1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include "vc4_drv.h"
46 #include "vc4_hdmi.h"
47 #include "vc4_regs.h"
48 
49 #define HVS_FIFO_LATENCY_PIX	6
50 
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
53 
54 static const struct debugfs_reg32 crtc_regs[] = {
55 	VC4_REG32(PV_CONTROL),
56 	VC4_REG32(PV_V_CONTROL),
57 	VC4_REG32(PV_VSYNCD_EVEN),
58 	VC4_REG32(PV_HORZA),
59 	VC4_REG32(PV_HORZB),
60 	VC4_REG32(PV_VERTA),
61 	VC4_REG32(PV_VERTB),
62 	VC4_REG32(PV_VERTA_EVEN),
63 	VC4_REG32(PV_VERTB_EVEN),
64 	VC4_REG32(PV_INTEN),
65 	VC4_REG32(PV_INTSTAT),
66 	VC4_REG32(PV_STAT),
67 	VC4_REG32(PV_HACT_ACT),
68 };
69 
70 static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev * vc4,unsigned int channel)71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
72 {
73 	struct vc4_hvs *hvs = vc4->hvs;
74 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
75 	/* Top/base are supposed to be 4-pixel aligned, but the
76 	 * Raspberry Pi firmware fills the low bits (which are
77 	 * presumably ignored).
78 	 */
79 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
80 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
81 
82 	return top - base + 4;
83 }
84 
vc4_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)85 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
86 					  bool in_vblank_irq,
87 					  int *vpos, int *hpos,
88 					  ktime_t *stime, ktime_t *etime,
89 					  const struct drm_display_mode *mode)
90 {
91 	struct drm_device *dev = crtc->dev;
92 	struct vc4_dev *vc4 = to_vc4_dev(dev);
93 	struct vc4_hvs *hvs = vc4->hvs;
94 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
96 	unsigned int cob_size;
97 	u32 val;
98 	int fifo_lines;
99 	int vblank_lines;
100 	bool ret = false;
101 
102 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
103 
104 	/* Get optional system timestamp before query. */
105 	if (stime)
106 		*stime = ktime_get();
107 
108 	/*
109 	 * Read vertical scanline which is currently composed for our
110 	 * pixelvalve by the HVS, and also the scaler status.
111 	 */
112 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
113 
114 	/* Get optional system timestamp after query. */
115 	if (etime)
116 		*etime = ktime_get();
117 
118 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
119 
120 	/* Vertical position of hvs composed scanline. */
121 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
122 	*hpos = 0;
123 
124 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
125 		*vpos /= 2;
126 
127 		/* Use hpos to correct for field offset in interlaced mode. */
128 		if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
129 			*hpos += mode->crtc_htotal / 2;
130 	}
131 
132 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
133 	/* This is the offset we need for translating hvs -> pv scanout pos. */
134 	fifo_lines = cob_size / mode->crtc_hdisplay;
135 
136 	if (fifo_lines > 0)
137 		ret = true;
138 
139 	/* HVS more than fifo_lines into frame for compositing? */
140 	if (*vpos > fifo_lines) {
141 		/*
142 		 * We are in active scanout and can get some meaningful results
143 		 * from HVS. The actual PV scanout can not trail behind more
144 		 * than fifo_lines as that is the fifo's capacity. Assume that
145 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
146 		 * refilling the fifo and PV consuming from the fifo, ie.
147 		 * whenever the PV consumes and frees up a scanline in the
148 		 * fifo, the HVS will immediately refill it, therefore
149 		 * incrementing vpos. Therefore we choose HVS read position -
150 		 * fifo size in scanlines as a estimate of the real scanout
151 		 * position of the PV.
152 		 */
153 		*vpos -= fifo_lines + 1;
154 
155 		return ret;
156 	}
157 
158 	/*
159 	 * Less: This happens when we are in vblank and the HVS, after getting
160 	 * the VSTART restart signal from the PV, just started refilling its
161 	 * fifo with new lines from the top-most lines of the new framebuffers.
162 	 * The PV does not scan out in vblank, so does not remove lines from
163 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
164 	 * We can't get meaningful readings wrt. scanline position of the PV
165 	 * and need to make things up in a approximative but consistent way.
166 	 */
167 	vblank_lines = mode->vtotal - mode->vdisplay;
168 
169 	if (in_vblank_irq) {
170 		/*
171 		 * Assume the irq handler got called close to first
172 		 * line of vblank, so PV has about a full vblank
173 		 * scanlines to go, and as a base timestamp use the
174 		 * one taken at entry into vblank irq handler, so it
175 		 * is not affected by random delays due to lock
176 		 * contention on event_lock or vblank_time lock in
177 		 * the core.
178 		 */
179 		*vpos = -vblank_lines;
180 
181 		if (stime)
182 			*stime = vc4_crtc->t_vblank;
183 		if (etime)
184 			*etime = vc4_crtc->t_vblank;
185 
186 		/*
187 		 * If the HVS fifo is not yet full then we know for certain
188 		 * we are at the very beginning of vblank, as the hvs just
189 		 * started refilling, and the stime and etime timestamps
190 		 * truly correspond to start of vblank.
191 		 *
192 		 * Unfortunately there's no way to report this to upper levels
193 		 * and make it more useful.
194 		 */
195 	} else {
196 		/*
197 		 * No clue where we are inside vblank. Return a vpos of zero,
198 		 * which will cause calling code to just return the etime
199 		 * timestamp uncorrected. At least this is no worse than the
200 		 * standard fallback.
201 		 */
202 		*vpos = 0;
203 	}
204 
205 	return ret;
206 }
207 
vc4_crtc_destroy(struct drm_crtc * crtc)208 void vc4_crtc_destroy(struct drm_crtc *crtc)
209 {
210 	drm_crtc_cleanup(crtc);
211 }
212 
vc4_get_fifo_full_level(struct vc4_crtc * vc4_crtc,u32 format)213 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
214 {
215 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
216 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
217 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
218 	u32 fifo_len_bytes = pv_data->fifo_depth;
219 
220 	/*
221 	 * Pixels are pulled from the HVS if the number of bytes is
222 	 * lower than the FIFO full level.
223 	 *
224 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
225 	 * need to convert those 6 pixels in bytes, depending on the
226 	 * format, and then subtract that from the length of the FIFO
227 	 * to make sure we never end up in a situation where the FIFO
228 	 * is full.
229 	 */
230 	switch (format) {
231 	case PV_CONTROL_FORMAT_DSIV_16:
232 	case PV_CONTROL_FORMAT_DSIC_16:
233 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
234 	case PV_CONTROL_FORMAT_DSIV_18:
235 		return fifo_len_bytes - 14;
236 	case PV_CONTROL_FORMAT_24:
237 	case PV_CONTROL_FORMAT_DSIV_24:
238 	default:
239 		/*
240 		 * For some reason, the pixelvalve4 doesn't work with
241 		 * the usual formula and will only work with 32.
242 		 */
243 		if (crtc_data->hvs_output == 5)
244 			return 32;
245 
246 		/*
247 		 * It looks like in some situations, we will overflow
248 		 * the PixelValve FIFO (with the bit 10 of PV stat being
249 		 * set) and stall the HVS / PV, eventually resulting in
250 		 * a page flip timeout.
251 		 *
252 		 * Displaying the video overlay during a playback with
253 		 * Kodi on an RPi3 seems to be a great solution with a
254 		 * failure rate around 50%.
255 		 *
256 		 * Removing 1 from the FIFO full level however
257 		 * seems to completely remove that issue.
258 		 */
259 		if (!vc4->is_vc5)
260 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
261 
262 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
263 	}
264 }
265 
vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc * vc4_crtc,u32 format)266 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
267 					     u32 format)
268 {
269 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
270 	u32 ret = 0;
271 
272 	ret |= VC4_SET_FIELD((level >> 6),
273 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
274 
275 	return ret | VC4_SET_FIELD(level & 0x3f,
276 				   PV_CONTROL_FIFO_LEVEL);
277 }
278 
279 /*
280  * Returns the encoder attached to the CRTC.
281  *
282  * VC4 can only scan out to one encoder at a time, while the DRM core
283  * allows drivers to push pixels to more than one encoder from the
284  * same CRTC.
285  */
vc4_get_crtc_encoder(struct drm_crtc * crtc,struct drm_crtc_state * state)286 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
287 					 struct drm_crtc_state *state)
288 {
289 	struct drm_encoder *encoder;
290 
291 	WARN_ON(hweight32(state->encoder_mask) > 1);
292 
293 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
294 		return encoder;
295 
296 	return NULL;
297 }
298 
vc4_crtc_pixelvalve_reset(struct drm_crtc * crtc)299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
300 {
301 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
302 
303 	/* The PV needs to be disabled before it can be flushed */
304 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
306 }
307 
vc4_crtc_config_pv(struct drm_crtc * crtc,struct drm_encoder * encoder,struct drm_atomic_state * state)308 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
309 			       struct drm_atomic_state *state)
310 {
311 	struct drm_device *dev = crtc->dev;
312 	struct vc4_dev *vc4 = to_vc4_dev(dev);
313 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316 	struct drm_crtc_state *crtc_state = crtc->state;
317 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
318 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319 	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
320 		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
321 	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
322 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
323 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
324 	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
325 	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
326 	u8 ppc = pv_data->pixels_per_clock;
327 	bool debug_dump_regs = false;
328 
329 	if (debug_dump_regs) {
330 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
331 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
332 			 drm_crtc_index(crtc));
333 		drm_print_regset32(&p, &vc4_crtc->regset);
334 	}
335 
336 	vc4_crtc_pixelvalve_reset(crtc);
337 
338 	CRTC_WRITE(PV_HORZA,
339 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
340 				 PV_HORZA_HBP) |
341 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
342 				 PV_HORZA_HSYNC));
343 
344 	CRTC_WRITE(PV_HORZB,
345 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
346 				 PV_HORZB_HFP) |
347 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
348 				 PV_HORZB_HACTIVE));
349 
350 	CRTC_WRITE(PV_VERTA,
351 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
352 				 interlace,
353 				 PV_VERTA_VBP) |
354 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
355 				 PV_VERTA_VSYNC));
356 	CRTC_WRITE(PV_VERTB,
357 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
358 				 PV_VERTB_VFP) |
359 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
360 
361 	if (interlace) {
362 		CRTC_WRITE(PV_VERTA_EVEN,
363 			   VC4_SET_FIELD(mode->crtc_vtotal -
364 					 mode->crtc_vsync_end,
365 					 PV_VERTA_VBP) |
366 			   VC4_SET_FIELD(mode->crtc_vsync_end -
367 					 mode->crtc_vsync_start,
368 					 PV_VERTA_VSYNC));
369 		CRTC_WRITE(PV_VERTB_EVEN,
370 			   VC4_SET_FIELD(mode->crtc_vsync_start -
371 					 mode->crtc_vdisplay,
372 					 PV_VERTB_VFP) |
373 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
374 
375 		/* We set up first field even mode for HDMI.  VEC's
376 		 * NTSC mode would want first field odd instead, once
377 		 * we support it (to do so, set ODD_FIRST and put the
378 		 * delay in VSYNCD_EVEN instead).
379 		 */
380 		CRTC_WRITE(PV_V_CONTROL,
381 			   PV_VCONTROL_CONTINUOUS |
382 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
383 			   PV_VCONTROL_INTERLACE |
384 			   VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
385 					 PV_VCONTROL_ODD_DELAY));
386 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
387 	} else {
388 		CRTC_WRITE(PV_V_CONTROL,
389 			   PV_VCONTROL_CONTINUOUS |
390 			   (is_dsi ? PV_VCONTROL_DSI : 0));
391 	}
392 
393 	if (is_dsi)
394 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
395 
396 	if (vc4->is_vc5)
397 		CRTC_WRITE(PV_MUX_CFG,
398 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
399 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
400 
401 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
402 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
403 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
404 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
405 		   PV_CONTROL_CLR_AT_START |
406 		   PV_CONTROL_TRIGGER_UNDERFLOW |
407 		   PV_CONTROL_WAIT_HSTART |
408 		   VC4_SET_FIELD(vc4_encoder->clock_select,
409 				 PV_CONTROL_CLK_SELECT));
410 
411 	if (debug_dump_regs) {
412 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
413 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
414 			 drm_crtc_index(crtc));
415 		drm_print_regset32(&p, &vc4_crtc->regset);
416 	}
417 }
418 
require_hvs_enabled(struct drm_device * dev)419 static void require_hvs_enabled(struct drm_device *dev)
420 {
421 	struct vc4_dev *vc4 = to_vc4_dev(dev);
422 	struct vc4_hvs *hvs = vc4->hvs;
423 
424 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
425 		     SCALER_DISPCTRL_ENABLE);
426 }
427 
vc4_crtc_disable(struct drm_crtc * crtc,struct drm_encoder * encoder,struct drm_atomic_state * state,unsigned int channel)428 static int vc4_crtc_disable(struct drm_crtc *crtc,
429 			    struct drm_encoder *encoder,
430 			    struct drm_atomic_state *state,
431 			    unsigned int channel)
432 {
433 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
434 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
435 	struct drm_device *dev = crtc->dev;
436 	struct vc4_dev *vc4 = to_vc4_dev(dev);
437 	int ret;
438 
439 	CRTC_WRITE(PV_V_CONTROL,
440 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
441 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
442 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
443 
444 	/*
445 	 * This delay is needed to avoid to get a pixel stuck in an
446 	 * unflushable FIFO between the pixelvalve and the HDMI
447 	 * controllers on the BCM2711.
448 	 *
449 	 * Timing is fairly sensitive here, so mdelay is the safest
450 	 * approach.
451 	 *
452 	 * If it was to be reworked, the stuck pixel happens on a
453 	 * BCM2711 when changing mode with a good probability, so a
454 	 * script that changes mode on a regular basis should trigger
455 	 * the bug after less than 10 attempts. It manifests itself with
456 	 * every pixels being shifted by one to the right, and thus the
457 	 * last pixel of a line actually being displayed as the first
458 	 * pixel on the next line.
459 	 */
460 	mdelay(20);
461 
462 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
463 		vc4_encoder->post_crtc_disable(encoder, state);
464 
465 	vc4_crtc_pixelvalve_reset(crtc);
466 	vc4_hvs_stop_channel(vc4->hvs, channel);
467 
468 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
469 		vc4_encoder->post_crtc_powerdown(encoder, state);
470 
471 	return 0;
472 }
473 
vc4_crtc_get_encoder_by_type(struct drm_crtc * crtc,enum vc4_encoder_type type)474 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
475 							enum vc4_encoder_type type)
476 {
477 	struct drm_encoder *encoder;
478 
479 	drm_for_each_encoder(encoder, crtc->dev) {
480 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
481 
482 		if (vc4_encoder->type == type)
483 			return encoder;
484 	}
485 
486 	return NULL;
487 }
488 
vc4_crtc_disable_at_boot(struct drm_crtc * crtc)489 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
490 {
491 	struct drm_device *drm = crtc->dev;
492 	struct vc4_dev *vc4 = to_vc4_dev(drm);
493 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
494 	enum vc4_encoder_type encoder_type;
495 	const struct vc4_pv_data *pv_data;
496 	struct drm_encoder *encoder;
497 	struct vc4_hdmi *vc4_hdmi;
498 	unsigned encoder_sel;
499 	int channel;
500 	int ret;
501 
502 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
503 				      "brcm,bcm2711-pixelvalve2") ||
504 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
505 				      "brcm,bcm2711-pixelvalve4")))
506 		return 0;
507 
508 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
509 		return 0;
510 
511 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
512 		return 0;
513 
514 	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
515 	if (channel < 0)
516 		return 0;
517 
518 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
519 	if (WARN_ON(encoder_sel != 0))
520 		return 0;
521 
522 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
523 	encoder_type = pv_data->encoder_types[encoder_sel];
524 	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
525 	if (WARN_ON(!encoder))
526 		return 0;
527 
528 	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
529 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
530 	if (ret)
531 		return ret;
532 
533 	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
534 	if (ret)
535 		return ret;
536 
537 	/*
538 	 * post_crtc_powerdown will have called pm_runtime_put, so we
539 	 * don't need it here otherwise we'll get the reference counting
540 	 * wrong.
541 	 */
542 
543 	return 0;
544 }
545 
vc4_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)546 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
547 				    struct drm_atomic_state *state)
548 {
549 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
550 									 crtc);
551 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
552 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
553 	struct drm_device *dev = crtc->dev;
554 
555 	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
556 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
557 
558 	require_hvs_enabled(dev);
559 
560 	/* Disable vblank irq handling before crtc is disabled. */
561 	drm_crtc_vblank_off(crtc);
562 
563 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
564 
565 	/*
566 	 * Make sure we issue a vblank event after disabling the CRTC if
567 	 * someone was waiting it.
568 	 */
569 	if (crtc->state->event) {
570 		unsigned long flags;
571 
572 		spin_lock_irqsave(&dev->event_lock, flags);
573 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
574 		crtc->state->event = NULL;
575 		spin_unlock_irqrestore(&dev->event_lock, flags);
576 	}
577 }
578 
vc4_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)579 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
580 				   struct drm_atomic_state *state)
581 {
582 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
583 									 crtc);
584 	struct drm_device *dev = crtc->dev;
585 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
586 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
587 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
588 
589 	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
590 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
591 
592 	require_hvs_enabled(dev);
593 
594 	/* Enable vblank irq handling before crtc is started otherwise
595 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
596 	 */
597 	drm_crtc_vblank_on(crtc);
598 
599 	vc4_hvs_atomic_enable(crtc, state);
600 
601 	if (vc4_encoder->pre_crtc_configure)
602 		vc4_encoder->pre_crtc_configure(encoder, state);
603 
604 	vc4_crtc_config_pv(crtc, encoder, state);
605 
606 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
607 
608 	if (vc4_encoder->pre_crtc_enable)
609 		vc4_encoder->pre_crtc_enable(encoder, state);
610 
611 	/* When feeding the transposer block the pixelvalve is unneeded and
612 	 * should not be enabled.
613 	 */
614 	CRTC_WRITE(PV_V_CONTROL,
615 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
616 
617 	if (vc4_encoder->post_crtc_enable)
618 		vc4_encoder->post_crtc_enable(encoder, state);
619 }
620 
vc4_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)621 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
622 						const struct drm_display_mode *mode)
623 {
624 	/* Do not allow doublescan modes from user space */
625 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
626 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
627 			      crtc->base.id);
628 		return MODE_NO_DBLESCAN;
629 	}
630 
631 	return MODE_OK;
632 }
633 
vc4_crtc_get_margins(struct drm_crtc_state * state,unsigned int * left,unsigned int * right,unsigned int * top,unsigned int * bottom)634 void vc4_crtc_get_margins(struct drm_crtc_state *state,
635 			  unsigned int *left, unsigned int *right,
636 			  unsigned int *top, unsigned int *bottom)
637 {
638 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
639 	struct drm_connector_state *conn_state;
640 	struct drm_connector *conn;
641 	int i;
642 
643 	*left = vc4_state->margins.left;
644 	*right = vc4_state->margins.right;
645 	*top = vc4_state->margins.top;
646 	*bottom = vc4_state->margins.bottom;
647 
648 	/* We have to interate over all new connector states because
649 	 * vc4_crtc_get_margins() might be called before
650 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
651 	 * might be outdated.
652 	 */
653 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
654 		if (conn_state->crtc != state->crtc)
655 			continue;
656 
657 		*left = conn_state->tv.margins.left;
658 		*right = conn_state->tv.margins.right;
659 		*top = conn_state->tv.margins.top;
660 		*bottom = conn_state->tv.margins.bottom;
661 		break;
662 	}
663 }
664 
vc4_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)665 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
666 				 struct drm_atomic_state *state)
667 {
668 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
669 									  crtc);
670 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
671 	struct drm_connector *conn;
672 	struct drm_connector_state *conn_state;
673 	struct drm_encoder *encoder;
674 	int ret, i;
675 
676 	ret = vc4_hvs_atomic_check(crtc, state);
677 	if (ret)
678 		return ret;
679 
680 	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
681 	if (encoder) {
682 		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
683 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
684 
685 		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
686 			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
687 						  mode->clock * 9 / 10) * 1000;
688 		} else {
689 			vc4_state->hvs_load = mode->clock * 1000;
690 		}
691 	}
692 
693 	for_each_new_connector_in_state(state, conn, conn_state,
694 					i) {
695 		if (conn_state->crtc != crtc)
696 			continue;
697 
698 		vc4_state->margins.left = conn_state->tv.margins.left;
699 		vc4_state->margins.right = conn_state->tv.margins.right;
700 		vc4_state->margins.top = conn_state->tv.margins.top;
701 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
702 		break;
703 	}
704 
705 	return 0;
706 }
707 
vc4_enable_vblank(struct drm_crtc * crtc)708 static int vc4_enable_vblank(struct drm_crtc *crtc)
709 {
710 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
711 
712 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
713 
714 	return 0;
715 }
716 
vc4_disable_vblank(struct drm_crtc * crtc)717 static void vc4_disable_vblank(struct drm_crtc *crtc)
718 {
719 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
720 
721 	CRTC_WRITE(PV_INTEN, 0);
722 }
723 
vc4_crtc_handle_page_flip(struct vc4_crtc * vc4_crtc)724 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
725 {
726 	struct drm_crtc *crtc = &vc4_crtc->base;
727 	struct drm_device *dev = crtc->dev;
728 	struct vc4_dev *vc4 = to_vc4_dev(dev);
729 	struct vc4_hvs *hvs = vc4->hvs;
730 	u32 chan = vc4_crtc->current_hvs_channel;
731 	unsigned long flags;
732 
733 	spin_lock_irqsave(&dev->event_lock, flags);
734 	spin_lock(&vc4_crtc->irq_lock);
735 	if (vc4_crtc->event &&
736 	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
737 	     vc4_crtc->feeds_txp)) {
738 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
739 		vc4_crtc->event = NULL;
740 		drm_crtc_vblank_put(crtc);
741 
742 		/* Wait for the page flip to unmask the underrun to ensure that
743 		 * the display list was updated by the hardware. Before that
744 		 * happens, the HVS will be using the previous display list with
745 		 * the CRTC and encoder already reconfigured, leading to
746 		 * underruns. This can be seen when reconfiguring the CRTC.
747 		 */
748 		vc4_hvs_unmask_underrun(hvs, chan);
749 	}
750 	spin_unlock(&vc4_crtc->irq_lock);
751 	spin_unlock_irqrestore(&dev->event_lock, flags);
752 }
753 
vc4_crtc_handle_vblank(struct vc4_crtc * crtc)754 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
755 {
756 	crtc->t_vblank = ktime_get();
757 	drm_crtc_handle_vblank(&crtc->base);
758 	vc4_crtc_handle_page_flip(crtc);
759 }
760 
vc4_crtc_irq_handler(int irq,void * data)761 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
762 {
763 	struct vc4_crtc *vc4_crtc = data;
764 	u32 stat = CRTC_READ(PV_INTSTAT);
765 	irqreturn_t ret = IRQ_NONE;
766 
767 	if (stat & PV_INT_VFP_START) {
768 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
769 		vc4_crtc_handle_vblank(vc4_crtc);
770 		ret = IRQ_HANDLED;
771 	}
772 
773 	return ret;
774 }
775 
776 struct vc4_async_flip_state {
777 	struct drm_crtc *crtc;
778 	struct drm_framebuffer *fb;
779 	struct drm_framebuffer *old_fb;
780 	struct drm_pending_vblank_event *event;
781 
782 	union {
783 		struct dma_fence_cb fence;
784 		struct vc4_seqno_cb seqno;
785 	} cb;
786 };
787 
788 /* Called when the V3D execution for the BO being flipped to is done, so that
789  * we can actually update the plane's address to point to it.
790  */
791 static void
vc4_async_page_flip_complete(struct vc4_async_flip_state * flip_state)792 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
793 {
794 	struct drm_crtc *crtc = flip_state->crtc;
795 	struct drm_device *dev = crtc->dev;
796 	struct drm_plane *plane = crtc->primary;
797 
798 	vc4_plane_async_set_fb(plane, flip_state->fb);
799 	if (flip_state->event) {
800 		unsigned long flags;
801 
802 		spin_lock_irqsave(&dev->event_lock, flags);
803 		drm_crtc_send_vblank_event(crtc, flip_state->event);
804 		spin_unlock_irqrestore(&dev->event_lock, flags);
805 	}
806 
807 	drm_crtc_vblank_put(crtc);
808 	drm_framebuffer_put(flip_state->fb);
809 
810 	if (flip_state->old_fb)
811 		drm_framebuffer_put(flip_state->old_fb);
812 
813 	kfree(flip_state);
814 }
815 
vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb * cb)816 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
817 {
818 	struct vc4_async_flip_state *flip_state =
819 		container_of(cb, struct vc4_async_flip_state, cb.seqno);
820 	struct vc4_bo *bo = NULL;
821 
822 	if (flip_state->old_fb) {
823 		struct drm_gem_cma_object *cma_bo =
824 			drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
825 		bo = to_vc4_bo(&cma_bo->base);
826 	}
827 
828 	vc4_async_page_flip_complete(flip_state);
829 
830 	/*
831 	 * Decrement the BO usecnt in order to keep the inc/dec
832 	 * calls balanced when the planes are updated through
833 	 * the async update path.
834 	 *
835 	 * FIXME: we should move to generic async-page-flip when
836 	 * it's available, so that we can get rid of this
837 	 * hand-made cleanup_fb() logic.
838 	 */
839 	if (bo)
840 		vc4_bo_dec_usecnt(bo);
841 }
842 
vc4_async_page_flip_fence_complete(struct dma_fence * fence,struct dma_fence_cb * cb)843 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
844 					       struct dma_fence_cb *cb)
845 {
846 	struct vc4_async_flip_state *flip_state =
847 		container_of(cb, struct vc4_async_flip_state, cb.fence);
848 
849 	vc4_async_page_flip_complete(flip_state);
850 	dma_fence_put(fence);
851 }
852 
vc4_async_set_fence_cb(struct drm_device * dev,struct vc4_async_flip_state * flip_state)853 static int vc4_async_set_fence_cb(struct drm_device *dev,
854 				  struct vc4_async_flip_state *flip_state)
855 {
856 	struct drm_framebuffer *fb = flip_state->fb;
857 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
858 	struct vc4_dev *vc4 = to_vc4_dev(dev);
859 	struct dma_fence *fence;
860 	int ret;
861 
862 	if (!vc4->is_vc5) {
863 		struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
864 
865 		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
866 					  vc4_async_page_flip_seqno_complete);
867 	}
868 
869 	ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
870 	if (ret)
871 		return ret;
872 
873 	/* If there's no fence, complete the page flip immediately */
874 	if (!fence) {
875 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
876 		return 0;
877 	}
878 
879 	/* If the fence has already been completed, complete the page flip */
880 	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
881 				   vc4_async_page_flip_fence_complete))
882 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
883 
884 	return 0;
885 }
886 
887 static int
vc4_async_page_flip_common(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)888 vc4_async_page_flip_common(struct drm_crtc *crtc,
889 			   struct drm_framebuffer *fb,
890 			   struct drm_pending_vblank_event *event,
891 			   uint32_t flags)
892 {
893 	struct drm_device *dev = crtc->dev;
894 	struct drm_plane *plane = crtc->primary;
895 	struct vc4_async_flip_state *flip_state;
896 
897 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
898 	if (!flip_state)
899 		return -ENOMEM;
900 
901 	drm_framebuffer_get(fb);
902 	flip_state->fb = fb;
903 	flip_state->crtc = crtc;
904 	flip_state->event = event;
905 
906 	/* Save the current FB before it's replaced by the new one in
907 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
908 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
909 	 * it consistent.
910 	 * FIXME: we should move to generic async-page-flip when it's
911 	 * available, so that we can get rid of this hand-made cleanup_fb()
912 	 * logic.
913 	 */
914 	flip_state->old_fb = plane->state->fb;
915 	if (flip_state->old_fb)
916 		drm_framebuffer_get(flip_state->old_fb);
917 
918 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
919 
920 	/* Immediately update the plane's legacy fb pointer, so that later
921 	 * modeset prep sees the state that will be present when the semaphore
922 	 * is released.
923 	 */
924 	drm_atomic_set_fb_for_plane(plane->state, fb);
925 
926 	vc4_async_set_fence_cb(dev, flip_state);
927 
928 	/* Driver takes ownership of state on successful async commit. */
929 	return 0;
930 }
931 
932 /* Implements async (non-vblank-synced) page flips.
933  *
934  * The page flip ioctl needs to return immediately, so we grab the
935  * modeset semaphore on the pipe, and queue the address update for
936  * when V3D is done with the BO being flipped to.
937  */
vc4_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)938 static int vc4_async_page_flip(struct drm_crtc *crtc,
939 			       struct drm_framebuffer *fb,
940 			       struct drm_pending_vblank_event *event,
941 			       uint32_t flags)
942 {
943 	struct drm_device *dev = crtc->dev;
944 	struct vc4_dev *vc4 = to_vc4_dev(dev);
945 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
946 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
947 	int ret;
948 
949 	if (WARN_ON_ONCE(vc4->is_vc5))
950 		return -ENODEV;
951 
952 	/*
953 	 * Increment the BO usecnt here, so that we never end up with an
954 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
955 	 * plane is later updated through the non-async path.
956 	 *
957 	 * FIXME: we should move to generic async-page-flip when
958 	 * it's available, so that we can get rid of this
959 	 * hand-made prepare_fb() logic.
960 	 */
961 	ret = vc4_bo_inc_usecnt(bo);
962 	if (ret)
963 		return ret;
964 
965 	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
966 	if (ret) {
967 		vc4_bo_dec_usecnt(bo);
968 		return ret;
969 	}
970 
971 	return 0;
972 }
973 
vc5_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)974 static int vc5_async_page_flip(struct drm_crtc *crtc,
975 			       struct drm_framebuffer *fb,
976 			       struct drm_pending_vblank_event *event,
977 			       uint32_t flags)
978 {
979 	return vc4_async_page_flip_common(crtc, fb, event, flags);
980 }
981 
vc4_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags,struct drm_modeset_acquire_ctx * ctx)982 int vc4_page_flip(struct drm_crtc *crtc,
983 		  struct drm_framebuffer *fb,
984 		  struct drm_pending_vblank_event *event,
985 		  uint32_t flags,
986 		  struct drm_modeset_acquire_ctx *ctx)
987 {
988 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
989 		struct drm_device *dev = crtc->dev;
990 		struct vc4_dev *vc4 = to_vc4_dev(dev);
991 
992 		if (vc4->is_vc5)
993 			return vc5_async_page_flip(crtc, fb, event, flags);
994 		else
995 			return vc4_async_page_flip(crtc, fb, event, flags);
996 	} else {
997 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
998 	}
999 }
1000 
vc4_crtc_duplicate_state(struct drm_crtc * crtc)1001 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1002 {
1003 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1004 
1005 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1006 	if (!vc4_state)
1007 		return NULL;
1008 
1009 	old_vc4_state = to_vc4_crtc_state(crtc->state);
1010 	vc4_state->margins = old_vc4_state->margins;
1011 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1012 
1013 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1014 	return &vc4_state->base;
1015 }
1016 
vc4_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)1017 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1018 			    struct drm_crtc_state *state)
1019 {
1020 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1021 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1022 
1023 	if (drm_mm_node_allocated(&vc4_state->mm)) {
1024 		unsigned long flags;
1025 
1026 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1027 		drm_mm_remove_node(&vc4_state->mm);
1028 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1029 
1030 	}
1031 
1032 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1033 }
1034 
vc4_crtc_reset(struct drm_crtc * crtc)1035 void vc4_crtc_reset(struct drm_crtc *crtc)
1036 {
1037 	struct vc4_crtc_state *vc4_crtc_state;
1038 
1039 	if (crtc->state)
1040 		vc4_crtc_destroy_state(crtc, crtc->state);
1041 
1042 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1043 	if (!vc4_crtc_state) {
1044 		crtc->state = NULL;
1045 		return;
1046 	}
1047 
1048 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1049 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1050 }
1051 
1052 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1053 	.set_config = drm_atomic_helper_set_config,
1054 	.destroy = vc4_crtc_destroy,
1055 	.page_flip = vc4_page_flip,
1056 	.set_property = NULL,
1057 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1058 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1059 	.reset = vc4_crtc_reset,
1060 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1061 	.atomic_destroy_state = vc4_crtc_destroy_state,
1062 	.enable_vblank = vc4_enable_vblank,
1063 	.disable_vblank = vc4_disable_vblank,
1064 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1065 };
1066 
1067 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1068 	.mode_valid = vc4_crtc_mode_valid,
1069 	.atomic_check = vc4_crtc_atomic_check,
1070 	.atomic_begin = vc4_hvs_atomic_begin,
1071 	.atomic_flush = vc4_hvs_atomic_flush,
1072 	.atomic_enable = vc4_crtc_atomic_enable,
1073 	.atomic_disable = vc4_crtc_atomic_disable,
1074 	.get_scanout_position = vc4_crtc_get_scanout_position,
1075 };
1076 
1077 static const struct vc4_pv_data bcm2835_pv0_data = {
1078 	.base = {
1079 		.hvs_available_channels = BIT(0),
1080 		.hvs_output = 0,
1081 	},
1082 	.debugfs_name = "crtc0_regs",
1083 	.fifo_depth = 64,
1084 	.pixels_per_clock = 1,
1085 	.encoder_types = {
1086 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1087 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1088 	},
1089 };
1090 
1091 static const struct vc4_pv_data bcm2835_pv1_data = {
1092 	.base = {
1093 		.hvs_available_channels = BIT(2),
1094 		.hvs_output = 2,
1095 	},
1096 	.debugfs_name = "crtc1_regs",
1097 	.fifo_depth = 64,
1098 	.pixels_per_clock = 1,
1099 	.encoder_types = {
1100 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1101 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1102 	},
1103 };
1104 
1105 static const struct vc4_pv_data bcm2835_pv2_data = {
1106 	.base = {
1107 		.hvs_available_channels = BIT(1),
1108 		.hvs_output = 1,
1109 	},
1110 	.debugfs_name = "crtc2_regs",
1111 	.fifo_depth = 64,
1112 	.pixels_per_clock = 1,
1113 	.encoder_types = {
1114 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1115 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1116 	},
1117 };
1118 
1119 static const struct vc4_pv_data bcm2711_pv0_data = {
1120 	.base = {
1121 		.hvs_available_channels = BIT(0),
1122 		.hvs_output = 0,
1123 	},
1124 	.debugfs_name = "crtc0_regs",
1125 	.fifo_depth = 64,
1126 	.pixels_per_clock = 1,
1127 	.encoder_types = {
1128 		[0] = VC4_ENCODER_TYPE_DSI0,
1129 		[1] = VC4_ENCODER_TYPE_DPI,
1130 	},
1131 };
1132 
1133 static const struct vc4_pv_data bcm2711_pv1_data = {
1134 	.base = {
1135 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1136 		.hvs_output = 3,
1137 	},
1138 	.debugfs_name = "crtc1_regs",
1139 	.fifo_depth = 64,
1140 	.pixels_per_clock = 1,
1141 	.encoder_types = {
1142 		[0] = VC4_ENCODER_TYPE_DSI1,
1143 		[1] = VC4_ENCODER_TYPE_SMI,
1144 	},
1145 };
1146 
1147 static const struct vc4_pv_data bcm2711_pv2_data = {
1148 	.base = {
1149 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1150 		.hvs_output = 4,
1151 	},
1152 	.debugfs_name = "crtc2_regs",
1153 	.fifo_depth = 256,
1154 	.pixels_per_clock = 2,
1155 	.encoder_types = {
1156 		[0] = VC4_ENCODER_TYPE_HDMI0,
1157 	},
1158 };
1159 
1160 static const struct vc4_pv_data bcm2711_pv3_data = {
1161 	.base = {
1162 		.hvs_available_channels = BIT(1),
1163 		.hvs_output = 1,
1164 	},
1165 	.debugfs_name = "crtc3_regs",
1166 	.fifo_depth = 64,
1167 	.pixels_per_clock = 1,
1168 	.encoder_types = {
1169 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1170 	},
1171 };
1172 
1173 static const struct vc4_pv_data bcm2711_pv4_data = {
1174 	.base = {
1175 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1176 		.hvs_output = 5,
1177 	},
1178 	.debugfs_name = "crtc4_regs",
1179 	.fifo_depth = 64,
1180 	.pixels_per_clock = 2,
1181 	.encoder_types = {
1182 		[0] = VC4_ENCODER_TYPE_HDMI1,
1183 	},
1184 };
1185 
1186 static const struct of_device_id vc4_crtc_dt_match[] = {
1187 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1188 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1189 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1190 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1191 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1192 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1193 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1194 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1195 	{}
1196 };
1197 
vc4_set_crtc_possible_masks(struct drm_device * drm,struct drm_crtc * crtc)1198 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1199 					struct drm_crtc *crtc)
1200 {
1201 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1202 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1203 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1204 	struct drm_encoder *encoder;
1205 
1206 	drm_for_each_encoder(encoder, drm) {
1207 		struct vc4_encoder *vc4_encoder;
1208 		int i;
1209 
1210 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1211 			continue;
1212 
1213 		vc4_encoder = to_vc4_encoder(encoder);
1214 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1215 			if (vc4_encoder->type == encoder_types[i]) {
1216 				vc4_encoder->clock_select = i;
1217 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1218 				break;
1219 			}
1220 		}
1221 	}
1222 }
1223 
vc4_crtc_init(struct drm_device * drm,struct vc4_crtc * vc4_crtc,const struct drm_crtc_funcs * crtc_funcs,const struct drm_crtc_helper_funcs * crtc_helper_funcs)1224 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1225 		  const struct drm_crtc_funcs *crtc_funcs,
1226 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1227 {
1228 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1229 	struct drm_crtc *crtc = &vc4_crtc->base;
1230 	struct drm_plane *primary_plane;
1231 	unsigned int i;
1232 
1233 	/* For now, we create just the primary and the legacy cursor
1234 	 * planes.  We should be able to stack more planes on easily,
1235 	 * but to do that we would need to compute the bandwidth
1236 	 * requirement of the plane configuration, and reject ones
1237 	 * that will take too much.
1238 	 */
1239 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1240 	if (IS_ERR(primary_plane)) {
1241 		dev_err(drm->dev, "failed to construct primary plane\n");
1242 		return PTR_ERR(primary_plane);
1243 	}
1244 
1245 	spin_lock_init(&vc4_crtc->irq_lock);
1246 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1247 				  crtc_funcs, NULL);
1248 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1249 
1250 	if (!vc4->is_vc5) {
1251 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1252 
1253 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1254 
1255 		/* We support CTM, but only for one CRTC at a time. It's therefore
1256 		 * implemented as private driver state in vc4_kms, not here.
1257 		 */
1258 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1259 	}
1260 
1261 	for (i = 0; i < crtc->gamma_size; i++) {
1262 		vc4_crtc->lut_r[i] = i;
1263 		vc4_crtc->lut_g[i] = i;
1264 		vc4_crtc->lut_b[i] = i;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
vc4_crtc_bind(struct device * dev,struct device * master,void * data)1270 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1271 {
1272 	struct platform_device *pdev = to_platform_device(dev);
1273 	struct drm_device *drm = dev_get_drvdata(master);
1274 	const struct vc4_pv_data *pv_data;
1275 	struct vc4_crtc *vc4_crtc;
1276 	struct drm_crtc *crtc;
1277 	struct drm_plane *destroy_plane, *temp;
1278 	int ret;
1279 
1280 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1281 	if (!vc4_crtc)
1282 		return -ENOMEM;
1283 	crtc = &vc4_crtc->base;
1284 
1285 	pv_data = of_device_get_match_data(dev);
1286 	if (!pv_data)
1287 		return -ENODEV;
1288 	vc4_crtc->data = &pv_data->base;
1289 	vc4_crtc->pdev = pdev;
1290 
1291 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1292 	if (IS_ERR(vc4_crtc->regs))
1293 		return PTR_ERR(vc4_crtc->regs);
1294 
1295 	vc4_crtc->regset.base = vc4_crtc->regs;
1296 	vc4_crtc->regset.regs = crtc_regs;
1297 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1298 
1299 	ret = vc4_crtc_init(drm, vc4_crtc,
1300 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1301 	if (ret)
1302 		return ret;
1303 	vc4_set_crtc_possible_masks(drm, crtc);
1304 
1305 	CRTC_WRITE(PV_INTEN, 0);
1306 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1307 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1308 			       vc4_crtc_irq_handler,
1309 			       IRQF_SHARED,
1310 			       "vc4 crtc", vc4_crtc);
1311 	if (ret)
1312 		goto err_destroy_planes;
1313 
1314 	platform_set_drvdata(pdev, vc4_crtc);
1315 
1316 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1317 				 &vc4_crtc->regset);
1318 
1319 	return 0;
1320 
1321 err_destroy_planes:
1322 	list_for_each_entry_safe(destroy_plane, temp,
1323 				 &drm->mode_config.plane_list, head) {
1324 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1325 		    destroy_plane->funcs->destroy(destroy_plane);
1326 	}
1327 
1328 	return ret;
1329 }
1330 
vc4_crtc_unbind(struct device * dev,struct device * master,void * data)1331 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1332 			    void *data)
1333 {
1334 	struct platform_device *pdev = to_platform_device(dev);
1335 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1336 
1337 	vc4_crtc_destroy(&vc4_crtc->base);
1338 
1339 	CRTC_WRITE(PV_INTEN, 0);
1340 
1341 	platform_set_drvdata(pdev, NULL);
1342 }
1343 
1344 static const struct component_ops vc4_crtc_ops = {
1345 	.bind   = vc4_crtc_bind,
1346 	.unbind = vc4_crtc_unbind,
1347 };
1348 
vc4_crtc_dev_probe(struct platform_device * pdev)1349 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1350 {
1351 	return component_add(&pdev->dev, &vc4_crtc_ops);
1352 }
1353 
vc4_crtc_dev_remove(struct platform_device * pdev)1354 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1355 {
1356 	component_del(&pdev->dev, &vc4_crtc_ops);
1357 	return 0;
1358 }
1359 
1360 struct platform_driver vc4_crtc_driver = {
1361 	.probe = vc4_crtc_dev_probe,
1362 	.remove = vc4_crtc_dev_remove,
1363 	.driver = {
1364 		.name = "vc4_crtc",
1365 		.of_match_table = vc4_crtc_dt_match,
1366 	},
1367 };
1368