(int dfd, const char *name, unsigned int flags,
1507 struct nameidata *nd, struct file **fp)
1508 {
1509 int retval = 0;
1510 int fput_needed;
1511 struct file *file;
1512
1513 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1514 nd->flags = flags | LOOKUP_JUMPED;
1515 nd->depth = 0;
1516 if (flags & LOOKUP_ROOT) {
1517 struct inode *inode = nd->root.dentry->d_inode;
1518 if (*name) {
1519 if (!inode->i_op->lookup)
1520 return -ENOTDIR;
1521 retval = inode_permission(inode, MAY_EXEC);
1522 if (retval)
1523 return retval;
1524 }
1525 nd->path = nd->root;
1526 nd->inode = inode;
1527 if (flags & LOOKUP_RCU) {
1528 br_read_lock(vfsmount_lock);
1529 rcu_read_lock();
1530 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1531 } else {
1532 path_get(&nd->path);
1533 }
1534 return 0;
1535 }
1536
1537 nd->root.mnt = NULL;
1538
1539 if (*name=='/') {
1540 if (flags & LOOKUP_RCU) {
1541 br_read_lock(vfsmount_lock);
1542 rcu_read_lock();
1543 set_root_rcu(nd);
1544 } else {
1545 set_root(nd);
1546 path_get(&nd->root);
1547 }
1548 nd->path = nd->root;
1549 } else if (dfd == AT_FDCWD) {
1550 if (flags & LOOKUP_RCU) {
1551 struct fs_struct *fs = current->fs;
1552 unsigned seq;
1553
1554 br_read_lock(vfsmount_lock);
1555 rcu_read_lock();
1556
1557 do {
1558 seq = read_seqcount_begin(&fs->seq);
1559 nd->path = fs->pwd;
1560 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1561 } while (read_seqcount_retry(&fs->seq, seq));
1562 } else {
1563 get_fs_pwd(current->fs, &nd->path);
1564 }
1565 } else {
1566 struct dentry *dentry;
1567
1568 file = fget_raw_light(dfd, &fput_needed);
1569 retval = -EBADF;
1570 if (!file)
1571 goto out_fail;
1572
1573 dentry = file->f_path.dentry;
1574
1575 if (*name) {
1576 retval = -ENOTDIR;
1577 if (!S_ISDIR(dentry->d_inode->i_mode))
1578 goto fput_fail;
1579
1580 retval = file_permission(file, MAY_EXEC);
1581 if (retval)
1582 goto fput_fail;
1583 }
1584
1585 nd->path = file->f_path;
1586 if (flags & LOOKUP_RCU) {
1587 if (fput_needed)
1588 *fp = file;
1589 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1590 br_read_lock(vfsmount_lock);
1591 rcu_read_lock();
1592 } else {
1593 path_get(&file->f_path);
1594 fput_light(file, fput_needed);
1595 }
1596 }
1597
1598 nd->inode = nd->path.dentry->d_inode;
1599 return 0;
1600
1601 fput_fail:
1602 fput_light(file, fput_needed);
1603 out_fail:
1604 return retval;
1605 }
1606
lookup_last(struct nameidata * nd,struct path * path)1607 static inline int lookup_last(struct nameidata *nd, struct path *path)
1608 {
1609 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1610 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1611
1612 nd->flags &= ~LOOKUP_PARENT;
1613 return walk_component(nd, path, &nd->last, nd->last_type,
1614 nd->flags & LOOKUP_FOLLOW);
1615 }
1616
1617 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1618 static int path_lookupat(int dfd, const char *name,
1619 unsigned int flags, struct nameidata *nd)
1620 {
1621 struct file *base = NULL;
1622 struct path path;
1623 int err;
1624
1625 /*
1626 * Path walking is largely split up into 2 different synchronisation
1627 * schemes, rcu-walk and ref-walk (explained in
1628 * Documentation/filesystems/path-lookup.txt). These share much of the
1629 * path walk code, but some things particularly setup, cleanup, and
1630 * following mounts are sufficiently divergent that functions are
1631 * duplicated. Typically there is a function foo(), and its RCU
1632 * analogue, foo_rcu().
1633 *
1634 * -ECHILD is the error number of choice (just to avoid clashes) that
1635 * is returned if some aspect of an rcu-walk fails. Such an error must
1636 * be handled by restarting a traditional ref-walk (which will always
1637 * be able to complete).
1638 */
1639 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1640
1641 if (unlikely(err))
1642 return err;
1643
1644 current->total_link_count = 0;
1645 err = link_path_walk(name, nd);
1646
1647 if (!err && !(flags & LOOKUP_PARENT)) {
1648 err = lookup_last(nd, &path);
1649 while (err > 0) {
1650 void *cookie;
1651 struct path link = path;
1652 nd->flags |= LOOKUP_PARENT;
1653 err = follow_link(&link, nd, &cookie);
1654 if (!err)
1655 err = lookup_last(nd, &path);
1656 put_link(nd, &link, cookie);
1657 }
1658 }
1659
1660 if (nd->flags & LOOKUP_RCU) {
1661 /* went all way through without dropping RCU */
1662 BUG_ON(err);
1663 if (nameidata_drop_rcu_last(nd))
1664 err = -ECHILD;
1665 }
1666
1667 if (!err) {
1668 err = handle_reval_path(nd);
1669 if (err)
1670 path_put(&nd->path);
1671 }
1672
1673 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1674 if (!nd->inode->i_op->lookup) {
1675 path_put(&nd->path);
1676 err = -ENOTDIR;
1677 }
1678 }
1679
1680 if (base)
1681 fput(base);
1682
1683 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1684 path_put(&nd->root);
1685 nd->root.mnt = NULL;
1686 }
1687 return err;
1688 }
1689
do_path_lookup(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1690 static int do_path_lookup(int dfd, const char *name,
1691 unsigned int flags, struct nameidata *nd)
1692 {
1693 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1694 if (unlikely(retval == -ECHILD))
1695 retval = path_lookupat(dfd, name, flags, nd);
1696 if (unlikely(retval == -ESTALE))
1697 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1698
1699 if (likely(!retval)) {
1700 if (unlikely(!audit_dummy_context())) {
1701 if (nd->path.dentry && nd->inode)
1702 audit_inode(name, nd->path.dentry);
1703 }
1704 }
1705 return retval;
1706 }
1707
kern_path_parent(const char * name,struct nameidata * nd)1708 int kern_path_parent(const char *name, struct nameidata *nd)
1709 {
1710 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1711 }
1712
kern_path(const char * name,unsigned int flags,struct path * path)1713 int kern_path(const char *name, unsigned int flags, struct path *path)
1714 {
1715 struct nameidata nd;
1716 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1717 if (!res)
1718 *path = nd.path;
1719 return res;
1720 }
1721
1722 /**
1723 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1724 * @dentry: pointer to dentry of the base directory
1725 * @mnt: pointer to vfs mount of the base directory
1726 * @name: pointer to file name
1727 * @flags: lookup flags
1728 * @nd: pointer to nameidata
1729 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct nameidata * nd)1730 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1731 const char *name, unsigned int flags,
1732 struct nameidata *nd)
1733 {
1734 nd->root.dentry = dentry;
1735 nd->root.mnt = mnt;
1736 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1737 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1738 }
1739
__lookup_hash(struct qstr * name,struct dentry * base,struct nameidata * nd)1740 static struct dentry *__lookup_hash(struct qstr *name,
1741 struct dentry *base, struct nameidata *nd)
1742 {
1743 struct inode *inode = base->d_inode;
1744 struct dentry *dentry;
1745 int err;
1746
1747 err = exec_permission(inode, 0);
1748 if (err)
1749 return ERR_PTR(err);
1750
1751 /*
1752 * Don't bother with __d_lookup: callers are for creat as
1753 * well as unlink, so a lot of the time it would cost
1754 * a double lookup.
1755 */
1756 dentry = d_lookup(base, name);
1757
1758 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1759 dentry = do_revalidate(dentry, nd);
1760
1761 if (!dentry)
1762 dentry = d_alloc_and_lookup(base, name, nd);
1763
1764 return dentry;
1765 }
1766
1767 /*
1768 * Restricted form of lookup. Doesn't follow links, single-component only,
1769 * needs parent already locked. Doesn't follow mounts.
1770 * SMP-safe.
1771 */
lookup_hash(struct nameidata * nd)1772 static struct dentry *lookup_hash(struct nameidata *nd)
1773 {
1774 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1775 }
1776
1777 /**
1778 * lookup_one_len - filesystem helper to lookup single pathname component
1779 * @name: pathname component to lookup
1780 * @base: base directory to lookup from
1781 * @len: maximum length @len should be interpreted to
1782 *
1783 * Note that this routine is purely a helper for filesystem usage and should
1784 * not be called by generic code. Also note that by using this function the
1785 * nameidata argument is passed to the filesystem methods and a filesystem
1786 * using this helper needs to be prepared for that.
1787 */
lookup_one_len(const char * name,struct dentry * base,int len)1788 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1789 {
1790 struct qstr this;
1791 unsigned long hash;
1792 unsigned int c;
1793
1794 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1795
1796 this.name = name;
1797 this.len = len;
1798 if (!len)
1799 return ERR_PTR(-EACCES);
1800
1801 hash = init_name_hash();
1802 while (len--) {
1803 c = *(const unsigned char *)name++;
1804 if (c == '/' || c == '\0')
1805 return ERR_PTR(-EACCES);
1806 hash = partial_name_hash(c, hash);
1807 }
1808 this.hash = end_name_hash(hash);
1809 /*
1810 * See if the low-level filesystem might want
1811 * to use its own hash..
1812 */
1813 if (base->d_flags & DCACHE_OP_HASH) {
1814 int err = base->d_op->d_hash(base, base->d_inode, &this);
1815 if (err < 0)
1816 return ERR_PTR(err);
1817 }
1818
1819 return __lookup_hash(&this, base, NULL);
1820 }
1821
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)1822 int user_path_at(int dfd, const char __user *name, unsigned flags,
1823 struct path *path)
1824 {
1825 struct nameidata nd;
1826 char *tmp = getname_flags(name, flags);
1827 int err = PTR_ERR(tmp);
1828 if (!IS_ERR(tmp)) {
1829
1830 BUG_ON(flags & LOOKUP_PARENT);
1831
1832 err = do_path_lookup(dfd, tmp, flags, &nd);
1833 putname(tmp);
1834 if (!err)
1835 *path = nd.path;
1836 }
1837 return err;
1838 }
1839
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,char ** name)1840 static int user_path_parent(int dfd, const char __user *path,
1841 struct nameidata *nd, char **name)
1842 {
1843 char *s = getname(path);
1844 int error;
1845
1846 if (IS_ERR(s))
1847 return PTR_ERR(s);
1848
1849 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1850 if (error)
1851 putname(s);
1852 else
1853 *name = s;
1854
1855 return error;
1856 }
1857
1858 /*
1859 * It's inline, so penalty for filesystems that don't use sticky bit is
1860 * minimal.
1861 */
check_sticky(struct inode * dir,struct inode * inode)1862 static inline int check_sticky(struct inode *dir, struct inode *inode)
1863 {
1864 uid_t fsuid = current_fsuid();
1865
1866 if (!(dir->i_mode & S_ISVTX))
1867 return 0;
1868 if (current_user_ns() != inode_userns(inode))
1869 goto other_userns;
1870 if (inode->i_uid == fsuid)
1871 return 0;
1872 if (dir->i_uid == fsuid)
1873 return 0;
1874
1875 other_userns:
1876 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1877 }
1878
1879 /*
1880 * Check whether we can remove a link victim from directory dir, check
1881 * whether the type of victim is right.
1882 * 1. We can't do it if dir is read-only (done in permission())
1883 * 2. We should have write and exec permissions on dir
1884 * 3. We can't remove anything from append-only dir
1885 * 4. We can't do anything with immutable dir (done in permission())
1886 * 5. If the sticky bit on dir is set we should either
1887 * a. be owner of dir, or
1888 * b. be owner of victim, or
1889 * c. have CAP_FOWNER capability
1890 * 6. If the victim is append-only or immutable we can't do antyhing with
1891 * links pointing to it.
1892 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1893 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1894 * 9. We can't remove a root or mountpoint.
1895 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1896 * nfs_async_unlink().
1897 */
may_delete(struct inode * dir,struct dentry * victim,int isdir)1898 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1899 {
1900 int error;
1901
1902 if (!victim->d_inode)
1903 return -ENOENT;
1904
1905 BUG_ON(victim->d_parent->d_inode != dir);
1906 audit_inode_child(victim, dir);
1907
1908 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1909 if (error)
1910 return error;
1911 if (IS_APPEND(dir))
1912 return -EPERM;
1913 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1914 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1915 return -EPERM;
1916 if (isdir) {
1917 if (!S_ISDIR(victim->d_inode->i_mode))
1918 return -ENOTDIR;
1919 if (IS_ROOT(victim))
1920 return -EBUSY;
1921 } else if (S_ISDIR(victim->d_inode->i_mode))
1922 return -EISDIR;
1923 if (IS_DEADDIR(dir))
1924 return -ENOENT;
1925 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1926 return -EBUSY;
1927 return 0;
1928 }
1929
1930 /* Check whether we can create an object with dentry child in directory
1931 * dir.
1932 * 1. We can't do it if child already exists (open has special treatment for
1933 * this case, but since we are inlined it's OK)
1934 * 2. We can't do it if dir is read-only (done in permission())
1935 * 3. We should have write and exec permissions on dir
1936 * 4. We can't do it if dir is immutable (done in permission())
1937 */
may_create(struct inode * dir,struct dentry * child)1938 static inline int may_create(struct inode *dir, struct dentry *child)
1939 {
1940 if (child->d_inode)
1941 return -EEXIST;
1942 if (IS_DEADDIR(dir))
1943 return -ENOENT;
1944 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1945 }
1946
1947 /*
1948 * p1 and p2 should be directories on the same fs.
1949 */
lock_rename(struct dentry * p1,struct dentry * p2)1950 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1951 {
1952 struct dentry *p;
1953
1954 if (p1 == p2) {
1955 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1956 return NULL;
1957 }
1958
1959 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1960
1961 p = d_ancestor(p2, p1);
1962 if (p) {
1963 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1964 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1965 return p;
1966 }
1967
1968 p = d_ancestor(p1, p2);
1969 if (p) {
1970 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1971 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1972 return p;
1973 }
1974
1975 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1976 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1977 return NULL;
1978 }
1979
unlock_rename(struct dentry * p1,struct dentry * p2)1980 void unlock_rename(struct dentry *p1, struct dentry *p2)
1981 {
1982 mutex_unlock(&p1->d_inode->i_mutex);
1983 if (p1 != p2) {
1984 mutex_unlock(&p2->d_inode->i_mutex);
1985 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1986 }
1987 }
1988
vfs_create(struct inode * dir,struct dentry * dentry,int mode,struct nameidata * nd)1989 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1990 struct nameidata *nd)
1991 {
1992 int error = may_create(dir, dentry);
1993
1994 if (error)
1995 return error;
1996
1997 if (!dir->i_op->create)
1998 return -EACCES; /* shouldn't it be ENOSYS? */
1999 mode &= S_IALLUGO;
2000 mode |= S_IFREG;
2001 error = security_inode_create(dir, dentry, mode);
2002 if (error)
2003 return error;
2004 error = dir->i_op->create(dir, dentry, mode, nd);
2005 if (!error)
2006 fsnotify_create(dir, dentry);
2007 return error;
2008 }
2009
may_open(struct path * path,int acc_mode,int flag)2010 static int may_open(struct path *path, int acc_mode, int flag)
2011 {
2012 struct dentry *dentry = path->dentry;
2013 struct inode *inode = dentry->d_inode;
2014 int error;
2015
2016 /* O_PATH? */
2017 if (!acc_mode)
2018 return 0;
2019
2020 if (!inode)
2021 return -ENOENT;
2022
2023 switch (inode->i_mode & S_IFMT) {
2024 case S_IFLNK:
2025 return -ELOOP;
2026 case S_IFDIR:
2027 if (acc_mode & MAY_WRITE)
2028 return -EISDIR;
2029 break;
2030 case S_IFBLK:
2031 case S_IFCHR:
2032 if (path->mnt->mnt_flags & MNT_NODEV)
2033 return -EACCES;
2034 /*FALLTHRU*/
2035 case S_IFIFO:
2036 case S_IFSOCK:
2037 flag &= ~O_TRUNC;
2038 break;
2039 }
2040
2041 error = inode_permission(inode, acc_mode);
2042 if (error)
2043 return error;
2044
2045 /*
2046 * An append-only file must be opened in append mode for writing.
2047 */
2048 if (IS_APPEND(inode)) {
2049 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2050 return -EPERM;
2051 if (flag & O_TRUNC)
2052 return -EPERM;
2053 }
2054
2055 /* O_NOATIME can only be set by the owner or superuser */
2056 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2057 return -EPERM;
2058
2059 /*
2060 * Ensure there are no outstanding leases on the file.
2061 */
2062 return break_lease(inode, flag);
2063 }
2064
handle_truncate(struct file * filp)2065 static int handle_truncate(struct file *filp)
2066 {
2067 struct path *path = &filp->f_path;
2068 struct inode *inode = path->dentry->d_inode;
2069 int error = get_write_access(inode);
2070 if (error)
2071 return error;
2072 /*
2073 * Refuse to truncate files with mandatory locks held on them.
2074 */
2075 error = locks_verify_locked(inode);
2076 if (!error)
2077 error = security_path_truncate(path);
2078 if (!error) {
2079 error = do_truncate(path->dentry, 0,
2080 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2081 filp);
2082 }
2083 put_write_access(inode);
2084 return error;
2085 }
2086
2087 /*
2088 * Note that while the flag value (low two bits) for sys_open means:
2089 * 00 - read-only
2090 * 01 - write-only
2091 * 10 - read-write
2092 * 11 - special
2093 * it is changed into
2094 * 00 - no permissions needed
2095 * 01 - read-permission
2096 * 10 - write-permission
2097 * 11 - read-write
2098 * for the internal routines (ie open_namei()/follow_link() etc)
2099 * This is more logical, and also allows the 00 "no perm needed"
2100 * to be used for symlinks (where the permissions are checked
2101 * later).
2102 *
2103 */
open_to_namei_flags(int flag)2104 static inline int open_to_namei_flags(int flag)
2105 {
2106 if ((flag+1) & O_ACCMODE)
2107 flag++;
2108 return flag;
2109 }
2110
2111 /*
2112 * Handle the last step of open()
2113 */
do_last(struct nameidata * nd,struct path * path,const struct open_flags * op,const char * pathname)2114 static struct file *do_last(struct nameidata *nd, struct path *path,
2115 const struct open_flags *op, const char *pathname)
2116 {
2117 struct dentry *dir = nd->path.dentry;
2118 struct dentry *dentry;
2119 int open_flag = op->open_flag;
2120 int will_truncate = open_flag & O_TRUNC;
2121 int want_write = 0;
2122 int acc_mode = op->acc_mode;
2123 struct file *filp;
2124 int error;
2125
2126 nd->flags &= ~LOOKUP_PARENT;
2127 nd->flags |= op->intent;
2128
2129 switch (nd->last_type) {
2130 case LAST_DOTDOT:
2131 case LAST_DOT:
2132 error = handle_dots(nd, nd->last_type);
2133 if (error)
2134 return ERR_PTR(error);
2135 /* fallthrough */
2136 case LAST_ROOT:
2137 if (nd->flags & LOOKUP_RCU) {
2138 if (nameidata_drop_rcu_last(nd))
2139 return ERR_PTR(-ECHILD);
2140 }
2141 error = handle_reval_path(nd);
2142 if (error)
2143 goto exit;
2144 audit_inode(pathname, nd->path.dentry);
2145 if (open_flag & O_CREAT) {
2146 error = -EISDIR;
2147 goto exit;
2148 }
2149 goto ok;
2150 case LAST_BIND:
2151 /* can't be RCU mode here */
2152 error = handle_reval_path(nd);
2153 if (error)
2154 goto exit;
2155 audit_inode(pathname, dir);
2156 goto ok;
2157 }
2158
2159 if (!(open_flag & O_CREAT)) {
2160 int symlink_ok = 0;
2161 if (nd->last.name[nd->last.len])
2162 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2163 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2164 symlink_ok = 1;
2165 /* we _can_ be in RCU mode here */
2166 error = walk_component(nd, path, &nd->last, LAST_NORM,
2167 !symlink_ok);
2168 if (error < 0)
2169 return ERR_PTR(error);
2170 if (error) /* symlink */
2171 return NULL;
2172 /* sayonara */
2173 if (nd->flags & LOOKUP_RCU) {
2174 if (nameidata_drop_rcu_last(nd))
2175 return ERR_PTR(-ECHILD);
2176 }
2177
2178 error = -ENOTDIR;
2179 if (nd->flags & LOOKUP_DIRECTORY) {
2180 if (!nd->inode->i_op->lookup)
2181 goto exit;
2182 }
2183 audit_inode(pathname, nd->path.dentry);
2184 goto ok;
2185 }
2186
2187 /* create side of things */
2188
2189 if (nd->flags & LOOKUP_RCU) {
2190 if (nameidata_drop_rcu_last(nd))
2191 return ERR_PTR(-ECHILD);
2192 }
2193
2194 audit_inode(pathname, dir);
2195 error = -EISDIR;
2196 /* trailing slashes? */
2197 if (nd->last.name[nd->last.len])
2198 goto exit;
2199
2200 mutex_lock(&dir->d_inode->i_mutex);
2201
2202 dentry = lookup_hash(nd);
2203 error = PTR_ERR(dentry);
2204 if (IS_ERR(dentry)) {
2205 mutex_unlock(&dir->d_inode->i_mutex);
2206 goto exit;
2207 }
2208
2209 path->dentry = dentry;
2210 path->mnt = nd->path.mnt;
2211
2212 /* Negative dentry, just create the file */
2213 if (!dentry->d_inode) {
2214 int mode = op->mode;
2215 if (!IS_POSIXACL(dir->d_inode))
2216 mode &= ~current_umask();
2217 /*
2218 * This write is needed to ensure that a
2219 * rw->ro transition does not occur between
2220 * the time when the file is created and when
2221 * a permanent write count is taken through
2222 * the 'struct file' in nameidata_to_filp().
2223 */
2224 error = mnt_want_write(nd->path.mnt);
2225 if (error)
2226 goto exit_mutex_unlock;
2227 want_write = 1;
2228 /* Don't check for write permission, don't truncate */
2229 open_flag &= ~O_TRUNC;
2230 will_truncate = 0;
2231 acc_mode = MAY_OPEN;
2232 error = security_path_mknod(&nd->path, dentry, mode, 0);
2233 if (error)
2234 goto exit_mutex_unlock;
2235 error = vfs_create(dir->d_inode, dentry, mode, nd);
2236 if (error)
2237 goto exit_mutex_unlock;
2238 mutex_unlock(&dir->d_inode->i_mutex);
2239 dput(nd->path.dentry);
2240 nd->path.dentry = dentry;
2241 goto common;
2242 }
2243
2244 /*
2245 * It already exists.
2246 */
2247 mutex_unlock(&dir->d_inode->i_mutex);
2248 audit_inode(pathname, path->dentry);
2249
2250 error = -EEXIST;
2251 if (open_flag & O_EXCL)
2252 goto exit_dput;
2253
2254 error = follow_managed(path, nd->flags);
2255 if (error < 0)
2256 goto exit_dput;
2257
2258 error = -ENOENT;
2259 if (!path->dentry->d_inode)
2260 goto exit_dput;
2261
2262 if (path->dentry->d_inode->i_op->follow_link)
2263 return NULL;
2264
2265 path_to_nameidata(path, nd);
2266 nd->inode = path->dentry->d_inode;
2267 error = -EISDIR;
2268 if (S_ISDIR(nd->inode->i_mode))
2269 goto exit;
2270 ok:
2271 if (!S_ISREG(nd->inode->i_mode))
2272 will_truncate = 0;
2273
2274 if (will_truncate) {
2275 error = mnt_want_write(nd->path.mnt);
2276 if (error)
2277 goto exit;
2278 want_write = 1;
2279 }
2280 common:
2281 error = may_open(&nd->path, acc_mode, open_flag);
2282 if (error)
2283 goto exit;
2284 filp = nameidata_to_filp(nd);
2285 if (!IS_ERR(filp)) {
2286 error = ima_file_check(filp, op->acc_mode);
2287 if (error) {
2288 fput(filp);
2289 filp = ERR_PTR(error);
2290 }
2291 }
2292 if (!IS_ERR(filp)) {
2293 if (will_truncate) {
2294 error = handle_truncate(filp);
2295 if (error) {
2296 fput(filp);
2297 filp = ERR_PTR(error);
2298 }
2299 }
2300 }
2301 out:
2302 if (want_write)
2303 mnt_drop_write(nd->path.mnt);
2304 path_put(&nd->path);
2305 return filp;
2306
2307 exit_mutex_unlock:
2308 mutex_unlock(&dir->d_inode->i_mutex);
2309 exit_dput:
2310 path_put_conditional(path, nd);
2311 exit:
2312 filp = ERR_PTR(error);
2313 goto out;
2314 }
2315
path_openat(int dfd,const char * pathname,struct nameidata * nd,const struct open_flags * op,int flags)2316 static struct file *path_openat(int dfd, const char *pathname,
2317 struct nameidata *nd, const struct open_flags *op, int flags)
2318 {
2319 struct file *base = NULL;
2320 struct file *filp;
2321 struct path path;
2322 int error;
2323
2324 filp = get_empty_filp();
2325 if (!filp)
2326 return ERR_PTR(-ENFILE);
2327
2328 filp->f_flags = op->open_flag;
2329 nd->intent.open.file = filp;
2330 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2331 nd->intent.open.create_mode = op->mode;
2332
2333 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2334 if (unlikely(error))
2335 goto out_filp;
2336
2337 current->total_link_count = 0;
2338 error = link_path_walk(pathname, nd);
2339 if (unlikely(error))
2340 goto out_filp;
2341
2342 filp = do_last(nd, &path, op, pathname);
2343 while (unlikely(!filp)) { /* trailing symlink */
2344 struct path link = path;
2345 void *cookie;
2346 if (!(nd->flags & LOOKUP_FOLLOW)) {
2347 path_put_conditional(&path, nd);
2348 path_put(&nd->path);
2349 filp = ERR_PTR(-ELOOP);
2350 break;
2351 }
2352 nd->flags |= LOOKUP_PARENT;
2353 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2354 error = follow_link(&link, nd, &cookie);
2355 if (unlikely(error))
2356 filp = ERR_PTR(error);
2357 else
2358 filp = do_last(nd, &path, op, pathname);
2359 put_link(nd, &link, cookie);
2360 }
2361 out:
2362 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2363 path_put(&nd->root);
2364 if (base)
2365 fput(base);
2366 release_open_intent(nd);
2367 return filp;
2368
2369 out_filp:
2370 filp = ERR_PTR(error);
2371 goto out;
2372 }
2373
do_filp_open(int dfd,const char * pathname,const struct open_flags * op,int flags)2374 struct file *do_filp_open(int dfd, const char *pathname,
2375 const struct open_flags *op, int flags)
2376 {
2377 struct nameidata nd;
2378 struct file *filp;
2379
2380 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2381 if (unlikely(filp == ERR_PTR(-ECHILD)))
2382 filp = path_openat(dfd, pathname, &nd, op, flags);
2383 if (unlikely(filp == ERR_PTR(-ESTALE)))
2384 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2385 return filp;
2386 }
2387
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op,int flags)2388 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2389 const char *name, const struct open_flags *op, int flags)
2390 {
2391 struct nameidata nd;
2392 struct file *file;
2393
2394 nd.root.mnt = mnt;
2395 nd.root.dentry = dentry;
2396
2397 flags |= LOOKUP_ROOT;
2398
2399 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2400 return ERR_PTR(-ELOOP);
2401
2402 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2403 if (unlikely(file == ERR_PTR(-ECHILD)))
2404 file = path_openat(-1, name, &nd, op, flags);
2405 if (unlikely(file == ERR_PTR(-ESTALE)))
2406 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2407 return file;
2408 }
2409
2410 /**
2411 * lookup_create - lookup a dentry, creating it if it doesn't exist
2412 * @nd: nameidata info
2413 * @is_dir: directory flag
2414 *
2415 * Simple function to lookup and return a dentry and create it
2416 * if it doesn't exist. Is SMP-safe.
2417 *
2418 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2419 */
lookup_create(struct nameidata * nd,int is_dir)2420 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2421 {
2422 struct dentry *dentry = ERR_PTR(-EEXIST);
2423
2424 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2425 /*
2426 * Yucky last component or no last component at all?
2427 * (foo/., foo/.., /////)
2428 */
2429 if (nd->last_type != LAST_NORM)
2430 goto fail;
2431 nd->flags &= ~LOOKUP_PARENT;
2432 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2433 nd->intent.open.flags = O_EXCL;
2434
2435 /*
2436 * Do the final lookup.
2437 */
2438 dentry = lookup_hash(nd);
2439 if (IS_ERR(dentry))
2440 goto fail;
2441
2442 if (dentry->d_inode)
2443 goto eexist;
2444 /*
2445 * Special case - lookup gave negative, but... we had foo/bar/
2446 * From the vfs_mknod() POV we just have a negative dentry -
2447 * all is fine. Let's be bastards - you had / on the end, you've
2448 * been asking for (non-existent) directory. -ENOENT for you.
2449 */
2450 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2451 dput(dentry);
2452 dentry = ERR_PTR(-ENOENT);
2453 }
2454 return dentry;
2455 eexist:
2456 dput(dentry);
2457 dentry = ERR_PTR(-EEXIST);
2458 fail:
2459 return dentry;
2460 }
2461 EXPORT_SYMBOL_GPL(lookup_create);
2462
vfs_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t dev)2463 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2464 {
2465 int error = may_create(dir, dentry);
2466
2467 if (error)
2468 return error;
2469
2470 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2471 !ns_capable(inode_userns(dir), CAP_MKNOD))
2472 return -EPERM;
2473
2474 if (!dir->i_op->mknod)
2475 return -EPERM;
2476
2477 error = devcgroup_inode_mknod(mode, dev);
2478 if (error)
2479 return error;
2480
2481 error = security_inode_mknod(dir, dentry, mode, dev);
2482 if (error)
2483 return error;
2484
2485 error = dir->i_op->mknod(dir, dentry, mode, dev);
2486 if (!error)
2487 fsnotify_create(dir, dentry);
2488 return error;
2489 }
2490
may_mknod(mode_t mode)2491 static int may_mknod(mode_t mode)
2492 {
2493 switch (mode & S_IFMT) {
2494 case S_IFREG:
2495 case S_IFCHR:
2496 case S_IFBLK:
2497 case S_IFIFO:
2498 case S_IFSOCK:
2499 case 0: /* zero mode translates to S_IFREG */
2500 return 0;
2501 case S_IFDIR:
2502 return -EPERM;
2503 default:
2504 return -EINVAL;
2505 }
2506 }
2507
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,int,mode,unsigned,dev)2508 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2509 unsigned, dev)
2510 {
2511 int error;
2512 char *tmp;
2513 struct dentry *dentry;
2514 struct nameidata nd;
2515
2516 if (S_ISDIR(mode))
2517 return -EPERM;
2518
2519 error = user_path_parent(dfd, filename, &nd, &tmp);
2520 if (error)
2521 return error;
2522
2523 dentry = lookup_create(&nd, 0);
2524 if (IS_ERR(dentry)) {
2525 error = PTR_ERR(dentry);
2526 goto out_unlock;
2527 }
2528 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2529 mode &= ~current_umask();
2530 error = may_mknod(mode);
2531 if (error)
2532 goto out_dput;
2533 error = mnt_want_write(nd.path.mnt);
2534 if (error)
2535 goto out_dput;
2536 error = security_path_mknod(&nd.path, dentry, mode, dev);
2537 if (error)
2538 goto out_drop_write;
2539 switch (mode & S_IFMT) {
2540 case 0: case S_IFREG:
2541 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2542 break;
2543 case S_IFCHR: case S_IFBLK:
2544 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2545 new_decode_dev(dev));
2546 break;
2547 case S_IFIFO: case S_IFSOCK:
2548 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2549 break;
2550 }
2551 out_drop_write:
2552 mnt_drop_write(nd.path.mnt);
2553 out_dput:
2554 dput(dentry);
2555 out_unlock:
2556 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2557 path_put(&nd.path);
2558 putname(tmp);
2559
2560 return error;
2561 }
2562
SYSCALL_DEFINE3(mknod,const char __user *,filename,int,mode,unsigned,dev)2563 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2564 {
2565 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2566 }
2567
vfs_mkdir(struct inode * dir,struct dentry * dentry,int mode)2568 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2569 {
2570 int error = may_create(dir, dentry);
2571
2572 if (error)
2573 return error;
2574
2575 if (!dir->i_op->mkdir)
2576 return -EPERM;
2577
2578 mode &= (S_IRWXUGO|S_ISVTX);
2579 error = security_inode_mkdir(dir, dentry, mode);
2580 if (error)
2581 return error;
2582
2583 error = dir->i_op->mkdir(dir, dentry, mode);
2584 if (!error)
2585 fsnotify_mkdir(dir, dentry);
2586 return error;
2587 }
2588
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,int,mode)2589 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2590 {
2591 int error = 0;
2592 char * tmp;
2593 struct dentry *dentry;
2594 struct nameidata nd;
2595
2596 error = user_path_parent(dfd, pathname, &nd, &tmp);
2597 if (error)
2598 goto out_err;
2599
2600 dentry = lookup_create(&nd, 1);
2601 error = PTR_ERR(dentry);
2602 if (IS_ERR(dentry))
2603 goto out_unlock;
2604
2605 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2606 mode &= ~current_umask();
2607 error = mnt_want_write(nd.path.mnt);
2608 if (error)
2609 goto out_dput;
2610 error = security_path_mkdir(&nd.path, dentry, mode);
2611 if (error)
2612 goto out_drop_write;
2613 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2614 out_drop_write:
2615 mnt_drop_write(nd.path.mnt);
2616 out_dput:
2617 dput(dentry);
2618 out_unlock:
2619 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2620 path_put(&nd.path);
2621 putname(tmp);
2622 out_err:
2623 return error;
2624 }
2625
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,int,mode)2626 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2627 {
2628 return sys_mkdirat(AT_FDCWD, pathname, mode);
2629 }
2630
2631 /*
2632 * We try to drop the dentry early: we should have
2633 * a usage count of 2 if we're the only user of this
2634 * dentry, and if that is true (possibly after pruning
2635 * the dcache), then we drop the dentry now.
2636 *
2637 * A low-level filesystem can, if it choses, legally
2638 * do a
2639 *
2640 * if (!d_unhashed(dentry))
2641 * return -EBUSY;
2642 *
2643 * if it cannot handle the case of removing a directory
2644 * that is still in use by something else..
2645 */
dentry_unhash(struct dentry * dentry)2646 void dentry_unhash(struct dentry *dentry)
2647 {
2648 dget(dentry);
2649 shrink_dcache_parent(dentry);
2650 spin_lock(&dentry->d_lock);
2651 if (dentry->d_count == 2)
2652 __d_drop(dentry);
2653 spin_unlock(&dentry->d_lock);
2654 }
2655
vfs_rmdir(struct inode * dir,struct dentry * dentry)2656 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2657 {
2658 int error = may_delete(dir, dentry, 1);
2659
2660 if (error)
2661 return error;
2662
2663 if (!dir->i_op->rmdir)
2664 return -EPERM;
2665
2666 mutex_lock(&dentry->d_inode->i_mutex);
2667 dentry_unhash(dentry);
2668 if (d_mountpoint(dentry))
2669 error = -EBUSY;
2670 else {
2671 error = security_inode_rmdir(dir, dentry);
2672 if (!error) {
2673 error = dir->i_op->rmdir(dir, dentry);
2674 if (!error) {
2675 dentry->d_inode->i_flags |= S_DEAD;
2676 dont_mount(dentry);
2677 }
2678 }
2679 }
2680 mutex_unlock(&dentry->d_inode->i_mutex);
2681 if (!error) {
2682 d_delete(dentry);
2683 }
2684 dput(dentry);
2685
2686 return error;
2687 }
2688
do_rmdir(int dfd,const char __user * pathname)2689 static long do_rmdir(int dfd, const char __user *pathname)
2690 {
2691 int error = 0;
2692 char * name;
2693 struct dentry *dentry;
2694 struct nameidata nd;
2695
2696 error = user_path_parent(dfd, pathname, &nd, &name);
2697 if (error)
2698 return error;
2699
2700 switch(nd.last_type) {
2701 case LAST_DOTDOT:
2702 error = -ENOTEMPTY;
2703 goto exit1;
2704 case LAST_DOT:
2705 error = -EINVAL;
2706 goto exit1;
2707 case LAST_ROOT:
2708 error = -EBUSY;
2709 goto exit1;
2710 }
2711
2712 nd.flags &= ~LOOKUP_PARENT;
2713
2714 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2715 dentry = lookup_hash(&nd);
2716 error = PTR_ERR(dentry);
2717 if (IS_ERR(dentry))
2718 goto exit2;
2719 error = mnt_want_write(nd.path.mnt);
2720 if (error)
2721 goto exit3;
2722 error = security_path_rmdir(&nd.path, dentry);
2723 if (error)
2724 goto exit4;
2725 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2726 exit4:
2727 mnt_drop_write(nd.path.mnt);
2728 exit3:
2729 dput(dentry);
2730 exit2:
2731 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2732 exit1:
2733 path_put(&nd.path);
2734 putname(name);
2735 return error;
2736 }
2737
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)2738 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2739 {
2740 return do_rmdir(AT_FDCWD, pathname);
2741 }
2742
vfs_unlink(struct inode * dir,struct dentry * dentry)2743 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2744 {
2745 int error = may_delete(dir, dentry, 0);
2746
2747 if (error)
2748 return error;
2749
2750 if (!dir->i_op->unlink)
2751 return -EPERM;
2752
2753 mutex_lock(&dentry->d_inode->i_mutex);
2754 if (d_mountpoint(dentry))
2755 error = -EBUSY;
2756 else {
2757 error = security_inode_unlink(dir, dentry);
2758 if (!error) {
2759 error = dir->i_op->unlink(dir, dentry);
2760 if (!error)
2761 dont_mount(dentry);
2762 }
2763 }
2764 mutex_unlock(&dentry->d_inode->i_mutex);
2765
2766 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2767 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2768 fsnotify_link_count(dentry->d_inode);
2769 d_delete(dentry);
2770 }
2771
2772 return error;
2773 }
2774
2775 /*
2776 * Make sure that the actual truncation of the file will occur outside its
2777 * directory's i_mutex. Truncate can take a long time if there is a lot of
2778 * writeout happening, and we don't want to prevent access to the directory
2779 * while waiting on the I/O.
2780 */
do_unlinkat(int dfd,const char __user * pathname)2781 static long do_unlinkat(int dfd, const char __user *pathname)
2782 {
2783 int error;
2784 char *name;
2785 struct dentry *dentry;
2786 struct nameidata nd;
2787 struct inode *inode = NULL;
2788
2789 error = user_path_parent(dfd, pathname, &nd, &name);
2790 if (error)
2791 return error;
2792
2793 error = -EISDIR;
2794 if (nd.last_type != LAST_NORM)
2795 goto exit1;
2796
2797 nd.flags &= ~LOOKUP_PARENT;
2798
2799 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2800 dentry = lookup_hash(&nd);
2801 error = PTR_ERR(dentry);
2802 if (!IS_ERR(dentry)) {
2803 /* Why not before? Because we want correct error value */
2804 if (nd.last.name[nd.last.len])
2805 goto slashes;
2806 inode = dentry->d_inode;
2807 if (inode)
2808 ihold(inode);
2809 error = mnt_want_write(nd.path.mnt);
2810 if (error)
2811 goto exit2;
2812 error = security_path_unlink(&nd.path, dentry);
2813 if (error)
2814 goto exit3;
2815 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2816 exit3:
2817 mnt_drop_write(nd.path.mnt);
2818 exit2:
2819 dput(dentry);
2820 }
2821 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2822 if (inode)
2823 iput(inode); /* truncate the inode here */
2824 exit1:
2825 path_put(&nd.path);
2826 putname(name);
2827 return error;
2828
2829 slashes:
2830 error = !dentry->d_inode ? -ENOENT :
2831 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2832 goto exit2;
2833 }
2834
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)2835 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2836 {
2837 if ((flag & ~AT_REMOVEDIR) != 0)
2838 return -EINVAL;
2839
2840 if (flag & AT_REMOVEDIR)
2841 return do_rmdir(dfd, pathname);
2842
2843 return do_unlinkat(dfd, pathname);
2844 }
2845
SYSCALL_DEFINE1(unlink,const char __user *,pathname)2846 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2847 {
2848 return do_unlinkat(AT_FDCWD, pathname);
2849 }
2850
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)2851 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2852 {
2853 int error = may_create(dir, dentry);
2854
2855 if (error)
2856 return error;
2857
2858 if (!dir->i_op->symlink)
2859 return -EPERM;
2860
2861 error = security_inode_symlink(dir, dentry, oldname);
2862 if (error)
2863 return error;
2864
2865 error = dir->i_op->symlink(dir, dentry, oldname);
2866 if (!error)
2867 fsnotify_create(dir, dentry);
2868 return error;
2869 }
2870
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)2871 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2872 int, newdfd, const char __user *, newname)
2873 {
2874 int error;
2875 char *from;
2876 char *to;
2877 struct dentry *dentry;
2878 struct nameidata nd;
2879
2880 from = getname(oldname);
2881 if (IS_ERR(from))
2882 return PTR_ERR(from);
2883
2884 error = user_path_parent(newdfd, newname, &nd, &to);
2885 if (error)
2886 goto out_putname;
2887
2888 dentry = lookup_create(&nd, 0);
2889 error = PTR_ERR(dentry);
2890 if (IS_ERR(dentry))
2891 goto out_unlock;
2892
2893 error = mnt_want_write(nd.path.mnt);
2894 if (error)
2895 goto out_dput;
2896 error = security_path_symlink(&nd.path, dentry, from);
2897 if (error)
2898 goto out_drop_write;
2899 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2900 out_drop_write:
2901 mnt_drop_write(nd.path.mnt);
2902 out_dput:
2903 dput(dentry);
2904 out_unlock:
2905 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2906 path_put(&nd.path);
2907 putname(to);
2908 out_putname:
2909 putname(from);
2910 return error;
2911 }
2912
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)2913 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2914 {
2915 return sys_symlinkat(oldname, AT_FDCWD, newname);
2916 }
2917
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2918 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2919 {
2920 struct inode *inode = old_dentry->d_inode;
2921 int error;
2922
2923 if (!inode)
2924 return -ENOENT;
2925
2926 error = may_create(dir, new_dentry);
2927 if (error)
2928 return error;
2929
2930 if (dir->i_sb != inode->i_sb)
2931 return -EXDEV;
2932
2933 /*
2934 * A link to an append-only or immutable file cannot be created.
2935 */
2936 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2937 return -EPERM;
2938 if (!dir->i_op->link)
2939 return -EPERM;
2940 if (S_ISDIR(inode->i_mode))
2941 return -EPERM;
2942
2943 error = security_inode_link(old_dentry, dir, new_dentry);
2944 if (error)
2945 return error;
2946
2947 mutex_lock(&inode->i_mutex);
2948 /* Make sure we don't allow creating hardlink to an unlinked file */
2949 if (inode->i_nlink == 0)
2950 error = -ENOENT;
2951 else
2952 error = dir->i_op->link(old_dentry, dir, new_dentry);
2953 mutex_unlock(&inode->i_mutex);
2954 if (!error)
2955 fsnotify_link(dir, inode, new_dentry);
2956 return error;
2957 }
2958
2959 /*
2960 * Hardlinks are often used in delicate situations. We avoid
2961 * security-related surprises by not following symlinks on the
2962 * newname. --KAB
2963 *
2964 * We don't follow them on the oldname either to be compatible
2965 * with linux 2.0, and to avoid hard-linking to directories
2966 * and other special files. --ADM
2967 */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)2968 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2969 int, newdfd, const char __user *, newname, int, flags)
2970 {
2971 struct dentry *new_dentry;
2972 struct nameidata nd;
2973 struct path old_path;
2974 int how = 0;
2975 int error;
2976 char *to;
2977
2978 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2979 return -EINVAL;
2980 /*
2981 * To use null names we require CAP_DAC_READ_SEARCH
2982 * This ensures that not everyone will be able to create
2983 * handlink using the passed filedescriptor.
2984 */
2985 if (flags & AT_EMPTY_PATH) {
2986 if (!capable(CAP_DAC_READ_SEARCH))
2987 return -ENOENT;
2988 how = LOOKUP_EMPTY;
2989 }
2990
2991 if (flags & AT_SYMLINK_FOLLOW)
2992 how |= LOOKUP_FOLLOW;
2993
2994 error = user_path_at(olddfd, oldname, how, &old_path);
2995 if (error)
2996 return error;
2997
2998 error = user_path_parent(newdfd, newname, &nd, &to);
2999 if (error)
3000 goto out;
3001 error = -EXDEV;
3002 if (old_path.mnt != nd.path.mnt)
3003 goto out_release;
3004 new_dentry = lookup_create(&nd, 0);
3005 error = PTR_ERR(new_dentry);
3006 if (IS_ERR(new_dentry))
3007 goto out_unlock;
3008 error = mnt_want_write(nd.path.mnt);
3009 if (error)
3010 goto out_dput;
3011 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3012 if (error)
3013 goto out_drop_write;
3014 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3015 out_drop_write:
3016 mnt_drop_write(nd.path.mnt);
3017 out_dput:
3018 dput(new_dentry);
3019 out_unlock:
3020 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3021 out_release:
3022 path_put(&nd.path);
3023 putname(to);
3024 out:
3025 path_put(&old_path);
3026
3027 return error;
3028 }
3029
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)3030 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3031 {
3032 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3033 }
3034
3035 /*
3036 * The worst of all namespace operations - renaming directory. "Perverted"
3037 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3038 * Problems:
3039 * a) we can get into loop creation. Check is done in is_subdir().
3040 * b) race potential - two innocent renames can create a loop together.
3041 * That's where 4.4 screws up. Current fix: serialization on
3042 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3043 * story.
3044 * c) we have to lock _three_ objects - parents and victim (if it exists).
3045 * And that - after we got ->i_mutex on parents (until then we don't know
3046 * whether the target exists). Solution: try to be smart with locking
3047 * order for inodes. We rely on the fact that tree topology may change
3048 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3049 * move will be locked. Thus we can rank directories by the tree
3050 * (ancestors first) and rank all non-directories after them.
3051 * That works since everybody except rename does "lock parent, lookup,
3052 * lock child" and rename is under ->s_vfs_rename_mutex.
3053 * HOWEVER, it relies on the assumption that any object with ->lookup()
3054 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3055 * we'd better make sure that there's no link(2) for them.
3056 * d) some filesystems don't support opened-but-unlinked directories,
3057 * either because of layout or because they are not ready to deal with
3058 * all cases correctly. The latter will be fixed (taking this sort of
3059 * stuff into VFS), but the former is not going away. Solution: the same
3060 * trick as in rmdir().
3061 * e) conversion from fhandle to dentry may come in the wrong moment - when
3062 * we are removing the target. Solution: we will have to grab ->i_mutex
3063 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3064 * ->i_mutex on parents, which works but leads to some truly excessive
3065 * locking].
3066 */
vfs_rename_dir(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3067 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3068 struct inode *new_dir, struct dentry *new_dentry)
3069 {
3070 int error = 0;
3071 struct inode *target;
3072
3073 /*
3074 * If we are going to change the parent - check write permissions,
3075 * we'll need to flip '..'.
3076 */
3077 if (new_dir != old_dir) {
3078 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3079 if (error)
3080 return error;
3081 }
3082
3083 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3084 if (error)
3085 return error;
3086
3087 target = new_dentry->d_inode;
3088 if (target)
3089 mutex_lock(&target->i_mutex);
3090 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3091 error = -EBUSY;
3092 else {
3093 if (target)
3094 dentry_unhash(new_dentry);
3095 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3096 }
3097 if (target) {
3098 if (!error) {
3099 target->i_flags |= S_DEAD;
3100 dont_mount(new_dentry);
3101 }
3102 mutex_unlock(&target->i_mutex);
3103 if (d_unhashed(new_dentry))
3104 d_rehash(new_dentry);
3105 dput(new_dentry);
3106 }
3107 if (!error)
3108 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3109 d_move(old_dentry,new_dentry);
3110 return error;
3111 }
3112
vfs_rename_other(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3113 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3114 struct inode *new_dir, struct dentry *new_dentry)
3115 {
3116 struct inode *target;
3117 int error;
3118
3119 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3120 if (error)
3121 return error;
3122
3123 dget(new_dentry);
3124 target = new_dentry->d_inode;
3125 if (target)
3126 mutex_lock(&target->i_mutex);
3127 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3128 error = -EBUSY;
3129 else
3130 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3131 if (!error) {
3132 if (target)
3133 dont_mount(new_dentry);
3134 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3135 d_move(old_dentry, new_dentry);
3136 }
3137 if (target)
3138 mutex_unlock(&target->i_mutex);
3139 dput(new_dentry);
3140 return error;
3141 }
3142
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3143 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3144 struct inode *new_dir, struct dentry *new_dentry)
3145 {
3146 int error;
3147 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3148 const unsigned char *old_name;
3149
3150 if (old_dentry->d_inode == new_dentry->d_inode)
3151 return 0;
3152
3153 error = may_delete(old_dir, old_dentry, is_dir);
3154 if (error)
3155 return error;
3156
3157 if (!new_dentry->d_inode)
3158 error = may_create(new_dir, new_dentry);
3159 else
3160 error = may_delete(new_dir, new_dentry, is_dir);
3161 if (error)
3162 return error;
3163
3164 if (!old_dir->i_op->rename)
3165 return -EPERM;
3166
3167 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3168
3169 if (is_dir)
3170 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3171 else
3172 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3173 if (!error)
3174 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3175 new_dentry->d_inode, old_dentry);
3176 fsnotify_oldname_free(old_name);
3177
3178 return error;
3179 }
3180
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)3181 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3182 int, newdfd, const char __user *, newname)
3183 {
3184 struct dentry *old_dir, *new_dir;
3185 struct dentry *old_dentry, *new_dentry;
3186 struct dentry *trap;
3187 struct nameidata oldnd, newnd;
3188 char *from;
3189 char *to;
3190 int error;
3191
3192 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3193 if (error)
3194 goto exit;
3195
3196 error = user_path_parent(newdfd, newname, &newnd, &to);
3197 if (error)
3198 goto exit1;
3199
3200 error = -EXDEV;
3201 if (oldnd.path.mnt != newnd.path.mnt)
3202 goto exit2;
3203
3204 old_dir = oldnd.path.dentry;
3205 error = -EBUSY;
3206 if (oldnd.last_type != LAST_NORM)
3207 goto exit2;
3208
3209 new_dir = newnd.path.dentry;
3210 if (newnd.last_type != LAST_NORM)
3211 goto exit2;
3212
3213 oldnd.flags &= ~LOOKUP_PARENT;
3214 newnd.flags &= ~LOOKUP_PARENT;
3215 newnd.flags |= LOOKUP_RENAME_TARGET;
3216
3217 trap = lock_rename(new_dir, old_dir);
3218
3219 old_dentry = lookup_hash(&oldnd);
3220 error = PTR_ERR(old_dentry);
3221 if (IS_ERR(old_dentry))
3222 goto exit3;
3223 /* source must exist */
3224 error = -ENOENT;
3225 if (!old_dentry->d_inode)
3226 goto exit4;
3227 /* unless the source is a directory trailing slashes give -ENOTDIR */
3228 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3229 error = -ENOTDIR;
3230 if (oldnd.last.name[oldnd.last.len])
3231 goto exit4;
3232 if (newnd.last.name[newnd.last.len])
3233 goto exit4;
3234 }
3235 /* source should not be ancestor of target */
3236 error = -EINVAL;
3237 if (old_dentry == trap)
3238 goto exit4;
3239 new_dentry = lookup_hash(&newnd);
3240 error = PTR_ERR(new_dentry);
3241 if (IS_ERR(new_dentry))
3242 goto exit4;
3243 /* target should not be an ancestor of source */
3244 error = -ENOTEMPTY;
3245 if (new_dentry == trap)
3246 goto exit5;
3247
3248 error = mnt_want_write(oldnd.path.mnt);
3249 if (error)
3250 goto exit5;
3251 error = security_path_rename(&oldnd.path, old_dentry,
3252 &newnd.path, new_dentry);
3253 if (error)
3254 goto exit6;
3255 error = vfs_rename(old_dir->d_inode, old_dentry,
3256 new_dir->d_inode, new_dentry);
3257 exit6:
3258 mnt_drop_write(oldnd.path.mnt);
3259 exit5:
3260 dput(new_dentry);
3261 exit4:
3262 dput(old_dentry);
3263 exit3:
3264 unlock_rename(new_dir, old_dir);
3265 exit2:
3266 path_put(&newnd.path);
3267 putname(to);
3268 exit1:
3269 path_put(&oldnd.path);
3270 putname(from);
3271 exit:
3272 return error;
3273 }
3274
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)3275 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3276 {
3277 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3278 }
3279
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen,const char * link)3280 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3281 {
3282 int len;
3283
3284 len = PTR_ERR(link);
3285 if (IS_ERR(link))
3286 goto out;
3287
3288 len = strlen(link);
3289 if (len > (unsigned) buflen)
3290 len = buflen;
3291 if (copy_to_user(buffer, link, len))
3292 len = -EFAULT;
3293 out:
3294 return len;
3295 }
3296
3297 /*
3298 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3299 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3300 * using) it for any given inode is up to filesystem.
3301 */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)3302 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3303 {
3304 struct nameidata nd;
3305 void *cookie;
3306 int res;
3307
3308 nd.depth = 0;
3309 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3310 if (IS_ERR(cookie))
3311 return PTR_ERR(cookie);
3312
3313 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3314 if (dentry->d_inode->i_op->put_link)
3315 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3316 return res;
3317 }
3318
vfs_follow_link(struct nameidata * nd,const char * link)3319 int vfs_follow_link(struct nameidata *nd, const char *link)
3320 {
3321 return __vfs_follow_link(nd, link);
3322 }
3323
3324 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)3325 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3326 {
3327 char *kaddr;
3328 struct page *page;
3329 struct address_space *mapping = dentry->d_inode->i_mapping;
3330 page = read_mapping_page(mapping, 0, NULL);
3331 if (IS_ERR(page))
3332 return (char*)page;
3333 *ppage = page;
3334 kaddr = kmap(page);
3335 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3336 return kaddr;
3337 }
3338
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)3339 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3340 {
3341 struct page *page = NULL;
3342 char *s = page_getlink(dentry, &page);
3343 int res = vfs_readlink(dentry,buffer,buflen,s);
3344 if (page) {
3345 kunmap(page);
3346 page_cache_release(page);
3347 }
3348 return res;
3349 }
3350
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)3351 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3352 {
3353 struct page *page = NULL;
3354 nd_set_link(nd, page_getlink(dentry, &page));
3355 return page;
3356 }
3357
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)3358 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3359 {
3360 struct page *page = cookie;
3361
3362 if (page) {
3363 kunmap(page);
3364 page_cache_release(page);
3365 }
3366 }
3367
3368 /*
3369 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3370 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)3371 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3372 {
3373 struct address_space *mapping = inode->i_mapping;
3374 struct page *page;
3375 void *fsdata;
3376 int err;
3377 char *kaddr;
3378 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3379 if (nofs)
3380 flags |= AOP_FLAG_NOFS;
3381
3382 retry:
3383 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3384 flags, &page, &fsdata);
3385 if (err)
3386 goto fail;
3387
3388 kaddr = kmap_atomic(page, KM_USER0);
3389 memcpy(kaddr, symname, len-1);
3390 kunmap_atomic(kaddr, KM_USER0);
3391
3392 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3393 page, fsdata);
3394 if (err < 0)
3395 goto fail;
3396 if (err < len-1)
3397 goto retry;
3398
3399 mark_inode_dirty(inode);
3400 return 0;
3401 fail:
3402 return err;
3403 }
3404
page_symlink(struct inode * inode,const char * symname,int len)3405 int page_symlink(struct inode *inode, const char *symname, int len)
3406 {
3407 return __page_symlink(inode, symname, len,
3408 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3409 }
3410
3411 const struct inode_operations page_symlink_inode_operations = {
3412 .readlink = generic_readlink,
3413 .follow_link = page_follow_link_light,
3414 .put_link = page_put_link,
3415 };
3416
3417 EXPORT_SYMBOL(user_path_at);
3418 EXPORT_SYMBOL(follow_down_one);
3419 EXPORT_SYMBOL(follow_down);
3420 EXPORT_SYMBOL(follow_up);
3421 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3422 EXPORT_SYMBOL(getname);
3423 EXPORT_SYMBOL(lock_rename);
3424 EXPORT_SYMBOL(lookup_one_len);
3425 EXPORT_SYMBOL(page_follow_link_light);
3426 EXPORT_SYMBOL(page_put_link);
3427 EXPORT_SYMBOL(page_readlink);
3428 EXPORT_SYMBOL(__page_symlink);
3429 EXPORT_SYMBOL(page_symlink);
3430 EXPORT_SYMBOL(page_symlink_inode_operations);
3431 EXPORT_SYMBOL(kern_path_parent);
3432 EXPORT_SYMBOL(kern_path);
3433 EXPORT_SYMBOL(vfs_path_lookup);
3434 EXPORT_SYMBOL(inode_permission);
3435 EXPORT_SYMBOL(file_permission);
3436 EXPORT_SYMBOL(unlock_rename);
3437 EXPORT_SYMBOL(vfs_create);
3438 EXPORT_SYMBOL(vfs_follow_link);
3439 EXPORT_SYMBOL(vfs_link);
3440 EXPORT_SYMBOL(vfs_mkdir);
3441 EXPORT_SYMBOL(vfs_mknod);
3442 EXPORT_SYMBOL(generic_permission);
3443 EXPORT_SYMBOL(vfs_readlink);
3444 EXPORT_SYMBOL(vfs_rename);
3445 EXPORT_SYMBOL(vfs_rmdir);
3446 EXPORT_SYMBOL(vfs_symlink);
3447 EXPORT_SYMBOL(vfs_unlink);
3448 EXPORT_SYMBOL(dentry_unhash);
3449 EXPORT_SYMBOL(generic_readlink);
3450