1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <asm/system.h>
29 #include <asm/stack.h>
30 #include <asm/homecache.h>
31 #include <asm/syscalls.h>
32 #ifdef CONFIG_HARDWALL
33 #include <asm/hardwall.h>
34 #endif
35 #include <arch/chip.h>
36 #include <arch/abi.h>
37 
38 
39 /*
40  * Use the (x86) "idle=poll" option to prefer low latency when leaving the
41  * idle loop over low power while in the idle loop, e.g. if we have
42  * one thread per core and we want to get threads out of futex waits fast.
43  */
44 static int no_idle_nap;
idle_setup(char * str)45 static int __init idle_setup(char *str)
46 {
47 	if (!str)
48 		return -EINVAL;
49 
50 	if (!strcmp(str, "poll")) {
51 		pr_info("using polling idle threads.\n");
52 		no_idle_nap = 1;
53 	} else if (!strcmp(str, "halt"))
54 		no_idle_nap = 0;
55 	else
56 		return -1;
57 
58 	return 0;
59 }
60 early_param("idle", idle_setup);
61 
62 /*
63  * The idle thread. There's no useful work to be
64  * done, so just try to conserve power and have a
65  * low exit latency (ie sit in a loop waiting for
66  * somebody to say that they'd like to reschedule)
67  */
cpu_idle(void)68 void cpu_idle(void)
69 {
70 	int cpu = smp_processor_id();
71 
72 
73 	current_thread_info()->status |= TS_POLLING;
74 
75 	if (no_idle_nap) {
76 		while (1) {
77 			while (!need_resched())
78 				cpu_relax();
79 			schedule();
80 		}
81 	}
82 
83 	/* endless idle loop with no priority at all */
84 	while (1) {
85 		tick_nohz_stop_sched_tick(1);
86 		while (!need_resched()) {
87 			if (cpu_is_offline(cpu))
88 				BUG();  /* no HOTPLUG_CPU */
89 
90 			local_irq_disable();
91 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
92 			current_thread_info()->status &= ~TS_POLLING;
93 			/*
94 			 * TS_POLLING-cleared state must be visible before we
95 			 * test NEED_RESCHED:
96 			 */
97 			smp_mb();
98 
99 			if (!need_resched())
100 				_cpu_idle();
101 			else
102 				local_irq_enable();
103 			current_thread_info()->status |= TS_POLLING;
104 		}
105 		tick_nohz_restart_sched_tick();
106 		preempt_enable_no_resched();
107 		schedule();
108 		preempt_disable();
109 	}
110 }
111 
alloc_thread_info_node(struct task_struct * task,int node)112 struct thread_info *alloc_thread_info_node(struct task_struct *task, int node)
113 {
114 	struct page *page;
115 	gfp_t flags = GFP_KERNEL;
116 
117 #ifdef CONFIG_DEBUG_STACK_USAGE
118 	flags |= __GFP_ZERO;
119 #endif
120 
121 	page = alloc_pages_node(node, flags, THREAD_SIZE_ORDER);
122 	if (!page)
123 		return NULL;
124 
125 	return (struct thread_info *)page_address(page);
126 }
127 
128 /*
129  * Free a thread_info node, and all of its derivative
130  * data structures.
131  */
free_thread_info(struct thread_info * info)132 void free_thread_info(struct thread_info *info)
133 {
134 	struct single_step_state *step_state = info->step_state;
135 
136 #ifdef CONFIG_HARDWALL
137 	/*
138 	 * We free a thread_info from the context of the task that has
139 	 * been scheduled next, so the original task is already dead.
140 	 * Calling deactivate here just frees up the data structures.
141 	 * If the task we're freeing held the last reference to a
142 	 * hardwall fd, it would have been released prior to this point
143 	 * anyway via exit_files(), and "hardwall" would be NULL by now.
144 	 */
145 	if (info->task->thread.hardwall)
146 		hardwall_deactivate(info->task);
147 #endif
148 
149 	if (step_state) {
150 
151 		/*
152 		 * FIXME: we don't munmap step_state->buffer
153 		 * because the mm_struct for this process (info->task->mm)
154 		 * has already been zeroed in exit_mm().  Keeping a
155 		 * reference to it here seems like a bad move, so this
156 		 * means we can't munmap() the buffer, and therefore if we
157 		 * ptrace multiple threads in a process, we will slowly
158 		 * leak user memory.  (Note that as soon as the last
159 		 * thread in a process dies, we will reclaim all user
160 		 * memory including single-step buffers in the usual way.)
161 		 * We should either assign a kernel VA to this buffer
162 		 * somehow, or we should associate the buffer(s) with the
163 		 * mm itself so we can clean them up that way.
164 		 */
165 		kfree(step_state);
166 	}
167 
168 	free_pages((unsigned long)info, THREAD_SIZE_ORDER);
169 }
170 
171 static void save_arch_state(struct thread_struct *t);
172 
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long stack_size,struct task_struct * p,struct pt_regs * regs)173 int copy_thread(unsigned long clone_flags, unsigned long sp,
174 		unsigned long stack_size,
175 		struct task_struct *p, struct pt_regs *regs)
176 {
177 	struct pt_regs *childregs;
178 	unsigned long ksp;
179 
180 	/*
181 	 * When creating a new kernel thread we pass sp as zero.
182 	 * Assign it to a reasonable value now that we have the stack.
183 	 */
184 	if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
185 		sp = KSTK_TOP(p);
186 
187 	/*
188 	 * Do not clone step state from the parent; each thread
189 	 * must make its own lazily.
190 	 */
191 	task_thread_info(p)->step_state = NULL;
192 
193 	/*
194 	 * Start new thread in ret_from_fork so it schedules properly
195 	 * and then return from interrupt like the parent.
196 	 */
197 	p->thread.pc = (unsigned long) ret_from_fork;
198 
199 	/* Save user stack top pointer so we can ID the stack vm area later. */
200 	p->thread.usp0 = sp;
201 
202 	/* Record the pid of the process that created this one. */
203 	p->thread.creator_pid = current->pid;
204 
205 	/*
206 	 * Copy the registers onto the kernel stack so the
207 	 * return-from-interrupt code will reload it into registers.
208 	 */
209 	childregs = task_pt_regs(p);
210 	*childregs = *regs;
211 	childregs->regs[0] = 0;         /* return value is zero */
212 	childregs->sp = sp;  /* override with new user stack pointer */
213 
214 	/*
215 	 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
216 	 * which is passed in as arg #5 to sys_clone().
217 	 */
218 	if (clone_flags & CLONE_SETTLS)
219 		childregs->tp = regs->regs[4];
220 
221 	/*
222 	 * Copy the callee-saved registers from the passed pt_regs struct
223 	 * into the context-switch callee-saved registers area.
224 	 * This way when we start the interrupt-return sequence, the
225 	 * callee-save registers will be correctly in registers, which
226 	 * is how we assume the compiler leaves them as we start doing
227 	 * the normal return-from-interrupt path after calling C code.
228 	 * Zero out the C ABI save area to mark the top of the stack.
229 	 */
230 	ksp = (unsigned long) childregs;
231 	ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
232 	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
233 	ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
234 	memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
235 	       CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
236 	ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
237 	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
238 	p->thread.ksp = ksp;
239 
240 #if CHIP_HAS_TILE_DMA()
241 	/*
242 	 * No DMA in the new thread.  We model this on the fact that
243 	 * fork() clears the pending signals, alarms, and aio for the child.
244 	 */
245 	memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
246 	memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
247 #endif
248 
249 #if CHIP_HAS_SN_PROC()
250 	/* Likewise, the new thread is not running static processor code. */
251 	p->thread.sn_proc_running = 0;
252 	memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
253 #endif
254 
255 #if CHIP_HAS_PROC_STATUS_SPR()
256 	/* New thread has its miscellaneous processor state bits clear. */
257 	p->thread.proc_status = 0;
258 #endif
259 
260 #ifdef CONFIG_HARDWALL
261 	/* New thread does not own any networks. */
262 	p->thread.hardwall = NULL;
263 #endif
264 
265 
266 	/*
267 	 * Start the new thread with the current architecture state
268 	 * (user interrupt masks, etc.).
269 	 */
270 	save_arch_state(&p->thread);
271 
272 	return 0;
273 }
274 
275 /*
276  * Return "current" if it looks plausible, or else a pointer to a dummy.
277  * This can be helpful if we are just trying to emit a clean panic.
278  */
validate_current(void)279 struct task_struct *validate_current(void)
280 {
281 	static struct task_struct corrupt = { .comm = "<corrupt>" };
282 	struct task_struct *tsk = current;
283 	if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
284 		     (void *)tsk > high_memory ||
285 		     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
286 		pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
287 		tsk = &corrupt;
288 	}
289 	return tsk;
290 }
291 
292 /* Take and return the pointer to the previous task, for schedule_tail(). */
sim_notify_fork(struct task_struct * prev)293 struct task_struct *sim_notify_fork(struct task_struct *prev)
294 {
295 	struct task_struct *tsk = current;
296 	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
297 		     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
298 	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
299 		     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
300 	return prev;
301 }
302 
dump_task_regs(struct task_struct * tsk,elf_gregset_t * regs)303 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
304 {
305 	struct pt_regs *ptregs = task_pt_regs(tsk);
306 	elf_core_copy_regs(regs, ptregs);
307 	return 1;
308 }
309 
310 #if CHIP_HAS_TILE_DMA()
311 
312 /* Allow user processes to access the DMA SPRs */
grant_dma_mpls(void)313 void grant_dma_mpls(void)
314 {
315 #if CONFIG_KERNEL_PL == 2
316 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
317 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
318 #else
319 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
320 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
321 #endif
322 }
323 
324 /* Forbid user processes from accessing the DMA SPRs */
restrict_dma_mpls(void)325 void restrict_dma_mpls(void)
326 {
327 #if CONFIG_KERNEL_PL == 2
328 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
329 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
330 #else
331 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
332 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
333 #endif
334 }
335 
336 /* Pause the DMA engine, then save off its state registers. */
save_tile_dma_state(struct tile_dma_state * dma)337 static void save_tile_dma_state(struct tile_dma_state *dma)
338 {
339 	unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
340 	unsigned long post_suspend_state;
341 
342 	/* If we're running, suspend the engine. */
343 	if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
344 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
345 
346 	/*
347 	 * Wait for the engine to idle, then save regs.  Note that we
348 	 * want to record the "running" bit from before suspension,
349 	 * and the "done" bit from after, so that we can properly
350 	 * distinguish a case where the user suspended the engine from
351 	 * the case where the kernel suspended as part of the context
352 	 * swap.
353 	 */
354 	do {
355 		post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
356 	} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
357 
358 	dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
359 	dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
360 	dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
361 	dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
362 	dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
363 	dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
364 	dma->byte = __insn_mfspr(SPR_DMA_BYTE);
365 	dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
366 		(post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
367 }
368 
369 /* Restart a DMA that was running before we were context-switched out. */
restore_tile_dma_state(struct thread_struct * t)370 static void restore_tile_dma_state(struct thread_struct *t)
371 {
372 	const struct tile_dma_state *dma = &t->tile_dma_state;
373 
374 	/*
375 	 * The only way to restore the done bit is to run a zero
376 	 * length transaction.
377 	 */
378 	if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
379 	    !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
380 		__insn_mtspr(SPR_DMA_BYTE, 0);
381 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
382 		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
383 		       SPR_DMA_STATUS__BUSY_MASK)
384 			;
385 	}
386 
387 	__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
388 	__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
389 	__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
390 	__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
391 	__insn_mtspr(SPR_DMA_STRIDE, dma->strides);
392 	__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
393 	__insn_mtspr(SPR_DMA_BYTE, dma->byte);
394 
395 	/*
396 	 * Restart the engine if we were running and not done.
397 	 * Clear a pending async DMA fault that we were waiting on return
398 	 * to user space to execute, since we expect the DMA engine
399 	 * to regenerate those faults for us now.  Note that we don't
400 	 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
401 	 * harmless if set, and it covers both DMA and the SN processor.
402 	 */
403 	if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
404 		t->dma_async_tlb.fault_num = 0;
405 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
406 	}
407 }
408 
409 #endif
410 
save_arch_state(struct thread_struct * t)411 static void save_arch_state(struct thread_struct *t)
412 {
413 #if CHIP_HAS_SPLIT_INTR_MASK()
414 	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
415 		((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
416 #else
417 	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
418 #endif
419 	t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
420 	t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
421 	t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
422 	t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
423 	t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
424 	t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
425 	t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
426 #if CHIP_HAS_PROC_STATUS_SPR()
427 	t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
428 #endif
429 #if !CHIP_HAS_FIXED_INTVEC_BASE()
430 	t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
431 #endif
432 #if CHIP_HAS_TILE_RTF_HWM()
433 	t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
434 #endif
435 #if CHIP_HAS_DSTREAM_PF()
436 	t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
437 #endif
438 }
439 
restore_arch_state(const struct thread_struct * t)440 static void restore_arch_state(const struct thread_struct *t)
441 {
442 #if CHIP_HAS_SPLIT_INTR_MASK()
443 	__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
444 	__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
445 #else
446 	__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
447 #endif
448 	__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
449 	__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
450 	__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
451 	__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
452 	__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
453 	__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
454 	__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
455 #if CHIP_HAS_PROC_STATUS_SPR()
456 	__insn_mtspr(SPR_PROC_STATUS, t->proc_status);
457 #endif
458 #if !CHIP_HAS_FIXED_INTVEC_BASE()
459 	__insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
460 #endif
461 #if CHIP_HAS_TILE_RTF_HWM()
462 	__insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
463 #endif
464 #if CHIP_HAS_DSTREAM_PF()
465 	__insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
466 #endif
467 }
468 
469 
_prepare_arch_switch(struct task_struct * next)470 void _prepare_arch_switch(struct task_struct *next)
471 {
472 #if CHIP_HAS_SN_PROC()
473 	int snctl;
474 #endif
475 #if CHIP_HAS_TILE_DMA()
476 	struct tile_dma_state *dma = &current->thread.tile_dma_state;
477 	if (dma->enabled)
478 		save_tile_dma_state(dma);
479 #endif
480 #if CHIP_HAS_SN_PROC()
481 	/*
482 	 * Suspend the static network processor if it was running.
483 	 * We do not suspend the fabric itself, just like we don't
484 	 * try to suspend the UDN.
485 	 */
486 	snctl = __insn_mfspr(SPR_SNCTL);
487 	current->thread.sn_proc_running =
488 		(snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
489 	if (current->thread.sn_proc_running)
490 		__insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
491 #endif
492 }
493 
494 
_switch_to(struct task_struct * prev,struct task_struct * next)495 struct task_struct *__sched _switch_to(struct task_struct *prev,
496 				       struct task_struct *next)
497 {
498 	/* DMA state is already saved; save off other arch state. */
499 	save_arch_state(&prev->thread);
500 
501 #if CHIP_HAS_TILE_DMA()
502 	/*
503 	 * Restore DMA in new task if desired.
504 	 * Note that it is only safe to restart here since interrupts
505 	 * are disabled, so we can't take any DMATLB miss or access
506 	 * interrupts before we have finished switching stacks.
507 	 */
508 	if (next->thread.tile_dma_state.enabled) {
509 		restore_tile_dma_state(&next->thread);
510 		grant_dma_mpls();
511 	} else {
512 		restrict_dma_mpls();
513 	}
514 #endif
515 
516 	/* Restore other arch state. */
517 	restore_arch_state(&next->thread);
518 
519 #if CHIP_HAS_SN_PROC()
520 	/*
521 	 * Restart static network processor in the new process
522 	 * if it was running before.
523 	 */
524 	if (next->thread.sn_proc_running) {
525 		int snctl = __insn_mfspr(SPR_SNCTL);
526 		__insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
527 	}
528 #endif
529 
530 #ifdef CONFIG_HARDWALL
531 	/* Enable or disable access to the network registers appropriately. */
532 	if (prev->thread.hardwall != NULL) {
533 		if (next->thread.hardwall == NULL)
534 			restrict_network_mpls();
535 	} else if (next->thread.hardwall != NULL) {
536 		grant_network_mpls();
537 	}
538 #endif
539 
540 	/*
541 	 * Switch kernel SP, PC, and callee-saved registers.
542 	 * In the context of the new task, return the old task pointer
543 	 * (i.e. the task that actually called __switch_to).
544 	 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
545 	 */
546 	return __switch_to(prev, next, next_current_ksp0(next));
547 }
548 
549 /* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,void __user *,parent_tidptr,void __user *,child_tidptr,struct pt_regs *,regs)550 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
551 		void __user *, parent_tidptr, void __user *, child_tidptr,
552 		struct pt_regs *, regs)
553 {
554 	if (!newsp)
555 		newsp = regs->sp;
556 	return do_fork(clone_flags, newsp, regs, 0,
557 		       parent_tidptr, child_tidptr);
558 }
559 
560 /*
561  * sys_execve() executes a new program.
562  */
SYSCALL_DEFINE4(execve,const char __user *,path,const char __user * const __user *,argv,const char __user * const __user *,envp,struct pt_regs *,regs)563 SYSCALL_DEFINE4(execve, const char __user *, path,
564 		const char __user *const __user *, argv,
565 		const char __user *const __user *, envp,
566 		struct pt_regs *, regs)
567 {
568 	long error;
569 	char *filename;
570 
571 	filename = getname(path);
572 	error = PTR_ERR(filename);
573 	if (IS_ERR(filename))
574 		goto out;
575 	error = do_execve(filename, argv, envp, regs);
576 	putname(filename);
577 	if (error == 0)
578 		single_step_execve();
579 out:
580 	return error;
581 }
582 
583 #ifdef CONFIG_COMPAT
compat_sys_execve(const char __user * path,const compat_uptr_t __user * argv,const compat_uptr_t __user * envp,struct pt_regs * regs)584 long compat_sys_execve(const char __user *path,
585 		       const compat_uptr_t __user *argv,
586 		       const compat_uptr_t __user *envp,
587 		       struct pt_regs *regs)
588 {
589 	long error;
590 	char *filename;
591 
592 	filename = getname(path);
593 	error = PTR_ERR(filename);
594 	if (IS_ERR(filename))
595 		goto out;
596 	error = compat_do_execve(filename, argv, envp, regs);
597 	putname(filename);
598 	if (error == 0)
599 		single_step_execve();
600 out:
601 	return error;
602 }
603 #endif
604 
get_wchan(struct task_struct * p)605 unsigned long get_wchan(struct task_struct *p)
606 {
607 	struct KBacktraceIterator kbt;
608 
609 	if (!p || p == current || p->state == TASK_RUNNING)
610 		return 0;
611 
612 	for (KBacktraceIterator_init(&kbt, p, NULL);
613 	     !KBacktraceIterator_end(&kbt);
614 	     KBacktraceIterator_next(&kbt)) {
615 		if (!in_sched_functions(kbt.it.pc))
616 			return kbt.it.pc;
617 	}
618 
619 	return 0;
620 }
621 
622 /*
623  * We pass in lr as zero (cleared in kernel_thread) and the caller
624  * part of the backtrace ABI on the stack also zeroed (in copy_thread)
625  * so that backtraces will stop with this function.
626  * Note that we don't use r0, since copy_thread() clears it.
627  */
start_kernel_thread(int dummy,int (* fn)(int),int arg)628 static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
629 {
630 	do_exit(fn(arg));
631 }
632 
633 /*
634  * Create a kernel thread
635  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)636 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
637 {
638 	struct pt_regs regs;
639 
640 	memset(&regs, 0, sizeof(regs));
641 	regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0);  /* run at kernel PL, no ICS */
642 	regs.pc = (long) start_kernel_thread;
643 	regs.flags = PT_FLAGS_CALLER_SAVES;   /* need to restore r1 and r2 */
644 	regs.regs[1] = (long) fn;             /* function pointer */
645 	regs.regs[2] = (long) arg;            /* parameter register */
646 
647 	/* Ok, create the new process.. */
648 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
649 		       0, NULL, NULL);
650 }
651 EXPORT_SYMBOL(kernel_thread);
652 
653 /* Flush thread state. */
flush_thread(void)654 void flush_thread(void)
655 {
656 	/* Nothing */
657 }
658 
659 /*
660  * Free current thread data structures etc..
661  */
exit_thread(void)662 void exit_thread(void)
663 {
664 	/* Nothing */
665 }
666 
show_regs(struct pt_regs * regs)667 void show_regs(struct pt_regs *regs)
668 {
669 	struct task_struct *tsk = validate_current();
670 	int i;
671 
672 	pr_err("\n");
673 	pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
674 	       tsk->pid, tsk->comm, smp_processor_id());
675 #ifdef __tilegx__
676 	for (i = 0; i < 51; i += 3)
677 		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
678 		       i, regs->regs[i], i+1, regs->regs[i+1],
679 		       i+2, regs->regs[i+2]);
680 	pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
681 	       regs->regs[51], regs->regs[52], regs->tp);
682 	pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
683 #else
684 	for (i = 0; i < 52; i += 4)
685 		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
686 		       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
687 		       i, regs->regs[i], i+1, regs->regs[i+1],
688 		       i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
689 	pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
690 	       regs->regs[52], regs->tp, regs->sp, regs->lr);
691 #endif
692 	pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld\n",
693 	       regs->pc, regs->ex1, regs->faultnum);
694 
695 	dump_stack_regs(regs);
696 }
697