1 /*
2 * videobuf2-core.c - video buffer 2 core framework
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 *
6 * Author: Pawel Osciak <pawel@osciak.com>
7 * Marek Szyprowski <m.szyprowski@samsung.com>
8 *
9 * The vb2_thread implementation was based on code from videobuf-dvb.c:
10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/err.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/poll.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/freezer.h>
27 #include <linux/kthread.h>
28
29 #include <media/videobuf2-core.h>
30 #include <media/v4l2-mc.h>
31
32 #include <trace/events/vb2.h>
33
34 static int debug;
35 module_param(debug, int, 0644);
36
37 #define dprintk(q, level, fmt, arg...) \
38 do { \
39 if (debug >= level) \
40 pr_info("[%s] %s: " fmt, (q)->name, __func__, \
41 ## arg); \
42 } while (0)
43
44 #ifdef CONFIG_VIDEO_ADV_DEBUG
45
46 /*
47 * If advanced debugging is on, then count how often each op is called
48 * successfully, which can either be per-buffer or per-queue.
49 *
50 * This makes it easy to check that the 'init' and 'cleanup'
51 * (and variations thereof) stay balanced.
52 */
53
54 #define log_memop(vb, op) \
55 dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n", \
56 (vb)->index, #op, \
57 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
58
59 #define call_memop(vb, op, args...) \
60 ({ \
61 struct vb2_queue *_q = (vb)->vb2_queue; \
62 int err; \
63 \
64 log_memop(vb, op); \
65 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \
66 if (!err) \
67 (vb)->cnt_mem_ ## op++; \
68 err; \
69 })
70
71 #define call_ptr_memop(op, vb, args...) \
72 ({ \
73 struct vb2_queue *_q = (vb)->vb2_queue; \
74 void *ptr; \
75 \
76 log_memop(vb, op); \
77 ptr = _q->mem_ops->op ? _q->mem_ops->op(vb, args) : NULL; \
78 if (!IS_ERR_OR_NULL(ptr)) \
79 (vb)->cnt_mem_ ## op++; \
80 ptr; \
81 })
82
83 #define call_void_memop(vb, op, args...) \
84 ({ \
85 struct vb2_queue *_q = (vb)->vb2_queue; \
86 \
87 log_memop(vb, op); \
88 if (_q->mem_ops->op) \
89 _q->mem_ops->op(args); \
90 (vb)->cnt_mem_ ## op++; \
91 })
92
93 #define log_qop(q, op) \
94 dprintk(q, 2, "call_qop(%s)%s\n", #op, \
95 (q)->ops->op ? "" : " (nop)")
96
97 #define call_qop(q, op, args...) \
98 ({ \
99 int err; \
100 \
101 log_qop(q, op); \
102 err = (q)->ops->op ? (q)->ops->op(args) : 0; \
103 if (!err) \
104 (q)->cnt_ ## op++; \
105 err; \
106 })
107
108 #define call_void_qop(q, op, args...) \
109 ({ \
110 log_qop(q, op); \
111 if ((q)->ops->op) \
112 (q)->ops->op(args); \
113 (q)->cnt_ ## op++; \
114 })
115
116 #define log_vb_qop(vb, op, args...) \
117 dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n", \
118 (vb)->index, #op, \
119 (vb)->vb2_queue->ops->op ? "" : " (nop)")
120
121 #define call_vb_qop(vb, op, args...) \
122 ({ \
123 int err; \
124 \
125 log_vb_qop(vb, op); \
126 err = (vb)->vb2_queue->ops->op ? \
127 (vb)->vb2_queue->ops->op(args) : 0; \
128 if (!err) \
129 (vb)->cnt_ ## op++; \
130 err; \
131 })
132
133 #define call_void_vb_qop(vb, op, args...) \
134 ({ \
135 log_vb_qop(vb, op); \
136 if ((vb)->vb2_queue->ops->op) \
137 (vb)->vb2_queue->ops->op(args); \
138 (vb)->cnt_ ## op++; \
139 })
140
141 #else
142
143 #define call_memop(vb, op, args...) \
144 ((vb)->vb2_queue->mem_ops->op ? \
145 (vb)->vb2_queue->mem_ops->op(args) : 0)
146
147 #define call_ptr_memop(op, vb, args...) \
148 ((vb)->vb2_queue->mem_ops->op ? \
149 (vb)->vb2_queue->mem_ops->op(vb, args) : NULL)
150
151 #define call_void_memop(vb, op, args...) \
152 do { \
153 if ((vb)->vb2_queue->mem_ops->op) \
154 (vb)->vb2_queue->mem_ops->op(args); \
155 } while (0)
156
157 #define call_qop(q, op, args...) \
158 ((q)->ops->op ? (q)->ops->op(args) : 0)
159
160 #define call_void_qop(q, op, args...) \
161 do { \
162 if ((q)->ops->op) \
163 (q)->ops->op(args); \
164 } while (0)
165
166 #define call_vb_qop(vb, op, args...) \
167 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
168
169 #define call_void_vb_qop(vb, op, args...) \
170 do { \
171 if ((vb)->vb2_queue->ops->op) \
172 (vb)->vb2_queue->ops->op(args); \
173 } while (0)
174
175 #endif
176
177 #define call_bufop(q, op, args...) \
178 ({ \
179 int ret = 0; \
180 if (q && q->buf_ops && q->buf_ops->op) \
181 ret = q->buf_ops->op(args); \
182 ret; \
183 })
184
185 #define call_void_bufop(q, op, args...) \
186 ({ \
187 if (q && q->buf_ops && q->buf_ops->op) \
188 q->buf_ops->op(args); \
189 })
190
191 static void __vb2_queue_cancel(struct vb2_queue *q);
192 static void __enqueue_in_driver(struct vb2_buffer *vb);
193
vb2_state_name(enum vb2_buffer_state s)194 static const char *vb2_state_name(enum vb2_buffer_state s)
195 {
196 static const char * const state_names[] = {
197 [VB2_BUF_STATE_DEQUEUED] = "dequeued",
198 [VB2_BUF_STATE_IN_REQUEST] = "in request",
199 [VB2_BUF_STATE_PREPARING] = "preparing",
200 [VB2_BUF_STATE_QUEUED] = "queued",
201 [VB2_BUF_STATE_ACTIVE] = "active",
202 [VB2_BUF_STATE_DONE] = "done",
203 [VB2_BUF_STATE_ERROR] = "error",
204 };
205
206 if ((unsigned int)(s) < ARRAY_SIZE(state_names))
207 return state_names[s];
208 return "unknown";
209 }
210
211 /*
212 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
213 */
__vb2_buf_mem_alloc(struct vb2_buffer * vb)214 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
215 {
216 struct vb2_queue *q = vb->vb2_queue;
217 void *mem_priv;
218 int plane;
219 int ret = -ENOMEM;
220
221 /*
222 * Allocate memory for all planes in this buffer
223 * NOTE: mmapped areas should be page aligned
224 */
225 for (plane = 0; plane < vb->num_planes; ++plane) {
226 /* Memops alloc requires size to be page aligned. */
227 unsigned long size = PAGE_ALIGN(vb->planes[plane].length);
228
229 /* Did it wrap around? */
230 if (size < vb->planes[plane].length)
231 goto free;
232
233 mem_priv = call_ptr_memop(alloc,
234 vb,
235 q->alloc_devs[plane] ? : q->dev,
236 size);
237 if (IS_ERR_OR_NULL(mem_priv)) {
238 if (mem_priv)
239 ret = PTR_ERR(mem_priv);
240 goto free;
241 }
242
243 /* Associate allocator private data with this plane */
244 vb->planes[plane].mem_priv = mem_priv;
245 }
246
247 return 0;
248 free:
249 /* Free already allocated memory if one of the allocations failed */
250 for (; plane > 0; --plane) {
251 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
252 vb->planes[plane - 1].mem_priv = NULL;
253 }
254
255 return ret;
256 }
257
258 /*
259 * __vb2_buf_mem_free() - free memory of the given buffer
260 */
__vb2_buf_mem_free(struct vb2_buffer * vb)261 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
262 {
263 unsigned int plane;
264
265 for (plane = 0; plane < vb->num_planes; ++plane) {
266 call_void_memop(vb, put, vb->planes[plane].mem_priv);
267 vb->planes[plane].mem_priv = NULL;
268 dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n",
269 plane, vb->index);
270 }
271 }
272
273 /*
274 * __vb2_buf_userptr_put() - release userspace memory associated with
275 * a USERPTR buffer
276 */
__vb2_buf_userptr_put(struct vb2_buffer * vb)277 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
278 {
279 unsigned int plane;
280
281 for (plane = 0; plane < vb->num_planes; ++plane) {
282 if (vb->planes[plane].mem_priv)
283 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
284 vb->planes[plane].mem_priv = NULL;
285 }
286 }
287
288 /*
289 * __vb2_plane_dmabuf_put() - release memory associated with
290 * a DMABUF shared plane
291 */
__vb2_plane_dmabuf_put(struct vb2_buffer * vb,struct vb2_plane * p)292 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
293 {
294 if (!p->mem_priv)
295 return;
296
297 if (p->dbuf_mapped)
298 call_void_memop(vb, unmap_dmabuf, p->mem_priv);
299
300 call_void_memop(vb, detach_dmabuf, p->mem_priv);
301 dma_buf_put(p->dbuf);
302 p->mem_priv = NULL;
303 p->dbuf = NULL;
304 p->dbuf_mapped = 0;
305 }
306
307 /*
308 * __vb2_buf_dmabuf_put() - release memory associated with
309 * a DMABUF shared buffer
310 */
__vb2_buf_dmabuf_put(struct vb2_buffer * vb)311 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
312 {
313 unsigned int plane;
314
315 for (plane = 0; plane < vb->num_planes; ++plane)
316 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
317 }
318
319 /*
320 * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory
321 * to sync caches
322 */
__vb2_buf_mem_prepare(struct vb2_buffer * vb)323 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb)
324 {
325 unsigned int plane;
326
327 if (vb->synced)
328 return;
329
330 vb->synced = 1;
331 for (plane = 0; plane < vb->num_planes; ++plane)
332 call_void_memop(vb, prepare, vb->planes[plane].mem_priv);
333 }
334
335 /*
336 * __vb2_buf_mem_finish() - call ->finish on buffer's private memory
337 * to sync caches
338 */
__vb2_buf_mem_finish(struct vb2_buffer * vb)339 static void __vb2_buf_mem_finish(struct vb2_buffer *vb)
340 {
341 unsigned int plane;
342
343 if (!vb->synced)
344 return;
345
346 vb->synced = 0;
347 for (plane = 0; plane < vb->num_planes; ++plane)
348 call_void_memop(vb, finish, vb->planes[plane].mem_priv);
349 }
350
351 /*
352 * __setup_offsets() - setup unique offsets ("cookies") for every plane in
353 * the buffer.
354 */
__setup_offsets(struct vb2_buffer * vb)355 static void __setup_offsets(struct vb2_buffer *vb)
356 {
357 struct vb2_queue *q = vb->vb2_queue;
358 unsigned int plane;
359 unsigned long off = 0;
360
361 if (vb->index) {
362 struct vb2_buffer *prev = q->bufs[vb->index - 1];
363 struct vb2_plane *p = &prev->planes[prev->num_planes - 1];
364
365 off = PAGE_ALIGN(p->m.offset + p->length);
366 }
367
368 for (plane = 0; plane < vb->num_planes; ++plane) {
369 vb->planes[plane].m.offset = off;
370
371 dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n",
372 vb->index, plane, off);
373
374 off += vb->planes[plane].length;
375 off = PAGE_ALIGN(off);
376 }
377 }
378
init_buffer_cache_hints(struct vb2_queue * q,struct vb2_buffer * vb)379 static void init_buffer_cache_hints(struct vb2_queue *q, struct vb2_buffer *vb)
380 {
381 /*
382 * DMA exporter should take care of cache syncs, so we can avoid
383 * explicit ->prepare()/->finish() syncs. For other ->memory types
384 * we always need ->prepare() or/and ->finish() cache sync.
385 */
386 if (q->memory == VB2_MEMORY_DMABUF) {
387 vb->skip_cache_sync_on_finish = 1;
388 vb->skip_cache_sync_on_prepare = 1;
389 return;
390 }
391
392 /*
393 * ->finish() cache sync can be avoided when queue direction is
394 * TO_DEVICE.
395 */
396 if (q->dma_dir == DMA_TO_DEVICE)
397 vb->skip_cache_sync_on_finish = 1;
398 }
399
400 /*
401 * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type)
402 * video buffer memory for all buffers/planes on the queue and initializes the
403 * queue
404 *
405 * Returns the number of buffers successfully allocated.
406 */
__vb2_queue_alloc(struct vb2_queue * q,enum vb2_memory memory,unsigned int num_buffers,unsigned int num_planes,const unsigned plane_sizes[VB2_MAX_PLANES])407 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory,
408 unsigned int num_buffers, unsigned int num_planes,
409 const unsigned plane_sizes[VB2_MAX_PLANES])
410 {
411 unsigned int buffer, plane;
412 struct vb2_buffer *vb;
413 int ret;
414
415 /* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */
416 num_buffers = min_t(unsigned int, num_buffers,
417 VB2_MAX_FRAME - q->num_buffers);
418
419 for (buffer = 0; buffer < num_buffers; ++buffer) {
420 /* Allocate videobuf buffer structures */
421 vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
422 if (!vb) {
423 dprintk(q, 1, "memory alloc for buffer struct failed\n");
424 break;
425 }
426
427 vb->state = VB2_BUF_STATE_DEQUEUED;
428 vb->vb2_queue = q;
429 vb->num_planes = num_planes;
430 vb->index = q->num_buffers + buffer;
431 vb->type = q->type;
432 vb->memory = memory;
433 init_buffer_cache_hints(q, vb);
434 for (plane = 0; plane < num_planes; ++plane) {
435 vb->planes[plane].length = plane_sizes[plane];
436 vb->planes[plane].min_length = plane_sizes[plane];
437 }
438 call_void_bufop(q, init_buffer, vb);
439
440 q->bufs[vb->index] = vb;
441
442 /* Allocate video buffer memory for the MMAP type */
443 if (memory == VB2_MEMORY_MMAP) {
444 ret = __vb2_buf_mem_alloc(vb);
445 if (ret) {
446 dprintk(q, 1, "failed allocating memory for buffer %d\n",
447 buffer);
448 q->bufs[vb->index] = NULL;
449 kfree(vb);
450 break;
451 }
452 __setup_offsets(vb);
453 /*
454 * Call the driver-provided buffer initialization
455 * callback, if given. An error in initialization
456 * results in queue setup failure.
457 */
458 ret = call_vb_qop(vb, buf_init, vb);
459 if (ret) {
460 dprintk(q, 1, "buffer %d %p initialization failed\n",
461 buffer, vb);
462 __vb2_buf_mem_free(vb);
463 q->bufs[vb->index] = NULL;
464 kfree(vb);
465 break;
466 }
467 }
468 }
469
470 dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n",
471 buffer, num_planes);
472
473 return buffer;
474 }
475
476 /*
477 * __vb2_free_mem() - release all video buffer memory for a given queue
478 */
__vb2_free_mem(struct vb2_queue * q,unsigned int buffers)479 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers)
480 {
481 unsigned int buffer;
482 struct vb2_buffer *vb;
483
484 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
485 ++buffer) {
486 vb = q->bufs[buffer];
487 if (!vb)
488 continue;
489
490 /* Free MMAP buffers or release USERPTR buffers */
491 if (q->memory == VB2_MEMORY_MMAP)
492 __vb2_buf_mem_free(vb);
493 else if (q->memory == VB2_MEMORY_DMABUF)
494 __vb2_buf_dmabuf_put(vb);
495 else
496 __vb2_buf_userptr_put(vb);
497 }
498 }
499
500 /*
501 * __vb2_queue_free() - free buffers at the end of the queue - video memory and
502 * related information, if no buffers are left return the queue to an
503 * uninitialized state. Might be called even if the queue has already been freed.
504 */
__vb2_queue_free(struct vb2_queue * q,unsigned int buffers)505 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers)
506 {
507 unsigned int buffer;
508
509 /*
510 * Sanity check: when preparing a buffer the queue lock is released for
511 * a short while (see __buf_prepare for the details), which would allow
512 * a race with a reqbufs which can call this function. Removing the
513 * buffers from underneath __buf_prepare is obviously a bad idea, so we
514 * check if any of the buffers is in the state PREPARING, and if so we
515 * just return -EAGAIN.
516 */
517 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
518 ++buffer) {
519 if (q->bufs[buffer] == NULL)
520 continue;
521 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) {
522 dprintk(q, 1, "preparing buffers, cannot free\n");
523 return -EAGAIN;
524 }
525 }
526
527 /* Call driver-provided cleanup function for each buffer, if provided */
528 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
529 ++buffer) {
530 struct vb2_buffer *vb = q->bufs[buffer];
531
532 if (vb && vb->planes[0].mem_priv)
533 call_void_vb_qop(vb, buf_cleanup, vb);
534 }
535
536 /* Release video buffer memory */
537 __vb2_free_mem(q, buffers);
538
539 #ifdef CONFIG_VIDEO_ADV_DEBUG
540 /*
541 * Check that all the calls were balances during the life-time of this
542 * queue. If not (or if the debug level is 1 or up), then dump the
543 * counters to the kernel log.
544 */
545 if (q->num_buffers) {
546 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
547 q->cnt_wait_prepare != q->cnt_wait_finish;
548
549 if (unbalanced || debug) {
550 pr_info("counters for queue %p:%s\n", q,
551 unbalanced ? " UNBALANCED!" : "");
552 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n",
553 q->cnt_queue_setup, q->cnt_start_streaming,
554 q->cnt_stop_streaming);
555 pr_info(" wait_prepare: %u wait_finish: %u\n",
556 q->cnt_wait_prepare, q->cnt_wait_finish);
557 }
558 q->cnt_queue_setup = 0;
559 q->cnt_wait_prepare = 0;
560 q->cnt_wait_finish = 0;
561 q->cnt_start_streaming = 0;
562 q->cnt_stop_streaming = 0;
563 }
564 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
565 struct vb2_buffer *vb = q->bufs[buffer];
566 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
567 vb->cnt_mem_prepare != vb->cnt_mem_finish ||
568 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
569 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
570 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
571 vb->cnt_buf_queue != vb->cnt_buf_done ||
572 vb->cnt_buf_prepare != vb->cnt_buf_finish ||
573 vb->cnt_buf_init != vb->cnt_buf_cleanup;
574
575 if (unbalanced || debug) {
576 pr_info(" counters for queue %p, buffer %d:%s\n",
577 q, buffer, unbalanced ? " UNBALANCED!" : "");
578 pr_info(" buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n",
579 vb->cnt_buf_init, vb->cnt_buf_cleanup,
580 vb->cnt_buf_prepare, vb->cnt_buf_finish);
581 pr_info(" buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n",
582 vb->cnt_buf_out_validate, vb->cnt_buf_queue,
583 vb->cnt_buf_done, vb->cnt_buf_request_complete);
584 pr_info(" alloc: %u put: %u prepare: %u finish: %u mmap: %u\n",
585 vb->cnt_mem_alloc, vb->cnt_mem_put,
586 vb->cnt_mem_prepare, vb->cnt_mem_finish,
587 vb->cnt_mem_mmap);
588 pr_info(" get_userptr: %u put_userptr: %u\n",
589 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
590 pr_info(" attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n",
591 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf,
592 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
593 pr_info(" get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n",
594 vb->cnt_mem_get_dmabuf,
595 vb->cnt_mem_num_users,
596 vb->cnt_mem_vaddr,
597 vb->cnt_mem_cookie);
598 }
599 }
600 #endif
601
602 /* Free videobuf buffers */
603 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
604 ++buffer) {
605 kfree(q->bufs[buffer]);
606 q->bufs[buffer] = NULL;
607 }
608
609 q->num_buffers -= buffers;
610 if (!q->num_buffers) {
611 q->memory = VB2_MEMORY_UNKNOWN;
612 INIT_LIST_HEAD(&q->queued_list);
613 }
614 return 0;
615 }
616
vb2_buffer_in_use(struct vb2_queue * q,struct vb2_buffer * vb)617 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
618 {
619 unsigned int plane;
620 for (plane = 0; plane < vb->num_planes; ++plane) {
621 void *mem_priv = vb->planes[plane].mem_priv;
622 /*
623 * If num_users() has not been provided, call_memop
624 * will return 0, apparently nobody cares about this
625 * case anyway. If num_users() returns more than 1,
626 * we are not the only user of the plane's memory.
627 */
628 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
629 return true;
630 }
631 return false;
632 }
633 EXPORT_SYMBOL(vb2_buffer_in_use);
634
635 /*
636 * __buffers_in_use() - return true if any buffers on the queue are in use and
637 * the queue cannot be freed (by the means of REQBUFS(0)) call
638 */
__buffers_in_use(struct vb2_queue * q)639 static bool __buffers_in_use(struct vb2_queue *q)
640 {
641 unsigned int buffer;
642 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
643 if (vb2_buffer_in_use(q, q->bufs[buffer]))
644 return true;
645 }
646 return false;
647 }
648
vb2_core_querybuf(struct vb2_queue * q,unsigned int index,void * pb)649 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb)
650 {
651 call_void_bufop(q, fill_user_buffer, q->bufs[index], pb);
652 }
653 EXPORT_SYMBOL_GPL(vb2_core_querybuf);
654
655 /*
656 * __verify_userptr_ops() - verify that all memory operations required for
657 * USERPTR queue type have been provided
658 */
__verify_userptr_ops(struct vb2_queue * q)659 static int __verify_userptr_ops(struct vb2_queue *q)
660 {
661 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
662 !q->mem_ops->put_userptr)
663 return -EINVAL;
664
665 return 0;
666 }
667
668 /*
669 * __verify_mmap_ops() - verify that all memory operations required for
670 * MMAP queue type have been provided
671 */
__verify_mmap_ops(struct vb2_queue * q)672 static int __verify_mmap_ops(struct vb2_queue *q)
673 {
674 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
675 !q->mem_ops->put || !q->mem_ops->mmap)
676 return -EINVAL;
677
678 return 0;
679 }
680
681 /*
682 * __verify_dmabuf_ops() - verify that all memory operations required for
683 * DMABUF queue type have been provided
684 */
__verify_dmabuf_ops(struct vb2_queue * q)685 static int __verify_dmabuf_ops(struct vb2_queue *q)
686 {
687 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
688 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf ||
689 !q->mem_ops->unmap_dmabuf)
690 return -EINVAL;
691
692 return 0;
693 }
694
vb2_verify_memory_type(struct vb2_queue * q,enum vb2_memory memory,unsigned int type)695 int vb2_verify_memory_type(struct vb2_queue *q,
696 enum vb2_memory memory, unsigned int type)
697 {
698 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR &&
699 memory != VB2_MEMORY_DMABUF) {
700 dprintk(q, 1, "unsupported memory type\n");
701 return -EINVAL;
702 }
703
704 if (type != q->type) {
705 dprintk(q, 1, "requested type is incorrect\n");
706 return -EINVAL;
707 }
708
709 /*
710 * Make sure all the required memory ops for given memory type
711 * are available.
712 */
713 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) {
714 dprintk(q, 1, "MMAP for current setup unsupported\n");
715 return -EINVAL;
716 }
717
718 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
719 dprintk(q, 1, "USERPTR for current setup unsupported\n");
720 return -EINVAL;
721 }
722
723 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
724 dprintk(q, 1, "DMABUF for current setup unsupported\n");
725 return -EINVAL;
726 }
727
728 /*
729 * Place the busy tests at the end: -EBUSY can be ignored when
730 * create_bufs is called with count == 0, but count == 0 should still
731 * do the memory and type validation.
732 */
733 if (vb2_fileio_is_active(q)) {
734 dprintk(q, 1, "file io in progress\n");
735 return -EBUSY;
736 }
737 return 0;
738 }
739 EXPORT_SYMBOL(vb2_verify_memory_type);
740
set_queue_coherency(struct vb2_queue * q,bool non_coherent_mem)741 static void set_queue_coherency(struct vb2_queue *q, bool non_coherent_mem)
742 {
743 q->non_coherent_mem = 0;
744
745 if (!vb2_queue_allows_cache_hints(q))
746 return;
747 q->non_coherent_mem = non_coherent_mem;
748 }
749
verify_coherency_flags(struct vb2_queue * q,bool non_coherent_mem)750 static bool verify_coherency_flags(struct vb2_queue *q, bool non_coherent_mem)
751 {
752 if (non_coherent_mem != q->non_coherent_mem) {
753 dprintk(q, 1, "memory coherency model mismatch\n");
754 return false;
755 }
756 return true;
757 }
758
vb2_core_reqbufs(struct vb2_queue * q,enum vb2_memory memory,unsigned int flags,unsigned int * count)759 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory,
760 unsigned int flags, unsigned int *count)
761 {
762 unsigned int num_buffers, allocated_buffers, num_planes = 0;
763 unsigned plane_sizes[VB2_MAX_PLANES] = { };
764 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT;
765 unsigned int i;
766 int ret;
767
768 if (q->streaming) {
769 dprintk(q, 1, "streaming active\n");
770 return -EBUSY;
771 }
772
773 if (q->waiting_in_dqbuf && *count) {
774 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
775 return -EBUSY;
776 }
777
778 if (*count == 0 || q->num_buffers != 0 ||
779 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory) ||
780 !verify_coherency_flags(q, non_coherent_mem)) {
781 /*
782 * We already have buffers allocated, so first check if they
783 * are not in use and can be freed.
784 */
785 mutex_lock(&q->mmap_lock);
786 if (debug && q->memory == VB2_MEMORY_MMAP &&
787 __buffers_in_use(q))
788 dprintk(q, 1, "memory in use, orphaning buffers\n");
789
790 /*
791 * Call queue_cancel to clean up any buffers in the
792 * QUEUED state which is possible if buffers were prepared or
793 * queued without ever calling STREAMON.
794 */
795 __vb2_queue_cancel(q);
796 ret = __vb2_queue_free(q, q->num_buffers);
797 mutex_unlock(&q->mmap_lock);
798 if (ret)
799 return ret;
800
801 /*
802 * In case of REQBUFS(0) return immediately without calling
803 * driver's queue_setup() callback and allocating resources.
804 */
805 if (*count == 0)
806 return 0;
807 }
808
809 /*
810 * Make sure the requested values and current defaults are sane.
811 */
812 WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME);
813 num_buffers = max_t(unsigned int, *count, q->min_buffers_needed);
814 num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME);
815 memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
816 q->memory = memory;
817 set_queue_coherency(q, non_coherent_mem);
818
819 /*
820 * Ask the driver how many buffers and planes per buffer it requires.
821 * Driver also sets the size and allocator context for each plane.
822 */
823 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes,
824 plane_sizes, q->alloc_devs);
825 if (ret)
826 return ret;
827
828 /* Check that driver has set sane values */
829 if (WARN_ON(!num_planes))
830 return -EINVAL;
831
832 for (i = 0; i < num_planes; i++)
833 if (WARN_ON(!plane_sizes[i]))
834 return -EINVAL;
835
836 /* Finally, allocate buffers and video memory */
837 allocated_buffers =
838 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes);
839 if (allocated_buffers == 0) {
840 dprintk(q, 1, "memory allocation failed\n");
841 return -ENOMEM;
842 }
843
844 /*
845 * There is no point in continuing if we can't allocate the minimum
846 * number of buffers needed by this vb2_queue.
847 */
848 if (allocated_buffers < q->min_buffers_needed)
849 ret = -ENOMEM;
850
851 /*
852 * Check if driver can handle the allocated number of buffers.
853 */
854 if (!ret && allocated_buffers < num_buffers) {
855 num_buffers = allocated_buffers;
856 /*
857 * num_planes is set by the previous queue_setup(), but since it
858 * signals to queue_setup() whether it is called from create_bufs()
859 * vs reqbufs() we zero it here to signal that queue_setup() is
860 * called for the reqbufs() case.
861 */
862 num_planes = 0;
863
864 ret = call_qop(q, queue_setup, q, &num_buffers,
865 &num_planes, plane_sizes, q->alloc_devs);
866
867 if (!ret && allocated_buffers < num_buffers)
868 ret = -ENOMEM;
869
870 /*
871 * Either the driver has accepted a smaller number of buffers,
872 * or .queue_setup() returned an error
873 */
874 }
875
876 mutex_lock(&q->mmap_lock);
877 q->num_buffers = allocated_buffers;
878
879 if (ret < 0) {
880 /*
881 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
882 * from q->num_buffers.
883 */
884 __vb2_queue_free(q, allocated_buffers);
885 mutex_unlock(&q->mmap_lock);
886 return ret;
887 }
888 mutex_unlock(&q->mmap_lock);
889
890 /*
891 * Return the number of successfully allocated buffers
892 * to the userspace.
893 */
894 *count = allocated_buffers;
895 q->waiting_for_buffers = !q->is_output;
896
897 return 0;
898 }
899 EXPORT_SYMBOL_GPL(vb2_core_reqbufs);
900
vb2_core_create_bufs(struct vb2_queue * q,enum vb2_memory memory,unsigned int flags,unsigned int * count,unsigned int requested_planes,const unsigned int requested_sizes[])901 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory,
902 unsigned int flags, unsigned int *count,
903 unsigned int requested_planes,
904 const unsigned int requested_sizes[])
905 {
906 unsigned int num_planes = 0, num_buffers, allocated_buffers;
907 unsigned plane_sizes[VB2_MAX_PLANES] = { };
908 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT;
909 int ret;
910
911 if (q->num_buffers == VB2_MAX_FRAME) {
912 dprintk(q, 1, "maximum number of buffers already allocated\n");
913 return -ENOBUFS;
914 }
915
916 if (!q->num_buffers) {
917 if (q->waiting_in_dqbuf && *count) {
918 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
919 return -EBUSY;
920 }
921 memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
922 q->memory = memory;
923 q->waiting_for_buffers = !q->is_output;
924 set_queue_coherency(q, non_coherent_mem);
925 } else {
926 if (q->memory != memory) {
927 dprintk(q, 1, "memory model mismatch\n");
928 return -EINVAL;
929 }
930 if (!verify_coherency_flags(q, non_coherent_mem))
931 return -EINVAL;
932 }
933
934 num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers);
935
936 if (requested_planes && requested_sizes) {
937 num_planes = requested_planes;
938 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes));
939 }
940
941 /*
942 * Ask the driver, whether the requested number of buffers, planes per
943 * buffer and their sizes are acceptable
944 */
945 ret = call_qop(q, queue_setup, q, &num_buffers,
946 &num_planes, plane_sizes, q->alloc_devs);
947 if (ret)
948 return ret;
949
950 /* Finally, allocate buffers and video memory */
951 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers,
952 num_planes, plane_sizes);
953 if (allocated_buffers == 0) {
954 dprintk(q, 1, "memory allocation failed\n");
955 return -ENOMEM;
956 }
957
958 /*
959 * Check if driver can handle the so far allocated number of buffers.
960 */
961 if (allocated_buffers < num_buffers) {
962 num_buffers = allocated_buffers;
963
964 /*
965 * q->num_buffers contains the total number of buffers, that the
966 * queue driver has set up
967 */
968 ret = call_qop(q, queue_setup, q, &num_buffers,
969 &num_planes, plane_sizes, q->alloc_devs);
970
971 if (!ret && allocated_buffers < num_buffers)
972 ret = -ENOMEM;
973
974 /*
975 * Either the driver has accepted a smaller number of buffers,
976 * or .queue_setup() returned an error
977 */
978 }
979
980 mutex_lock(&q->mmap_lock);
981 q->num_buffers += allocated_buffers;
982
983 if (ret < 0) {
984 /*
985 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
986 * from q->num_buffers.
987 */
988 __vb2_queue_free(q, allocated_buffers);
989 mutex_unlock(&q->mmap_lock);
990 return -ENOMEM;
991 }
992 mutex_unlock(&q->mmap_lock);
993
994 /*
995 * Return the number of successfully allocated buffers
996 * to the userspace.
997 */
998 *count = allocated_buffers;
999
1000 return 0;
1001 }
1002 EXPORT_SYMBOL_GPL(vb2_core_create_bufs);
1003
vb2_plane_vaddr(struct vb2_buffer * vb,unsigned int plane_no)1004 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
1005 {
1006 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1007 return NULL;
1008
1009 return call_ptr_memop(vaddr, vb, vb->planes[plane_no].mem_priv);
1010
1011 }
1012 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
1013
vb2_plane_cookie(struct vb2_buffer * vb,unsigned int plane_no)1014 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
1015 {
1016 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1017 return NULL;
1018
1019 return call_ptr_memop(cookie, vb, vb->planes[plane_no].mem_priv);
1020 }
1021 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
1022
vb2_buffer_done(struct vb2_buffer * vb,enum vb2_buffer_state state)1023 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
1024 {
1025 struct vb2_queue *q = vb->vb2_queue;
1026 unsigned long flags;
1027
1028 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
1029 return;
1030
1031 if (WARN_ON(state != VB2_BUF_STATE_DONE &&
1032 state != VB2_BUF_STATE_ERROR &&
1033 state != VB2_BUF_STATE_QUEUED))
1034 state = VB2_BUF_STATE_ERROR;
1035
1036 #ifdef CONFIG_VIDEO_ADV_DEBUG
1037 /*
1038 * Although this is not a callback, it still does have to balance
1039 * with the buf_queue op. So update this counter manually.
1040 */
1041 vb->cnt_buf_done++;
1042 #endif
1043 dprintk(q, 4, "done processing on buffer %d, state: %s\n",
1044 vb->index, vb2_state_name(state));
1045
1046 if (state != VB2_BUF_STATE_QUEUED)
1047 __vb2_buf_mem_finish(vb);
1048
1049 spin_lock_irqsave(&q->done_lock, flags);
1050 if (state == VB2_BUF_STATE_QUEUED) {
1051 vb->state = VB2_BUF_STATE_QUEUED;
1052 } else {
1053 /* Add the buffer to the done buffers list */
1054 list_add_tail(&vb->done_entry, &q->done_list);
1055 vb->state = state;
1056 }
1057 atomic_dec(&q->owned_by_drv_count);
1058
1059 if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) {
1060 media_request_object_unbind(&vb->req_obj);
1061 media_request_object_put(&vb->req_obj);
1062 }
1063
1064 spin_unlock_irqrestore(&q->done_lock, flags);
1065
1066 trace_vb2_buf_done(q, vb);
1067
1068 switch (state) {
1069 case VB2_BUF_STATE_QUEUED:
1070 return;
1071 default:
1072 /* Inform any processes that may be waiting for buffers */
1073 wake_up(&q->done_wq);
1074 break;
1075 }
1076 }
1077 EXPORT_SYMBOL_GPL(vb2_buffer_done);
1078
vb2_discard_done(struct vb2_queue * q)1079 void vb2_discard_done(struct vb2_queue *q)
1080 {
1081 struct vb2_buffer *vb;
1082 unsigned long flags;
1083
1084 spin_lock_irqsave(&q->done_lock, flags);
1085 list_for_each_entry(vb, &q->done_list, done_entry)
1086 vb->state = VB2_BUF_STATE_ERROR;
1087 spin_unlock_irqrestore(&q->done_lock, flags);
1088 }
1089 EXPORT_SYMBOL_GPL(vb2_discard_done);
1090
1091 /*
1092 * __prepare_mmap() - prepare an MMAP buffer
1093 */
__prepare_mmap(struct vb2_buffer * vb)1094 static int __prepare_mmap(struct vb2_buffer *vb)
1095 {
1096 int ret = 0;
1097
1098 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1099 vb, vb->planes);
1100 return ret ? ret : call_vb_qop(vb, buf_prepare, vb);
1101 }
1102
1103 /*
1104 * __prepare_userptr() - prepare a USERPTR buffer
1105 */
__prepare_userptr(struct vb2_buffer * vb)1106 static int __prepare_userptr(struct vb2_buffer *vb)
1107 {
1108 struct vb2_plane planes[VB2_MAX_PLANES];
1109 struct vb2_queue *q = vb->vb2_queue;
1110 void *mem_priv;
1111 unsigned int plane;
1112 int ret = 0;
1113 bool reacquired = vb->planes[0].mem_priv == NULL;
1114
1115 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1116 /* Copy relevant information provided by the userspace */
1117 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1118 vb, planes);
1119 if (ret)
1120 return ret;
1121
1122 for (plane = 0; plane < vb->num_planes; ++plane) {
1123 /* Skip the plane if already verified */
1124 if (vb->planes[plane].m.userptr &&
1125 vb->planes[plane].m.userptr == planes[plane].m.userptr
1126 && vb->planes[plane].length == planes[plane].length)
1127 continue;
1128
1129 dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n",
1130 plane);
1131
1132 /* Check if the provided plane buffer is large enough */
1133 if (planes[plane].length < vb->planes[plane].min_length) {
1134 dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n",
1135 planes[plane].length,
1136 vb->planes[plane].min_length,
1137 plane);
1138 ret = -EINVAL;
1139 goto err;
1140 }
1141
1142 /* Release previously acquired memory if present */
1143 if (vb->planes[plane].mem_priv) {
1144 if (!reacquired) {
1145 reacquired = true;
1146 vb->copied_timestamp = 0;
1147 call_void_vb_qop(vb, buf_cleanup, vb);
1148 }
1149 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1150 }
1151
1152 vb->planes[plane].mem_priv = NULL;
1153 vb->planes[plane].bytesused = 0;
1154 vb->planes[plane].length = 0;
1155 vb->planes[plane].m.userptr = 0;
1156 vb->planes[plane].data_offset = 0;
1157
1158 /* Acquire each plane's memory */
1159 mem_priv = call_ptr_memop(get_userptr,
1160 vb,
1161 q->alloc_devs[plane] ? : q->dev,
1162 planes[plane].m.userptr,
1163 planes[plane].length);
1164 if (IS_ERR(mem_priv)) {
1165 dprintk(q, 1, "failed acquiring userspace memory for plane %d\n",
1166 plane);
1167 ret = PTR_ERR(mem_priv);
1168 goto err;
1169 }
1170 vb->planes[plane].mem_priv = mem_priv;
1171 }
1172
1173 /*
1174 * Now that everything is in order, copy relevant information
1175 * provided by userspace.
1176 */
1177 for (plane = 0; plane < vb->num_planes; ++plane) {
1178 vb->planes[plane].bytesused = planes[plane].bytesused;
1179 vb->planes[plane].length = planes[plane].length;
1180 vb->planes[plane].m.userptr = planes[plane].m.userptr;
1181 vb->planes[plane].data_offset = planes[plane].data_offset;
1182 }
1183
1184 if (reacquired) {
1185 /*
1186 * One or more planes changed, so we must call buf_init to do
1187 * the driver-specific initialization on the newly acquired
1188 * buffer, if provided.
1189 */
1190 ret = call_vb_qop(vb, buf_init, vb);
1191 if (ret) {
1192 dprintk(q, 1, "buffer initialization failed\n");
1193 goto err;
1194 }
1195 }
1196
1197 ret = call_vb_qop(vb, buf_prepare, vb);
1198 if (ret) {
1199 dprintk(q, 1, "buffer preparation failed\n");
1200 call_void_vb_qop(vb, buf_cleanup, vb);
1201 goto err;
1202 }
1203
1204 return 0;
1205 err:
1206 /* In case of errors, release planes that were already acquired */
1207 for (plane = 0; plane < vb->num_planes; ++plane) {
1208 if (vb->planes[plane].mem_priv)
1209 call_void_memop(vb, put_userptr,
1210 vb->planes[plane].mem_priv);
1211 vb->planes[plane].mem_priv = NULL;
1212 vb->planes[plane].m.userptr = 0;
1213 vb->planes[plane].length = 0;
1214 }
1215
1216 return ret;
1217 }
1218
1219 /*
1220 * __prepare_dmabuf() - prepare a DMABUF buffer
1221 */
__prepare_dmabuf(struct vb2_buffer * vb)1222 static int __prepare_dmabuf(struct vb2_buffer *vb)
1223 {
1224 struct vb2_plane planes[VB2_MAX_PLANES];
1225 struct vb2_queue *q = vb->vb2_queue;
1226 void *mem_priv;
1227 unsigned int plane;
1228 int ret = 0;
1229 bool reacquired = vb->planes[0].mem_priv == NULL;
1230
1231 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1232 /* Copy relevant information provided by the userspace */
1233 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1234 vb, planes);
1235 if (ret)
1236 return ret;
1237
1238 for (plane = 0; plane < vb->num_planes; ++plane) {
1239 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1240
1241 if (IS_ERR_OR_NULL(dbuf)) {
1242 dprintk(q, 1, "invalid dmabuf fd for plane %d\n",
1243 plane);
1244 ret = -EINVAL;
1245 goto err;
1246 }
1247
1248 /* use DMABUF size if length is not provided */
1249 if (planes[plane].length == 0)
1250 planes[plane].length = dbuf->size;
1251
1252 if (planes[plane].length < vb->planes[plane].min_length) {
1253 dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n",
1254 planes[plane].length, plane,
1255 vb->planes[plane].min_length);
1256 dma_buf_put(dbuf);
1257 ret = -EINVAL;
1258 goto err;
1259 }
1260
1261 /* Skip the plane if already verified */
1262 if (dbuf == vb->planes[plane].dbuf &&
1263 vb->planes[plane].length == planes[plane].length) {
1264 dma_buf_put(dbuf);
1265 continue;
1266 }
1267
1268 dprintk(q, 3, "buffer for plane %d changed\n", plane);
1269
1270 if (!reacquired) {
1271 reacquired = true;
1272 vb->copied_timestamp = 0;
1273 call_void_vb_qop(vb, buf_cleanup, vb);
1274 }
1275
1276 /* Release previously acquired memory if present */
1277 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
1278 vb->planes[plane].bytesused = 0;
1279 vb->planes[plane].length = 0;
1280 vb->planes[plane].m.fd = 0;
1281 vb->planes[plane].data_offset = 0;
1282
1283 /* Acquire each plane's memory */
1284 mem_priv = call_ptr_memop(attach_dmabuf,
1285 vb,
1286 q->alloc_devs[plane] ? : q->dev,
1287 dbuf,
1288 planes[plane].length);
1289 if (IS_ERR(mem_priv)) {
1290 dprintk(q, 1, "failed to attach dmabuf\n");
1291 ret = PTR_ERR(mem_priv);
1292 dma_buf_put(dbuf);
1293 goto err;
1294 }
1295
1296 vb->planes[plane].dbuf = dbuf;
1297 vb->planes[plane].mem_priv = mem_priv;
1298 }
1299
1300 /*
1301 * This pins the buffer(s) with dma_buf_map_attachment()). It's done
1302 * here instead just before the DMA, while queueing the buffer(s) so
1303 * userspace knows sooner rather than later if the dma-buf map fails.
1304 */
1305 for (plane = 0; plane < vb->num_planes; ++plane) {
1306 if (vb->planes[plane].dbuf_mapped)
1307 continue;
1308
1309 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1310 if (ret) {
1311 dprintk(q, 1, "failed to map dmabuf for plane %d\n",
1312 plane);
1313 goto err;
1314 }
1315 vb->planes[plane].dbuf_mapped = 1;
1316 }
1317
1318 /*
1319 * Now that everything is in order, copy relevant information
1320 * provided by userspace.
1321 */
1322 for (plane = 0; plane < vb->num_planes; ++plane) {
1323 vb->planes[plane].bytesused = planes[plane].bytesused;
1324 vb->planes[plane].length = planes[plane].length;
1325 vb->planes[plane].m.fd = planes[plane].m.fd;
1326 vb->planes[plane].data_offset = planes[plane].data_offset;
1327 }
1328
1329 if (reacquired) {
1330 /*
1331 * Call driver-specific initialization on the newly acquired buffer,
1332 * if provided.
1333 */
1334 ret = call_vb_qop(vb, buf_init, vb);
1335 if (ret) {
1336 dprintk(q, 1, "buffer initialization failed\n");
1337 goto err;
1338 }
1339 }
1340
1341 ret = call_vb_qop(vb, buf_prepare, vb);
1342 if (ret) {
1343 dprintk(q, 1, "buffer preparation failed\n");
1344 call_void_vb_qop(vb, buf_cleanup, vb);
1345 goto err;
1346 }
1347
1348 return 0;
1349 err:
1350 /* In case of errors, release planes that were already acquired */
1351 __vb2_buf_dmabuf_put(vb);
1352
1353 return ret;
1354 }
1355
1356 /*
1357 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1358 */
__enqueue_in_driver(struct vb2_buffer * vb)1359 static void __enqueue_in_driver(struct vb2_buffer *vb)
1360 {
1361 struct vb2_queue *q = vb->vb2_queue;
1362
1363 vb->state = VB2_BUF_STATE_ACTIVE;
1364 atomic_inc(&q->owned_by_drv_count);
1365
1366 trace_vb2_buf_queue(q, vb);
1367
1368 call_void_vb_qop(vb, buf_queue, vb);
1369 }
1370
__buf_prepare(struct vb2_buffer * vb)1371 static int __buf_prepare(struct vb2_buffer *vb)
1372 {
1373 struct vb2_queue *q = vb->vb2_queue;
1374 enum vb2_buffer_state orig_state = vb->state;
1375 int ret;
1376
1377 if (q->error) {
1378 dprintk(q, 1, "fatal error occurred on queue\n");
1379 return -EIO;
1380 }
1381
1382 if (vb->prepared)
1383 return 0;
1384 WARN_ON(vb->synced);
1385
1386 if (q->is_output) {
1387 ret = call_vb_qop(vb, buf_out_validate, vb);
1388 if (ret) {
1389 dprintk(q, 1, "buffer validation failed\n");
1390 return ret;
1391 }
1392 }
1393
1394 vb->state = VB2_BUF_STATE_PREPARING;
1395
1396 switch (q->memory) {
1397 case VB2_MEMORY_MMAP:
1398 ret = __prepare_mmap(vb);
1399 break;
1400 case VB2_MEMORY_USERPTR:
1401 ret = __prepare_userptr(vb);
1402 break;
1403 case VB2_MEMORY_DMABUF:
1404 ret = __prepare_dmabuf(vb);
1405 break;
1406 default:
1407 WARN(1, "Invalid queue type\n");
1408 ret = -EINVAL;
1409 break;
1410 }
1411
1412 if (ret) {
1413 dprintk(q, 1, "buffer preparation failed: %d\n", ret);
1414 vb->state = orig_state;
1415 return ret;
1416 }
1417
1418 __vb2_buf_mem_prepare(vb);
1419 vb->prepared = 1;
1420 vb->state = orig_state;
1421
1422 return 0;
1423 }
1424
vb2_req_prepare(struct media_request_object * obj)1425 static int vb2_req_prepare(struct media_request_object *obj)
1426 {
1427 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1428 int ret;
1429
1430 if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST))
1431 return -EINVAL;
1432
1433 mutex_lock(vb->vb2_queue->lock);
1434 ret = __buf_prepare(vb);
1435 mutex_unlock(vb->vb2_queue->lock);
1436 return ret;
1437 }
1438
1439 static void __vb2_dqbuf(struct vb2_buffer *vb);
1440
vb2_req_unprepare(struct media_request_object * obj)1441 static void vb2_req_unprepare(struct media_request_object *obj)
1442 {
1443 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1444
1445 mutex_lock(vb->vb2_queue->lock);
1446 __vb2_dqbuf(vb);
1447 vb->state = VB2_BUF_STATE_IN_REQUEST;
1448 mutex_unlock(vb->vb2_queue->lock);
1449 WARN_ON(!vb->req_obj.req);
1450 }
1451
1452 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb,
1453 struct media_request *req);
1454
vb2_req_queue(struct media_request_object * obj)1455 static void vb2_req_queue(struct media_request_object *obj)
1456 {
1457 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1458 int err;
1459
1460 mutex_lock(vb->vb2_queue->lock);
1461 /*
1462 * There is no method to propagate an error from vb2_core_qbuf(),
1463 * so if this returns a non-0 value, then WARN.
1464 *
1465 * The only exception is -EIO which is returned if q->error is
1466 * set. We just ignore that, and expect this will be caught the
1467 * next time vb2_req_prepare() is called.
1468 */
1469 err = vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL);
1470 WARN_ON_ONCE(err && err != -EIO);
1471 mutex_unlock(vb->vb2_queue->lock);
1472 }
1473
vb2_req_unbind(struct media_request_object * obj)1474 static void vb2_req_unbind(struct media_request_object *obj)
1475 {
1476 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1477
1478 if (vb->state == VB2_BUF_STATE_IN_REQUEST)
1479 call_void_bufop(vb->vb2_queue, init_buffer, vb);
1480 }
1481
vb2_req_release(struct media_request_object * obj)1482 static void vb2_req_release(struct media_request_object *obj)
1483 {
1484 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1485
1486 if (vb->state == VB2_BUF_STATE_IN_REQUEST) {
1487 vb->state = VB2_BUF_STATE_DEQUEUED;
1488 if (vb->request)
1489 media_request_put(vb->request);
1490 vb->request = NULL;
1491 }
1492 }
1493
1494 static const struct media_request_object_ops vb2_core_req_ops = {
1495 .prepare = vb2_req_prepare,
1496 .unprepare = vb2_req_unprepare,
1497 .queue = vb2_req_queue,
1498 .unbind = vb2_req_unbind,
1499 .release = vb2_req_release,
1500 };
1501
vb2_request_object_is_buffer(struct media_request_object * obj)1502 bool vb2_request_object_is_buffer(struct media_request_object *obj)
1503 {
1504 return obj->ops == &vb2_core_req_ops;
1505 }
1506 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer);
1507
vb2_request_buffer_cnt(struct media_request * req)1508 unsigned int vb2_request_buffer_cnt(struct media_request *req)
1509 {
1510 struct media_request_object *obj;
1511 unsigned long flags;
1512 unsigned int buffer_cnt = 0;
1513
1514 spin_lock_irqsave(&req->lock, flags);
1515 list_for_each_entry(obj, &req->objects, list)
1516 if (vb2_request_object_is_buffer(obj))
1517 buffer_cnt++;
1518 spin_unlock_irqrestore(&req->lock, flags);
1519
1520 return buffer_cnt;
1521 }
1522 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt);
1523
vb2_core_prepare_buf(struct vb2_queue * q,unsigned int index,void * pb)1524 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb)
1525 {
1526 struct vb2_buffer *vb;
1527 int ret;
1528
1529 vb = q->bufs[index];
1530 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1531 dprintk(q, 1, "invalid buffer state %s\n",
1532 vb2_state_name(vb->state));
1533 return -EINVAL;
1534 }
1535 if (vb->prepared) {
1536 dprintk(q, 1, "buffer already prepared\n");
1537 return -EINVAL;
1538 }
1539
1540 ret = __buf_prepare(vb);
1541 if (ret)
1542 return ret;
1543
1544 /* Fill buffer information for the userspace */
1545 call_void_bufop(q, fill_user_buffer, vb, pb);
1546
1547 dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index);
1548
1549 return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf);
1552
1553 /*
1554 * vb2_start_streaming() - Attempt to start streaming.
1555 * @q: videobuf2 queue
1556 *
1557 * Attempt to start streaming. When this function is called there must be
1558 * at least q->min_buffers_needed buffers queued up (i.e. the minimum
1559 * number of buffers required for the DMA engine to function). If the
1560 * @start_streaming op fails it is supposed to return all the driver-owned
1561 * buffers back to vb2 in state QUEUED. Check if that happened and if
1562 * not warn and reclaim them forcefully.
1563 */
vb2_start_streaming(struct vb2_queue * q)1564 static int vb2_start_streaming(struct vb2_queue *q)
1565 {
1566 struct vb2_buffer *vb;
1567 int ret;
1568
1569 /*
1570 * If any buffers were queued before streamon,
1571 * we can now pass them to driver for processing.
1572 */
1573 list_for_each_entry(vb, &q->queued_list, queued_entry)
1574 __enqueue_in_driver(vb);
1575
1576 /* Tell the driver to start streaming */
1577 q->start_streaming_called = 1;
1578 ret = call_qop(q, start_streaming, q,
1579 atomic_read(&q->owned_by_drv_count));
1580 if (!ret)
1581 return 0;
1582
1583 q->start_streaming_called = 0;
1584
1585 dprintk(q, 1, "driver refused to start streaming\n");
1586 /*
1587 * If you see this warning, then the driver isn't cleaning up properly
1588 * after a failed start_streaming(). See the start_streaming()
1589 * documentation in videobuf2-core.h for more information how buffers
1590 * should be returned to vb2 in start_streaming().
1591 */
1592 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1593 unsigned i;
1594
1595 /*
1596 * Forcefully reclaim buffers if the driver did not
1597 * correctly return them to vb2.
1598 */
1599 for (i = 0; i < q->num_buffers; ++i) {
1600 vb = q->bufs[i];
1601 if (vb->state == VB2_BUF_STATE_ACTIVE)
1602 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1603 }
1604 /* Must be zero now */
1605 WARN_ON(atomic_read(&q->owned_by_drv_count));
1606 }
1607 /*
1608 * If done_list is not empty, then start_streaming() didn't call
1609 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1610 * STATE_DONE.
1611 */
1612 WARN_ON(!list_empty(&q->done_list));
1613 return ret;
1614 }
1615
vb2_core_qbuf(struct vb2_queue * q,unsigned int index,void * pb,struct media_request * req)1616 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb,
1617 struct media_request *req)
1618 {
1619 struct vb2_buffer *vb;
1620 enum vb2_buffer_state orig_state;
1621 int ret;
1622
1623 if (q->error) {
1624 dprintk(q, 1, "fatal error occurred on queue\n");
1625 return -EIO;
1626 }
1627
1628 vb = q->bufs[index];
1629
1630 if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1631 q->requires_requests) {
1632 dprintk(q, 1, "qbuf requires a request\n");
1633 return -EBADR;
1634 }
1635
1636 if ((req && q->uses_qbuf) ||
1637 (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1638 q->uses_requests)) {
1639 dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n");
1640 return -EBUSY;
1641 }
1642
1643 if (req) {
1644 int ret;
1645
1646 q->uses_requests = 1;
1647 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1648 dprintk(q, 1, "buffer %d not in dequeued state\n",
1649 vb->index);
1650 return -EINVAL;
1651 }
1652
1653 if (q->is_output && !vb->prepared) {
1654 ret = call_vb_qop(vb, buf_out_validate, vb);
1655 if (ret) {
1656 dprintk(q, 1, "buffer validation failed\n");
1657 return ret;
1658 }
1659 }
1660
1661 media_request_object_init(&vb->req_obj);
1662
1663 /* Make sure the request is in a safe state for updating. */
1664 ret = media_request_lock_for_update(req);
1665 if (ret)
1666 return ret;
1667 ret = media_request_object_bind(req, &vb2_core_req_ops,
1668 q, true, &vb->req_obj);
1669 media_request_unlock_for_update(req);
1670 if (ret)
1671 return ret;
1672
1673 vb->state = VB2_BUF_STATE_IN_REQUEST;
1674
1675 /*
1676 * Increment the refcount and store the request.
1677 * The request refcount is decremented again when the
1678 * buffer is dequeued. This is to prevent vb2_buffer_done()
1679 * from freeing the request from interrupt context, which can
1680 * happen if the application closed the request fd after
1681 * queueing the request.
1682 */
1683 media_request_get(req);
1684 vb->request = req;
1685
1686 /* Fill buffer information for the userspace */
1687 if (pb) {
1688 call_void_bufop(q, copy_timestamp, vb, pb);
1689 call_void_bufop(q, fill_user_buffer, vb, pb);
1690 }
1691
1692 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1693 return 0;
1694 }
1695
1696 if (vb->state != VB2_BUF_STATE_IN_REQUEST)
1697 q->uses_qbuf = 1;
1698
1699 switch (vb->state) {
1700 case VB2_BUF_STATE_DEQUEUED:
1701 case VB2_BUF_STATE_IN_REQUEST:
1702 if (!vb->prepared) {
1703 ret = __buf_prepare(vb);
1704 if (ret)
1705 return ret;
1706 }
1707 break;
1708 case VB2_BUF_STATE_PREPARING:
1709 dprintk(q, 1, "buffer still being prepared\n");
1710 return -EINVAL;
1711 default:
1712 dprintk(q, 1, "invalid buffer state %s\n",
1713 vb2_state_name(vb->state));
1714 return -EINVAL;
1715 }
1716
1717 /*
1718 * Add to the queued buffers list, a buffer will stay on it until
1719 * dequeued in dqbuf.
1720 */
1721 orig_state = vb->state;
1722 list_add_tail(&vb->queued_entry, &q->queued_list);
1723 q->queued_count++;
1724 q->waiting_for_buffers = false;
1725 vb->state = VB2_BUF_STATE_QUEUED;
1726
1727 if (pb)
1728 call_void_bufop(q, copy_timestamp, vb, pb);
1729
1730 trace_vb2_qbuf(q, vb);
1731
1732 /*
1733 * If already streaming, give the buffer to driver for processing.
1734 * If not, the buffer will be given to driver on next streamon.
1735 */
1736 if (q->start_streaming_called)
1737 __enqueue_in_driver(vb);
1738
1739 /* Fill buffer information for the userspace */
1740 if (pb)
1741 call_void_bufop(q, fill_user_buffer, vb, pb);
1742
1743 /*
1744 * If streamon has been called, and we haven't yet called
1745 * start_streaming() since not enough buffers were queued, and
1746 * we now have reached the minimum number of queued buffers,
1747 * then we can finally call start_streaming().
1748 */
1749 if (q->streaming && !q->start_streaming_called &&
1750 q->queued_count >= q->min_buffers_needed) {
1751 ret = vb2_start_streaming(q);
1752 if (ret) {
1753 /*
1754 * Since vb2_core_qbuf will return with an error,
1755 * we should return it to state DEQUEUED since
1756 * the error indicates that the buffer wasn't queued.
1757 */
1758 list_del(&vb->queued_entry);
1759 q->queued_count--;
1760 vb->state = orig_state;
1761 return ret;
1762 }
1763 }
1764
1765 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1766 return 0;
1767 }
1768 EXPORT_SYMBOL_GPL(vb2_core_qbuf);
1769
1770 /*
1771 * __vb2_wait_for_done_vb() - wait for a buffer to become available
1772 * for dequeuing
1773 *
1774 * Will sleep if required for nonblocking == false.
1775 */
__vb2_wait_for_done_vb(struct vb2_queue * q,int nonblocking)1776 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1777 {
1778 /*
1779 * All operations on vb_done_list are performed under done_lock
1780 * spinlock protection. However, buffers may be removed from
1781 * it and returned to userspace only while holding both driver's
1782 * lock and the done_lock spinlock. Thus we can be sure that as
1783 * long as we hold the driver's lock, the list will remain not
1784 * empty if list_empty() check succeeds.
1785 */
1786
1787 for (;;) {
1788 int ret;
1789
1790 if (q->waiting_in_dqbuf) {
1791 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
1792 return -EBUSY;
1793 }
1794
1795 if (!q->streaming) {
1796 dprintk(q, 1, "streaming off, will not wait for buffers\n");
1797 return -EINVAL;
1798 }
1799
1800 if (q->error) {
1801 dprintk(q, 1, "Queue in error state, will not wait for buffers\n");
1802 return -EIO;
1803 }
1804
1805 if (q->last_buffer_dequeued) {
1806 dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n");
1807 return -EPIPE;
1808 }
1809
1810 if (!list_empty(&q->done_list)) {
1811 /*
1812 * Found a buffer that we were waiting for.
1813 */
1814 break;
1815 }
1816
1817 if (nonblocking) {
1818 dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n");
1819 return -EAGAIN;
1820 }
1821
1822 q->waiting_in_dqbuf = 1;
1823 /*
1824 * We are streaming and blocking, wait for another buffer to
1825 * become ready or for streamoff. Driver's lock is released to
1826 * allow streamoff or qbuf to be called while waiting.
1827 */
1828 call_void_qop(q, wait_prepare, q);
1829
1830 /*
1831 * All locks have been released, it is safe to sleep now.
1832 */
1833 dprintk(q, 3, "will sleep waiting for buffers\n");
1834 ret = wait_event_interruptible(q->done_wq,
1835 !list_empty(&q->done_list) || !q->streaming ||
1836 q->error);
1837
1838 /*
1839 * We need to reevaluate both conditions again after reacquiring
1840 * the locks or return an error if one occurred.
1841 */
1842 call_void_qop(q, wait_finish, q);
1843 q->waiting_in_dqbuf = 0;
1844 if (ret) {
1845 dprintk(q, 1, "sleep was interrupted\n");
1846 return ret;
1847 }
1848 }
1849 return 0;
1850 }
1851
1852 /*
1853 * __vb2_get_done_vb() - get a buffer ready for dequeuing
1854 *
1855 * Will sleep if required for nonblocking == false.
1856 */
__vb2_get_done_vb(struct vb2_queue * q,struct vb2_buffer ** vb,void * pb,int nonblocking)1857 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
1858 void *pb, int nonblocking)
1859 {
1860 unsigned long flags;
1861 int ret = 0;
1862
1863 /*
1864 * Wait for at least one buffer to become available on the done_list.
1865 */
1866 ret = __vb2_wait_for_done_vb(q, nonblocking);
1867 if (ret)
1868 return ret;
1869
1870 /*
1871 * Driver's lock has been held since we last verified that done_list
1872 * is not empty, so no need for another list_empty(done_list) check.
1873 */
1874 spin_lock_irqsave(&q->done_lock, flags);
1875 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
1876 /*
1877 * Only remove the buffer from done_list if all planes can be
1878 * handled. Some cases such as V4L2 file I/O and DVB have pb
1879 * == NULL; skip the check then as there's nothing to verify.
1880 */
1881 if (pb)
1882 ret = call_bufop(q, verify_planes_array, *vb, pb);
1883 if (!ret)
1884 list_del(&(*vb)->done_entry);
1885 spin_unlock_irqrestore(&q->done_lock, flags);
1886
1887 return ret;
1888 }
1889
vb2_wait_for_all_buffers(struct vb2_queue * q)1890 int vb2_wait_for_all_buffers(struct vb2_queue *q)
1891 {
1892 if (!q->streaming) {
1893 dprintk(q, 1, "streaming off, will not wait for buffers\n");
1894 return -EINVAL;
1895 }
1896
1897 if (q->start_streaming_called)
1898 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
1899 return 0;
1900 }
1901 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
1902
1903 /*
1904 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
1905 */
__vb2_dqbuf(struct vb2_buffer * vb)1906 static void __vb2_dqbuf(struct vb2_buffer *vb)
1907 {
1908 struct vb2_queue *q = vb->vb2_queue;
1909
1910 /* nothing to do if the buffer is already dequeued */
1911 if (vb->state == VB2_BUF_STATE_DEQUEUED)
1912 return;
1913
1914 vb->state = VB2_BUF_STATE_DEQUEUED;
1915
1916 call_void_bufop(q, init_buffer, vb);
1917 }
1918
vb2_core_dqbuf(struct vb2_queue * q,unsigned int * pindex,void * pb,bool nonblocking)1919 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
1920 bool nonblocking)
1921 {
1922 struct vb2_buffer *vb = NULL;
1923 int ret;
1924
1925 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking);
1926 if (ret < 0)
1927 return ret;
1928
1929 switch (vb->state) {
1930 case VB2_BUF_STATE_DONE:
1931 dprintk(q, 3, "returning done buffer\n");
1932 break;
1933 case VB2_BUF_STATE_ERROR:
1934 dprintk(q, 3, "returning done buffer with errors\n");
1935 break;
1936 default:
1937 dprintk(q, 1, "invalid buffer state %s\n",
1938 vb2_state_name(vb->state));
1939 return -EINVAL;
1940 }
1941
1942 call_void_vb_qop(vb, buf_finish, vb);
1943 vb->prepared = 0;
1944
1945 if (pindex)
1946 *pindex = vb->index;
1947
1948 /* Fill buffer information for the userspace */
1949 if (pb)
1950 call_void_bufop(q, fill_user_buffer, vb, pb);
1951
1952 /* Remove from videobuf queue */
1953 list_del(&vb->queued_entry);
1954 q->queued_count--;
1955
1956 trace_vb2_dqbuf(q, vb);
1957
1958 /* go back to dequeued state */
1959 __vb2_dqbuf(vb);
1960
1961 if (WARN_ON(vb->req_obj.req)) {
1962 media_request_object_unbind(&vb->req_obj);
1963 media_request_object_put(&vb->req_obj);
1964 }
1965 if (vb->request)
1966 media_request_put(vb->request);
1967 vb->request = NULL;
1968
1969 dprintk(q, 2, "dqbuf of buffer %d, state: %s\n",
1970 vb->index, vb2_state_name(vb->state));
1971
1972 return 0;
1973
1974 }
1975 EXPORT_SYMBOL_GPL(vb2_core_dqbuf);
1976
1977 /*
1978 * __vb2_queue_cancel() - cancel and stop (pause) streaming
1979 *
1980 * Removes all queued buffers from driver's queue and all buffers queued by
1981 * userspace from videobuf's queue. Returns to state after reqbufs.
1982 */
__vb2_queue_cancel(struct vb2_queue * q)1983 static void __vb2_queue_cancel(struct vb2_queue *q)
1984 {
1985 unsigned int i;
1986
1987 /*
1988 * Tell driver to stop all transactions and release all queued
1989 * buffers.
1990 */
1991 if (q->start_streaming_called)
1992 call_void_qop(q, stop_streaming, q);
1993
1994 /*
1995 * If you see this warning, then the driver isn't cleaning up properly
1996 * in stop_streaming(). See the stop_streaming() documentation in
1997 * videobuf2-core.h for more information how buffers should be returned
1998 * to vb2 in stop_streaming().
1999 */
2000 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
2001 for (i = 0; i < q->num_buffers; ++i)
2002 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) {
2003 pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n",
2004 q->bufs[i]);
2005 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR);
2006 }
2007 /* Must be zero now */
2008 WARN_ON(atomic_read(&q->owned_by_drv_count));
2009 }
2010
2011 q->streaming = 0;
2012 q->start_streaming_called = 0;
2013 q->queued_count = 0;
2014 q->error = 0;
2015 q->uses_requests = 0;
2016 q->uses_qbuf = 0;
2017
2018 /*
2019 * Remove all buffers from videobuf's list...
2020 */
2021 INIT_LIST_HEAD(&q->queued_list);
2022 /*
2023 * ...and done list; userspace will not receive any buffers it
2024 * has not already dequeued before initiating cancel.
2025 */
2026 INIT_LIST_HEAD(&q->done_list);
2027 atomic_set(&q->owned_by_drv_count, 0);
2028 wake_up_all(&q->done_wq);
2029
2030 /*
2031 * Reinitialize all buffers for next use.
2032 * Make sure to call buf_finish for any queued buffers. Normally
2033 * that's done in dqbuf, but that's not going to happen when we
2034 * cancel the whole queue. Note: this code belongs here, not in
2035 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical
2036 * call to __fill_user_buffer() after buf_finish(). That order can't
2037 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
2038 */
2039 for (i = 0; i < q->num_buffers; ++i) {
2040 struct vb2_buffer *vb = q->bufs[i];
2041 struct media_request *req = vb->req_obj.req;
2042
2043 /*
2044 * If a request is associated with this buffer, then
2045 * call buf_request_cancel() to give the driver to complete()
2046 * related request objects. Otherwise those objects would
2047 * never complete.
2048 */
2049 if (req) {
2050 enum media_request_state state;
2051 unsigned long flags;
2052
2053 spin_lock_irqsave(&req->lock, flags);
2054 state = req->state;
2055 spin_unlock_irqrestore(&req->lock, flags);
2056
2057 if (state == MEDIA_REQUEST_STATE_QUEUED)
2058 call_void_vb_qop(vb, buf_request_complete, vb);
2059 }
2060
2061 __vb2_buf_mem_finish(vb);
2062
2063 if (vb->prepared) {
2064 call_void_vb_qop(vb, buf_finish, vb);
2065 vb->prepared = 0;
2066 }
2067 __vb2_dqbuf(vb);
2068
2069 if (vb->req_obj.req) {
2070 media_request_object_unbind(&vb->req_obj);
2071 media_request_object_put(&vb->req_obj);
2072 }
2073 if (vb->request)
2074 media_request_put(vb->request);
2075 vb->request = NULL;
2076 vb->copied_timestamp = 0;
2077 }
2078 }
2079
vb2_core_streamon(struct vb2_queue * q,unsigned int type)2080 int vb2_core_streamon(struct vb2_queue *q, unsigned int type)
2081 {
2082 int ret;
2083
2084 if (type != q->type) {
2085 dprintk(q, 1, "invalid stream type\n");
2086 return -EINVAL;
2087 }
2088
2089 if (q->streaming) {
2090 dprintk(q, 3, "already streaming\n");
2091 return 0;
2092 }
2093
2094 if (!q->num_buffers) {
2095 dprintk(q, 1, "no buffers have been allocated\n");
2096 return -EINVAL;
2097 }
2098
2099 if (q->num_buffers < q->min_buffers_needed) {
2100 dprintk(q, 1, "need at least %u allocated buffers\n",
2101 q->min_buffers_needed);
2102 return -EINVAL;
2103 }
2104
2105 /*
2106 * Tell driver to start streaming provided sufficient buffers
2107 * are available.
2108 */
2109 if (q->queued_count >= q->min_buffers_needed) {
2110 ret = v4l_vb2q_enable_media_source(q);
2111 if (ret)
2112 return ret;
2113 ret = vb2_start_streaming(q);
2114 if (ret)
2115 return ret;
2116 }
2117
2118 q->streaming = 1;
2119
2120 dprintk(q, 3, "successful\n");
2121 return 0;
2122 }
2123 EXPORT_SYMBOL_GPL(vb2_core_streamon);
2124
vb2_queue_error(struct vb2_queue * q)2125 void vb2_queue_error(struct vb2_queue *q)
2126 {
2127 q->error = 1;
2128
2129 wake_up_all(&q->done_wq);
2130 }
2131 EXPORT_SYMBOL_GPL(vb2_queue_error);
2132
vb2_core_streamoff(struct vb2_queue * q,unsigned int type)2133 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type)
2134 {
2135 if (type != q->type) {
2136 dprintk(q, 1, "invalid stream type\n");
2137 return -EINVAL;
2138 }
2139
2140 /*
2141 * Cancel will pause streaming and remove all buffers from the driver
2142 * and videobuf, effectively returning control over them to userspace.
2143 *
2144 * Note that we do this even if q->streaming == 0: if you prepare or
2145 * queue buffers, and then call streamoff without ever having called
2146 * streamon, you would still expect those buffers to be returned to
2147 * their normal dequeued state.
2148 */
2149 __vb2_queue_cancel(q);
2150 q->waiting_for_buffers = !q->is_output;
2151 q->last_buffer_dequeued = false;
2152
2153 dprintk(q, 3, "successful\n");
2154 return 0;
2155 }
2156 EXPORT_SYMBOL_GPL(vb2_core_streamoff);
2157
2158 /*
2159 * __find_plane_by_offset() - find plane associated with the given offset off
2160 */
__find_plane_by_offset(struct vb2_queue * q,unsigned long off,unsigned int * _buffer,unsigned int * _plane)2161 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off,
2162 unsigned int *_buffer, unsigned int *_plane)
2163 {
2164 struct vb2_buffer *vb;
2165 unsigned int buffer, plane;
2166
2167 /*
2168 * Go over all buffers and their planes, comparing the given offset
2169 * with an offset assigned to each plane. If a match is found,
2170 * return its buffer and plane numbers.
2171 */
2172 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
2173 vb = q->bufs[buffer];
2174
2175 for (plane = 0; plane < vb->num_planes; ++plane) {
2176 if (vb->planes[plane].m.offset == off) {
2177 *_buffer = buffer;
2178 *_plane = plane;
2179 return 0;
2180 }
2181 }
2182 }
2183
2184 return -EINVAL;
2185 }
2186
vb2_core_expbuf(struct vb2_queue * q,int * fd,unsigned int type,unsigned int index,unsigned int plane,unsigned int flags)2187 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type,
2188 unsigned int index, unsigned int plane, unsigned int flags)
2189 {
2190 struct vb2_buffer *vb = NULL;
2191 struct vb2_plane *vb_plane;
2192 int ret;
2193 struct dma_buf *dbuf;
2194
2195 if (q->memory != VB2_MEMORY_MMAP) {
2196 dprintk(q, 1, "queue is not currently set up for mmap\n");
2197 return -EINVAL;
2198 }
2199
2200 if (!q->mem_ops->get_dmabuf) {
2201 dprintk(q, 1, "queue does not support DMA buffer exporting\n");
2202 return -EINVAL;
2203 }
2204
2205 if (flags & ~(O_CLOEXEC | O_ACCMODE)) {
2206 dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n");
2207 return -EINVAL;
2208 }
2209
2210 if (type != q->type) {
2211 dprintk(q, 1, "invalid buffer type\n");
2212 return -EINVAL;
2213 }
2214
2215 if (index >= q->num_buffers) {
2216 dprintk(q, 1, "buffer index out of range\n");
2217 return -EINVAL;
2218 }
2219
2220 vb = q->bufs[index];
2221
2222 if (plane >= vb->num_planes) {
2223 dprintk(q, 1, "buffer plane out of range\n");
2224 return -EINVAL;
2225 }
2226
2227 if (vb2_fileio_is_active(q)) {
2228 dprintk(q, 1, "expbuf: file io in progress\n");
2229 return -EBUSY;
2230 }
2231
2232 vb_plane = &vb->planes[plane];
2233
2234 dbuf = call_ptr_memop(get_dmabuf,
2235 vb,
2236 vb_plane->mem_priv,
2237 flags & O_ACCMODE);
2238 if (IS_ERR_OR_NULL(dbuf)) {
2239 dprintk(q, 1, "failed to export buffer %d, plane %d\n",
2240 index, plane);
2241 return -EINVAL;
2242 }
2243
2244 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE);
2245 if (ret < 0) {
2246 dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n",
2247 index, plane, ret);
2248 dma_buf_put(dbuf);
2249 return ret;
2250 }
2251
2252 dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n",
2253 index, plane, ret);
2254 *fd = ret;
2255
2256 return 0;
2257 }
2258 EXPORT_SYMBOL_GPL(vb2_core_expbuf);
2259
vb2_mmap(struct vb2_queue * q,struct vm_area_struct * vma)2260 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
2261 {
2262 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
2263 struct vb2_buffer *vb;
2264 unsigned int buffer = 0, plane = 0;
2265 int ret;
2266 unsigned long length;
2267
2268 if (q->memory != VB2_MEMORY_MMAP) {
2269 dprintk(q, 1, "queue is not currently set up for mmap\n");
2270 return -EINVAL;
2271 }
2272
2273 /*
2274 * Check memory area access mode.
2275 */
2276 if (!(vma->vm_flags & VM_SHARED)) {
2277 dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n");
2278 return -EINVAL;
2279 }
2280 if (q->is_output) {
2281 if (!(vma->vm_flags & VM_WRITE)) {
2282 dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n");
2283 return -EINVAL;
2284 }
2285 } else {
2286 if (!(vma->vm_flags & VM_READ)) {
2287 dprintk(q, 1, "invalid vma flags, VM_READ needed\n");
2288 return -EINVAL;
2289 }
2290 }
2291
2292 mutex_lock(&q->mmap_lock);
2293
2294 if (vb2_fileio_is_active(q)) {
2295 dprintk(q, 1, "mmap: file io in progress\n");
2296 ret = -EBUSY;
2297 goto unlock;
2298 }
2299
2300 /*
2301 * Find the plane corresponding to the offset passed by userspace.
2302 */
2303 ret = __find_plane_by_offset(q, off, &buffer, &plane);
2304 if (ret)
2305 goto unlock;
2306
2307 vb = q->bufs[buffer];
2308
2309 /*
2310 * MMAP requires page_aligned buffers.
2311 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
2312 * so, we need to do the same here.
2313 */
2314 length = PAGE_ALIGN(vb->planes[plane].length);
2315 if (length < (vma->vm_end - vma->vm_start)) {
2316 dprintk(q, 1,
2317 "MMAP invalid, as it would overflow buffer length\n");
2318 ret = -EINVAL;
2319 goto unlock;
2320 }
2321
2322 /*
2323 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer,
2324 * not as a in-buffer offset. We always want to mmap a whole buffer
2325 * from its beginning.
2326 */
2327 vma->vm_pgoff = 0;
2328
2329 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
2330
2331 unlock:
2332 mutex_unlock(&q->mmap_lock);
2333 if (ret)
2334 return ret;
2335
2336 dprintk(q, 3, "buffer %d, plane %d successfully mapped\n", buffer, plane);
2337 return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(vb2_mmap);
2340
2341 #ifndef CONFIG_MMU
vb2_get_unmapped_area(struct vb2_queue * q,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2342 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
2343 unsigned long addr,
2344 unsigned long len,
2345 unsigned long pgoff,
2346 unsigned long flags)
2347 {
2348 unsigned long off = pgoff << PAGE_SHIFT;
2349 struct vb2_buffer *vb;
2350 unsigned int buffer, plane;
2351 void *vaddr;
2352 int ret;
2353
2354 if (q->memory != VB2_MEMORY_MMAP) {
2355 dprintk(q, 1, "queue is not currently set up for mmap\n");
2356 return -EINVAL;
2357 }
2358
2359 /*
2360 * Find the plane corresponding to the offset passed by userspace.
2361 */
2362 ret = __find_plane_by_offset(q, off, &buffer, &plane);
2363 if (ret)
2364 return ret;
2365
2366 vb = q->bufs[buffer];
2367
2368 vaddr = vb2_plane_vaddr(vb, plane);
2369 return vaddr ? (unsigned long)vaddr : -EINVAL;
2370 }
2371 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
2372 #endif
2373
vb2_core_queue_init(struct vb2_queue * q)2374 int vb2_core_queue_init(struct vb2_queue *q)
2375 {
2376 /*
2377 * Sanity check
2378 */
2379 if (WARN_ON(!q) ||
2380 WARN_ON(!q->ops) ||
2381 WARN_ON(!q->mem_ops) ||
2382 WARN_ON(!q->type) ||
2383 WARN_ON(!q->io_modes) ||
2384 WARN_ON(!q->ops->queue_setup) ||
2385 WARN_ON(!q->ops->buf_queue))
2386 return -EINVAL;
2387
2388 if (WARN_ON(q->requires_requests && !q->supports_requests))
2389 return -EINVAL;
2390
2391 /*
2392 * This combination is not allowed since a non-zero value of
2393 * q->min_buffers_needed can cause vb2_core_qbuf() to fail if
2394 * it has to call start_streaming(), and the Request API expects
2395 * that queueing a request (and thus queueing a buffer contained
2396 * in that request) will always succeed. There is no method of
2397 * propagating an error back to userspace.
2398 */
2399 if (WARN_ON(q->supports_requests && q->min_buffers_needed))
2400 return -EINVAL;
2401
2402 INIT_LIST_HEAD(&q->queued_list);
2403 INIT_LIST_HEAD(&q->done_list);
2404 spin_lock_init(&q->done_lock);
2405 mutex_init(&q->mmap_lock);
2406 init_waitqueue_head(&q->done_wq);
2407
2408 q->memory = VB2_MEMORY_UNKNOWN;
2409
2410 if (q->buf_struct_size == 0)
2411 q->buf_struct_size = sizeof(struct vb2_buffer);
2412
2413 if (q->bidirectional)
2414 q->dma_dir = DMA_BIDIRECTIONAL;
2415 else
2416 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2417
2418 if (q->name[0] == '\0')
2419 snprintf(q->name, sizeof(q->name), "%s-%p",
2420 q->is_output ? "out" : "cap", q);
2421
2422 return 0;
2423 }
2424 EXPORT_SYMBOL_GPL(vb2_core_queue_init);
2425
2426 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2427 static int __vb2_cleanup_fileio(struct vb2_queue *q);
vb2_core_queue_release(struct vb2_queue * q)2428 void vb2_core_queue_release(struct vb2_queue *q)
2429 {
2430 __vb2_cleanup_fileio(q);
2431 __vb2_queue_cancel(q);
2432 mutex_lock(&q->mmap_lock);
2433 __vb2_queue_free(q, q->num_buffers);
2434 mutex_unlock(&q->mmap_lock);
2435 }
2436 EXPORT_SYMBOL_GPL(vb2_core_queue_release);
2437
vb2_core_poll(struct vb2_queue * q,struct file * file,poll_table * wait)2438 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file,
2439 poll_table *wait)
2440 {
2441 __poll_t req_events = poll_requested_events(wait);
2442 struct vb2_buffer *vb = NULL;
2443 unsigned long flags;
2444
2445 /*
2446 * poll_wait() MUST be called on the first invocation on all the
2447 * potential queues of interest, even if we are not interested in their
2448 * events during this first call. Failure to do so will result in
2449 * queue's events to be ignored because the poll_table won't be capable
2450 * of adding new wait queues thereafter.
2451 */
2452 poll_wait(file, &q->done_wq, wait);
2453
2454 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM)))
2455 return 0;
2456 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM)))
2457 return 0;
2458
2459 /*
2460 * Start file I/O emulator only if streaming API has not been used yet.
2461 */
2462 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
2463 if (!q->is_output && (q->io_modes & VB2_READ) &&
2464 (req_events & (EPOLLIN | EPOLLRDNORM))) {
2465 if (__vb2_init_fileio(q, 1))
2466 return EPOLLERR;
2467 }
2468 if (q->is_output && (q->io_modes & VB2_WRITE) &&
2469 (req_events & (EPOLLOUT | EPOLLWRNORM))) {
2470 if (__vb2_init_fileio(q, 0))
2471 return EPOLLERR;
2472 /*
2473 * Write to OUTPUT queue can be done immediately.
2474 */
2475 return EPOLLOUT | EPOLLWRNORM;
2476 }
2477 }
2478
2479 /*
2480 * There is nothing to wait for if the queue isn't streaming, or if the
2481 * error flag is set.
2482 */
2483 if (!vb2_is_streaming(q) || q->error)
2484 return EPOLLERR;
2485
2486 /*
2487 * If this quirk is set and QBUF hasn't been called yet then
2488 * return EPOLLERR as well. This only affects capture queues, output
2489 * queues will always initialize waiting_for_buffers to false.
2490 * This quirk is set by V4L2 for backwards compatibility reasons.
2491 */
2492 if (q->quirk_poll_must_check_waiting_for_buffers &&
2493 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM)))
2494 return EPOLLERR;
2495
2496 /*
2497 * For output streams you can call write() as long as there are fewer
2498 * buffers queued than there are buffers available.
2499 */
2500 if (q->is_output && q->fileio && q->queued_count < q->num_buffers)
2501 return EPOLLOUT | EPOLLWRNORM;
2502
2503 if (list_empty(&q->done_list)) {
2504 /*
2505 * If the last buffer was dequeued from a capture queue,
2506 * return immediately. DQBUF will return -EPIPE.
2507 */
2508 if (q->last_buffer_dequeued)
2509 return EPOLLIN | EPOLLRDNORM;
2510 }
2511
2512 /*
2513 * Take first buffer available for dequeuing.
2514 */
2515 spin_lock_irqsave(&q->done_lock, flags);
2516 if (!list_empty(&q->done_list))
2517 vb = list_first_entry(&q->done_list, struct vb2_buffer,
2518 done_entry);
2519 spin_unlock_irqrestore(&q->done_lock, flags);
2520
2521 if (vb && (vb->state == VB2_BUF_STATE_DONE
2522 || vb->state == VB2_BUF_STATE_ERROR)) {
2523 return (q->is_output) ?
2524 EPOLLOUT | EPOLLWRNORM :
2525 EPOLLIN | EPOLLRDNORM;
2526 }
2527 return 0;
2528 }
2529 EXPORT_SYMBOL_GPL(vb2_core_poll);
2530
2531 /*
2532 * struct vb2_fileio_buf - buffer context used by file io emulator
2533 *
2534 * vb2 provides a compatibility layer and emulator of file io (read and
2535 * write) calls on top of streaming API. This structure is used for
2536 * tracking context related to the buffers.
2537 */
2538 struct vb2_fileio_buf {
2539 void *vaddr;
2540 unsigned int size;
2541 unsigned int pos;
2542 unsigned int queued:1;
2543 };
2544
2545 /*
2546 * struct vb2_fileio_data - queue context used by file io emulator
2547 *
2548 * @cur_index: the index of the buffer currently being read from or
2549 * written to. If equal to q->num_buffers then a new buffer
2550 * must be dequeued.
2551 * @initial_index: in the read() case all buffers are queued up immediately
2552 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2553 * buffers. However, in the write() case no buffers are initially
2554 * queued, instead whenever a buffer is full it is queued up by
2555 * __vb2_perform_fileio(). Only once all available buffers have
2556 * been queued up will __vb2_perform_fileio() start to dequeue
2557 * buffers. This means that initially __vb2_perform_fileio()
2558 * needs to know what buffer index to use when it is queuing up
2559 * the buffers for the first time. That initial index is stored
2560 * in this field. Once it is equal to q->num_buffers all
2561 * available buffers have been queued and __vb2_perform_fileio()
2562 * should start the normal dequeue/queue cycle.
2563 *
2564 * vb2 provides a compatibility layer and emulator of file io (read and
2565 * write) calls on top of streaming API. For proper operation it required
2566 * this structure to save the driver state between each call of the read
2567 * or write function.
2568 */
2569 struct vb2_fileio_data {
2570 unsigned int count;
2571 unsigned int type;
2572 unsigned int memory;
2573 struct vb2_fileio_buf bufs[VB2_MAX_FRAME];
2574 unsigned int cur_index;
2575 unsigned int initial_index;
2576 unsigned int q_count;
2577 unsigned int dq_count;
2578 unsigned read_once:1;
2579 unsigned write_immediately:1;
2580 };
2581
2582 /*
2583 * __vb2_init_fileio() - initialize file io emulator
2584 * @q: videobuf2 queue
2585 * @read: mode selector (1 means read, 0 means write)
2586 */
__vb2_init_fileio(struct vb2_queue * q,int read)2587 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2588 {
2589 struct vb2_fileio_data *fileio;
2590 int i, ret;
2591 unsigned int count = 0;
2592
2593 /*
2594 * Sanity check
2595 */
2596 if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2597 (!read && !(q->io_modes & VB2_WRITE))))
2598 return -EINVAL;
2599
2600 /*
2601 * Check if device supports mapping buffers to kernel virtual space.
2602 */
2603 if (!q->mem_ops->vaddr)
2604 return -EBUSY;
2605
2606 /*
2607 * Check if streaming api has not been already activated.
2608 */
2609 if (q->streaming || q->num_buffers > 0)
2610 return -EBUSY;
2611
2612 /*
2613 * Start with count 1, driver can increase it in queue_setup()
2614 */
2615 count = 1;
2616
2617 dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2618 (read) ? "read" : "write", count, q->fileio_read_once,
2619 q->fileio_write_immediately);
2620
2621 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL);
2622 if (fileio == NULL)
2623 return -ENOMEM;
2624
2625 fileio->read_once = q->fileio_read_once;
2626 fileio->write_immediately = q->fileio_write_immediately;
2627
2628 /*
2629 * Request buffers and use MMAP type to force driver
2630 * to allocate buffers by itself.
2631 */
2632 fileio->count = count;
2633 fileio->memory = VB2_MEMORY_MMAP;
2634 fileio->type = q->type;
2635 q->fileio = fileio;
2636 ret = vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2637 if (ret)
2638 goto err_kfree;
2639
2640 /*
2641 * Check if plane_count is correct
2642 * (multiplane buffers are not supported).
2643 */
2644 if (q->bufs[0]->num_planes != 1) {
2645 ret = -EBUSY;
2646 goto err_reqbufs;
2647 }
2648
2649 /*
2650 * Get kernel address of each buffer.
2651 */
2652 for (i = 0; i < q->num_buffers; i++) {
2653 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0);
2654 if (fileio->bufs[i].vaddr == NULL) {
2655 ret = -EINVAL;
2656 goto err_reqbufs;
2657 }
2658 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0);
2659 }
2660
2661 /*
2662 * Read mode requires pre queuing of all buffers.
2663 */
2664 if (read) {
2665 /*
2666 * Queue all buffers.
2667 */
2668 for (i = 0; i < q->num_buffers; i++) {
2669 ret = vb2_core_qbuf(q, i, NULL, NULL);
2670 if (ret)
2671 goto err_reqbufs;
2672 fileio->bufs[i].queued = 1;
2673 }
2674 /*
2675 * All buffers have been queued, so mark that by setting
2676 * initial_index to q->num_buffers
2677 */
2678 fileio->initial_index = q->num_buffers;
2679 fileio->cur_index = q->num_buffers;
2680 }
2681
2682 /*
2683 * Start streaming.
2684 */
2685 ret = vb2_core_streamon(q, q->type);
2686 if (ret)
2687 goto err_reqbufs;
2688
2689 return ret;
2690
2691 err_reqbufs:
2692 fileio->count = 0;
2693 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2694
2695 err_kfree:
2696 q->fileio = NULL;
2697 kfree(fileio);
2698 return ret;
2699 }
2700
2701 /*
2702 * __vb2_cleanup_fileio() - free resourced used by file io emulator
2703 * @q: videobuf2 queue
2704 */
__vb2_cleanup_fileio(struct vb2_queue * q)2705 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2706 {
2707 struct vb2_fileio_data *fileio = q->fileio;
2708
2709 if (fileio) {
2710 vb2_core_streamoff(q, q->type);
2711 q->fileio = NULL;
2712 fileio->count = 0;
2713 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2714 kfree(fileio);
2715 dprintk(q, 3, "file io emulator closed\n");
2716 }
2717 return 0;
2718 }
2719
2720 /*
2721 * __vb2_perform_fileio() - perform a single file io (read or write) operation
2722 * @q: videobuf2 queue
2723 * @data: pointed to target userspace buffer
2724 * @count: number of bytes to read or write
2725 * @ppos: file handle position tracking pointer
2726 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking)
2727 * @read: access mode selector (1 means read, 0 means write)
2728 */
__vb2_perform_fileio(struct vb2_queue * q,char __user * data,size_t count,loff_t * ppos,int nonblock,int read)2729 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2730 loff_t *ppos, int nonblock, int read)
2731 {
2732 struct vb2_fileio_data *fileio;
2733 struct vb2_fileio_buf *buf;
2734 bool is_multiplanar = q->is_multiplanar;
2735 /*
2736 * When using write() to write data to an output video node the vb2 core
2737 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
2738 * else is able to provide this information with the write() operation.
2739 */
2740 bool copy_timestamp = !read && q->copy_timestamp;
2741 unsigned index;
2742 int ret;
2743
2744 dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n",
2745 read ? "read" : "write", (long)*ppos, count,
2746 nonblock ? "non" : "");
2747
2748 if (!data)
2749 return -EINVAL;
2750
2751 if (q->waiting_in_dqbuf) {
2752 dprintk(q, 3, "another dup()ped fd is %s\n",
2753 read ? "reading" : "writing");
2754 return -EBUSY;
2755 }
2756
2757 /*
2758 * Initialize emulator on first call.
2759 */
2760 if (!vb2_fileio_is_active(q)) {
2761 ret = __vb2_init_fileio(q, read);
2762 dprintk(q, 3, "vb2_init_fileio result: %d\n", ret);
2763 if (ret)
2764 return ret;
2765 }
2766 fileio = q->fileio;
2767
2768 /*
2769 * Check if we need to dequeue the buffer.
2770 */
2771 index = fileio->cur_index;
2772 if (index >= q->num_buffers) {
2773 struct vb2_buffer *b;
2774
2775 /*
2776 * Call vb2_dqbuf to get buffer back.
2777 */
2778 ret = vb2_core_dqbuf(q, &index, NULL, nonblock);
2779 dprintk(q, 5, "vb2_dqbuf result: %d\n", ret);
2780 if (ret)
2781 return ret;
2782 fileio->dq_count += 1;
2783
2784 fileio->cur_index = index;
2785 buf = &fileio->bufs[index];
2786 b = q->bufs[index];
2787
2788 /*
2789 * Get number of bytes filled by the driver
2790 */
2791 buf->pos = 0;
2792 buf->queued = 0;
2793 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0)
2794 : vb2_plane_size(q->bufs[index], 0);
2795 /* Compensate for data_offset on read in the multiplanar case. */
2796 if (is_multiplanar && read &&
2797 b->planes[0].data_offset < buf->size) {
2798 buf->pos = b->planes[0].data_offset;
2799 buf->size -= buf->pos;
2800 }
2801 } else {
2802 buf = &fileio->bufs[index];
2803 }
2804
2805 /*
2806 * Limit count on last few bytes of the buffer.
2807 */
2808 if (buf->pos + count > buf->size) {
2809 count = buf->size - buf->pos;
2810 dprintk(q, 5, "reducing read count: %zd\n", count);
2811 }
2812
2813 /*
2814 * Transfer data to userspace.
2815 */
2816 dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n",
2817 count, index, buf->pos);
2818 if (read)
2819 ret = copy_to_user(data, buf->vaddr + buf->pos, count);
2820 else
2821 ret = copy_from_user(buf->vaddr + buf->pos, data, count);
2822 if (ret) {
2823 dprintk(q, 3, "error copying data\n");
2824 return -EFAULT;
2825 }
2826
2827 /*
2828 * Update counters.
2829 */
2830 buf->pos += count;
2831 *ppos += count;
2832
2833 /*
2834 * Queue next buffer if required.
2835 */
2836 if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
2837 struct vb2_buffer *b = q->bufs[index];
2838
2839 /*
2840 * Check if this is the last buffer to read.
2841 */
2842 if (read && fileio->read_once && fileio->dq_count == 1) {
2843 dprintk(q, 3, "read limit reached\n");
2844 return __vb2_cleanup_fileio(q);
2845 }
2846
2847 /*
2848 * Call vb2_qbuf and give buffer to the driver.
2849 */
2850 b->planes[0].bytesused = buf->pos;
2851
2852 if (copy_timestamp)
2853 b->timestamp = ktime_get_ns();
2854 ret = vb2_core_qbuf(q, index, NULL, NULL);
2855 dprintk(q, 5, "vb2_dbuf result: %d\n", ret);
2856 if (ret)
2857 return ret;
2858
2859 /*
2860 * Buffer has been queued, update the status
2861 */
2862 buf->pos = 0;
2863 buf->queued = 1;
2864 buf->size = vb2_plane_size(q->bufs[index], 0);
2865 fileio->q_count += 1;
2866 /*
2867 * If we are queuing up buffers for the first time, then
2868 * increase initial_index by one.
2869 */
2870 if (fileio->initial_index < q->num_buffers)
2871 fileio->initial_index++;
2872 /*
2873 * The next buffer to use is either a buffer that's going to be
2874 * queued for the first time (initial_index < q->num_buffers)
2875 * or it is equal to q->num_buffers, meaning that the next
2876 * time we need to dequeue a buffer since we've now queued up
2877 * all the 'first time' buffers.
2878 */
2879 fileio->cur_index = fileio->initial_index;
2880 }
2881
2882 /*
2883 * Return proper number of bytes processed.
2884 */
2885 if (ret == 0)
2886 ret = count;
2887 return ret;
2888 }
2889
vb2_read(struct vb2_queue * q,char __user * data,size_t count,loff_t * ppos,int nonblocking)2890 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
2891 loff_t *ppos, int nonblocking)
2892 {
2893 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
2894 }
2895 EXPORT_SYMBOL_GPL(vb2_read);
2896
vb2_write(struct vb2_queue * q,const char __user * data,size_t count,loff_t * ppos,int nonblocking)2897 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
2898 loff_t *ppos, int nonblocking)
2899 {
2900 return __vb2_perform_fileio(q, (char __user *) data, count,
2901 ppos, nonblocking, 0);
2902 }
2903 EXPORT_SYMBOL_GPL(vb2_write);
2904
2905 struct vb2_threadio_data {
2906 struct task_struct *thread;
2907 vb2_thread_fnc fnc;
2908 void *priv;
2909 bool stop;
2910 };
2911
vb2_thread(void * data)2912 static int vb2_thread(void *data)
2913 {
2914 struct vb2_queue *q = data;
2915 struct vb2_threadio_data *threadio = q->threadio;
2916 bool copy_timestamp = false;
2917 unsigned prequeue = 0;
2918 unsigned index = 0;
2919 int ret = 0;
2920
2921 if (q->is_output) {
2922 prequeue = q->num_buffers;
2923 copy_timestamp = q->copy_timestamp;
2924 }
2925
2926 set_freezable();
2927
2928 for (;;) {
2929 struct vb2_buffer *vb;
2930
2931 /*
2932 * Call vb2_dqbuf to get buffer back.
2933 */
2934 if (prequeue) {
2935 vb = q->bufs[index++];
2936 prequeue--;
2937 } else {
2938 call_void_qop(q, wait_finish, q);
2939 if (!threadio->stop)
2940 ret = vb2_core_dqbuf(q, &index, NULL, 0);
2941 call_void_qop(q, wait_prepare, q);
2942 dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret);
2943 if (!ret)
2944 vb = q->bufs[index];
2945 }
2946 if (ret || threadio->stop)
2947 break;
2948 try_to_freeze();
2949
2950 if (vb->state != VB2_BUF_STATE_ERROR)
2951 if (threadio->fnc(vb, threadio->priv))
2952 break;
2953 call_void_qop(q, wait_finish, q);
2954 if (copy_timestamp)
2955 vb->timestamp = ktime_get_ns();
2956 if (!threadio->stop)
2957 ret = vb2_core_qbuf(q, vb->index, NULL, NULL);
2958 call_void_qop(q, wait_prepare, q);
2959 if (ret || threadio->stop)
2960 break;
2961 }
2962
2963 /* Hmm, linux becomes *very* unhappy without this ... */
2964 while (!kthread_should_stop()) {
2965 set_current_state(TASK_INTERRUPTIBLE);
2966 schedule();
2967 }
2968 return 0;
2969 }
2970
2971 /*
2972 * This function should not be used for anything else but the videobuf2-dvb
2973 * support. If you think you have another good use-case for this, then please
2974 * contact the linux-media mailinglist first.
2975 */
vb2_thread_start(struct vb2_queue * q,vb2_thread_fnc fnc,void * priv,const char * thread_name)2976 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
2977 const char *thread_name)
2978 {
2979 struct vb2_threadio_data *threadio;
2980 int ret = 0;
2981
2982 if (q->threadio)
2983 return -EBUSY;
2984 if (vb2_is_busy(q))
2985 return -EBUSY;
2986 if (WARN_ON(q->fileio))
2987 return -EBUSY;
2988
2989 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
2990 if (threadio == NULL)
2991 return -ENOMEM;
2992 threadio->fnc = fnc;
2993 threadio->priv = priv;
2994
2995 ret = __vb2_init_fileio(q, !q->is_output);
2996 dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret);
2997 if (ret)
2998 goto nomem;
2999 q->threadio = threadio;
3000 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
3001 if (IS_ERR(threadio->thread)) {
3002 ret = PTR_ERR(threadio->thread);
3003 threadio->thread = NULL;
3004 goto nothread;
3005 }
3006 return 0;
3007
3008 nothread:
3009 __vb2_cleanup_fileio(q);
3010 nomem:
3011 kfree(threadio);
3012 return ret;
3013 }
3014 EXPORT_SYMBOL_GPL(vb2_thread_start);
3015
vb2_thread_stop(struct vb2_queue * q)3016 int vb2_thread_stop(struct vb2_queue *q)
3017 {
3018 struct vb2_threadio_data *threadio = q->threadio;
3019 int err;
3020
3021 if (threadio == NULL)
3022 return 0;
3023 threadio->stop = true;
3024 /* Wake up all pending sleeps in the thread */
3025 vb2_queue_error(q);
3026 err = kthread_stop(threadio->thread);
3027 __vb2_cleanup_fileio(q);
3028 threadio->thread = NULL;
3029 kfree(threadio);
3030 q->threadio = NULL;
3031 return err;
3032 }
3033 EXPORT_SYMBOL_GPL(vb2_thread_stop);
3034
3035 MODULE_DESCRIPTION("Media buffer core framework");
3036 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
3037 MODULE_LICENSE("GPL");
3038 MODULE_IMPORT_NS(DMA_BUF);
3039