1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44
45 #include "vc4_drv.h"
46 #include "vc4_hdmi.h"
47 #include "vc4_regs.h"
48
49 #define HVS_FIFO_LATENCY_PIX 6
50
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
53
54 static const struct debugfs_reg32 crtc_regs[] = {
55 VC4_REG32(PV_CONTROL),
56 VC4_REG32(PV_V_CONTROL),
57 VC4_REG32(PV_VSYNCD_EVEN),
58 VC4_REG32(PV_HORZA),
59 VC4_REG32(PV_HORZB),
60 VC4_REG32(PV_VERTA),
61 VC4_REG32(PV_VERTB),
62 VC4_REG32(PV_VERTA_EVEN),
63 VC4_REG32(PV_VERTB_EVEN),
64 VC4_REG32(PV_INTEN),
65 VC4_REG32(PV_INTSTAT),
66 VC4_REG32(PV_STAT),
67 VC4_REG32(PV_HACT_ACT),
68 };
69
70 static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev * vc4,unsigned int channel)71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
72 {
73 struct vc4_hvs *hvs = vc4->hvs;
74 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
75 /* Top/base are supposed to be 4-pixel aligned, but the
76 * Raspberry Pi firmware fills the low bits (which are
77 * presumably ignored).
78 */
79 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
80 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
81
82 return top - base + 4;
83 }
84
vc4_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)85 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
86 bool in_vblank_irq,
87 int *vpos, int *hpos,
88 ktime_t *stime, ktime_t *etime,
89 const struct drm_display_mode *mode)
90 {
91 struct drm_device *dev = crtc->dev;
92 struct vc4_dev *vc4 = to_vc4_dev(dev);
93 struct vc4_hvs *hvs = vc4->hvs;
94 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
96 unsigned int cob_size;
97 u32 val;
98 int fifo_lines;
99 int vblank_lines;
100 bool ret = false;
101
102 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
103
104 /* Get optional system timestamp before query. */
105 if (stime)
106 *stime = ktime_get();
107
108 /*
109 * Read vertical scanline which is currently composed for our
110 * pixelvalve by the HVS, and also the scaler status.
111 */
112 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
113
114 /* Get optional system timestamp after query. */
115 if (etime)
116 *etime = ktime_get();
117
118 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
119
120 /* Vertical position of hvs composed scanline. */
121 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
122 *hpos = 0;
123
124 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
125 *vpos /= 2;
126
127 /* Use hpos to correct for field offset in interlaced mode. */
128 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
129 *hpos += mode->crtc_htotal / 2;
130 }
131
132 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
133 /* This is the offset we need for translating hvs -> pv scanout pos. */
134 fifo_lines = cob_size / mode->crtc_hdisplay;
135
136 if (fifo_lines > 0)
137 ret = true;
138
139 /* HVS more than fifo_lines into frame for compositing? */
140 if (*vpos > fifo_lines) {
141 /*
142 * We are in active scanout and can get some meaningful results
143 * from HVS. The actual PV scanout can not trail behind more
144 * than fifo_lines as that is the fifo's capacity. Assume that
145 * in active scanout the HVS and PV work in lockstep wrt. HVS
146 * refilling the fifo and PV consuming from the fifo, ie.
147 * whenever the PV consumes and frees up a scanline in the
148 * fifo, the HVS will immediately refill it, therefore
149 * incrementing vpos. Therefore we choose HVS read position -
150 * fifo size in scanlines as a estimate of the real scanout
151 * position of the PV.
152 */
153 *vpos -= fifo_lines + 1;
154
155 return ret;
156 }
157
158 /*
159 * Less: This happens when we are in vblank and the HVS, after getting
160 * the VSTART restart signal from the PV, just started refilling its
161 * fifo with new lines from the top-most lines of the new framebuffers.
162 * The PV does not scan out in vblank, so does not remove lines from
163 * the fifo, so the fifo will be full quickly and the HVS has to pause.
164 * We can't get meaningful readings wrt. scanline position of the PV
165 * and need to make things up in a approximative but consistent way.
166 */
167 vblank_lines = mode->vtotal - mode->vdisplay;
168
169 if (in_vblank_irq) {
170 /*
171 * Assume the irq handler got called close to first
172 * line of vblank, so PV has about a full vblank
173 * scanlines to go, and as a base timestamp use the
174 * one taken at entry into vblank irq handler, so it
175 * is not affected by random delays due to lock
176 * contention on event_lock or vblank_time lock in
177 * the core.
178 */
179 *vpos = -vblank_lines;
180
181 if (stime)
182 *stime = vc4_crtc->t_vblank;
183 if (etime)
184 *etime = vc4_crtc->t_vblank;
185
186 /*
187 * If the HVS fifo is not yet full then we know for certain
188 * we are at the very beginning of vblank, as the hvs just
189 * started refilling, and the stime and etime timestamps
190 * truly correspond to start of vblank.
191 *
192 * Unfortunately there's no way to report this to upper levels
193 * and make it more useful.
194 */
195 } else {
196 /*
197 * No clue where we are inside vblank. Return a vpos of zero,
198 * which will cause calling code to just return the etime
199 * timestamp uncorrected. At least this is no worse than the
200 * standard fallback.
201 */
202 *vpos = 0;
203 }
204
205 return ret;
206 }
207
vc4_crtc_destroy(struct drm_crtc * crtc)208 void vc4_crtc_destroy(struct drm_crtc *crtc)
209 {
210 drm_crtc_cleanup(crtc);
211 }
212
vc4_get_fifo_full_level(struct vc4_crtc * vc4_crtc,u32 format)213 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
214 {
215 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
216 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
217 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
218 u32 fifo_len_bytes = pv_data->fifo_depth;
219
220 /*
221 * Pixels are pulled from the HVS if the number of bytes is
222 * lower than the FIFO full level.
223 *
224 * The latency of the pixel fetch mechanism is 6 pixels, so we
225 * need to convert those 6 pixels in bytes, depending on the
226 * format, and then subtract that from the length of the FIFO
227 * to make sure we never end up in a situation where the FIFO
228 * is full.
229 */
230 switch (format) {
231 case PV_CONTROL_FORMAT_DSIV_16:
232 case PV_CONTROL_FORMAT_DSIC_16:
233 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
234 case PV_CONTROL_FORMAT_DSIV_18:
235 return fifo_len_bytes - 14;
236 case PV_CONTROL_FORMAT_24:
237 case PV_CONTROL_FORMAT_DSIV_24:
238 default:
239 /*
240 * For some reason, the pixelvalve4 doesn't work with
241 * the usual formula and will only work with 32.
242 */
243 if (crtc_data->hvs_output == 5)
244 return 32;
245
246 /*
247 * It looks like in some situations, we will overflow
248 * the PixelValve FIFO (with the bit 10 of PV stat being
249 * set) and stall the HVS / PV, eventually resulting in
250 * a page flip timeout.
251 *
252 * Displaying the video overlay during a playback with
253 * Kodi on an RPi3 seems to be a great solution with a
254 * failure rate around 50%.
255 *
256 * Removing 1 from the FIFO full level however
257 * seems to completely remove that issue.
258 */
259 if (!vc4->is_vc5)
260 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
261
262 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
263 }
264 }
265
vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc * vc4_crtc,u32 format)266 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
267 u32 format)
268 {
269 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
270 u32 ret = 0;
271
272 ret |= VC4_SET_FIELD((level >> 6),
273 PV5_CONTROL_FIFO_LEVEL_HIGH);
274
275 return ret | VC4_SET_FIELD(level & 0x3f,
276 PV_CONTROL_FIFO_LEVEL);
277 }
278
279 /*
280 * Returns the encoder attached to the CRTC.
281 *
282 * VC4 can only scan out to one encoder at a time, while the DRM core
283 * allows drivers to push pixels to more than one encoder from the
284 * same CRTC.
285 */
vc4_get_crtc_encoder(struct drm_crtc * crtc,struct drm_crtc_state * state)286 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
287 struct drm_crtc_state *state)
288 {
289 struct drm_encoder *encoder;
290
291 WARN_ON(hweight32(state->encoder_mask) > 1);
292
293 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
294 return encoder;
295
296 return NULL;
297 }
298
vc4_crtc_pixelvalve_reset(struct drm_crtc * crtc)299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
300 {
301 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
302
303 /* The PV needs to be disabled before it can be flushed */
304 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
306 }
307
vc4_crtc_config_pv(struct drm_crtc * crtc,struct drm_encoder * encoder,struct drm_atomic_state * state)308 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
309 struct drm_atomic_state *state)
310 {
311 struct drm_device *dev = crtc->dev;
312 struct vc4_dev *vc4 = to_vc4_dev(dev);
313 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316 struct drm_crtc_state *crtc_state = crtc->state;
317 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
318 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
320 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
321 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
322 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
323 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
324 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
325 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
326 u8 ppc = pv_data->pixels_per_clock;
327 bool debug_dump_regs = false;
328
329 if (debug_dump_regs) {
330 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
331 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
332 drm_crtc_index(crtc));
333 drm_print_regset32(&p, &vc4_crtc->regset);
334 }
335
336 vc4_crtc_pixelvalve_reset(crtc);
337
338 CRTC_WRITE(PV_HORZA,
339 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
340 PV_HORZA_HBP) |
341 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
342 PV_HORZA_HSYNC));
343
344 CRTC_WRITE(PV_HORZB,
345 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
346 PV_HORZB_HFP) |
347 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
348 PV_HORZB_HACTIVE));
349
350 CRTC_WRITE(PV_VERTA,
351 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
352 interlace,
353 PV_VERTA_VBP) |
354 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
355 PV_VERTA_VSYNC));
356 CRTC_WRITE(PV_VERTB,
357 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
358 PV_VERTB_VFP) |
359 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
360
361 if (interlace) {
362 CRTC_WRITE(PV_VERTA_EVEN,
363 VC4_SET_FIELD(mode->crtc_vtotal -
364 mode->crtc_vsync_end,
365 PV_VERTA_VBP) |
366 VC4_SET_FIELD(mode->crtc_vsync_end -
367 mode->crtc_vsync_start,
368 PV_VERTA_VSYNC));
369 CRTC_WRITE(PV_VERTB_EVEN,
370 VC4_SET_FIELD(mode->crtc_vsync_start -
371 mode->crtc_vdisplay,
372 PV_VERTB_VFP) |
373 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
374
375 /* We set up first field even mode for HDMI. VEC's
376 * NTSC mode would want first field odd instead, once
377 * we support it (to do so, set ODD_FIRST and put the
378 * delay in VSYNCD_EVEN instead).
379 */
380 CRTC_WRITE(PV_V_CONTROL,
381 PV_VCONTROL_CONTINUOUS |
382 (is_dsi ? PV_VCONTROL_DSI : 0) |
383 PV_VCONTROL_INTERLACE |
384 VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
385 PV_VCONTROL_ODD_DELAY));
386 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
387 } else {
388 CRTC_WRITE(PV_V_CONTROL,
389 PV_VCONTROL_CONTINUOUS |
390 (is_dsi ? PV_VCONTROL_DSI : 0));
391 }
392
393 if (is_dsi)
394 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
395
396 if (vc4->is_vc5)
397 CRTC_WRITE(PV_MUX_CFG,
398 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
399 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
400
401 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
402 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
403 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
404 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
405 PV_CONTROL_CLR_AT_START |
406 PV_CONTROL_TRIGGER_UNDERFLOW |
407 PV_CONTROL_WAIT_HSTART |
408 VC4_SET_FIELD(vc4_encoder->clock_select,
409 PV_CONTROL_CLK_SELECT));
410
411 if (debug_dump_regs) {
412 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
413 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
414 drm_crtc_index(crtc));
415 drm_print_regset32(&p, &vc4_crtc->regset);
416 }
417 }
418
require_hvs_enabled(struct drm_device * dev)419 static void require_hvs_enabled(struct drm_device *dev)
420 {
421 struct vc4_dev *vc4 = to_vc4_dev(dev);
422 struct vc4_hvs *hvs = vc4->hvs;
423
424 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
425 SCALER_DISPCTRL_ENABLE);
426 }
427
vc4_crtc_disable(struct drm_crtc * crtc,struct drm_encoder * encoder,struct drm_atomic_state * state,unsigned int channel)428 static int vc4_crtc_disable(struct drm_crtc *crtc,
429 struct drm_encoder *encoder,
430 struct drm_atomic_state *state,
431 unsigned int channel)
432 {
433 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
434 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
435 struct drm_device *dev = crtc->dev;
436 struct vc4_dev *vc4 = to_vc4_dev(dev);
437 int ret;
438
439 CRTC_WRITE(PV_V_CONTROL,
440 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
441 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
442 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
443
444 /*
445 * This delay is needed to avoid to get a pixel stuck in an
446 * unflushable FIFO between the pixelvalve and the HDMI
447 * controllers on the BCM2711.
448 *
449 * Timing is fairly sensitive here, so mdelay is the safest
450 * approach.
451 *
452 * If it was to be reworked, the stuck pixel happens on a
453 * BCM2711 when changing mode with a good probability, so a
454 * script that changes mode on a regular basis should trigger
455 * the bug after less than 10 attempts. It manifests itself with
456 * every pixels being shifted by one to the right, and thus the
457 * last pixel of a line actually being displayed as the first
458 * pixel on the next line.
459 */
460 mdelay(20);
461
462 if (vc4_encoder && vc4_encoder->post_crtc_disable)
463 vc4_encoder->post_crtc_disable(encoder, state);
464
465 vc4_crtc_pixelvalve_reset(crtc);
466 vc4_hvs_stop_channel(vc4->hvs, channel);
467
468 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
469 vc4_encoder->post_crtc_powerdown(encoder, state);
470
471 return 0;
472 }
473
vc4_crtc_get_encoder_by_type(struct drm_crtc * crtc,enum vc4_encoder_type type)474 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
475 enum vc4_encoder_type type)
476 {
477 struct drm_encoder *encoder;
478
479 drm_for_each_encoder(encoder, crtc->dev) {
480 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
481
482 if (vc4_encoder->type == type)
483 return encoder;
484 }
485
486 return NULL;
487 }
488
vc4_crtc_disable_at_boot(struct drm_crtc * crtc)489 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
490 {
491 struct drm_device *drm = crtc->dev;
492 struct vc4_dev *vc4 = to_vc4_dev(drm);
493 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
494 enum vc4_encoder_type encoder_type;
495 const struct vc4_pv_data *pv_data;
496 struct drm_encoder *encoder;
497 struct vc4_hdmi *vc4_hdmi;
498 unsigned encoder_sel;
499 int channel;
500 int ret;
501
502 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
503 "brcm,bcm2711-pixelvalve2") ||
504 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
505 "brcm,bcm2711-pixelvalve4")))
506 return 0;
507
508 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
509 return 0;
510
511 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
512 return 0;
513
514 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
515 if (channel < 0)
516 return 0;
517
518 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
519 if (WARN_ON(encoder_sel != 0))
520 return 0;
521
522 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
523 encoder_type = pv_data->encoder_types[encoder_sel];
524 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
525 if (WARN_ON(!encoder))
526 return 0;
527
528 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
529 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
530 if (ret)
531 return ret;
532
533 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
534 if (ret)
535 return ret;
536
537 /*
538 * post_crtc_powerdown will have called pm_runtime_put, so we
539 * don't need it here otherwise we'll get the reference counting
540 * wrong.
541 */
542
543 return 0;
544 }
545
vc4_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)546 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
547 struct drm_atomic_state *state)
548 {
549 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
550 crtc);
551 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
552 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
553 struct drm_device *dev = crtc->dev;
554
555 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
556 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
557
558 require_hvs_enabled(dev);
559
560 /* Disable vblank irq handling before crtc is disabled. */
561 drm_crtc_vblank_off(crtc);
562
563 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
564
565 /*
566 * Make sure we issue a vblank event after disabling the CRTC if
567 * someone was waiting it.
568 */
569 if (crtc->state->event) {
570 unsigned long flags;
571
572 spin_lock_irqsave(&dev->event_lock, flags);
573 drm_crtc_send_vblank_event(crtc, crtc->state->event);
574 crtc->state->event = NULL;
575 spin_unlock_irqrestore(&dev->event_lock, flags);
576 }
577 }
578
vc4_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)579 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
580 struct drm_atomic_state *state)
581 {
582 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
583 crtc);
584 struct drm_device *dev = crtc->dev;
585 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
586 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
587 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
588
589 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
590 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
591
592 require_hvs_enabled(dev);
593
594 /* Enable vblank irq handling before crtc is started otherwise
595 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
596 */
597 drm_crtc_vblank_on(crtc);
598
599 vc4_hvs_atomic_enable(crtc, state);
600
601 if (vc4_encoder->pre_crtc_configure)
602 vc4_encoder->pre_crtc_configure(encoder, state);
603
604 vc4_crtc_config_pv(crtc, encoder, state);
605
606 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
607
608 if (vc4_encoder->pre_crtc_enable)
609 vc4_encoder->pre_crtc_enable(encoder, state);
610
611 /* When feeding the transposer block the pixelvalve is unneeded and
612 * should not be enabled.
613 */
614 CRTC_WRITE(PV_V_CONTROL,
615 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
616
617 if (vc4_encoder->post_crtc_enable)
618 vc4_encoder->post_crtc_enable(encoder, state);
619 }
620
vc4_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)621 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
622 const struct drm_display_mode *mode)
623 {
624 /* Do not allow doublescan modes from user space */
625 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
626 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
627 crtc->base.id);
628 return MODE_NO_DBLESCAN;
629 }
630
631 return MODE_OK;
632 }
633
vc4_crtc_get_margins(struct drm_crtc_state * state,unsigned int * left,unsigned int * right,unsigned int * top,unsigned int * bottom)634 void vc4_crtc_get_margins(struct drm_crtc_state *state,
635 unsigned int *left, unsigned int *right,
636 unsigned int *top, unsigned int *bottom)
637 {
638 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
639 struct drm_connector_state *conn_state;
640 struct drm_connector *conn;
641 int i;
642
643 *left = vc4_state->margins.left;
644 *right = vc4_state->margins.right;
645 *top = vc4_state->margins.top;
646 *bottom = vc4_state->margins.bottom;
647
648 /* We have to interate over all new connector states because
649 * vc4_crtc_get_margins() might be called before
650 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
651 * might be outdated.
652 */
653 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
654 if (conn_state->crtc != state->crtc)
655 continue;
656
657 *left = conn_state->tv.margins.left;
658 *right = conn_state->tv.margins.right;
659 *top = conn_state->tv.margins.top;
660 *bottom = conn_state->tv.margins.bottom;
661 break;
662 }
663 }
664
vc4_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)665 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
666 struct drm_atomic_state *state)
667 {
668 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
669 crtc);
670 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
671 struct drm_connector *conn;
672 struct drm_connector_state *conn_state;
673 struct drm_encoder *encoder;
674 int ret, i;
675
676 ret = vc4_hvs_atomic_check(crtc, state);
677 if (ret)
678 return ret;
679
680 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
681 if (encoder) {
682 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
683 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
684
685 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
686 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
687 mode->clock * 9 / 10) * 1000;
688 } else {
689 vc4_state->hvs_load = mode->clock * 1000;
690 }
691 }
692
693 for_each_new_connector_in_state(state, conn, conn_state,
694 i) {
695 if (conn_state->crtc != crtc)
696 continue;
697
698 vc4_state->margins.left = conn_state->tv.margins.left;
699 vc4_state->margins.right = conn_state->tv.margins.right;
700 vc4_state->margins.top = conn_state->tv.margins.top;
701 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
702 break;
703 }
704
705 return 0;
706 }
707
vc4_enable_vblank(struct drm_crtc * crtc)708 static int vc4_enable_vblank(struct drm_crtc *crtc)
709 {
710 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
711
712 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
713
714 return 0;
715 }
716
vc4_disable_vblank(struct drm_crtc * crtc)717 static void vc4_disable_vblank(struct drm_crtc *crtc)
718 {
719 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
720
721 CRTC_WRITE(PV_INTEN, 0);
722 }
723
vc4_crtc_handle_page_flip(struct vc4_crtc * vc4_crtc)724 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
725 {
726 struct drm_crtc *crtc = &vc4_crtc->base;
727 struct drm_device *dev = crtc->dev;
728 struct vc4_dev *vc4 = to_vc4_dev(dev);
729 struct vc4_hvs *hvs = vc4->hvs;
730 u32 chan = vc4_crtc->current_hvs_channel;
731 unsigned long flags;
732
733 spin_lock_irqsave(&dev->event_lock, flags);
734 spin_lock(&vc4_crtc->irq_lock);
735 if (vc4_crtc->event &&
736 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
737 vc4_crtc->feeds_txp)) {
738 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
739 vc4_crtc->event = NULL;
740 drm_crtc_vblank_put(crtc);
741
742 /* Wait for the page flip to unmask the underrun to ensure that
743 * the display list was updated by the hardware. Before that
744 * happens, the HVS will be using the previous display list with
745 * the CRTC and encoder already reconfigured, leading to
746 * underruns. This can be seen when reconfiguring the CRTC.
747 */
748 vc4_hvs_unmask_underrun(hvs, chan);
749 }
750 spin_unlock(&vc4_crtc->irq_lock);
751 spin_unlock_irqrestore(&dev->event_lock, flags);
752 }
753
vc4_crtc_handle_vblank(struct vc4_crtc * crtc)754 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
755 {
756 crtc->t_vblank = ktime_get();
757 drm_crtc_handle_vblank(&crtc->base);
758 vc4_crtc_handle_page_flip(crtc);
759 }
760
vc4_crtc_irq_handler(int irq,void * data)761 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
762 {
763 struct vc4_crtc *vc4_crtc = data;
764 u32 stat = CRTC_READ(PV_INTSTAT);
765 irqreturn_t ret = IRQ_NONE;
766
767 if (stat & PV_INT_VFP_START) {
768 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
769 vc4_crtc_handle_vblank(vc4_crtc);
770 ret = IRQ_HANDLED;
771 }
772
773 return ret;
774 }
775
776 struct vc4_async_flip_state {
777 struct drm_crtc *crtc;
778 struct drm_framebuffer *fb;
779 struct drm_framebuffer *old_fb;
780 struct drm_pending_vblank_event *event;
781
782 union {
783 struct dma_fence_cb fence;
784 struct vc4_seqno_cb seqno;
785 } cb;
786 };
787
788 /* Called when the V3D execution for the BO being flipped to is done, so that
789 * we can actually update the plane's address to point to it.
790 */
791 static void
vc4_async_page_flip_complete(struct vc4_async_flip_state * flip_state)792 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
793 {
794 struct drm_crtc *crtc = flip_state->crtc;
795 struct drm_device *dev = crtc->dev;
796 struct drm_plane *plane = crtc->primary;
797
798 vc4_plane_async_set_fb(plane, flip_state->fb);
799 if (flip_state->event) {
800 unsigned long flags;
801
802 spin_lock_irqsave(&dev->event_lock, flags);
803 drm_crtc_send_vblank_event(crtc, flip_state->event);
804 spin_unlock_irqrestore(&dev->event_lock, flags);
805 }
806
807 drm_crtc_vblank_put(crtc);
808 drm_framebuffer_put(flip_state->fb);
809
810 if (flip_state->old_fb)
811 drm_framebuffer_put(flip_state->old_fb);
812
813 kfree(flip_state);
814 }
815
vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb * cb)816 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
817 {
818 struct vc4_async_flip_state *flip_state =
819 container_of(cb, struct vc4_async_flip_state, cb.seqno);
820 struct vc4_bo *bo = NULL;
821
822 if (flip_state->old_fb) {
823 struct drm_gem_cma_object *cma_bo =
824 drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
825 bo = to_vc4_bo(&cma_bo->base);
826 }
827
828 vc4_async_page_flip_complete(flip_state);
829
830 /*
831 * Decrement the BO usecnt in order to keep the inc/dec
832 * calls balanced when the planes are updated through
833 * the async update path.
834 *
835 * FIXME: we should move to generic async-page-flip when
836 * it's available, so that we can get rid of this
837 * hand-made cleanup_fb() logic.
838 */
839 if (bo)
840 vc4_bo_dec_usecnt(bo);
841 }
842
vc4_async_page_flip_fence_complete(struct dma_fence * fence,struct dma_fence_cb * cb)843 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
844 struct dma_fence_cb *cb)
845 {
846 struct vc4_async_flip_state *flip_state =
847 container_of(cb, struct vc4_async_flip_state, cb.fence);
848
849 vc4_async_page_flip_complete(flip_state);
850 dma_fence_put(fence);
851 }
852
vc4_async_set_fence_cb(struct drm_device * dev,struct vc4_async_flip_state * flip_state)853 static int vc4_async_set_fence_cb(struct drm_device *dev,
854 struct vc4_async_flip_state *flip_state)
855 {
856 struct drm_framebuffer *fb = flip_state->fb;
857 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
858 struct vc4_dev *vc4 = to_vc4_dev(dev);
859 struct dma_fence *fence;
860 int ret;
861
862 if (!vc4->is_vc5) {
863 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
864
865 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
866 vc4_async_page_flip_seqno_complete);
867 }
868
869 ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
870 if (ret)
871 return ret;
872
873 /* If there's no fence, complete the page flip immediately */
874 if (!fence) {
875 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
876 return 0;
877 }
878
879 /* If the fence has already been completed, complete the page flip */
880 if (dma_fence_add_callback(fence, &flip_state->cb.fence,
881 vc4_async_page_flip_fence_complete))
882 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
883
884 return 0;
885 }
886
887 static int
vc4_async_page_flip_common(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)888 vc4_async_page_flip_common(struct drm_crtc *crtc,
889 struct drm_framebuffer *fb,
890 struct drm_pending_vblank_event *event,
891 uint32_t flags)
892 {
893 struct drm_device *dev = crtc->dev;
894 struct drm_plane *plane = crtc->primary;
895 struct vc4_async_flip_state *flip_state;
896
897 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
898 if (!flip_state)
899 return -ENOMEM;
900
901 drm_framebuffer_get(fb);
902 flip_state->fb = fb;
903 flip_state->crtc = crtc;
904 flip_state->event = event;
905
906 /* Save the current FB before it's replaced by the new one in
907 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
908 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
909 * it consistent.
910 * FIXME: we should move to generic async-page-flip when it's
911 * available, so that we can get rid of this hand-made cleanup_fb()
912 * logic.
913 */
914 flip_state->old_fb = plane->state->fb;
915 if (flip_state->old_fb)
916 drm_framebuffer_get(flip_state->old_fb);
917
918 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
919
920 /* Immediately update the plane's legacy fb pointer, so that later
921 * modeset prep sees the state that will be present when the semaphore
922 * is released.
923 */
924 drm_atomic_set_fb_for_plane(plane->state, fb);
925
926 vc4_async_set_fence_cb(dev, flip_state);
927
928 /* Driver takes ownership of state on successful async commit. */
929 return 0;
930 }
931
932 /* Implements async (non-vblank-synced) page flips.
933 *
934 * The page flip ioctl needs to return immediately, so we grab the
935 * modeset semaphore on the pipe, and queue the address update for
936 * when V3D is done with the BO being flipped to.
937 */
vc4_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)938 static int vc4_async_page_flip(struct drm_crtc *crtc,
939 struct drm_framebuffer *fb,
940 struct drm_pending_vblank_event *event,
941 uint32_t flags)
942 {
943 struct drm_device *dev = crtc->dev;
944 struct vc4_dev *vc4 = to_vc4_dev(dev);
945 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
946 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
947 int ret;
948
949 if (WARN_ON_ONCE(vc4->is_vc5))
950 return -ENODEV;
951
952 /*
953 * Increment the BO usecnt here, so that we never end up with an
954 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
955 * plane is later updated through the non-async path.
956 *
957 * FIXME: we should move to generic async-page-flip when
958 * it's available, so that we can get rid of this
959 * hand-made prepare_fb() logic.
960 */
961 ret = vc4_bo_inc_usecnt(bo);
962 if (ret)
963 return ret;
964
965 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
966 if (ret) {
967 vc4_bo_dec_usecnt(bo);
968 return ret;
969 }
970
971 return 0;
972 }
973
vc5_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)974 static int vc5_async_page_flip(struct drm_crtc *crtc,
975 struct drm_framebuffer *fb,
976 struct drm_pending_vblank_event *event,
977 uint32_t flags)
978 {
979 return vc4_async_page_flip_common(crtc, fb, event, flags);
980 }
981
vc4_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags,struct drm_modeset_acquire_ctx * ctx)982 int vc4_page_flip(struct drm_crtc *crtc,
983 struct drm_framebuffer *fb,
984 struct drm_pending_vblank_event *event,
985 uint32_t flags,
986 struct drm_modeset_acquire_ctx *ctx)
987 {
988 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
989 struct drm_device *dev = crtc->dev;
990 struct vc4_dev *vc4 = to_vc4_dev(dev);
991
992 if (vc4->is_vc5)
993 return vc5_async_page_flip(crtc, fb, event, flags);
994 else
995 return vc4_async_page_flip(crtc, fb, event, flags);
996 } else {
997 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
998 }
999 }
1000
vc4_crtc_duplicate_state(struct drm_crtc * crtc)1001 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1002 {
1003 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1004
1005 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1006 if (!vc4_state)
1007 return NULL;
1008
1009 old_vc4_state = to_vc4_crtc_state(crtc->state);
1010 vc4_state->margins = old_vc4_state->margins;
1011 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1012
1013 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1014 return &vc4_state->base;
1015 }
1016
vc4_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)1017 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1018 struct drm_crtc_state *state)
1019 {
1020 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1021 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1022
1023 if (drm_mm_node_allocated(&vc4_state->mm)) {
1024 unsigned long flags;
1025
1026 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1027 drm_mm_remove_node(&vc4_state->mm);
1028 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1029
1030 }
1031
1032 drm_atomic_helper_crtc_destroy_state(crtc, state);
1033 }
1034
vc4_crtc_reset(struct drm_crtc * crtc)1035 void vc4_crtc_reset(struct drm_crtc *crtc)
1036 {
1037 struct vc4_crtc_state *vc4_crtc_state;
1038
1039 if (crtc->state)
1040 vc4_crtc_destroy_state(crtc, crtc->state);
1041
1042 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1043 if (!vc4_crtc_state) {
1044 crtc->state = NULL;
1045 return;
1046 }
1047
1048 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1049 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1050 }
1051
1052 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1053 .set_config = drm_atomic_helper_set_config,
1054 .destroy = vc4_crtc_destroy,
1055 .page_flip = vc4_page_flip,
1056 .set_property = NULL,
1057 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1058 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1059 .reset = vc4_crtc_reset,
1060 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1061 .atomic_destroy_state = vc4_crtc_destroy_state,
1062 .enable_vblank = vc4_enable_vblank,
1063 .disable_vblank = vc4_disable_vblank,
1064 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1065 };
1066
1067 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1068 .mode_valid = vc4_crtc_mode_valid,
1069 .atomic_check = vc4_crtc_atomic_check,
1070 .atomic_begin = vc4_hvs_atomic_begin,
1071 .atomic_flush = vc4_hvs_atomic_flush,
1072 .atomic_enable = vc4_crtc_atomic_enable,
1073 .atomic_disable = vc4_crtc_atomic_disable,
1074 .get_scanout_position = vc4_crtc_get_scanout_position,
1075 };
1076
1077 static const struct vc4_pv_data bcm2835_pv0_data = {
1078 .base = {
1079 .hvs_available_channels = BIT(0),
1080 .hvs_output = 0,
1081 },
1082 .debugfs_name = "crtc0_regs",
1083 .fifo_depth = 64,
1084 .pixels_per_clock = 1,
1085 .encoder_types = {
1086 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1087 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1088 },
1089 };
1090
1091 static const struct vc4_pv_data bcm2835_pv1_data = {
1092 .base = {
1093 .hvs_available_channels = BIT(2),
1094 .hvs_output = 2,
1095 },
1096 .debugfs_name = "crtc1_regs",
1097 .fifo_depth = 64,
1098 .pixels_per_clock = 1,
1099 .encoder_types = {
1100 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1101 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1102 },
1103 };
1104
1105 static const struct vc4_pv_data bcm2835_pv2_data = {
1106 .base = {
1107 .hvs_available_channels = BIT(1),
1108 .hvs_output = 1,
1109 },
1110 .debugfs_name = "crtc2_regs",
1111 .fifo_depth = 64,
1112 .pixels_per_clock = 1,
1113 .encoder_types = {
1114 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1115 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1116 },
1117 };
1118
1119 static const struct vc4_pv_data bcm2711_pv0_data = {
1120 .base = {
1121 .hvs_available_channels = BIT(0),
1122 .hvs_output = 0,
1123 },
1124 .debugfs_name = "crtc0_regs",
1125 .fifo_depth = 64,
1126 .pixels_per_clock = 1,
1127 .encoder_types = {
1128 [0] = VC4_ENCODER_TYPE_DSI0,
1129 [1] = VC4_ENCODER_TYPE_DPI,
1130 },
1131 };
1132
1133 static const struct vc4_pv_data bcm2711_pv1_data = {
1134 .base = {
1135 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1136 .hvs_output = 3,
1137 },
1138 .debugfs_name = "crtc1_regs",
1139 .fifo_depth = 64,
1140 .pixels_per_clock = 1,
1141 .encoder_types = {
1142 [0] = VC4_ENCODER_TYPE_DSI1,
1143 [1] = VC4_ENCODER_TYPE_SMI,
1144 },
1145 };
1146
1147 static const struct vc4_pv_data bcm2711_pv2_data = {
1148 .base = {
1149 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1150 .hvs_output = 4,
1151 },
1152 .debugfs_name = "crtc2_regs",
1153 .fifo_depth = 256,
1154 .pixels_per_clock = 2,
1155 .encoder_types = {
1156 [0] = VC4_ENCODER_TYPE_HDMI0,
1157 },
1158 };
1159
1160 static const struct vc4_pv_data bcm2711_pv3_data = {
1161 .base = {
1162 .hvs_available_channels = BIT(1),
1163 .hvs_output = 1,
1164 },
1165 .debugfs_name = "crtc3_regs",
1166 .fifo_depth = 64,
1167 .pixels_per_clock = 1,
1168 .encoder_types = {
1169 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1170 },
1171 };
1172
1173 static const struct vc4_pv_data bcm2711_pv4_data = {
1174 .base = {
1175 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1176 .hvs_output = 5,
1177 },
1178 .debugfs_name = "crtc4_regs",
1179 .fifo_depth = 64,
1180 .pixels_per_clock = 2,
1181 .encoder_types = {
1182 [0] = VC4_ENCODER_TYPE_HDMI1,
1183 },
1184 };
1185
1186 static const struct of_device_id vc4_crtc_dt_match[] = {
1187 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1188 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1189 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1190 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1191 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1192 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1193 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1194 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1195 {}
1196 };
1197
vc4_set_crtc_possible_masks(struct drm_device * drm,struct drm_crtc * crtc)1198 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1199 struct drm_crtc *crtc)
1200 {
1201 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1202 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1203 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1204 struct drm_encoder *encoder;
1205
1206 drm_for_each_encoder(encoder, drm) {
1207 struct vc4_encoder *vc4_encoder;
1208 int i;
1209
1210 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1211 continue;
1212
1213 vc4_encoder = to_vc4_encoder(encoder);
1214 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1215 if (vc4_encoder->type == encoder_types[i]) {
1216 vc4_encoder->clock_select = i;
1217 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1218 break;
1219 }
1220 }
1221 }
1222 }
1223
vc4_crtc_init(struct drm_device * drm,struct vc4_crtc * vc4_crtc,const struct drm_crtc_funcs * crtc_funcs,const struct drm_crtc_helper_funcs * crtc_helper_funcs)1224 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1225 const struct drm_crtc_funcs *crtc_funcs,
1226 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1227 {
1228 struct vc4_dev *vc4 = to_vc4_dev(drm);
1229 struct drm_crtc *crtc = &vc4_crtc->base;
1230 struct drm_plane *primary_plane;
1231 unsigned int i;
1232
1233 /* For now, we create just the primary and the legacy cursor
1234 * planes. We should be able to stack more planes on easily,
1235 * but to do that we would need to compute the bandwidth
1236 * requirement of the plane configuration, and reject ones
1237 * that will take too much.
1238 */
1239 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1240 if (IS_ERR(primary_plane)) {
1241 dev_err(drm->dev, "failed to construct primary plane\n");
1242 return PTR_ERR(primary_plane);
1243 }
1244
1245 spin_lock_init(&vc4_crtc->irq_lock);
1246 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1247 crtc_funcs, NULL);
1248 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1249
1250 if (!vc4->is_vc5) {
1251 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1252
1253 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1254
1255 /* We support CTM, but only for one CRTC at a time. It's therefore
1256 * implemented as private driver state in vc4_kms, not here.
1257 */
1258 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1259 }
1260
1261 for (i = 0; i < crtc->gamma_size; i++) {
1262 vc4_crtc->lut_r[i] = i;
1263 vc4_crtc->lut_g[i] = i;
1264 vc4_crtc->lut_b[i] = i;
1265 }
1266
1267 return 0;
1268 }
1269
vc4_crtc_bind(struct device * dev,struct device * master,void * data)1270 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1271 {
1272 struct platform_device *pdev = to_platform_device(dev);
1273 struct drm_device *drm = dev_get_drvdata(master);
1274 const struct vc4_pv_data *pv_data;
1275 struct vc4_crtc *vc4_crtc;
1276 struct drm_crtc *crtc;
1277 struct drm_plane *destroy_plane, *temp;
1278 int ret;
1279
1280 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1281 if (!vc4_crtc)
1282 return -ENOMEM;
1283 crtc = &vc4_crtc->base;
1284
1285 pv_data = of_device_get_match_data(dev);
1286 if (!pv_data)
1287 return -ENODEV;
1288 vc4_crtc->data = &pv_data->base;
1289 vc4_crtc->pdev = pdev;
1290
1291 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1292 if (IS_ERR(vc4_crtc->regs))
1293 return PTR_ERR(vc4_crtc->regs);
1294
1295 vc4_crtc->regset.base = vc4_crtc->regs;
1296 vc4_crtc->regset.regs = crtc_regs;
1297 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1298
1299 ret = vc4_crtc_init(drm, vc4_crtc,
1300 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1301 if (ret)
1302 return ret;
1303 vc4_set_crtc_possible_masks(drm, crtc);
1304
1305 CRTC_WRITE(PV_INTEN, 0);
1306 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1307 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1308 vc4_crtc_irq_handler,
1309 IRQF_SHARED,
1310 "vc4 crtc", vc4_crtc);
1311 if (ret)
1312 goto err_destroy_planes;
1313
1314 platform_set_drvdata(pdev, vc4_crtc);
1315
1316 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1317 &vc4_crtc->regset);
1318
1319 return 0;
1320
1321 err_destroy_planes:
1322 list_for_each_entry_safe(destroy_plane, temp,
1323 &drm->mode_config.plane_list, head) {
1324 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1325 destroy_plane->funcs->destroy(destroy_plane);
1326 }
1327
1328 return ret;
1329 }
1330
vc4_crtc_unbind(struct device * dev,struct device * master,void * data)1331 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1332 void *data)
1333 {
1334 struct platform_device *pdev = to_platform_device(dev);
1335 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1336
1337 vc4_crtc_destroy(&vc4_crtc->base);
1338
1339 CRTC_WRITE(PV_INTEN, 0);
1340
1341 platform_set_drvdata(pdev, NULL);
1342 }
1343
1344 static const struct component_ops vc4_crtc_ops = {
1345 .bind = vc4_crtc_bind,
1346 .unbind = vc4_crtc_unbind,
1347 };
1348
vc4_crtc_dev_probe(struct platform_device * pdev)1349 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1350 {
1351 return component_add(&pdev->dev, &vc4_crtc_ops);
1352 }
1353
vc4_crtc_dev_remove(struct platform_device * pdev)1354 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1355 {
1356 component_del(&pdev->dev, &vc4_crtc_ops);
1357 return 0;
1358 }
1359
1360 struct platform_driver vc4_crtc_driver = {
1361 .probe = vc4_crtc_dev_probe,
1362 .remove = vc4_crtc_dev_remove,
1363 .driver = {
1364 .name = "vc4_crtc",
1365 .of_match_table = vc4_crtc_dt_match,
1366 },
1367 };
1368