1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
4 * Author: Alex Williamson <alex.williamson@redhat.com>
5 *
6 * Derived from original vfio:
7 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
8 * Author: Tom Lyon, pugs@cisco.com
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/aperture.h>
14 #include <linux/device.h>
15 #include <linux/eventfd.h>
16 #include <linux/file.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/pci.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/uaccess.h>
27 #include <linux/vgaarb.h>
28 #include <linux/nospec.h>
29 #include <linux/sched/mm.h>
30 #include <linux/iommufd.h>
31 #if IS_ENABLED(CONFIG_EEH)
32 #include <asm/eeh.h>
33 #endif
34
35 #include "vfio_pci_priv.h"
36
37 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
38 #define DRIVER_DESC "core driver for VFIO based PCI devices"
39
40 static bool nointxmask;
41 static bool disable_vga;
42 static bool disable_idle_d3;
43
44 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */
45 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
46 static LIST_HEAD(vfio_pci_sriov_pfs);
47
48 struct vfio_pci_dummy_resource {
49 struct resource resource;
50 int index;
51 struct list_head res_next;
52 };
53
54 struct vfio_pci_vf_token {
55 struct mutex lock;
56 uuid_t uuid;
57 int users;
58 };
59
60 struct vfio_pci_mmap_vma {
61 struct vm_area_struct *vma;
62 struct list_head vma_next;
63 };
64
vfio_vga_disabled(void)65 static inline bool vfio_vga_disabled(void)
66 {
67 #ifdef CONFIG_VFIO_PCI_VGA
68 return disable_vga;
69 #else
70 return true;
71 #endif
72 }
73
74 /*
75 * Our VGA arbiter participation is limited since we don't know anything
76 * about the device itself. However, if the device is the only VGA device
77 * downstream of a bridge and VFIO VGA support is disabled, then we can
78 * safely return legacy VGA IO and memory as not decoded since the user
79 * has no way to get to it and routing can be disabled externally at the
80 * bridge.
81 */
vfio_pci_set_decode(struct pci_dev * pdev,bool single_vga)82 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
83 {
84 struct pci_dev *tmp = NULL;
85 unsigned char max_busnr;
86 unsigned int decodes;
87
88 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
89 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
90 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
91
92 max_busnr = pci_bus_max_busnr(pdev->bus);
93 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
94
95 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
96 if (tmp == pdev ||
97 pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
98 pci_is_root_bus(tmp->bus))
99 continue;
100
101 if (tmp->bus->number >= pdev->bus->number &&
102 tmp->bus->number <= max_busnr) {
103 pci_dev_put(tmp);
104 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
105 break;
106 }
107 }
108
109 return decodes;
110 }
111
vfio_pci_probe_mmaps(struct vfio_pci_core_device * vdev)112 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
113 {
114 struct resource *res;
115 int i;
116 struct vfio_pci_dummy_resource *dummy_res;
117
118 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
119 int bar = i + PCI_STD_RESOURCES;
120
121 res = &vdev->pdev->resource[bar];
122
123 if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
124 goto no_mmap;
125
126 if (!(res->flags & IORESOURCE_MEM))
127 goto no_mmap;
128
129 /*
130 * The PCI core shouldn't set up a resource with a
131 * type but zero size. But there may be bugs that
132 * cause us to do that.
133 */
134 if (!resource_size(res))
135 goto no_mmap;
136
137 if (resource_size(res) >= PAGE_SIZE) {
138 vdev->bar_mmap_supported[bar] = true;
139 continue;
140 }
141
142 if (!(res->start & ~PAGE_MASK)) {
143 /*
144 * Add a dummy resource to reserve the remainder
145 * of the exclusive page in case that hot-add
146 * device's bar is assigned into it.
147 */
148 dummy_res =
149 kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
150 if (dummy_res == NULL)
151 goto no_mmap;
152
153 dummy_res->resource.name = "vfio sub-page reserved";
154 dummy_res->resource.start = res->end + 1;
155 dummy_res->resource.end = res->start + PAGE_SIZE - 1;
156 dummy_res->resource.flags = res->flags;
157 if (request_resource(res->parent,
158 &dummy_res->resource)) {
159 kfree(dummy_res);
160 goto no_mmap;
161 }
162 dummy_res->index = bar;
163 list_add(&dummy_res->res_next,
164 &vdev->dummy_resources_list);
165 vdev->bar_mmap_supported[bar] = true;
166 continue;
167 }
168 /*
169 * Here we don't handle the case when the BAR is not page
170 * aligned because we can't expect the BAR will be
171 * assigned into the same location in a page in guest
172 * when we passthrough the BAR. And it's hard to access
173 * this BAR in userspace because we have no way to get
174 * the BAR's location in a page.
175 */
176 no_mmap:
177 vdev->bar_mmap_supported[bar] = false;
178 }
179 }
180
181 struct vfio_pci_group_info;
182 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
183 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
184 struct vfio_pci_group_info *groups,
185 struct iommufd_ctx *iommufd_ctx);
186
187 /*
188 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
189 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
190 * If a device implements the former but not the latter we would typically
191 * expect broken_intx_masking be set and require an exclusive interrupt.
192 * However since we do have control of the device's ability to assert INTx,
193 * we can instead pretend that the device does not implement INTx, virtualizing
194 * the pin register to report zero and maintaining DisINTx set on the host.
195 */
vfio_pci_nointx(struct pci_dev * pdev)196 static bool vfio_pci_nointx(struct pci_dev *pdev)
197 {
198 switch (pdev->vendor) {
199 case PCI_VENDOR_ID_INTEL:
200 switch (pdev->device) {
201 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
202 case 0x1572:
203 case 0x1574:
204 case 0x1580 ... 0x1581:
205 case 0x1583 ... 0x158b:
206 case 0x37d0 ... 0x37d2:
207 /* X550 */
208 case 0x1563:
209 return true;
210 default:
211 return false;
212 }
213 }
214
215 return false;
216 }
217
vfio_pci_probe_power_state(struct vfio_pci_core_device * vdev)218 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
219 {
220 struct pci_dev *pdev = vdev->pdev;
221 u16 pmcsr;
222
223 if (!pdev->pm_cap)
224 return;
225
226 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
227
228 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
229 }
230
231 /*
232 * pci_set_power_state() wrapper handling devices which perform a soft reset on
233 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev,
234 * restore when returned to D0. Saved separately from pci_saved_state for use
235 * by PM capability emulation and separately from pci_dev internal saved state
236 * to avoid it being overwritten and consumed around other resets.
237 */
vfio_pci_set_power_state(struct vfio_pci_core_device * vdev,pci_power_t state)238 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
239 {
240 struct pci_dev *pdev = vdev->pdev;
241 bool needs_restore = false, needs_save = false;
242 int ret;
243
244 /* Prevent changing power state for PFs with VFs enabled */
245 if (pci_num_vf(pdev) && state > PCI_D0)
246 return -EBUSY;
247
248 if (vdev->needs_pm_restore) {
249 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
250 pci_save_state(pdev);
251 needs_save = true;
252 }
253
254 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
255 needs_restore = true;
256 }
257
258 ret = pci_set_power_state(pdev, state);
259
260 if (!ret) {
261 /* D3 might be unsupported via quirk, skip unless in D3 */
262 if (needs_save && pdev->current_state >= PCI_D3hot) {
263 /*
264 * The current PCI state will be saved locally in
265 * 'pm_save' during the D3hot transition. When the
266 * device state is changed to D0 again with the current
267 * function, then pci_store_saved_state() will restore
268 * the state and will free the memory pointed by
269 * 'pm_save'. There are few cases where the PCI power
270 * state can be changed to D0 without the involvement
271 * of the driver. For these cases, free the earlier
272 * allocated memory first before overwriting 'pm_save'
273 * to prevent the memory leak.
274 */
275 kfree(vdev->pm_save);
276 vdev->pm_save = pci_store_saved_state(pdev);
277 } else if (needs_restore) {
278 pci_load_and_free_saved_state(pdev, &vdev->pm_save);
279 pci_restore_state(pdev);
280 }
281 }
282
283 return ret;
284 }
285
vfio_pci_runtime_pm_entry(struct vfio_pci_core_device * vdev,struct eventfd_ctx * efdctx)286 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
287 struct eventfd_ctx *efdctx)
288 {
289 /*
290 * The vdev power related flags are protected with 'memory_lock'
291 * semaphore.
292 */
293 vfio_pci_zap_and_down_write_memory_lock(vdev);
294 if (vdev->pm_runtime_engaged) {
295 up_write(&vdev->memory_lock);
296 return -EINVAL;
297 }
298
299 vdev->pm_runtime_engaged = true;
300 vdev->pm_wake_eventfd_ctx = efdctx;
301 pm_runtime_put_noidle(&vdev->pdev->dev);
302 up_write(&vdev->memory_lock);
303
304 return 0;
305 }
306
vfio_pci_core_pm_entry(struct vfio_device * device,u32 flags,void __user * arg,size_t argsz)307 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
308 void __user *arg, size_t argsz)
309 {
310 struct vfio_pci_core_device *vdev =
311 container_of(device, struct vfio_pci_core_device, vdev);
312 int ret;
313
314 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
315 if (ret != 1)
316 return ret;
317
318 /*
319 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
320 * will be decremented. The pm_runtime_put() will be invoked again
321 * while returning from the ioctl and then the device can go into
322 * runtime suspended state.
323 */
324 return vfio_pci_runtime_pm_entry(vdev, NULL);
325 }
326
vfio_pci_core_pm_entry_with_wakeup(struct vfio_device * device,u32 flags,struct vfio_device_low_power_entry_with_wakeup __user * arg,size_t argsz)327 static int vfio_pci_core_pm_entry_with_wakeup(
328 struct vfio_device *device, u32 flags,
329 struct vfio_device_low_power_entry_with_wakeup __user *arg,
330 size_t argsz)
331 {
332 struct vfio_pci_core_device *vdev =
333 container_of(device, struct vfio_pci_core_device, vdev);
334 struct vfio_device_low_power_entry_with_wakeup entry;
335 struct eventfd_ctx *efdctx;
336 int ret;
337
338 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
339 sizeof(entry));
340 if (ret != 1)
341 return ret;
342
343 if (copy_from_user(&entry, arg, sizeof(entry)))
344 return -EFAULT;
345
346 if (entry.wakeup_eventfd < 0)
347 return -EINVAL;
348
349 efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
350 if (IS_ERR(efdctx))
351 return PTR_ERR(efdctx);
352
353 ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
354 if (ret)
355 eventfd_ctx_put(efdctx);
356
357 return ret;
358 }
359
__vfio_pci_runtime_pm_exit(struct vfio_pci_core_device * vdev)360 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
361 {
362 if (vdev->pm_runtime_engaged) {
363 vdev->pm_runtime_engaged = false;
364 pm_runtime_get_noresume(&vdev->pdev->dev);
365
366 if (vdev->pm_wake_eventfd_ctx) {
367 eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
368 vdev->pm_wake_eventfd_ctx = NULL;
369 }
370 }
371 }
372
vfio_pci_runtime_pm_exit(struct vfio_pci_core_device * vdev)373 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
374 {
375 /*
376 * The vdev power related flags are protected with 'memory_lock'
377 * semaphore.
378 */
379 down_write(&vdev->memory_lock);
380 __vfio_pci_runtime_pm_exit(vdev);
381 up_write(&vdev->memory_lock);
382 }
383
vfio_pci_core_pm_exit(struct vfio_device * device,u32 flags,void __user * arg,size_t argsz)384 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
385 void __user *arg, size_t argsz)
386 {
387 struct vfio_pci_core_device *vdev =
388 container_of(device, struct vfio_pci_core_device, vdev);
389 int ret;
390
391 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
392 if (ret != 1)
393 return ret;
394
395 /*
396 * The device is always in the active state here due to pm wrappers
397 * around ioctls. If the device had entered a low power state and
398 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
399 * already signaled the eventfd and exited low power mode itself.
400 * pm_runtime_engaged protects the redundant call here.
401 */
402 vfio_pci_runtime_pm_exit(vdev);
403 return 0;
404 }
405
406 #ifdef CONFIG_PM
vfio_pci_core_runtime_suspend(struct device * dev)407 static int vfio_pci_core_runtime_suspend(struct device *dev)
408 {
409 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
410
411 down_write(&vdev->memory_lock);
412 /*
413 * The user can move the device into D3hot state before invoking
414 * power management IOCTL. Move the device into D0 state here and then
415 * the pci-driver core runtime PM suspend function will move the device
416 * into the low power state. Also, for the devices which have
417 * NoSoftRst-, it will help in restoring the original state
418 * (saved locally in 'vdev->pm_save').
419 */
420 vfio_pci_set_power_state(vdev, PCI_D0);
421 up_write(&vdev->memory_lock);
422
423 /*
424 * If INTx is enabled, then mask INTx before going into the runtime
425 * suspended state and unmask the same in the runtime resume.
426 * If INTx has already been masked by the user, then
427 * vfio_pci_intx_mask() will return false and in that case, INTx
428 * should not be unmasked in the runtime resume.
429 */
430 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
431 vfio_pci_intx_mask(vdev));
432
433 return 0;
434 }
435
vfio_pci_core_runtime_resume(struct device * dev)436 static int vfio_pci_core_runtime_resume(struct device *dev)
437 {
438 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
439
440 /*
441 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
442 * low power mode.
443 */
444 down_write(&vdev->memory_lock);
445 if (vdev->pm_wake_eventfd_ctx) {
446 eventfd_signal(vdev->pm_wake_eventfd_ctx, 1);
447 __vfio_pci_runtime_pm_exit(vdev);
448 }
449 up_write(&vdev->memory_lock);
450
451 if (vdev->pm_intx_masked)
452 vfio_pci_intx_unmask(vdev);
453
454 return 0;
455 }
456 #endif /* CONFIG_PM */
457
458 /*
459 * The pci-driver core runtime PM routines always save the device state
460 * before going into suspended state. If the device is going into low power
461 * state with only with runtime PM ops, then no explicit handling is needed
462 * for the devices which have NoSoftRst-.
463 */
464 static const struct dev_pm_ops vfio_pci_core_pm_ops = {
465 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
466 vfio_pci_core_runtime_resume,
467 NULL)
468 };
469
vfio_pci_core_enable(struct vfio_pci_core_device * vdev)470 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
471 {
472 struct pci_dev *pdev = vdev->pdev;
473 int ret;
474 u16 cmd;
475 u8 msix_pos;
476
477 if (!disable_idle_d3) {
478 ret = pm_runtime_resume_and_get(&pdev->dev);
479 if (ret < 0)
480 return ret;
481 }
482
483 /* Don't allow our initial saved state to include busmaster */
484 pci_clear_master(pdev);
485
486 ret = pci_enable_device(pdev);
487 if (ret)
488 goto out_power;
489
490 /* If reset fails because of the device lock, fail this path entirely */
491 ret = pci_try_reset_function(pdev);
492 if (ret == -EAGAIN)
493 goto out_disable_device;
494
495 vdev->reset_works = !ret;
496 pci_save_state(pdev);
497 vdev->pci_saved_state = pci_store_saved_state(pdev);
498 if (!vdev->pci_saved_state)
499 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
500
501 if (likely(!nointxmask)) {
502 if (vfio_pci_nointx(pdev)) {
503 pci_info(pdev, "Masking broken INTx support\n");
504 vdev->nointx = true;
505 pci_intx(pdev, 0);
506 } else
507 vdev->pci_2_3 = pci_intx_mask_supported(pdev);
508 }
509
510 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
511 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
512 cmd &= ~PCI_COMMAND_INTX_DISABLE;
513 pci_write_config_word(pdev, PCI_COMMAND, cmd);
514 }
515
516 ret = vfio_pci_zdev_open_device(vdev);
517 if (ret)
518 goto out_free_state;
519
520 ret = vfio_config_init(vdev);
521 if (ret)
522 goto out_free_zdev;
523
524 msix_pos = pdev->msix_cap;
525 if (msix_pos) {
526 u16 flags;
527 u32 table;
528
529 pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
530 pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
531
532 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
533 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
534 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
535 vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev);
536 } else {
537 vdev->msix_bar = 0xFF;
538 vdev->has_dyn_msix = false;
539 }
540
541 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
542 vdev->has_vga = true;
543
544
545 return 0;
546
547 out_free_zdev:
548 vfio_pci_zdev_close_device(vdev);
549 out_free_state:
550 kfree(vdev->pci_saved_state);
551 vdev->pci_saved_state = NULL;
552 out_disable_device:
553 pci_disable_device(pdev);
554 out_power:
555 if (!disable_idle_d3)
556 pm_runtime_put(&pdev->dev);
557 return ret;
558 }
559 EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
560
vfio_pci_core_disable(struct vfio_pci_core_device * vdev)561 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
562 {
563 struct pci_dev *pdev = vdev->pdev;
564 struct vfio_pci_dummy_resource *dummy_res, *tmp;
565 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
566 int i, bar;
567
568 /* For needs_reset */
569 lockdep_assert_held(&vdev->vdev.dev_set->lock);
570
571 /*
572 * This function can be invoked while the power state is non-D0.
573 * This non-D0 power state can be with or without runtime PM.
574 * vfio_pci_runtime_pm_exit() will internally increment the usage
575 * count corresponding to pm_runtime_put() called during low power
576 * feature entry and then pm_runtime_resume() will wake up the device,
577 * if the device has already gone into the suspended state. Otherwise,
578 * the vfio_pci_set_power_state() will change the device power state
579 * to D0.
580 */
581 vfio_pci_runtime_pm_exit(vdev);
582 pm_runtime_resume(&pdev->dev);
583
584 /*
585 * This function calls __pci_reset_function_locked() which internally
586 * can use pci_pm_reset() for the function reset. pci_pm_reset() will
587 * fail if the power state is non-D0. Also, for the devices which
588 * have NoSoftRst-, the reset function can cause the PCI config space
589 * reset without restoring the original state (saved locally in
590 * 'vdev->pm_save').
591 */
592 vfio_pci_set_power_state(vdev, PCI_D0);
593
594 /* Stop the device from further DMA */
595 pci_clear_master(pdev);
596
597 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
598 VFIO_IRQ_SET_ACTION_TRIGGER,
599 vdev->irq_type, 0, 0, NULL);
600
601 /* Device closed, don't need mutex here */
602 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
603 &vdev->ioeventfds_list, next) {
604 vfio_virqfd_disable(&ioeventfd->virqfd);
605 list_del(&ioeventfd->next);
606 kfree(ioeventfd);
607 }
608 vdev->ioeventfds_nr = 0;
609
610 vdev->virq_disabled = false;
611
612 for (i = 0; i < vdev->num_regions; i++)
613 vdev->region[i].ops->release(vdev, &vdev->region[i]);
614
615 vdev->num_regions = 0;
616 kfree(vdev->region);
617 vdev->region = NULL; /* don't krealloc a freed pointer */
618
619 vfio_config_free(vdev);
620
621 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
622 bar = i + PCI_STD_RESOURCES;
623 if (!vdev->barmap[bar])
624 continue;
625 pci_iounmap(pdev, vdev->barmap[bar]);
626 pci_release_selected_regions(pdev, 1 << bar);
627 vdev->barmap[bar] = NULL;
628 }
629
630 list_for_each_entry_safe(dummy_res, tmp,
631 &vdev->dummy_resources_list, res_next) {
632 list_del(&dummy_res->res_next);
633 release_resource(&dummy_res->resource);
634 kfree(dummy_res);
635 }
636
637 vdev->needs_reset = true;
638
639 vfio_pci_zdev_close_device(vdev);
640
641 /*
642 * If we have saved state, restore it. If we can reset the device,
643 * even better. Resetting with current state seems better than
644 * nothing, but saving and restoring current state without reset
645 * is just busy work.
646 */
647 if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
648 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
649
650 if (!vdev->reset_works)
651 goto out;
652
653 pci_save_state(pdev);
654 }
655
656 /*
657 * Disable INTx and MSI, presumably to avoid spurious interrupts
658 * during reset. Stolen from pci_reset_function()
659 */
660 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
661
662 /*
663 * Try to get the locks ourselves to prevent a deadlock. The
664 * success of this is dependent on being able to lock the device,
665 * which is not always possible.
666 * We can not use the "try" reset interface here, which will
667 * overwrite the previously restored configuration information.
668 */
669 if (vdev->reset_works && pci_dev_trylock(pdev)) {
670 if (!__pci_reset_function_locked(pdev))
671 vdev->needs_reset = false;
672 pci_dev_unlock(pdev);
673 }
674
675 pci_restore_state(pdev);
676 out:
677 pci_disable_device(pdev);
678
679 vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
680
681 /* Put the pm-runtime usage counter acquired during enable */
682 if (!disable_idle_d3)
683 pm_runtime_put(&pdev->dev);
684 }
685 EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
686
vfio_pci_core_close_device(struct vfio_device * core_vdev)687 void vfio_pci_core_close_device(struct vfio_device *core_vdev)
688 {
689 struct vfio_pci_core_device *vdev =
690 container_of(core_vdev, struct vfio_pci_core_device, vdev);
691
692 if (vdev->sriov_pf_core_dev) {
693 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
694 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
695 vdev->sriov_pf_core_dev->vf_token->users--;
696 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
697 }
698 #if IS_ENABLED(CONFIG_EEH)
699 eeh_dev_release(vdev->pdev);
700 #endif
701 vfio_pci_core_disable(vdev);
702
703 mutex_lock(&vdev->igate);
704 if (vdev->err_trigger) {
705 eventfd_ctx_put(vdev->err_trigger);
706 vdev->err_trigger = NULL;
707 }
708 if (vdev->req_trigger) {
709 eventfd_ctx_put(vdev->req_trigger);
710 vdev->req_trigger = NULL;
711 }
712 mutex_unlock(&vdev->igate);
713 }
714 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
715
vfio_pci_core_finish_enable(struct vfio_pci_core_device * vdev)716 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
717 {
718 vfio_pci_probe_mmaps(vdev);
719 #if IS_ENABLED(CONFIG_EEH)
720 eeh_dev_open(vdev->pdev);
721 #endif
722
723 if (vdev->sriov_pf_core_dev) {
724 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
725 vdev->sriov_pf_core_dev->vf_token->users++;
726 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
727 }
728 }
729 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
730
vfio_pci_get_irq_count(struct vfio_pci_core_device * vdev,int irq_type)731 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
732 {
733 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
734 u8 pin;
735
736 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
737 vdev->nointx || vdev->pdev->is_virtfn)
738 return 0;
739
740 pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
741
742 return pin ? 1 : 0;
743 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
744 u8 pos;
745 u16 flags;
746
747 pos = vdev->pdev->msi_cap;
748 if (pos) {
749 pci_read_config_word(vdev->pdev,
750 pos + PCI_MSI_FLAGS, &flags);
751 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
752 }
753 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
754 u8 pos;
755 u16 flags;
756
757 pos = vdev->pdev->msix_cap;
758 if (pos) {
759 pci_read_config_word(vdev->pdev,
760 pos + PCI_MSIX_FLAGS, &flags);
761
762 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
763 }
764 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
765 if (pci_is_pcie(vdev->pdev))
766 return 1;
767 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
768 return 1;
769 }
770
771 return 0;
772 }
773
vfio_pci_count_devs(struct pci_dev * pdev,void * data)774 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
775 {
776 (*(int *)data)++;
777 return 0;
778 }
779
780 struct vfio_pci_fill_info {
781 struct vfio_pci_dependent_device __user *devices;
782 struct vfio_pci_dependent_device __user *devices_end;
783 struct vfio_device *vdev;
784 u32 count;
785 u32 flags;
786 };
787
vfio_pci_fill_devs(struct pci_dev * pdev,void * data)788 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
789 {
790 struct vfio_pci_dependent_device info = {
791 .segment = pci_domain_nr(pdev->bus),
792 .bus = pdev->bus->number,
793 .devfn = pdev->devfn,
794 };
795 struct vfio_pci_fill_info *fill = data;
796
797 fill->count++;
798 if (fill->devices >= fill->devices_end)
799 return 0;
800
801 if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) {
802 struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev);
803 struct vfio_device_set *dev_set = fill->vdev->dev_set;
804 struct vfio_device *vdev;
805
806 /*
807 * hot-reset requires all affected devices be represented in
808 * the dev_set.
809 */
810 vdev = vfio_find_device_in_devset(dev_set, &pdev->dev);
811 if (!vdev) {
812 info.devid = VFIO_PCI_DEVID_NOT_OWNED;
813 } else {
814 int id = vfio_iommufd_get_dev_id(vdev, iommufd);
815
816 if (id > 0)
817 info.devid = id;
818 else if (id == -ENOENT)
819 info.devid = VFIO_PCI_DEVID_OWNED;
820 else
821 info.devid = VFIO_PCI_DEVID_NOT_OWNED;
822 }
823 /* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */
824 if (info.devid == VFIO_PCI_DEVID_NOT_OWNED)
825 fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
826 } else {
827 struct iommu_group *iommu_group;
828
829 iommu_group = iommu_group_get(&pdev->dev);
830 if (!iommu_group)
831 return -EPERM; /* Cannot reset non-isolated devices */
832
833 info.group_id = iommu_group_id(iommu_group);
834 iommu_group_put(iommu_group);
835 }
836
837 if (copy_to_user(fill->devices, &info, sizeof(info)))
838 return -EFAULT;
839 fill->devices++;
840 return 0;
841 }
842
843 struct vfio_pci_group_info {
844 int count;
845 struct file **files;
846 };
847
vfio_pci_dev_below_slot(struct pci_dev * pdev,struct pci_slot * slot)848 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
849 {
850 for (; pdev; pdev = pdev->bus->self)
851 if (pdev->bus == slot->bus)
852 return (pdev->slot == slot);
853 return false;
854 }
855
856 struct vfio_pci_walk_info {
857 int (*fn)(struct pci_dev *pdev, void *data);
858 void *data;
859 struct pci_dev *pdev;
860 bool slot;
861 int ret;
862 };
863
vfio_pci_walk_wrapper(struct pci_dev * pdev,void * data)864 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
865 {
866 struct vfio_pci_walk_info *walk = data;
867
868 if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
869 walk->ret = walk->fn(pdev, walk->data);
870
871 return walk->ret;
872 }
873
vfio_pci_for_each_slot_or_bus(struct pci_dev * pdev,int (* fn)(struct pci_dev *,void * data),void * data,bool slot)874 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
875 int (*fn)(struct pci_dev *,
876 void *data), void *data,
877 bool slot)
878 {
879 struct vfio_pci_walk_info walk = {
880 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
881 };
882
883 pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
884
885 return walk.ret;
886 }
887
msix_mmappable_cap(struct vfio_pci_core_device * vdev,struct vfio_info_cap * caps)888 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
889 struct vfio_info_cap *caps)
890 {
891 struct vfio_info_cap_header header = {
892 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
893 .version = 1
894 };
895
896 return vfio_info_add_capability(caps, &header, sizeof(header));
897 }
898
vfio_pci_core_register_dev_region(struct vfio_pci_core_device * vdev,unsigned int type,unsigned int subtype,const struct vfio_pci_regops * ops,size_t size,u32 flags,void * data)899 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
900 unsigned int type, unsigned int subtype,
901 const struct vfio_pci_regops *ops,
902 size_t size, u32 flags, void *data)
903 {
904 struct vfio_pci_region *region;
905
906 region = krealloc(vdev->region,
907 (vdev->num_regions + 1) * sizeof(*region),
908 GFP_KERNEL_ACCOUNT);
909 if (!region)
910 return -ENOMEM;
911
912 vdev->region = region;
913 vdev->region[vdev->num_regions].type = type;
914 vdev->region[vdev->num_regions].subtype = subtype;
915 vdev->region[vdev->num_regions].ops = ops;
916 vdev->region[vdev->num_regions].size = size;
917 vdev->region[vdev->num_regions].flags = flags;
918 vdev->region[vdev->num_regions].data = data;
919
920 vdev->num_regions++;
921
922 return 0;
923 }
924 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
925
vfio_pci_info_atomic_cap(struct vfio_pci_core_device * vdev,struct vfio_info_cap * caps)926 static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
927 struct vfio_info_cap *caps)
928 {
929 struct vfio_device_info_cap_pci_atomic_comp cap = {
930 .header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
931 .header.version = 1
932 };
933 struct pci_dev *pdev = pci_physfn(vdev->pdev);
934 u32 devcap2;
935
936 pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2);
937
938 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
939 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
940 cap.flags |= VFIO_PCI_ATOMIC_COMP32;
941
942 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
943 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
944 cap.flags |= VFIO_PCI_ATOMIC_COMP64;
945
946 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
947 !pci_enable_atomic_ops_to_root(pdev,
948 PCI_EXP_DEVCAP2_ATOMIC_COMP128))
949 cap.flags |= VFIO_PCI_ATOMIC_COMP128;
950
951 if (!cap.flags)
952 return -ENODEV;
953
954 return vfio_info_add_capability(caps, &cap.header, sizeof(cap));
955 }
956
vfio_pci_ioctl_get_info(struct vfio_pci_core_device * vdev,struct vfio_device_info __user * arg)957 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
958 struct vfio_device_info __user *arg)
959 {
960 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
961 struct vfio_device_info info = {};
962 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
963 int ret;
964
965 if (copy_from_user(&info, arg, minsz))
966 return -EFAULT;
967
968 if (info.argsz < minsz)
969 return -EINVAL;
970
971 minsz = min_t(size_t, info.argsz, sizeof(info));
972
973 info.flags = VFIO_DEVICE_FLAGS_PCI;
974
975 if (vdev->reset_works)
976 info.flags |= VFIO_DEVICE_FLAGS_RESET;
977
978 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
979 info.num_irqs = VFIO_PCI_NUM_IRQS;
980
981 ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
982 if (ret && ret != -ENODEV) {
983 pci_warn(vdev->pdev,
984 "Failed to setup zPCI info capabilities\n");
985 return ret;
986 }
987
988 ret = vfio_pci_info_atomic_cap(vdev, &caps);
989 if (ret && ret != -ENODEV) {
990 pci_warn(vdev->pdev,
991 "Failed to setup AtomicOps info capability\n");
992 return ret;
993 }
994
995 if (caps.size) {
996 info.flags |= VFIO_DEVICE_FLAGS_CAPS;
997 if (info.argsz < sizeof(info) + caps.size) {
998 info.argsz = sizeof(info) + caps.size;
999 } else {
1000 vfio_info_cap_shift(&caps, sizeof(info));
1001 if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1002 kfree(caps.buf);
1003 return -EFAULT;
1004 }
1005 info.cap_offset = sizeof(*arg);
1006 }
1007
1008 kfree(caps.buf);
1009 }
1010
1011 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1012 }
1013
vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device * vdev,struct vfio_region_info __user * arg)1014 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
1015 struct vfio_region_info __user *arg)
1016 {
1017 unsigned long minsz = offsetofend(struct vfio_region_info, offset);
1018 struct pci_dev *pdev = vdev->pdev;
1019 struct vfio_region_info info;
1020 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1021 int i, ret;
1022
1023 if (copy_from_user(&info, arg, minsz))
1024 return -EFAULT;
1025
1026 if (info.argsz < minsz)
1027 return -EINVAL;
1028
1029 switch (info.index) {
1030 case VFIO_PCI_CONFIG_REGION_INDEX:
1031 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1032 info.size = pdev->cfg_size;
1033 info.flags = VFIO_REGION_INFO_FLAG_READ |
1034 VFIO_REGION_INFO_FLAG_WRITE;
1035 break;
1036 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1037 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1038 info.size = pci_resource_len(pdev, info.index);
1039 if (!info.size) {
1040 info.flags = 0;
1041 break;
1042 }
1043
1044 info.flags = VFIO_REGION_INFO_FLAG_READ |
1045 VFIO_REGION_INFO_FLAG_WRITE;
1046 if (vdev->bar_mmap_supported[info.index]) {
1047 info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
1048 if (info.index == vdev->msix_bar) {
1049 ret = msix_mmappable_cap(vdev, &caps);
1050 if (ret)
1051 return ret;
1052 }
1053 }
1054
1055 break;
1056 case VFIO_PCI_ROM_REGION_INDEX: {
1057 void __iomem *io;
1058 size_t size;
1059 u16 cmd;
1060
1061 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1062 info.flags = 0;
1063
1064 /* Report the BAR size, not the ROM size */
1065 info.size = pci_resource_len(pdev, info.index);
1066 if (!info.size) {
1067 /* Shadow ROMs appear as PCI option ROMs */
1068 if (pdev->resource[PCI_ROM_RESOURCE].flags &
1069 IORESOURCE_ROM_SHADOW)
1070 info.size = 0x20000;
1071 else
1072 break;
1073 }
1074
1075 /*
1076 * Is it really there? Enable memory decode for implicit access
1077 * in pci_map_rom().
1078 */
1079 cmd = vfio_pci_memory_lock_and_enable(vdev);
1080 io = pci_map_rom(pdev, &size);
1081 if (io) {
1082 info.flags = VFIO_REGION_INFO_FLAG_READ;
1083 pci_unmap_rom(pdev, io);
1084 } else {
1085 info.size = 0;
1086 }
1087 vfio_pci_memory_unlock_and_restore(vdev, cmd);
1088
1089 break;
1090 }
1091 case VFIO_PCI_VGA_REGION_INDEX:
1092 if (!vdev->has_vga)
1093 return -EINVAL;
1094
1095 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1096 info.size = 0xc0000;
1097 info.flags = VFIO_REGION_INFO_FLAG_READ |
1098 VFIO_REGION_INFO_FLAG_WRITE;
1099
1100 break;
1101 default: {
1102 struct vfio_region_info_cap_type cap_type = {
1103 .header.id = VFIO_REGION_INFO_CAP_TYPE,
1104 .header.version = 1
1105 };
1106
1107 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1108 return -EINVAL;
1109 info.index = array_index_nospec(
1110 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
1111
1112 i = info.index - VFIO_PCI_NUM_REGIONS;
1113
1114 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1115 info.size = vdev->region[i].size;
1116 info.flags = vdev->region[i].flags;
1117
1118 cap_type.type = vdev->region[i].type;
1119 cap_type.subtype = vdev->region[i].subtype;
1120
1121 ret = vfio_info_add_capability(&caps, &cap_type.header,
1122 sizeof(cap_type));
1123 if (ret)
1124 return ret;
1125
1126 if (vdev->region[i].ops->add_capability) {
1127 ret = vdev->region[i].ops->add_capability(
1128 vdev, &vdev->region[i], &caps);
1129 if (ret)
1130 return ret;
1131 }
1132 }
1133 }
1134
1135 if (caps.size) {
1136 info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1137 if (info.argsz < sizeof(info) + caps.size) {
1138 info.argsz = sizeof(info) + caps.size;
1139 info.cap_offset = 0;
1140 } else {
1141 vfio_info_cap_shift(&caps, sizeof(info));
1142 if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1143 kfree(caps.buf);
1144 return -EFAULT;
1145 }
1146 info.cap_offset = sizeof(*arg);
1147 }
1148
1149 kfree(caps.buf);
1150 }
1151
1152 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1153 }
1154
vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device * vdev,struct vfio_irq_info __user * arg)1155 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
1156 struct vfio_irq_info __user *arg)
1157 {
1158 unsigned long minsz = offsetofend(struct vfio_irq_info, count);
1159 struct vfio_irq_info info;
1160
1161 if (copy_from_user(&info, arg, minsz))
1162 return -EFAULT;
1163
1164 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1165 return -EINVAL;
1166
1167 switch (info.index) {
1168 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
1169 case VFIO_PCI_REQ_IRQ_INDEX:
1170 break;
1171 case VFIO_PCI_ERR_IRQ_INDEX:
1172 if (pci_is_pcie(vdev->pdev))
1173 break;
1174 fallthrough;
1175 default:
1176 return -EINVAL;
1177 }
1178
1179 info.flags = VFIO_IRQ_INFO_EVENTFD;
1180
1181 info.count = vfio_pci_get_irq_count(vdev, info.index);
1182
1183 if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1184 info.flags |=
1185 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
1186 else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
1187 info.flags |= VFIO_IRQ_INFO_NORESIZE;
1188
1189 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1190 }
1191
vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device * vdev,struct vfio_irq_set __user * arg)1192 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
1193 struct vfio_irq_set __user *arg)
1194 {
1195 unsigned long minsz = offsetofend(struct vfio_irq_set, count);
1196 struct vfio_irq_set hdr;
1197 u8 *data = NULL;
1198 int max, ret = 0;
1199 size_t data_size = 0;
1200
1201 if (copy_from_user(&hdr, arg, minsz))
1202 return -EFAULT;
1203
1204 max = vfio_pci_get_irq_count(vdev, hdr.index);
1205
1206 ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
1207 &data_size);
1208 if (ret)
1209 return ret;
1210
1211 if (data_size) {
1212 data = memdup_user(&arg->data, data_size);
1213 if (IS_ERR(data))
1214 return PTR_ERR(data);
1215 }
1216
1217 mutex_lock(&vdev->igate);
1218
1219 ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
1220 hdr.count, data);
1221
1222 mutex_unlock(&vdev->igate);
1223 kfree(data);
1224
1225 return ret;
1226 }
1227
vfio_pci_ioctl_reset(struct vfio_pci_core_device * vdev,void __user * arg)1228 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
1229 void __user *arg)
1230 {
1231 int ret;
1232
1233 if (!vdev->reset_works)
1234 return -EINVAL;
1235
1236 vfio_pci_zap_and_down_write_memory_lock(vdev);
1237
1238 /*
1239 * This function can be invoked while the power state is non-D0. If
1240 * pci_try_reset_function() has been called while the power state is
1241 * non-D0, then pci_try_reset_function() will internally set the power
1242 * state to D0 without vfio driver involvement. For the devices which
1243 * have NoSoftRst-, the reset function can cause the PCI config space
1244 * reset without restoring the original state (saved locally in
1245 * 'vdev->pm_save').
1246 */
1247 vfio_pci_set_power_state(vdev, PCI_D0);
1248
1249 ret = pci_try_reset_function(vdev->pdev);
1250 up_write(&vdev->memory_lock);
1251
1252 return ret;
1253 }
1254
vfio_pci_ioctl_get_pci_hot_reset_info(struct vfio_pci_core_device * vdev,struct vfio_pci_hot_reset_info __user * arg)1255 static int vfio_pci_ioctl_get_pci_hot_reset_info(
1256 struct vfio_pci_core_device *vdev,
1257 struct vfio_pci_hot_reset_info __user *arg)
1258 {
1259 unsigned long minsz =
1260 offsetofend(struct vfio_pci_hot_reset_info, count);
1261 struct vfio_pci_hot_reset_info hdr;
1262 struct vfio_pci_fill_info fill = {};
1263 bool slot = false;
1264 int ret = 0;
1265
1266 if (copy_from_user(&hdr, arg, minsz))
1267 return -EFAULT;
1268
1269 if (hdr.argsz < minsz)
1270 return -EINVAL;
1271
1272 hdr.flags = 0;
1273
1274 /* Can we do a slot or bus reset or neither? */
1275 if (!pci_probe_reset_slot(vdev->pdev->slot))
1276 slot = true;
1277 else if (pci_probe_reset_bus(vdev->pdev->bus))
1278 return -ENODEV;
1279
1280 fill.devices = arg->devices;
1281 fill.devices_end = arg->devices +
1282 (hdr.argsz - sizeof(hdr)) / sizeof(arg->devices[0]);
1283 fill.vdev = &vdev->vdev;
1284
1285 if (vfio_device_cdev_opened(&vdev->vdev))
1286 fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID |
1287 VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
1288
1289 mutex_lock(&vdev->vdev.dev_set->lock);
1290 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
1291 &fill, slot);
1292 mutex_unlock(&vdev->vdev.dev_set->lock);
1293 if (ret)
1294 return ret;
1295
1296 hdr.count = fill.count;
1297 hdr.flags = fill.flags;
1298 if (copy_to_user(arg, &hdr, minsz))
1299 return -EFAULT;
1300
1301 if (fill.count > fill.devices - arg->devices)
1302 return -ENOSPC;
1303 return 0;
1304 }
1305
1306 static int
vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device * vdev,int array_count,bool slot,struct vfio_pci_hot_reset __user * arg)1307 vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev,
1308 int array_count, bool slot,
1309 struct vfio_pci_hot_reset __user *arg)
1310 {
1311 int32_t *group_fds;
1312 struct file **files;
1313 struct vfio_pci_group_info info;
1314 int file_idx, count = 0, ret = 0;
1315
1316 /*
1317 * We can't let userspace give us an arbitrarily large buffer to copy,
1318 * so verify how many we think there could be. Note groups can have
1319 * multiple devices so one group per device is the max.
1320 */
1321 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1322 &count, slot);
1323 if (ret)
1324 return ret;
1325
1326 if (array_count > count)
1327 return -EINVAL;
1328
1329 group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL);
1330 files = kcalloc(array_count, sizeof(*files), GFP_KERNEL);
1331 if (!group_fds || !files) {
1332 kfree(group_fds);
1333 kfree(files);
1334 return -ENOMEM;
1335 }
1336
1337 if (copy_from_user(group_fds, arg->group_fds,
1338 array_count * sizeof(*group_fds))) {
1339 kfree(group_fds);
1340 kfree(files);
1341 return -EFAULT;
1342 }
1343
1344 /*
1345 * Get the group file for each fd to ensure the group is held across
1346 * the reset
1347 */
1348 for (file_idx = 0; file_idx < array_count; file_idx++) {
1349 struct file *file = fget(group_fds[file_idx]);
1350
1351 if (!file) {
1352 ret = -EBADF;
1353 break;
1354 }
1355
1356 /* Ensure the FD is a vfio group FD.*/
1357 if (!vfio_file_is_group(file)) {
1358 fput(file);
1359 ret = -EINVAL;
1360 break;
1361 }
1362
1363 files[file_idx] = file;
1364 }
1365
1366 kfree(group_fds);
1367
1368 /* release reference to groups on error */
1369 if (ret)
1370 goto hot_reset_release;
1371
1372 info.count = array_count;
1373 info.files = files;
1374
1375 ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL);
1376
1377 hot_reset_release:
1378 for (file_idx--; file_idx >= 0; file_idx--)
1379 fput(files[file_idx]);
1380
1381 kfree(files);
1382 return ret;
1383 }
1384
vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device * vdev,struct vfio_pci_hot_reset __user * arg)1385 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
1386 struct vfio_pci_hot_reset __user *arg)
1387 {
1388 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
1389 struct vfio_pci_hot_reset hdr;
1390 bool slot = false;
1391
1392 if (copy_from_user(&hdr, arg, minsz))
1393 return -EFAULT;
1394
1395 if (hdr.argsz < minsz || hdr.flags)
1396 return -EINVAL;
1397
1398 /* zero-length array is only for cdev opened devices */
1399 if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev))
1400 return -EINVAL;
1401
1402 /* Can we do a slot or bus reset or neither? */
1403 if (!pci_probe_reset_slot(vdev->pdev->slot))
1404 slot = true;
1405 else if (pci_probe_reset_bus(vdev->pdev->bus))
1406 return -ENODEV;
1407
1408 if (hdr.count)
1409 return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg);
1410
1411 return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL,
1412 vfio_iommufd_device_ictx(&vdev->vdev));
1413 }
1414
vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device * vdev,struct vfio_device_ioeventfd __user * arg)1415 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
1416 struct vfio_device_ioeventfd __user *arg)
1417 {
1418 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
1419 struct vfio_device_ioeventfd ioeventfd;
1420 int count;
1421
1422 if (copy_from_user(&ioeventfd, arg, minsz))
1423 return -EFAULT;
1424
1425 if (ioeventfd.argsz < minsz)
1426 return -EINVAL;
1427
1428 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
1429 return -EINVAL;
1430
1431 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
1432
1433 if (hweight8(count) != 1 || ioeventfd.fd < -1)
1434 return -EINVAL;
1435
1436 return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
1437 ioeventfd.fd);
1438 }
1439
vfio_pci_core_ioctl(struct vfio_device * core_vdev,unsigned int cmd,unsigned long arg)1440 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
1441 unsigned long arg)
1442 {
1443 struct vfio_pci_core_device *vdev =
1444 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1445 void __user *uarg = (void __user *)arg;
1446
1447 switch (cmd) {
1448 case VFIO_DEVICE_GET_INFO:
1449 return vfio_pci_ioctl_get_info(vdev, uarg);
1450 case VFIO_DEVICE_GET_IRQ_INFO:
1451 return vfio_pci_ioctl_get_irq_info(vdev, uarg);
1452 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
1453 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
1454 case VFIO_DEVICE_GET_REGION_INFO:
1455 return vfio_pci_ioctl_get_region_info(vdev, uarg);
1456 case VFIO_DEVICE_IOEVENTFD:
1457 return vfio_pci_ioctl_ioeventfd(vdev, uarg);
1458 case VFIO_DEVICE_PCI_HOT_RESET:
1459 return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
1460 case VFIO_DEVICE_RESET:
1461 return vfio_pci_ioctl_reset(vdev, uarg);
1462 case VFIO_DEVICE_SET_IRQS:
1463 return vfio_pci_ioctl_set_irqs(vdev, uarg);
1464 default:
1465 return -ENOTTY;
1466 }
1467 }
1468 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
1469
vfio_pci_core_feature_token(struct vfio_device * device,u32 flags,uuid_t __user * arg,size_t argsz)1470 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
1471 uuid_t __user *arg, size_t argsz)
1472 {
1473 struct vfio_pci_core_device *vdev =
1474 container_of(device, struct vfio_pci_core_device, vdev);
1475 uuid_t uuid;
1476 int ret;
1477
1478 if (!vdev->vf_token)
1479 return -ENOTTY;
1480 /*
1481 * We do not support GET of the VF Token UUID as this could
1482 * expose the token of the previous device user.
1483 */
1484 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
1485 sizeof(uuid));
1486 if (ret != 1)
1487 return ret;
1488
1489 if (copy_from_user(&uuid, arg, sizeof(uuid)))
1490 return -EFAULT;
1491
1492 mutex_lock(&vdev->vf_token->lock);
1493 uuid_copy(&vdev->vf_token->uuid, &uuid);
1494 mutex_unlock(&vdev->vf_token->lock);
1495 return 0;
1496 }
1497
vfio_pci_core_ioctl_feature(struct vfio_device * device,u32 flags,void __user * arg,size_t argsz)1498 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
1499 void __user *arg, size_t argsz)
1500 {
1501 switch (flags & VFIO_DEVICE_FEATURE_MASK) {
1502 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
1503 return vfio_pci_core_pm_entry(device, flags, arg, argsz);
1504 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
1505 return vfio_pci_core_pm_entry_with_wakeup(device, flags,
1506 arg, argsz);
1507 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
1508 return vfio_pci_core_pm_exit(device, flags, arg, argsz);
1509 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
1510 return vfio_pci_core_feature_token(device, flags, arg, argsz);
1511 default:
1512 return -ENOTTY;
1513 }
1514 }
1515 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
1516
vfio_pci_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1517 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1518 size_t count, loff_t *ppos, bool iswrite)
1519 {
1520 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
1521 int ret;
1522
1523 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1524 return -EINVAL;
1525
1526 ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
1527 if (ret) {
1528 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
1529 ret);
1530 return -EIO;
1531 }
1532
1533 switch (index) {
1534 case VFIO_PCI_CONFIG_REGION_INDEX:
1535 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
1536 break;
1537
1538 case VFIO_PCI_ROM_REGION_INDEX:
1539 if (iswrite)
1540 ret = -EINVAL;
1541 else
1542 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
1543 break;
1544
1545 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1546 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
1547 break;
1548
1549 case VFIO_PCI_VGA_REGION_INDEX:
1550 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
1551 break;
1552
1553 default:
1554 index -= VFIO_PCI_NUM_REGIONS;
1555 ret = vdev->region[index].ops->rw(vdev, buf,
1556 count, ppos, iswrite);
1557 break;
1558 }
1559
1560 pm_runtime_put(&vdev->pdev->dev);
1561 return ret;
1562 }
1563
vfio_pci_core_read(struct vfio_device * core_vdev,char __user * buf,size_t count,loff_t * ppos)1564 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
1565 size_t count, loff_t *ppos)
1566 {
1567 struct vfio_pci_core_device *vdev =
1568 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1569
1570 if (!count)
1571 return 0;
1572
1573 return vfio_pci_rw(vdev, buf, count, ppos, false);
1574 }
1575 EXPORT_SYMBOL_GPL(vfio_pci_core_read);
1576
vfio_pci_core_write(struct vfio_device * core_vdev,const char __user * buf,size_t count,loff_t * ppos)1577 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
1578 size_t count, loff_t *ppos)
1579 {
1580 struct vfio_pci_core_device *vdev =
1581 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1582
1583 if (!count)
1584 return 0;
1585
1586 return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
1587 }
1588 EXPORT_SYMBOL_GPL(vfio_pci_core_write);
1589
1590 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device * vdev,bool try)1591 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
1592 {
1593 struct vfio_pci_mmap_vma *mmap_vma, *tmp;
1594
1595 /*
1596 * Lock ordering:
1597 * vma_lock is nested under mmap_lock for vm_ops callback paths.
1598 * The memory_lock semaphore is used by both code paths calling
1599 * into this function to zap vmas and the vm_ops.fault callback
1600 * to protect the memory enable state of the device.
1601 *
1602 * When zapping vmas we need to maintain the mmap_lock => vma_lock
1603 * ordering, which requires using vma_lock to walk vma_list to
1604 * acquire an mm, then dropping vma_lock to get the mmap_lock and
1605 * reacquiring vma_lock. This logic is derived from similar
1606 * requirements in uverbs_user_mmap_disassociate().
1607 *
1608 * mmap_lock must always be the top-level lock when it is taken.
1609 * Therefore we can only hold the memory_lock write lock when
1610 * vma_list is empty, as we'd need to take mmap_lock to clear
1611 * entries. vma_list can only be guaranteed empty when holding
1612 * vma_lock, thus memory_lock is nested under vma_lock.
1613 *
1614 * This enables the vm_ops.fault callback to acquire vma_lock,
1615 * followed by memory_lock read lock, while already holding
1616 * mmap_lock without risk of deadlock.
1617 */
1618 while (1) {
1619 struct mm_struct *mm = NULL;
1620
1621 if (try) {
1622 if (!mutex_trylock(&vdev->vma_lock))
1623 return 0;
1624 } else {
1625 mutex_lock(&vdev->vma_lock);
1626 }
1627 while (!list_empty(&vdev->vma_list)) {
1628 mmap_vma = list_first_entry(&vdev->vma_list,
1629 struct vfio_pci_mmap_vma,
1630 vma_next);
1631 mm = mmap_vma->vma->vm_mm;
1632 if (mmget_not_zero(mm))
1633 break;
1634
1635 list_del(&mmap_vma->vma_next);
1636 kfree(mmap_vma);
1637 mm = NULL;
1638 }
1639 if (!mm)
1640 return 1;
1641 mutex_unlock(&vdev->vma_lock);
1642
1643 if (try) {
1644 if (!mmap_read_trylock(mm)) {
1645 mmput(mm);
1646 return 0;
1647 }
1648 } else {
1649 mmap_read_lock(mm);
1650 }
1651 if (try) {
1652 if (!mutex_trylock(&vdev->vma_lock)) {
1653 mmap_read_unlock(mm);
1654 mmput(mm);
1655 return 0;
1656 }
1657 } else {
1658 mutex_lock(&vdev->vma_lock);
1659 }
1660 list_for_each_entry_safe(mmap_vma, tmp,
1661 &vdev->vma_list, vma_next) {
1662 struct vm_area_struct *vma = mmap_vma->vma;
1663
1664 if (vma->vm_mm != mm)
1665 continue;
1666
1667 list_del(&mmap_vma->vma_next);
1668 kfree(mmap_vma);
1669
1670 zap_vma_ptes(vma, vma->vm_start,
1671 vma->vm_end - vma->vm_start);
1672 }
1673 mutex_unlock(&vdev->vma_lock);
1674 mmap_read_unlock(mm);
1675 mmput(mm);
1676 }
1677 }
1678
vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device * vdev)1679 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
1680 {
1681 vfio_pci_zap_and_vma_lock(vdev, false);
1682 down_write(&vdev->memory_lock);
1683 mutex_unlock(&vdev->vma_lock);
1684 }
1685
vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device * vdev)1686 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
1687 {
1688 u16 cmd;
1689
1690 down_write(&vdev->memory_lock);
1691 pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
1692 if (!(cmd & PCI_COMMAND_MEMORY))
1693 pci_write_config_word(vdev->pdev, PCI_COMMAND,
1694 cmd | PCI_COMMAND_MEMORY);
1695
1696 return cmd;
1697 }
1698
vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device * vdev,u16 cmd)1699 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
1700 {
1701 pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
1702 up_write(&vdev->memory_lock);
1703 }
1704
1705 /* Caller holds vma_lock */
__vfio_pci_add_vma(struct vfio_pci_core_device * vdev,struct vm_area_struct * vma)1706 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
1707 struct vm_area_struct *vma)
1708 {
1709 struct vfio_pci_mmap_vma *mmap_vma;
1710
1711 mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT);
1712 if (!mmap_vma)
1713 return -ENOMEM;
1714
1715 mmap_vma->vma = vma;
1716 list_add(&mmap_vma->vma_next, &vdev->vma_list);
1717
1718 return 0;
1719 }
1720
1721 /*
1722 * Zap mmaps on open so that we can fault them in on access and therefore
1723 * our vma_list only tracks mappings accessed since last zap.
1724 */
vfio_pci_mmap_open(struct vm_area_struct * vma)1725 static void vfio_pci_mmap_open(struct vm_area_struct *vma)
1726 {
1727 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1728 }
1729
vfio_pci_mmap_close(struct vm_area_struct * vma)1730 static void vfio_pci_mmap_close(struct vm_area_struct *vma)
1731 {
1732 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1733 struct vfio_pci_mmap_vma *mmap_vma;
1734
1735 mutex_lock(&vdev->vma_lock);
1736 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1737 if (mmap_vma->vma == vma) {
1738 list_del(&mmap_vma->vma_next);
1739 kfree(mmap_vma);
1740 break;
1741 }
1742 }
1743 mutex_unlock(&vdev->vma_lock);
1744 }
1745
vfio_pci_mmap_fault(struct vm_fault * vmf)1746 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
1747 {
1748 struct vm_area_struct *vma = vmf->vma;
1749 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1750 struct vfio_pci_mmap_vma *mmap_vma;
1751 vm_fault_t ret = VM_FAULT_NOPAGE;
1752
1753 mutex_lock(&vdev->vma_lock);
1754 down_read(&vdev->memory_lock);
1755
1756 /*
1757 * Memory region cannot be accessed if the low power feature is engaged
1758 * or memory access is disabled.
1759 */
1760 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
1761 ret = VM_FAULT_SIGBUS;
1762 goto up_out;
1763 }
1764
1765 /*
1766 * We populate the whole vma on fault, so we need to test whether
1767 * the vma has already been mapped, such as for concurrent faults
1768 * to the same vma. io_remap_pfn_range() will trigger a BUG_ON if
1769 * we ask it to fill the same range again.
1770 */
1771 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1772 if (mmap_vma->vma == vma)
1773 goto up_out;
1774 }
1775
1776 if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
1777 vma->vm_end - vma->vm_start,
1778 vma->vm_page_prot)) {
1779 ret = VM_FAULT_SIGBUS;
1780 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1781 goto up_out;
1782 }
1783
1784 if (__vfio_pci_add_vma(vdev, vma)) {
1785 ret = VM_FAULT_OOM;
1786 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1787 }
1788
1789 up_out:
1790 up_read(&vdev->memory_lock);
1791 mutex_unlock(&vdev->vma_lock);
1792 return ret;
1793 }
1794
1795 static const struct vm_operations_struct vfio_pci_mmap_ops = {
1796 .open = vfio_pci_mmap_open,
1797 .close = vfio_pci_mmap_close,
1798 .fault = vfio_pci_mmap_fault,
1799 };
1800
vfio_pci_core_mmap(struct vfio_device * core_vdev,struct vm_area_struct * vma)1801 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
1802 {
1803 struct vfio_pci_core_device *vdev =
1804 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1805 struct pci_dev *pdev = vdev->pdev;
1806 unsigned int index;
1807 u64 phys_len, req_len, pgoff, req_start;
1808 int ret;
1809
1810 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1811
1812 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1813 return -EINVAL;
1814 if (vma->vm_end < vma->vm_start)
1815 return -EINVAL;
1816 if ((vma->vm_flags & VM_SHARED) == 0)
1817 return -EINVAL;
1818 if (index >= VFIO_PCI_NUM_REGIONS) {
1819 int regnum = index - VFIO_PCI_NUM_REGIONS;
1820 struct vfio_pci_region *region = vdev->region + regnum;
1821
1822 if (region->ops && region->ops->mmap &&
1823 (region->flags & VFIO_REGION_INFO_FLAG_MMAP))
1824 return region->ops->mmap(vdev, region, vma);
1825 return -EINVAL;
1826 }
1827 if (index >= VFIO_PCI_ROM_REGION_INDEX)
1828 return -EINVAL;
1829 if (!vdev->bar_mmap_supported[index])
1830 return -EINVAL;
1831
1832 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
1833 req_len = vma->vm_end - vma->vm_start;
1834 pgoff = vma->vm_pgoff &
1835 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1836 req_start = pgoff << PAGE_SHIFT;
1837
1838 if (req_start + req_len > phys_len)
1839 return -EINVAL;
1840
1841 /*
1842 * Even though we don't make use of the barmap for the mmap,
1843 * we need to request the region and the barmap tracks that.
1844 */
1845 if (!vdev->barmap[index]) {
1846 ret = pci_request_selected_regions(pdev,
1847 1 << index, "vfio-pci");
1848 if (ret)
1849 return ret;
1850
1851 vdev->barmap[index] = pci_iomap(pdev, index, 0);
1852 if (!vdev->barmap[index]) {
1853 pci_release_selected_regions(pdev, 1 << index);
1854 return -ENOMEM;
1855 }
1856 }
1857
1858 vma->vm_private_data = vdev;
1859 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1860 vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
1861
1862 /*
1863 * See remap_pfn_range(), called from vfio_pci_fault() but we can't
1864 * change vm_flags within the fault handler. Set them now.
1865 */
1866 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1867 vma->vm_ops = &vfio_pci_mmap_ops;
1868
1869 return 0;
1870 }
1871 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
1872
vfio_pci_core_request(struct vfio_device * core_vdev,unsigned int count)1873 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
1874 {
1875 struct vfio_pci_core_device *vdev =
1876 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1877 struct pci_dev *pdev = vdev->pdev;
1878
1879 mutex_lock(&vdev->igate);
1880
1881 if (vdev->req_trigger) {
1882 if (!(count % 10))
1883 pci_notice_ratelimited(pdev,
1884 "Relaying device request to user (#%u)\n",
1885 count);
1886 eventfd_signal(vdev->req_trigger, 1);
1887 } else if (count == 0) {
1888 pci_warn(pdev,
1889 "No device request channel registered, blocked until released by user\n");
1890 }
1891
1892 mutex_unlock(&vdev->igate);
1893 }
1894 EXPORT_SYMBOL_GPL(vfio_pci_core_request);
1895
vfio_pci_validate_vf_token(struct vfio_pci_core_device * vdev,bool vf_token,uuid_t * uuid)1896 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
1897 bool vf_token, uuid_t *uuid)
1898 {
1899 /*
1900 * There's always some degree of trust or collaboration between SR-IOV
1901 * PF and VFs, even if just that the PF hosts the SR-IOV capability and
1902 * can disrupt VFs with a reset, but often the PF has more explicit
1903 * access to deny service to the VF or access data passed through the
1904 * VF. We therefore require an opt-in via a shared VF token (UUID) to
1905 * represent this trust. This both prevents that a VF driver might
1906 * assume the PF driver is a trusted, in-kernel driver, and also that
1907 * a PF driver might be replaced with a rogue driver, unknown to in-use
1908 * VF drivers.
1909 *
1910 * Therefore when presented with a VF, if the PF is a vfio device and
1911 * it is bound to the vfio-pci driver, the user needs to provide a VF
1912 * token to access the device, in the form of appending a vf_token to
1913 * the device name, for example:
1914 *
1915 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
1916 *
1917 * When presented with a PF which has VFs in use, the user must also
1918 * provide the current VF token to prove collaboration with existing
1919 * VF users. If VFs are not in use, the VF token provided for the PF
1920 * device will act to set the VF token.
1921 *
1922 * If the VF token is provided but unused, an error is generated.
1923 */
1924 if (vdev->pdev->is_virtfn) {
1925 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
1926 bool match;
1927
1928 if (!pf_vdev) {
1929 if (!vf_token)
1930 return 0; /* PF is not vfio-pci, no VF token */
1931
1932 pci_info_ratelimited(vdev->pdev,
1933 "VF token incorrectly provided, PF not bound to vfio-pci\n");
1934 return -EINVAL;
1935 }
1936
1937 if (!vf_token) {
1938 pci_info_ratelimited(vdev->pdev,
1939 "VF token required to access device\n");
1940 return -EACCES;
1941 }
1942
1943 mutex_lock(&pf_vdev->vf_token->lock);
1944 match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
1945 mutex_unlock(&pf_vdev->vf_token->lock);
1946
1947 if (!match) {
1948 pci_info_ratelimited(vdev->pdev,
1949 "Incorrect VF token provided for device\n");
1950 return -EACCES;
1951 }
1952 } else if (vdev->vf_token) {
1953 mutex_lock(&vdev->vf_token->lock);
1954 if (vdev->vf_token->users) {
1955 if (!vf_token) {
1956 mutex_unlock(&vdev->vf_token->lock);
1957 pci_info_ratelimited(vdev->pdev,
1958 "VF token required to access device\n");
1959 return -EACCES;
1960 }
1961
1962 if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
1963 mutex_unlock(&vdev->vf_token->lock);
1964 pci_info_ratelimited(vdev->pdev,
1965 "Incorrect VF token provided for device\n");
1966 return -EACCES;
1967 }
1968 } else if (vf_token) {
1969 uuid_copy(&vdev->vf_token->uuid, uuid);
1970 }
1971
1972 mutex_unlock(&vdev->vf_token->lock);
1973 } else if (vf_token) {
1974 pci_info_ratelimited(vdev->pdev,
1975 "VF token incorrectly provided, not a PF or VF\n");
1976 return -EINVAL;
1977 }
1978
1979 return 0;
1980 }
1981
1982 #define VF_TOKEN_ARG "vf_token="
1983
vfio_pci_core_match(struct vfio_device * core_vdev,char * buf)1984 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
1985 {
1986 struct vfio_pci_core_device *vdev =
1987 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1988 bool vf_token = false;
1989 uuid_t uuid;
1990 int ret;
1991
1992 if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
1993 return 0; /* No match */
1994
1995 if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
1996 buf += strlen(pci_name(vdev->pdev));
1997
1998 if (*buf != ' ')
1999 return 0; /* No match: non-whitespace after name */
2000
2001 while (*buf) {
2002 if (*buf == ' ') {
2003 buf++;
2004 continue;
2005 }
2006
2007 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
2008 strlen(VF_TOKEN_ARG))) {
2009 buf += strlen(VF_TOKEN_ARG);
2010
2011 if (strlen(buf) < UUID_STRING_LEN)
2012 return -EINVAL;
2013
2014 ret = uuid_parse(buf, &uuid);
2015 if (ret)
2016 return ret;
2017
2018 vf_token = true;
2019 buf += UUID_STRING_LEN;
2020 } else {
2021 /* Unknown/duplicate option */
2022 return -EINVAL;
2023 }
2024 }
2025 }
2026
2027 ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
2028 if (ret)
2029 return ret;
2030
2031 return 1; /* Match */
2032 }
2033 EXPORT_SYMBOL_GPL(vfio_pci_core_match);
2034
vfio_pci_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)2035 static int vfio_pci_bus_notifier(struct notifier_block *nb,
2036 unsigned long action, void *data)
2037 {
2038 struct vfio_pci_core_device *vdev = container_of(nb,
2039 struct vfio_pci_core_device, nb);
2040 struct device *dev = data;
2041 struct pci_dev *pdev = to_pci_dev(dev);
2042 struct pci_dev *physfn = pci_physfn(pdev);
2043
2044 if (action == BUS_NOTIFY_ADD_DEVICE &&
2045 pdev->is_virtfn && physfn == vdev->pdev) {
2046 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
2047 pci_name(pdev));
2048 pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
2049 vdev->vdev.ops->name);
2050 } else if (action == BUS_NOTIFY_BOUND_DRIVER &&
2051 pdev->is_virtfn && physfn == vdev->pdev) {
2052 struct pci_driver *drv = pci_dev_driver(pdev);
2053
2054 if (drv && drv != pci_dev_driver(vdev->pdev))
2055 pci_warn(vdev->pdev,
2056 "VF %s bound to driver %s while PF bound to driver %s\n",
2057 pci_name(pdev), drv->name,
2058 pci_dev_driver(vdev->pdev)->name);
2059 }
2060
2061 return 0;
2062 }
2063
vfio_pci_vf_init(struct vfio_pci_core_device * vdev)2064 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
2065 {
2066 struct pci_dev *pdev = vdev->pdev;
2067 struct vfio_pci_core_device *cur;
2068 struct pci_dev *physfn;
2069 int ret;
2070
2071 if (pdev->is_virtfn) {
2072 /*
2073 * If this VF was created by our vfio_pci_core_sriov_configure()
2074 * then we can find the PF vfio_pci_core_device now, and due to
2075 * the locking in pci_disable_sriov() it cannot change until
2076 * this VF device driver is removed.
2077 */
2078 physfn = pci_physfn(vdev->pdev);
2079 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2080 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
2081 if (cur->pdev == physfn) {
2082 vdev->sriov_pf_core_dev = cur;
2083 break;
2084 }
2085 }
2086 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2087 return 0;
2088 }
2089
2090 /* Not a SRIOV PF */
2091 if (!pdev->is_physfn)
2092 return 0;
2093
2094 vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
2095 if (!vdev->vf_token)
2096 return -ENOMEM;
2097
2098 mutex_init(&vdev->vf_token->lock);
2099 uuid_gen(&vdev->vf_token->uuid);
2100
2101 vdev->nb.notifier_call = vfio_pci_bus_notifier;
2102 ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
2103 if (ret) {
2104 kfree(vdev->vf_token);
2105 return ret;
2106 }
2107 return 0;
2108 }
2109
vfio_pci_vf_uninit(struct vfio_pci_core_device * vdev)2110 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
2111 {
2112 if (!vdev->vf_token)
2113 return;
2114
2115 bus_unregister_notifier(&pci_bus_type, &vdev->nb);
2116 WARN_ON(vdev->vf_token->users);
2117 mutex_destroy(&vdev->vf_token->lock);
2118 kfree(vdev->vf_token);
2119 }
2120
vfio_pci_vga_init(struct vfio_pci_core_device * vdev)2121 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
2122 {
2123 struct pci_dev *pdev = vdev->pdev;
2124 int ret;
2125
2126 if (!vfio_pci_is_vga(pdev))
2127 return 0;
2128
2129 ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
2130 if (ret)
2131 return ret;
2132
2133 ret = vga_client_register(pdev, vfio_pci_set_decode);
2134 if (ret)
2135 return ret;
2136 vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
2137 return 0;
2138 }
2139
vfio_pci_vga_uninit(struct vfio_pci_core_device * vdev)2140 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
2141 {
2142 struct pci_dev *pdev = vdev->pdev;
2143
2144 if (!vfio_pci_is_vga(pdev))
2145 return;
2146 vga_client_unregister(pdev);
2147 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
2148 VGA_RSRC_LEGACY_IO |
2149 VGA_RSRC_LEGACY_MEM);
2150 }
2151
vfio_pci_core_init_dev(struct vfio_device * core_vdev)2152 int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
2153 {
2154 struct vfio_pci_core_device *vdev =
2155 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2156
2157 vdev->pdev = to_pci_dev(core_vdev->dev);
2158 vdev->irq_type = VFIO_PCI_NUM_IRQS;
2159 mutex_init(&vdev->igate);
2160 spin_lock_init(&vdev->irqlock);
2161 mutex_init(&vdev->ioeventfds_lock);
2162 INIT_LIST_HEAD(&vdev->dummy_resources_list);
2163 INIT_LIST_HEAD(&vdev->ioeventfds_list);
2164 mutex_init(&vdev->vma_lock);
2165 INIT_LIST_HEAD(&vdev->vma_list);
2166 INIT_LIST_HEAD(&vdev->sriov_pfs_item);
2167 init_rwsem(&vdev->memory_lock);
2168 xa_init(&vdev->ctx);
2169
2170 return 0;
2171 }
2172 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
2173
vfio_pci_core_release_dev(struct vfio_device * core_vdev)2174 void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
2175 {
2176 struct vfio_pci_core_device *vdev =
2177 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2178
2179 mutex_destroy(&vdev->igate);
2180 mutex_destroy(&vdev->ioeventfds_lock);
2181 mutex_destroy(&vdev->vma_lock);
2182 kfree(vdev->region);
2183 kfree(vdev->pm_save);
2184 }
2185 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
2186
vfio_pci_core_register_device(struct vfio_pci_core_device * vdev)2187 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
2188 {
2189 struct pci_dev *pdev = vdev->pdev;
2190 struct device *dev = &pdev->dev;
2191 int ret;
2192
2193 /* Drivers must set the vfio_pci_core_device to their drvdata */
2194 if (WARN_ON(vdev != dev_get_drvdata(dev)))
2195 return -EINVAL;
2196
2197 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2198 return -EINVAL;
2199
2200 if (vdev->vdev.mig_ops) {
2201 if (!(vdev->vdev.mig_ops->migration_get_state &&
2202 vdev->vdev.mig_ops->migration_set_state &&
2203 vdev->vdev.mig_ops->migration_get_data_size) ||
2204 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
2205 return -EINVAL;
2206 }
2207
2208 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
2209 vdev->vdev.log_ops->log_stop &&
2210 vdev->vdev.log_ops->log_read_and_clear))
2211 return -EINVAL;
2212
2213 /*
2214 * Prevent binding to PFs with VFs enabled, the VFs might be in use
2215 * by the host or other users. We cannot capture the VFs if they
2216 * already exist, nor can we track VF users. Disabling SR-IOV here
2217 * would initiate removing the VFs, which would unbind the driver,
2218 * which is prone to blocking if that VF is also in use by vfio-pci.
2219 * Just reject these PFs and let the user sort it out.
2220 */
2221 if (pci_num_vf(pdev)) {
2222 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
2223 return -EBUSY;
2224 }
2225
2226 if (pci_is_root_bus(pdev->bus)) {
2227 ret = vfio_assign_device_set(&vdev->vdev, vdev);
2228 } else if (!pci_probe_reset_slot(pdev->slot)) {
2229 ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
2230 } else {
2231 /*
2232 * If there is no slot reset support for this device, the whole
2233 * bus needs to be grouped together to support bus-wide resets.
2234 */
2235 ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
2236 }
2237
2238 if (ret)
2239 return ret;
2240 ret = vfio_pci_vf_init(vdev);
2241 if (ret)
2242 return ret;
2243 ret = vfio_pci_vga_init(vdev);
2244 if (ret)
2245 goto out_vf;
2246
2247 vfio_pci_probe_power_state(vdev);
2248
2249 /*
2250 * pci-core sets the device power state to an unknown value at
2251 * bootup and after being removed from a driver. The only
2252 * transition it allows from this unknown state is to D0, which
2253 * typically happens when a driver calls pci_enable_device().
2254 * We're not ready to enable the device yet, but we do want to
2255 * be able to get to D3. Therefore first do a D0 transition
2256 * before enabling runtime PM.
2257 */
2258 vfio_pci_set_power_state(vdev, PCI_D0);
2259
2260 dev->driver->pm = &vfio_pci_core_pm_ops;
2261 pm_runtime_allow(dev);
2262 if (!disable_idle_d3)
2263 pm_runtime_put(dev);
2264
2265 ret = vfio_register_group_dev(&vdev->vdev);
2266 if (ret)
2267 goto out_power;
2268 return 0;
2269
2270 out_power:
2271 if (!disable_idle_d3)
2272 pm_runtime_get_noresume(dev);
2273
2274 pm_runtime_forbid(dev);
2275 out_vf:
2276 vfio_pci_vf_uninit(vdev);
2277 return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
2280
vfio_pci_core_unregister_device(struct vfio_pci_core_device * vdev)2281 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
2282 {
2283 vfio_pci_core_sriov_configure(vdev, 0);
2284
2285 vfio_unregister_group_dev(&vdev->vdev);
2286
2287 vfio_pci_vf_uninit(vdev);
2288 vfio_pci_vga_uninit(vdev);
2289
2290 if (!disable_idle_d3)
2291 pm_runtime_get_noresume(&vdev->pdev->dev);
2292
2293 pm_runtime_forbid(&vdev->pdev->dev);
2294 }
2295 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
2296
vfio_pci_core_aer_err_detected(struct pci_dev * pdev,pci_channel_state_t state)2297 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
2298 pci_channel_state_t state)
2299 {
2300 struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
2301
2302 mutex_lock(&vdev->igate);
2303
2304 if (vdev->err_trigger)
2305 eventfd_signal(vdev->err_trigger, 1);
2306
2307 mutex_unlock(&vdev->igate);
2308
2309 return PCI_ERS_RESULT_CAN_RECOVER;
2310 }
2311 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
2312
vfio_pci_core_sriov_configure(struct vfio_pci_core_device * vdev,int nr_virtfn)2313 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
2314 int nr_virtfn)
2315 {
2316 struct pci_dev *pdev = vdev->pdev;
2317 int ret = 0;
2318
2319 device_lock_assert(&pdev->dev);
2320
2321 if (nr_virtfn) {
2322 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2323 /*
2324 * The thread that adds the vdev to the list is the only thread
2325 * that gets to call pci_enable_sriov() and we will only allow
2326 * it to be called once without going through
2327 * pci_disable_sriov()
2328 */
2329 if (!list_empty(&vdev->sriov_pfs_item)) {
2330 ret = -EINVAL;
2331 goto out_unlock;
2332 }
2333 list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
2334 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2335
2336 /*
2337 * The PF power state should always be higher than the VF power
2338 * state. The PF can be in low power state either with runtime
2339 * power management (when there is no user) or PCI_PM_CTRL
2340 * register write by the user. If PF is in the low power state,
2341 * then change the power state to D0 first before enabling
2342 * SR-IOV. Also, this function can be called at any time, and
2343 * userspace PCI_PM_CTRL write can race against this code path,
2344 * so protect the same with 'memory_lock'.
2345 */
2346 ret = pm_runtime_resume_and_get(&pdev->dev);
2347 if (ret)
2348 goto out_del;
2349
2350 down_write(&vdev->memory_lock);
2351 vfio_pci_set_power_state(vdev, PCI_D0);
2352 ret = pci_enable_sriov(pdev, nr_virtfn);
2353 up_write(&vdev->memory_lock);
2354 if (ret) {
2355 pm_runtime_put(&pdev->dev);
2356 goto out_del;
2357 }
2358 return nr_virtfn;
2359 }
2360
2361 if (pci_num_vf(pdev)) {
2362 pci_disable_sriov(pdev);
2363 pm_runtime_put(&pdev->dev);
2364 }
2365
2366 out_del:
2367 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2368 list_del_init(&vdev->sriov_pfs_item);
2369 out_unlock:
2370 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2371 return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
2374
2375 const struct pci_error_handlers vfio_pci_core_err_handlers = {
2376 .error_detected = vfio_pci_core_aer_err_detected,
2377 };
2378 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
2379
vfio_dev_in_groups(struct vfio_device * vdev,struct vfio_pci_group_info * groups)2380 static bool vfio_dev_in_groups(struct vfio_device *vdev,
2381 struct vfio_pci_group_info *groups)
2382 {
2383 unsigned int i;
2384
2385 if (!groups)
2386 return false;
2387
2388 for (i = 0; i < groups->count; i++)
2389 if (vfio_file_has_dev(groups->files[i], vdev))
2390 return true;
2391 return false;
2392 }
2393
vfio_pci_is_device_in_set(struct pci_dev * pdev,void * data)2394 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
2395 {
2396 struct vfio_device_set *dev_set = data;
2397
2398 return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV;
2399 }
2400
2401 /*
2402 * vfio-core considers a group to be viable and will create a vfio_device even
2403 * if some devices are bound to drivers like pci-stub or pcieport. Here we
2404 * require all PCI devices to be inside our dev_set since that ensures they stay
2405 * put and that every driver controlling the device can co-ordinate with the
2406 * device reset.
2407 *
2408 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
2409 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
2410 */
2411 static struct pci_dev *
vfio_pci_dev_set_resettable(struct vfio_device_set * dev_set)2412 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
2413 {
2414 struct pci_dev *pdev;
2415
2416 lockdep_assert_held(&dev_set->lock);
2417
2418 /*
2419 * By definition all PCI devices in the dev_set share the same PCI
2420 * reset, so any pci_dev will have the same outcomes for
2421 * pci_probe_reset_*() and pci_reset_bus().
2422 */
2423 pdev = list_first_entry(&dev_set->device_list,
2424 struct vfio_pci_core_device,
2425 vdev.dev_set_list)->pdev;
2426
2427 /* pci_reset_bus() is supported */
2428 if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
2429 return NULL;
2430
2431 if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
2432 dev_set,
2433 !pci_probe_reset_slot(pdev->slot)))
2434 return NULL;
2435 return pdev;
2436 }
2437
vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set * dev_set)2438 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
2439 {
2440 struct vfio_pci_core_device *cur;
2441 int ret;
2442
2443 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2444 ret = pm_runtime_resume_and_get(&cur->pdev->dev);
2445 if (ret)
2446 goto unwind;
2447 }
2448
2449 return 0;
2450
2451 unwind:
2452 list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
2453 vdev.dev_set_list)
2454 pm_runtime_put(&cur->pdev->dev);
2455
2456 return ret;
2457 }
2458
2459 /*
2460 * We need to get memory_lock for each device, but devices can share mmap_lock,
2461 * therefore we need to zap and hold the vma_lock for each device, and only then
2462 * get each memory_lock.
2463 */
vfio_pci_dev_set_hot_reset(struct vfio_device_set * dev_set,struct vfio_pci_group_info * groups,struct iommufd_ctx * iommufd_ctx)2464 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
2465 struct vfio_pci_group_info *groups,
2466 struct iommufd_ctx *iommufd_ctx)
2467 {
2468 struct vfio_pci_core_device *cur_mem;
2469 struct vfio_pci_core_device *cur_vma;
2470 struct vfio_pci_core_device *cur;
2471 struct pci_dev *pdev;
2472 bool is_mem = true;
2473 int ret;
2474
2475 mutex_lock(&dev_set->lock);
2476 cur_mem = list_first_entry(&dev_set->device_list,
2477 struct vfio_pci_core_device,
2478 vdev.dev_set_list);
2479
2480 pdev = vfio_pci_dev_set_resettable(dev_set);
2481 if (!pdev) {
2482 ret = -EINVAL;
2483 goto err_unlock;
2484 }
2485
2486 /*
2487 * Some of the devices in the dev_set can be in the runtime suspended
2488 * state. Increment the usage count for all the devices in the dev_set
2489 * before reset and decrement the same after reset.
2490 */
2491 ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
2492 if (ret)
2493 goto err_unlock;
2494
2495 list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
2496 bool owned;
2497
2498 /*
2499 * Test whether all the affected devices can be reset by the
2500 * user.
2501 *
2502 * If called from a group opened device and the user provides
2503 * a set of groups, all the devices in the dev_set should be
2504 * contained by the set of groups provided by the user.
2505 *
2506 * If called from a cdev opened device and the user provides
2507 * a zero-length array, all the devices in the dev_set must
2508 * be bound to the same iommufd_ctx as the input iommufd_ctx.
2509 * If there is any device that has not been bound to any
2510 * iommufd_ctx yet, check if its iommu_group has any device
2511 * bound to the input iommufd_ctx. Such devices can be
2512 * considered owned by the input iommufd_ctx as the device
2513 * cannot be owned by another iommufd_ctx when its iommu_group
2514 * is owned.
2515 *
2516 * Otherwise, reset is not allowed.
2517 */
2518 if (iommufd_ctx) {
2519 int devid = vfio_iommufd_get_dev_id(&cur_vma->vdev,
2520 iommufd_ctx);
2521
2522 owned = (devid > 0 || devid == -ENOENT);
2523 } else {
2524 owned = vfio_dev_in_groups(&cur_vma->vdev, groups);
2525 }
2526
2527 if (!owned) {
2528 ret = -EINVAL;
2529 goto err_undo;
2530 }
2531
2532 /*
2533 * Locking multiple devices is prone to deadlock, runaway and
2534 * unwind if we hit contention.
2535 */
2536 if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) {
2537 ret = -EBUSY;
2538 goto err_undo;
2539 }
2540 }
2541 cur_vma = NULL;
2542
2543 list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
2544 if (!down_write_trylock(&cur_mem->memory_lock)) {
2545 ret = -EBUSY;
2546 goto err_undo;
2547 }
2548 mutex_unlock(&cur_mem->vma_lock);
2549 }
2550 cur_mem = NULL;
2551
2552 /*
2553 * The pci_reset_bus() will reset all the devices in the bus.
2554 * The power state can be non-D0 for some of the devices in the bus.
2555 * For these devices, the pci_reset_bus() will internally set
2556 * the power state to D0 without vfio driver involvement.
2557 * For the devices which have NoSoftRst-, the reset function can
2558 * cause the PCI config space reset without restoring the original
2559 * state (saved locally in 'vdev->pm_save').
2560 */
2561 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2562 vfio_pci_set_power_state(cur, PCI_D0);
2563
2564 ret = pci_reset_bus(pdev);
2565
2566 err_undo:
2567 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2568 if (cur == cur_mem)
2569 is_mem = false;
2570 if (cur == cur_vma)
2571 break;
2572 if (is_mem)
2573 up_write(&cur->memory_lock);
2574 else
2575 mutex_unlock(&cur->vma_lock);
2576 }
2577
2578 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2579 pm_runtime_put(&cur->pdev->dev);
2580 err_unlock:
2581 mutex_unlock(&dev_set->lock);
2582 return ret;
2583 }
2584
vfio_pci_dev_set_needs_reset(struct vfio_device_set * dev_set)2585 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
2586 {
2587 struct vfio_pci_core_device *cur;
2588 bool needs_reset = false;
2589
2590 /* No other VFIO device in the set can be open. */
2591 if (vfio_device_set_open_count(dev_set) > 1)
2592 return false;
2593
2594 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2595 needs_reset |= cur->needs_reset;
2596 return needs_reset;
2597 }
2598
2599 /*
2600 * If a bus or slot reset is available for the provided dev_set and:
2601 * - All of the devices affected by that bus or slot reset are unused
2602 * - At least one of the affected devices is marked dirty via
2603 * needs_reset (such as by lack of FLR support)
2604 * Then attempt to perform that bus or slot reset.
2605 */
vfio_pci_dev_set_try_reset(struct vfio_device_set * dev_set)2606 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
2607 {
2608 struct vfio_pci_core_device *cur;
2609 struct pci_dev *pdev;
2610 bool reset_done = false;
2611
2612 if (!vfio_pci_dev_set_needs_reset(dev_set))
2613 return;
2614
2615 pdev = vfio_pci_dev_set_resettable(dev_set);
2616 if (!pdev)
2617 return;
2618
2619 /*
2620 * Some of the devices in the bus can be in the runtime suspended
2621 * state. Increment the usage count for all the devices in the dev_set
2622 * before reset and decrement the same after reset.
2623 */
2624 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
2625 return;
2626
2627 if (!pci_reset_bus(pdev))
2628 reset_done = true;
2629
2630 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2631 if (reset_done)
2632 cur->needs_reset = false;
2633
2634 if (!disable_idle_d3)
2635 pm_runtime_put(&cur->pdev->dev);
2636 }
2637 }
2638
vfio_pci_core_set_params(bool is_nointxmask,bool is_disable_vga,bool is_disable_idle_d3)2639 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
2640 bool is_disable_idle_d3)
2641 {
2642 nointxmask = is_nointxmask;
2643 disable_vga = is_disable_vga;
2644 disable_idle_d3 = is_disable_idle_d3;
2645 }
2646 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
2647
vfio_pci_core_cleanup(void)2648 static void vfio_pci_core_cleanup(void)
2649 {
2650 vfio_pci_uninit_perm_bits();
2651 }
2652
vfio_pci_core_init(void)2653 static int __init vfio_pci_core_init(void)
2654 {
2655 /* Allocate shared config space permission data used by all devices */
2656 return vfio_pci_init_perm_bits();
2657 }
2658
2659 module_init(vfio_pci_core_init);
2660 module_exit(vfio_pci_core_cleanup);
2661
2662 MODULE_LICENSE("GPL v2");
2663 MODULE_AUTHOR(DRIVER_AUTHOR);
2664 MODULE_DESCRIPTION(DRIVER_DESC);
2665