1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Memory-to-memory device framework for Video for Linux 2 and vb2.
4 *
5 * Helper functions for devices that use vb2 buffers for both their
6 * source and destination.
7 *
8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
9 * Pawel Osciak, <pawel@osciak.com>
10 * Marek Szyprowski, <m.szyprowski@samsung.com>
11 */
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15
16 #include <media/media-device.h>
17 #include <media/videobuf2-v4l2.h>
18 #include <media/v4l2-mem2mem.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-fh.h>
22 #include <media/v4l2-event.h>
23
24 MODULE_DESCRIPTION("Mem to mem device framework for vb2");
25 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
26 MODULE_LICENSE("GPL");
27
28 static bool debug;
29 module_param(debug, bool, 0644);
30
31 #define dprintk(fmt, arg...) \
32 do { \
33 if (debug) \
34 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
35 } while (0)
36
37
38 /* Instance is already queued on the job_queue */
39 #define TRANS_QUEUED (1 << 0)
40 /* Instance is currently running in hardware */
41 #define TRANS_RUNNING (1 << 1)
42 /* Instance is currently aborting */
43 #define TRANS_ABORT (1 << 2)
44
45
46 /* The job queue is not running new jobs */
47 #define QUEUE_PAUSED (1 << 0)
48
49
50 /* Offset base for buffers on the destination queue - used to distinguish
51 * between source and destination buffers when mmapping - they receive the same
52 * offsets but for different queues */
53 #define DST_QUEUE_OFF_BASE (1 << 30)
54
55 enum v4l2_m2m_entity_type {
56 MEM2MEM_ENT_TYPE_SOURCE,
57 MEM2MEM_ENT_TYPE_SINK,
58 MEM2MEM_ENT_TYPE_PROC
59 };
60
61 static const char * const m2m_entity_name[] = {
62 "source",
63 "sink",
64 "proc"
65 };
66
67 /**
68 * struct v4l2_m2m_dev - per-device context
69 * @source: &struct media_entity pointer with the source entity
70 * Used only when the M2M device is registered via
71 * v4l2_m2m_register_media_controller().
72 * @source_pad: &struct media_pad with the source pad.
73 * Used only when the M2M device is registered via
74 * v4l2_m2m_register_media_controller().
75 * @sink: &struct media_entity pointer with the sink entity
76 * Used only when the M2M device is registered via
77 * v4l2_m2m_register_media_controller().
78 * @sink_pad: &struct media_pad with the sink pad.
79 * Used only when the M2M device is registered via
80 * v4l2_m2m_register_media_controller().
81 * @proc: &struct media_entity pointer with the M2M device itself.
82 * @proc_pads: &struct media_pad with the @proc pads.
83 * Used only when the M2M device is registered via
84 * v4l2_m2m_unregister_media_controller().
85 * @intf_devnode: &struct media_intf devnode pointer with the interface
86 * with controls the M2M device.
87 * @curr_ctx: currently running instance
88 * @job_queue: instances queued to run
89 * @job_spinlock: protects job_queue
90 * @job_work: worker to run queued jobs.
91 * @job_queue_flags: flags of the queue status, %QUEUE_PAUSED.
92 * @m2m_ops: driver callbacks
93 */
94 struct v4l2_m2m_dev {
95 struct v4l2_m2m_ctx *curr_ctx;
96 #ifdef CONFIG_MEDIA_CONTROLLER
97 struct media_entity *source;
98 struct media_pad source_pad;
99 struct media_entity sink;
100 struct media_pad sink_pad;
101 struct media_entity proc;
102 struct media_pad proc_pads[2];
103 struct media_intf_devnode *intf_devnode;
104 #endif
105
106 struct list_head job_queue;
107 spinlock_t job_spinlock;
108 struct work_struct job_work;
109 unsigned long job_queue_flags;
110
111 const struct v4l2_m2m_ops *m2m_ops;
112 };
113
get_queue_ctx(struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)114 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
115 enum v4l2_buf_type type)
116 {
117 if (V4L2_TYPE_IS_OUTPUT(type))
118 return &m2m_ctx->out_q_ctx;
119 else
120 return &m2m_ctx->cap_q_ctx;
121 }
122
v4l2_m2m_get_vq(struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)123 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
124 enum v4l2_buf_type type)
125 {
126 struct v4l2_m2m_queue_ctx *q_ctx;
127
128 q_ctx = get_queue_ctx(m2m_ctx, type);
129 if (!q_ctx)
130 return NULL;
131
132 return &q_ctx->q;
133 }
134 EXPORT_SYMBOL(v4l2_m2m_get_vq);
135
v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx * q_ctx)136 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
137 {
138 struct v4l2_m2m_buffer *b;
139 unsigned long flags;
140
141 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
142
143 if (list_empty(&q_ctx->rdy_queue)) {
144 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
145 return NULL;
146 }
147
148 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
149 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
150 return &b->vb;
151 }
152 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
153
v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx * q_ctx)154 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
155 {
156 struct v4l2_m2m_buffer *b;
157 unsigned long flags;
158
159 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
160
161 if (list_empty(&q_ctx->rdy_queue)) {
162 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
163 return NULL;
164 }
165
166 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
167 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
168 return &b->vb;
169 }
170 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
171
v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx * q_ctx)172 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
173 {
174 struct v4l2_m2m_buffer *b;
175 unsigned long flags;
176
177 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
178 if (list_empty(&q_ctx->rdy_queue)) {
179 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
180 return NULL;
181 }
182 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
183 list_del(&b->list);
184 q_ctx->num_rdy--;
185 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
186
187 return &b->vb;
188 }
189 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
190
v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx * q_ctx,struct vb2_v4l2_buffer * vbuf)191 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
192 struct vb2_v4l2_buffer *vbuf)
193 {
194 struct v4l2_m2m_buffer *b;
195 unsigned long flags;
196
197 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
198 b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
199 list_del(&b->list);
200 q_ctx->num_rdy--;
201 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
202 }
203 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
204
205 struct vb2_v4l2_buffer *
v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx * q_ctx,unsigned int idx)206 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
207
208 {
209 struct v4l2_m2m_buffer *b, *tmp;
210 struct vb2_v4l2_buffer *ret = NULL;
211 unsigned long flags;
212
213 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
214 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
215 if (b->vb.vb2_buf.index == idx) {
216 list_del(&b->list);
217 q_ctx->num_rdy--;
218 ret = &b->vb;
219 break;
220 }
221 }
222 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
223
224 return ret;
225 }
226 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
227
228 /*
229 * Scheduling handlers
230 */
231
v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev * m2m_dev)232 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
233 {
234 unsigned long flags;
235 void *ret = NULL;
236
237 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
238 if (m2m_dev->curr_ctx)
239 ret = m2m_dev->curr_ctx->priv;
240 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
241
242 return ret;
243 }
244 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
245
246 /**
247 * v4l2_m2m_try_run() - select next job to perform and run it if possible
248 * @m2m_dev: per-device context
249 *
250 * Get next transaction (if present) from the waiting jobs list and run it.
251 *
252 * Note that this function can run on a given v4l2_m2m_ctx context,
253 * but call .device_run for another context.
254 */
v4l2_m2m_try_run(struct v4l2_m2m_dev * m2m_dev)255 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
256 {
257 unsigned long flags;
258
259 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
260 if (NULL != m2m_dev->curr_ctx) {
261 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
262 dprintk("Another instance is running, won't run now\n");
263 return;
264 }
265
266 if (list_empty(&m2m_dev->job_queue)) {
267 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
268 dprintk("No job pending\n");
269 return;
270 }
271
272 if (m2m_dev->job_queue_flags & QUEUE_PAUSED) {
273 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
274 dprintk("Running new jobs is paused\n");
275 return;
276 }
277
278 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
279 struct v4l2_m2m_ctx, queue);
280 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
281 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
282
283 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
284 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
285 }
286
287 /*
288 * __v4l2_m2m_try_queue() - queue a job
289 * @m2m_dev: m2m device
290 * @m2m_ctx: m2m context
291 *
292 * Check if this context is ready to queue a job.
293 *
294 * This function can run in interrupt context.
295 */
__v4l2_m2m_try_queue(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)296 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
297 struct v4l2_m2m_ctx *m2m_ctx)
298 {
299 unsigned long flags_job;
300 struct vb2_v4l2_buffer *dst, *src;
301
302 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
303
304 if (!m2m_ctx->out_q_ctx.q.streaming
305 || !m2m_ctx->cap_q_ctx.q.streaming) {
306 dprintk("Streaming needs to be on for both queues\n");
307 return;
308 }
309
310 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
311
312 /* If the context is aborted then don't schedule it */
313 if (m2m_ctx->job_flags & TRANS_ABORT) {
314 dprintk("Aborted context\n");
315 goto job_unlock;
316 }
317
318 if (m2m_ctx->job_flags & TRANS_QUEUED) {
319 dprintk("On job queue already\n");
320 goto job_unlock;
321 }
322
323 src = v4l2_m2m_next_src_buf(m2m_ctx);
324 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
325 if (!src && !m2m_ctx->out_q_ctx.buffered) {
326 dprintk("No input buffers available\n");
327 goto job_unlock;
328 }
329 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
330 dprintk("No output buffers available\n");
331 goto job_unlock;
332 }
333
334 m2m_ctx->new_frame = true;
335
336 if (src && dst && dst->is_held &&
337 dst->vb2_buf.copied_timestamp &&
338 dst->vb2_buf.timestamp != src->vb2_buf.timestamp) {
339 dprintk("Timestamp mismatch, returning held capture buffer\n");
340 dst->is_held = false;
341 v4l2_m2m_dst_buf_remove(m2m_ctx);
342 v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE);
343 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
344
345 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
346 dprintk("No output buffers available after returning held buffer\n");
347 goto job_unlock;
348 }
349 }
350
351 if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags &
352 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF))
353 m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp ||
354 dst->vb2_buf.timestamp != src->vb2_buf.timestamp;
355
356 if (m2m_ctx->has_stopped) {
357 dprintk("Device has stopped\n");
358 goto job_unlock;
359 }
360
361 if (m2m_dev->m2m_ops->job_ready
362 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
363 dprintk("Driver not ready\n");
364 goto job_unlock;
365 }
366
367 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
368 m2m_ctx->job_flags |= TRANS_QUEUED;
369
370 job_unlock:
371 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
372 }
373
374 /**
375 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
376 * @m2m_ctx: m2m context
377 *
378 * Check if this context is ready to queue a job. If suitable,
379 * run the next queued job on the mem2mem device.
380 *
381 * This function shouldn't run in interrupt context.
382 *
383 * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
384 * and then run another job for another context.
385 */
v4l2_m2m_try_schedule(struct v4l2_m2m_ctx * m2m_ctx)386 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
387 {
388 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
389
390 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
391 v4l2_m2m_try_run(m2m_dev);
392 }
393 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
394
395 /**
396 * v4l2_m2m_device_run_work() - run pending jobs for the context
397 * @work: Work structure used for scheduling the execution of this function.
398 */
v4l2_m2m_device_run_work(struct work_struct * work)399 static void v4l2_m2m_device_run_work(struct work_struct *work)
400 {
401 struct v4l2_m2m_dev *m2m_dev =
402 container_of(work, struct v4l2_m2m_dev, job_work);
403
404 v4l2_m2m_try_run(m2m_dev);
405 }
406
407 /**
408 * v4l2_m2m_cancel_job() - cancel pending jobs for the context
409 * @m2m_ctx: m2m context with jobs to be canceled
410 *
411 * In case of streamoff or release called on any context,
412 * 1] If the context is currently running, then abort job will be called
413 * 2] If the context is queued, then the context will be removed from
414 * the job_queue
415 */
v4l2_m2m_cancel_job(struct v4l2_m2m_ctx * m2m_ctx)416 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
417 {
418 struct v4l2_m2m_dev *m2m_dev;
419 unsigned long flags;
420
421 m2m_dev = m2m_ctx->m2m_dev;
422 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
423
424 m2m_ctx->job_flags |= TRANS_ABORT;
425 if (m2m_ctx->job_flags & TRANS_RUNNING) {
426 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
427 if (m2m_dev->m2m_ops->job_abort)
428 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
429 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
430 wait_event(m2m_ctx->finished,
431 !(m2m_ctx->job_flags & TRANS_RUNNING));
432 } else if (m2m_ctx->job_flags & TRANS_QUEUED) {
433 list_del(&m2m_ctx->queue);
434 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
435 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
436 dprintk("m2m_ctx: %p had been on queue and was removed\n",
437 m2m_ctx);
438 } else {
439 /* Do nothing, was not on queue/running */
440 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
441 }
442 }
443
444 /*
445 * Schedule the next job, called from v4l2_m2m_job_finish() or
446 * v4l2_m2m_buf_done_and_job_finish().
447 */
v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)448 static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev,
449 struct v4l2_m2m_ctx *m2m_ctx)
450 {
451 /*
452 * This instance might have more buffers ready, but since we do not
453 * allow more than one job on the job_queue per instance, each has
454 * to be scheduled separately after the previous one finishes.
455 */
456 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
457
458 /*
459 * We might be running in atomic context,
460 * but the job must be run in non-atomic context.
461 */
462 schedule_work(&m2m_dev->job_work);
463 }
464
465 /*
466 * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or
467 * v4l2_m2m_buf_done_and_job_finish().
468 */
_v4l2_m2m_job_finish(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)469 static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
470 struct v4l2_m2m_ctx *m2m_ctx)
471 {
472 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
473 dprintk("Called by an instance not currently running\n");
474 return false;
475 }
476
477 list_del(&m2m_dev->curr_ctx->queue);
478 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
479 wake_up(&m2m_dev->curr_ctx->finished);
480 m2m_dev->curr_ctx = NULL;
481 return true;
482 }
483
v4l2_m2m_job_finish(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)484 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
485 struct v4l2_m2m_ctx *m2m_ctx)
486 {
487 unsigned long flags;
488 bool schedule_next;
489
490 /*
491 * This function should not be used for drivers that support
492 * holding capture buffers. Those should use
493 * v4l2_m2m_buf_done_and_job_finish() instead.
494 */
495 WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags &
496 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF);
497 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
498 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
499 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
500
501 if (schedule_next)
502 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
503 }
504 EXPORT_SYMBOL(v4l2_m2m_job_finish);
505
v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx,enum vb2_buffer_state state)506 void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev,
507 struct v4l2_m2m_ctx *m2m_ctx,
508 enum vb2_buffer_state state)
509 {
510 struct vb2_v4l2_buffer *src_buf, *dst_buf;
511 bool schedule_next = false;
512 unsigned long flags;
513
514 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
515 src_buf = v4l2_m2m_src_buf_remove(m2m_ctx);
516 dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx);
517
518 if (WARN_ON(!src_buf || !dst_buf))
519 goto unlock;
520 dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
521 if (!dst_buf->is_held) {
522 v4l2_m2m_dst_buf_remove(m2m_ctx);
523 v4l2_m2m_buf_done(dst_buf, state);
524 }
525 /*
526 * If the request API is being used, returning the OUTPUT
527 * (src) buffer will wake-up any process waiting on the
528 * request file descriptor.
529 *
530 * Therefore, return the CAPTURE (dst) buffer first,
531 * to avoid signalling the request file descriptor
532 * before the CAPTURE buffer is done.
533 */
534 v4l2_m2m_buf_done(src_buf, state);
535 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
536 unlock:
537 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
538
539 if (schedule_next)
540 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
541 }
542 EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish);
543
v4l2_m2m_suspend(struct v4l2_m2m_dev * m2m_dev)544 void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev)
545 {
546 unsigned long flags;
547 struct v4l2_m2m_ctx *curr_ctx;
548
549 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
550 m2m_dev->job_queue_flags |= QUEUE_PAUSED;
551 curr_ctx = m2m_dev->curr_ctx;
552 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
553
554 if (curr_ctx)
555 wait_event(curr_ctx->finished,
556 !(curr_ctx->job_flags & TRANS_RUNNING));
557 }
558 EXPORT_SYMBOL(v4l2_m2m_suspend);
559
v4l2_m2m_resume(struct v4l2_m2m_dev * m2m_dev)560 void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev)
561 {
562 unsigned long flags;
563
564 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
565 m2m_dev->job_queue_flags &= ~QUEUE_PAUSED;
566 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
567
568 v4l2_m2m_try_run(m2m_dev);
569 }
570 EXPORT_SYMBOL(v4l2_m2m_resume);
571
v4l2_m2m_reqbufs(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_requestbuffers * reqbufs)572 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
573 struct v4l2_requestbuffers *reqbufs)
574 {
575 struct vb2_queue *vq;
576 int ret;
577
578 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
579 ret = vb2_reqbufs(vq, reqbufs);
580 /* If count == 0, then the owner has released all buffers and he
581 is no longer owner of the queue. Otherwise we have an owner. */
582 if (ret == 0)
583 vq->owner = reqbufs->count ? file->private_data : NULL;
584
585 return ret;
586 }
587 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
588
v4l2_m2m_adjust_mem_offset(struct vb2_queue * vq,struct v4l2_buffer * buf)589 static void v4l2_m2m_adjust_mem_offset(struct vb2_queue *vq,
590 struct v4l2_buffer *buf)
591 {
592 /* Adjust MMAP memory offsets for the CAPTURE queue */
593 if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) {
594 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
595 unsigned int i;
596
597 for (i = 0; i < buf->length; ++i)
598 buf->m.planes[i].m.mem_offset
599 += DST_QUEUE_OFF_BASE;
600 } else {
601 buf->m.offset += DST_QUEUE_OFF_BASE;
602 }
603 }
604 }
605
v4l2_m2m_querybuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)606 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
607 struct v4l2_buffer *buf)
608 {
609 struct vb2_queue *vq;
610 int ret;
611
612 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
613 ret = vb2_querybuf(vq, buf);
614 if (ret)
615 return ret;
616
617 /* Adjust MMAP memory offsets for the CAPTURE queue */
618 v4l2_m2m_adjust_mem_offset(vq, buf);
619
620 return 0;
621 }
622 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
623
624 /*
625 * This will add the LAST flag and mark the buffer management
626 * state as stopped.
627 * This is called when the last capture buffer must be flagged as LAST
628 * in draining mode from the encoder/decoder driver buf_queue() callback
629 * or from v4l2_update_last_buf_state() when a capture buffer is available.
630 */
v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_v4l2_buffer * vbuf)631 void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx,
632 struct vb2_v4l2_buffer *vbuf)
633 {
634 vbuf->flags |= V4L2_BUF_FLAG_LAST;
635 vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
636
637 v4l2_m2m_mark_stopped(m2m_ctx);
638 }
639 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done);
640
641 /* When stop command is issued, update buffer management state */
v4l2_update_last_buf_state(struct v4l2_m2m_ctx * m2m_ctx)642 static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx)
643 {
644 struct vb2_v4l2_buffer *next_dst_buf;
645
646 if (m2m_ctx->is_draining)
647 return -EBUSY;
648
649 if (m2m_ctx->has_stopped)
650 return 0;
651
652 m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx);
653 m2m_ctx->is_draining = true;
654
655 /*
656 * The processing of the last output buffer queued before
657 * the STOP command is expected to mark the buffer management
658 * state as stopped with v4l2_m2m_mark_stopped().
659 */
660 if (m2m_ctx->last_src_buf)
661 return 0;
662
663 /*
664 * In case the output queue is empty, try to mark the last capture
665 * buffer as LAST.
666 */
667 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
668 if (!next_dst_buf) {
669 /*
670 * Wait for the next queued one in encoder/decoder driver
671 * buf_queue() callback using the v4l2_m2m_dst_buf_is_last()
672 * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet
673 * streaming.
674 */
675 m2m_ctx->next_buf_last = true;
676 return 0;
677 }
678
679 v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf);
680
681 return 0;
682 }
683
684 /*
685 * Updates the encoding/decoding buffer management state, should
686 * be called from encoder/decoder drivers start_streaming()
687 */
v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_queue * q)688 void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
689 struct vb2_queue *q)
690 {
691 /* If start streaming again, untag the last output buffer */
692 if (V4L2_TYPE_IS_OUTPUT(q->type))
693 m2m_ctx->last_src_buf = NULL;
694 }
695 EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state);
696
697 /*
698 * Updates the encoding/decoding buffer management state, should
699 * be called from encoder/decoder driver stop_streaming()
700 */
v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_queue * q)701 void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
702 struct vb2_queue *q)
703 {
704 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
705 /*
706 * If in draining state, either mark next dst buffer as
707 * done or flag next one to be marked as done either
708 * in encoder/decoder driver buf_queue() callback using
709 * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf()
710 * if encoder/decoder is not yet streaming
711 */
712 if (m2m_ctx->is_draining) {
713 struct vb2_v4l2_buffer *next_dst_buf;
714
715 m2m_ctx->last_src_buf = NULL;
716 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
717 if (!next_dst_buf)
718 m2m_ctx->next_buf_last = true;
719 else
720 v4l2_m2m_last_buffer_done(m2m_ctx,
721 next_dst_buf);
722 }
723 } else {
724 v4l2_m2m_clear_state(m2m_ctx);
725 }
726 }
727 EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state);
728
v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_queue * q)729 static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx,
730 struct vb2_queue *q)
731 {
732 struct vb2_buffer *vb;
733 struct vb2_v4l2_buffer *vbuf;
734 unsigned int i;
735
736 if (WARN_ON(q->is_output))
737 return;
738 if (list_empty(&q->queued_list))
739 return;
740
741 vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry);
742 for (i = 0; i < vb->num_planes; i++)
743 vb2_set_plane_payload(vb, i, 0);
744
745 /*
746 * Since the buffer hasn't been queued to the ready queue,
747 * mark is active and owned before marking it LAST and DONE
748 */
749 vb->state = VB2_BUF_STATE_ACTIVE;
750 atomic_inc(&q->owned_by_drv_count);
751
752 vbuf = to_vb2_v4l2_buffer(vb);
753 vbuf->field = V4L2_FIELD_NONE;
754
755 v4l2_m2m_last_buffer_done(m2m_ctx, vbuf);
756 }
757
v4l2_m2m_qbuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)758 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
759 struct v4l2_buffer *buf)
760 {
761 struct video_device *vdev = video_devdata(file);
762 struct vb2_queue *vq;
763 int ret;
764
765 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
766 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
767 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
768 dprintk("%s: requests cannot be used with capture buffers\n",
769 __func__);
770 return -EPERM;
771 }
772
773 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
774 if (ret)
775 return ret;
776
777 /* Adjust MMAP memory offsets for the CAPTURE queue */
778 v4l2_m2m_adjust_mem_offset(vq, buf);
779
780 /*
781 * If the capture queue is streaming, but streaming hasn't started
782 * on the device, but was asked to stop, mark the previously queued
783 * buffer as DONE with LAST flag since it won't be queued on the
784 * device.
785 */
786 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
787 vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) &&
788 (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx)))
789 v4l2_m2m_force_last_buf_done(m2m_ctx, vq);
790 else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
791 v4l2_m2m_try_schedule(m2m_ctx);
792
793 return 0;
794 }
795 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
796
v4l2_m2m_dqbuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)797 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
798 struct v4l2_buffer *buf)
799 {
800 struct vb2_queue *vq;
801 int ret;
802
803 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
804 ret = vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
805 if (ret)
806 return ret;
807
808 /* Adjust MMAP memory offsets for the CAPTURE queue */
809 v4l2_m2m_adjust_mem_offset(vq, buf);
810
811 return 0;
812 }
813 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
814
v4l2_m2m_prepare_buf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)815 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
816 struct v4l2_buffer *buf)
817 {
818 struct video_device *vdev = video_devdata(file);
819 struct vb2_queue *vq;
820 int ret;
821
822 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
823 ret = vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
824 if (ret)
825 return ret;
826
827 /* Adjust MMAP memory offsets for the CAPTURE queue */
828 v4l2_m2m_adjust_mem_offset(vq, buf);
829
830 return 0;
831 }
832 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
833
v4l2_m2m_create_bufs(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_create_buffers * create)834 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
835 struct v4l2_create_buffers *create)
836 {
837 struct vb2_queue *vq;
838
839 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
840 return vb2_create_bufs(vq, create);
841 }
842 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
843
v4l2_m2m_expbuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_exportbuffer * eb)844 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
845 struct v4l2_exportbuffer *eb)
846 {
847 struct vb2_queue *vq;
848
849 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
850 return vb2_expbuf(vq, eb);
851 }
852 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
853
v4l2_m2m_streamon(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)854 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
855 enum v4l2_buf_type type)
856 {
857 struct vb2_queue *vq;
858 int ret;
859
860 vq = v4l2_m2m_get_vq(m2m_ctx, type);
861 ret = vb2_streamon(vq, type);
862 if (!ret)
863 v4l2_m2m_try_schedule(m2m_ctx);
864
865 return ret;
866 }
867 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
868
v4l2_m2m_streamoff(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)869 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
870 enum v4l2_buf_type type)
871 {
872 struct v4l2_m2m_dev *m2m_dev;
873 struct v4l2_m2m_queue_ctx *q_ctx;
874 unsigned long flags_job, flags;
875 int ret;
876
877 /* wait until the current context is dequeued from job_queue */
878 v4l2_m2m_cancel_job(m2m_ctx);
879
880 q_ctx = get_queue_ctx(m2m_ctx, type);
881 ret = vb2_streamoff(&q_ctx->q, type);
882 if (ret)
883 return ret;
884
885 m2m_dev = m2m_ctx->m2m_dev;
886 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
887 /* We should not be scheduled anymore, since we're dropping a queue. */
888 if (m2m_ctx->job_flags & TRANS_QUEUED)
889 list_del(&m2m_ctx->queue);
890 m2m_ctx->job_flags = 0;
891
892 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
893 /* Drop queue, since streamoff returns device to the same state as after
894 * calling reqbufs. */
895 INIT_LIST_HEAD(&q_ctx->rdy_queue);
896 q_ctx->num_rdy = 0;
897 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
898
899 if (m2m_dev->curr_ctx == m2m_ctx) {
900 m2m_dev->curr_ctx = NULL;
901 wake_up(&m2m_ctx->finished);
902 }
903 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
904
905 return 0;
906 }
907 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
908
v4l2_m2m_poll_for_data(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct poll_table_struct * wait)909 static __poll_t v4l2_m2m_poll_for_data(struct file *file,
910 struct v4l2_m2m_ctx *m2m_ctx,
911 struct poll_table_struct *wait)
912 {
913 struct vb2_queue *src_q, *dst_q;
914 __poll_t rc = 0;
915 unsigned long flags;
916
917 src_q = v4l2_m2m_get_src_vq(m2m_ctx);
918 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
919
920 /*
921 * There has to be at least one buffer queued on each queued_list, which
922 * means either in driver already or waiting for driver to claim it
923 * and start processing.
924 */
925 if ((!src_q->streaming || src_q->error ||
926 list_empty(&src_q->queued_list)) &&
927 (!dst_q->streaming || dst_q->error ||
928 (list_empty(&dst_q->queued_list) && !dst_q->last_buffer_dequeued)))
929 return EPOLLERR;
930
931 spin_lock_irqsave(&src_q->done_lock, flags);
932 if (!list_empty(&src_q->done_list))
933 rc |= EPOLLOUT | EPOLLWRNORM;
934 spin_unlock_irqrestore(&src_q->done_lock, flags);
935
936 spin_lock_irqsave(&dst_q->done_lock, flags);
937 /*
938 * If the last buffer was dequeued from the capture queue, signal
939 * userspace. DQBUF(CAPTURE) will return -EPIPE.
940 */
941 if (!list_empty(&dst_q->done_list) || dst_q->last_buffer_dequeued)
942 rc |= EPOLLIN | EPOLLRDNORM;
943 spin_unlock_irqrestore(&dst_q->done_lock, flags);
944
945 return rc;
946 }
947
v4l2_m2m_poll(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct poll_table_struct * wait)948 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
949 struct poll_table_struct *wait)
950 {
951 struct video_device *vfd = video_devdata(file);
952 struct vb2_queue *src_q = v4l2_m2m_get_src_vq(m2m_ctx);
953 struct vb2_queue *dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
954 __poll_t req_events = poll_requested_events(wait);
955 __poll_t rc = 0;
956
957 /*
958 * poll_wait() MUST be called on the first invocation on all the
959 * potential queues of interest, even if we are not interested in their
960 * events during this first call. Failure to do so will result in
961 * queue's events to be ignored because the poll_table won't be capable
962 * of adding new wait queues thereafter.
963 */
964 poll_wait(file, &src_q->done_wq, wait);
965 poll_wait(file, &dst_q->done_wq, wait);
966
967 if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))
968 rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait);
969
970 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
971 struct v4l2_fh *fh = file->private_data;
972
973 poll_wait(file, &fh->wait, wait);
974 if (v4l2_event_pending(fh))
975 rc |= EPOLLPRI;
976 }
977
978 return rc;
979 }
980 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
981
v4l2_m2m_mmap(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct vm_area_struct * vma)982 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
983 struct vm_area_struct *vma)
984 {
985 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
986 struct vb2_queue *vq;
987
988 if (offset < DST_QUEUE_OFF_BASE) {
989 vq = v4l2_m2m_get_src_vq(m2m_ctx);
990 } else {
991 vq = v4l2_m2m_get_dst_vq(m2m_ctx);
992 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
993 }
994
995 return vb2_mmap(vq, vma);
996 }
997 EXPORT_SYMBOL(v4l2_m2m_mmap);
998
999 #ifndef CONFIG_MMU
v4l2_m2m_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1000 unsigned long v4l2_m2m_get_unmapped_area(struct file *file, unsigned long addr,
1001 unsigned long len, unsigned long pgoff,
1002 unsigned long flags)
1003 {
1004 struct v4l2_fh *fh = file->private_data;
1005 unsigned long offset = pgoff << PAGE_SHIFT;
1006 struct vb2_queue *vq;
1007
1008 if (offset < DST_QUEUE_OFF_BASE) {
1009 vq = v4l2_m2m_get_src_vq(fh->m2m_ctx);
1010 } else {
1011 vq = v4l2_m2m_get_dst_vq(fh->m2m_ctx);
1012 pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
1013 }
1014
1015 return vb2_get_unmapped_area(vq, addr, len, pgoff, flags);
1016 }
1017 EXPORT_SYMBOL_GPL(v4l2_m2m_get_unmapped_area);
1018 #endif
1019
1020 #if defined(CONFIG_MEDIA_CONTROLLER)
v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev * m2m_dev)1021 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
1022 {
1023 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
1024 media_devnode_remove(m2m_dev->intf_devnode);
1025
1026 media_entity_remove_links(m2m_dev->source);
1027 media_entity_remove_links(&m2m_dev->sink);
1028 media_entity_remove_links(&m2m_dev->proc);
1029 media_device_unregister_entity(m2m_dev->source);
1030 media_device_unregister_entity(&m2m_dev->sink);
1031 media_device_unregister_entity(&m2m_dev->proc);
1032 kfree(m2m_dev->source->name);
1033 kfree(m2m_dev->sink.name);
1034 kfree(m2m_dev->proc.name);
1035 }
1036 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
1037
v4l2_m2m_register_entity(struct media_device * mdev,struct v4l2_m2m_dev * m2m_dev,enum v4l2_m2m_entity_type type,struct video_device * vdev,int function)1038 static int v4l2_m2m_register_entity(struct media_device *mdev,
1039 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
1040 struct video_device *vdev, int function)
1041 {
1042 struct media_entity *entity;
1043 struct media_pad *pads;
1044 char *name;
1045 unsigned int len;
1046 int num_pads;
1047 int ret;
1048
1049 switch (type) {
1050 case MEM2MEM_ENT_TYPE_SOURCE:
1051 entity = m2m_dev->source;
1052 pads = &m2m_dev->source_pad;
1053 pads[0].flags = MEDIA_PAD_FL_SOURCE;
1054 num_pads = 1;
1055 break;
1056 case MEM2MEM_ENT_TYPE_SINK:
1057 entity = &m2m_dev->sink;
1058 pads = &m2m_dev->sink_pad;
1059 pads[0].flags = MEDIA_PAD_FL_SINK;
1060 num_pads = 1;
1061 break;
1062 case MEM2MEM_ENT_TYPE_PROC:
1063 entity = &m2m_dev->proc;
1064 pads = m2m_dev->proc_pads;
1065 pads[0].flags = MEDIA_PAD_FL_SINK;
1066 pads[1].flags = MEDIA_PAD_FL_SOURCE;
1067 num_pads = 2;
1068 break;
1069 default:
1070 return -EINVAL;
1071 }
1072
1073 entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
1074 if (type != MEM2MEM_ENT_TYPE_PROC) {
1075 entity->info.dev.major = VIDEO_MAJOR;
1076 entity->info.dev.minor = vdev->minor;
1077 }
1078 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
1079 name = kmalloc(len, GFP_KERNEL);
1080 if (!name)
1081 return -ENOMEM;
1082 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
1083 entity->name = name;
1084 entity->function = function;
1085
1086 ret = media_entity_pads_init(entity, num_pads, pads);
1087 if (ret)
1088 return ret;
1089 ret = media_device_register_entity(mdev, entity);
1090 if (ret)
1091 return ret;
1092
1093 return 0;
1094 }
1095
v4l2_m2m_register_media_controller(struct v4l2_m2m_dev * m2m_dev,struct video_device * vdev,int function)1096 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
1097 struct video_device *vdev, int function)
1098 {
1099 struct media_device *mdev = vdev->v4l2_dev->mdev;
1100 struct media_link *link;
1101 int ret;
1102
1103 if (!mdev)
1104 return 0;
1105
1106 /* A memory-to-memory device consists in two
1107 * DMA engine and one video processing entities.
1108 * The DMA engine entities are linked to a V4L interface
1109 */
1110
1111 /* Create the three entities with their pads */
1112 m2m_dev->source = &vdev->entity;
1113 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1114 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
1115 if (ret)
1116 return ret;
1117 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1118 MEM2MEM_ENT_TYPE_PROC, vdev, function);
1119 if (ret)
1120 goto err_rel_entity0;
1121 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1122 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
1123 if (ret)
1124 goto err_rel_entity1;
1125
1126 /* Connect the three entities */
1127 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0,
1128 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1129 if (ret)
1130 goto err_rel_entity2;
1131
1132 ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0,
1133 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1134 if (ret)
1135 goto err_rm_links0;
1136
1137 /* Create video interface */
1138 m2m_dev->intf_devnode = media_devnode_create(mdev,
1139 MEDIA_INTF_T_V4L_VIDEO, 0,
1140 VIDEO_MAJOR, vdev->minor);
1141 if (!m2m_dev->intf_devnode) {
1142 ret = -ENOMEM;
1143 goto err_rm_links1;
1144 }
1145
1146 /* Connect the two DMA engines to the interface */
1147 link = media_create_intf_link(m2m_dev->source,
1148 &m2m_dev->intf_devnode->intf,
1149 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1150 if (!link) {
1151 ret = -ENOMEM;
1152 goto err_rm_devnode;
1153 }
1154
1155 link = media_create_intf_link(&m2m_dev->sink,
1156 &m2m_dev->intf_devnode->intf,
1157 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1158 if (!link) {
1159 ret = -ENOMEM;
1160 goto err_rm_intf_link;
1161 }
1162 return 0;
1163
1164 err_rm_intf_link:
1165 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
1166 err_rm_devnode:
1167 media_devnode_remove(m2m_dev->intf_devnode);
1168 err_rm_links1:
1169 media_entity_remove_links(&m2m_dev->sink);
1170 err_rm_links0:
1171 media_entity_remove_links(&m2m_dev->proc);
1172 media_entity_remove_links(m2m_dev->source);
1173 err_rel_entity2:
1174 media_device_unregister_entity(&m2m_dev->proc);
1175 kfree(m2m_dev->proc.name);
1176 err_rel_entity1:
1177 media_device_unregister_entity(&m2m_dev->sink);
1178 kfree(m2m_dev->sink.name);
1179 err_rel_entity0:
1180 media_device_unregister_entity(m2m_dev->source);
1181 kfree(m2m_dev->source->name);
1182 return ret;
1183 return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
1186 #endif
1187
v4l2_m2m_init(const struct v4l2_m2m_ops * m2m_ops)1188 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
1189 {
1190 struct v4l2_m2m_dev *m2m_dev;
1191
1192 if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
1193 return ERR_PTR(-EINVAL);
1194
1195 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
1196 if (!m2m_dev)
1197 return ERR_PTR(-ENOMEM);
1198
1199 m2m_dev->curr_ctx = NULL;
1200 m2m_dev->m2m_ops = m2m_ops;
1201 INIT_LIST_HEAD(&m2m_dev->job_queue);
1202 spin_lock_init(&m2m_dev->job_spinlock);
1203 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
1204
1205 return m2m_dev;
1206 }
1207 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
1208
v4l2_m2m_release(struct v4l2_m2m_dev * m2m_dev)1209 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
1210 {
1211 kfree(m2m_dev);
1212 }
1213 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
1214
v4l2_m2m_ctx_init(struct v4l2_m2m_dev * m2m_dev,void * drv_priv,int (* queue_init)(void * priv,struct vb2_queue * src_vq,struct vb2_queue * dst_vq))1215 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
1216 void *drv_priv,
1217 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
1218 {
1219 struct v4l2_m2m_ctx *m2m_ctx;
1220 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
1221 int ret;
1222
1223 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
1224 if (!m2m_ctx)
1225 return ERR_PTR(-ENOMEM);
1226
1227 m2m_ctx->priv = drv_priv;
1228 m2m_ctx->m2m_dev = m2m_dev;
1229 init_waitqueue_head(&m2m_ctx->finished);
1230
1231 out_q_ctx = &m2m_ctx->out_q_ctx;
1232 cap_q_ctx = &m2m_ctx->cap_q_ctx;
1233
1234 INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
1235 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
1236 spin_lock_init(&out_q_ctx->rdy_spinlock);
1237 spin_lock_init(&cap_q_ctx->rdy_spinlock);
1238
1239 INIT_LIST_HEAD(&m2m_ctx->queue);
1240
1241 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
1242
1243 if (ret)
1244 goto err;
1245 /*
1246 * Both queues should use same the mutex to lock the m2m context.
1247 * This lock is used in some v4l2_m2m_* helpers.
1248 */
1249 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
1250 ret = -EINVAL;
1251 goto err;
1252 }
1253 m2m_ctx->q_lock = out_q_ctx->q.lock;
1254
1255 return m2m_ctx;
1256 err:
1257 kfree(m2m_ctx);
1258 return ERR_PTR(ret);
1259 }
1260 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
1261
v4l2_m2m_ctx_release(struct v4l2_m2m_ctx * m2m_ctx)1262 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
1263 {
1264 /* wait until the current context is dequeued from job_queue */
1265 v4l2_m2m_cancel_job(m2m_ctx);
1266
1267 vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
1268 vb2_queue_release(&m2m_ctx->out_q_ctx.q);
1269
1270 kfree(m2m_ctx);
1271 }
1272 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
1273
v4l2_m2m_buf_queue(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_v4l2_buffer * vbuf)1274 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
1275 struct vb2_v4l2_buffer *vbuf)
1276 {
1277 struct v4l2_m2m_buffer *b = container_of(vbuf,
1278 struct v4l2_m2m_buffer, vb);
1279 struct v4l2_m2m_queue_ctx *q_ctx;
1280 unsigned long flags;
1281
1282 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
1283 if (!q_ctx)
1284 return;
1285
1286 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
1287 list_add_tail(&b->list, &q_ctx->rdy_queue);
1288 q_ctx->num_rdy++;
1289 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
1290 }
1291 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
1292
v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer * out_vb,struct vb2_v4l2_buffer * cap_vb,bool copy_frame_flags)1293 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
1294 struct vb2_v4l2_buffer *cap_vb,
1295 bool copy_frame_flags)
1296 {
1297 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1298
1299 if (copy_frame_flags)
1300 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
1301 V4L2_BUF_FLAG_BFRAME;
1302
1303 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
1304
1305 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1306 cap_vb->timecode = out_vb->timecode;
1307 cap_vb->field = out_vb->field;
1308 cap_vb->flags &= ~mask;
1309 cap_vb->flags |= out_vb->flags & mask;
1310 cap_vb->vb2_buf.copied_timestamp = 1;
1311 }
1312 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
1313
v4l2_m2m_request_queue(struct media_request * req)1314 void v4l2_m2m_request_queue(struct media_request *req)
1315 {
1316 struct media_request_object *obj, *obj_safe;
1317 struct v4l2_m2m_ctx *m2m_ctx = NULL;
1318
1319 /*
1320 * Queue all objects. Note that buffer objects are at the end of the
1321 * objects list, after all other object types. Once buffer objects
1322 * are queued, the driver might delete them immediately (if the driver
1323 * processes the buffer at once), so we have to use
1324 * list_for_each_entry_safe() to handle the case where the object we
1325 * queue is deleted.
1326 */
1327 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1328 struct v4l2_m2m_ctx *m2m_ctx_obj;
1329 struct vb2_buffer *vb;
1330
1331 if (!obj->ops->queue)
1332 continue;
1333
1334 if (vb2_request_object_is_buffer(obj)) {
1335 /* Sanity checks */
1336 vb = container_of(obj, struct vb2_buffer, req_obj);
1337 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1338 m2m_ctx_obj = container_of(vb->vb2_queue,
1339 struct v4l2_m2m_ctx,
1340 out_q_ctx.q);
1341 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1342 m2m_ctx = m2m_ctx_obj;
1343 }
1344
1345 /*
1346 * The buffer we queue here can in theory be immediately
1347 * unbound, hence the use of list_for_each_entry_safe()
1348 * above and why we call the queue op last.
1349 */
1350 obj->ops->queue(obj);
1351 }
1352
1353 WARN_ON(!m2m_ctx);
1354
1355 if (m2m_ctx)
1356 v4l2_m2m_try_schedule(m2m_ctx);
1357 }
1358 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1359
1360 /* Videobuf2 ioctl helpers */
1361
v4l2_m2m_ioctl_reqbufs(struct file * file,void * priv,struct v4l2_requestbuffers * rb)1362 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1363 struct v4l2_requestbuffers *rb)
1364 {
1365 struct v4l2_fh *fh = file->private_data;
1366
1367 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1368 }
1369 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1370
v4l2_m2m_ioctl_create_bufs(struct file * file,void * priv,struct v4l2_create_buffers * create)1371 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1372 struct v4l2_create_buffers *create)
1373 {
1374 struct v4l2_fh *fh = file->private_data;
1375
1376 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1377 }
1378 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1379
v4l2_m2m_ioctl_querybuf(struct file * file,void * priv,struct v4l2_buffer * buf)1380 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1381 struct v4l2_buffer *buf)
1382 {
1383 struct v4l2_fh *fh = file->private_data;
1384
1385 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1386 }
1387 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1388
v4l2_m2m_ioctl_qbuf(struct file * file,void * priv,struct v4l2_buffer * buf)1389 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1390 struct v4l2_buffer *buf)
1391 {
1392 struct v4l2_fh *fh = file->private_data;
1393
1394 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1395 }
1396 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1397
v4l2_m2m_ioctl_dqbuf(struct file * file,void * priv,struct v4l2_buffer * buf)1398 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1399 struct v4l2_buffer *buf)
1400 {
1401 struct v4l2_fh *fh = file->private_data;
1402
1403 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1404 }
1405 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1406
v4l2_m2m_ioctl_prepare_buf(struct file * file,void * priv,struct v4l2_buffer * buf)1407 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1408 struct v4l2_buffer *buf)
1409 {
1410 struct v4l2_fh *fh = file->private_data;
1411
1412 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1413 }
1414 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1415
v4l2_m2m_ioctl_expbuf(struct file * file,void * priv,struct v4l2_exportbuffer * eb)1416 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1417 struct v4l2_exportbuffer *eb)
1418 {
1419 struct v4l2_fh *fh = file->private_data;
1420
1421 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1422 }
1423 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1424
v4l2_m2m_ioctl_streamon(struct file * file,void * priv,enum v4l2_buf_type type)1425 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1426 enum v4l2_buf_type type)
1427 {
1428 struct v4l2_fh *fh = file->private_data;
1429
1430 return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1431 }
1432 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1433
v4l2_m2m_ioctl_streamoff(struct file * file,void * priv,enum v4l2_buf_type type)1434 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1435 enum v4l2_buf_type type)
1436 {
1437 struct v4l2_fh *fh = file->private_data;
1438
1439 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1440 }
1441 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1442
v4l2_m2m_ioctl_try_encoder_cmd(struct file * file,void * fh,struct v4l2_encoder_cmd * ec)1443 int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh,
1444 struct v4l2_encoder_cmd *ec)
1445 {
1446 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1447 return -EINVAL;
1448
1449 ec->flags = 0;
1450 return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd);
1453
v4l2_m2m_ioctl_try_decoder_cmd(struct file * file,void * fh,struct v4l2_decoder_cmd * dc)1454 int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh,
1455 struct v4l2_decoder_cmd *dc)
1456 {
1457 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1458 return -EINVAL;
1459
1460 dc->flags = 0;
1461
1462 if (dc->cmd == V4L2_DEC_CMD_STOP) {
1463 dc->stop.pts = 0;
1464 } else if (dc->cmd == V4L2_DEC_CMD_START) {
1465 dc->start.speed = 0;
1466 dc->start.format = V4L2_DEC_START_FMT_NONE;
1467 }
1468 return 0;
1469 }
1470 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd);
1471
1472 /*
1473 * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START
1474 * Should be called from the encoder driver encoder_cmd() callback
1475 */
v4l2_m2m_encoder_cmd(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_encoder_cmd * ec)1476 int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1477 struct v4l2_encoder_cmd *ec)
1478 {
1479 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1480 return -EINVAL;
1481
1482 if (ec->cmd == V4L2_ENC_CMD_STOP)
1483 return v4l2_update_last_buf_state(m2m_ctx);
1484
1485 if (m2m_ctx->is_draining)
1486 return -EBUSY;
1487
1488 if (m2m_ctx->has_stopped)
1489 m2m_ctx->has_stopped = false;
1490
1491 return 0;
1492 }
1493 EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd);
1494
1495 /*
1496 * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START
1497 * Should be called from the decoder driver decoder_cmd() callback
1498 */
v4l2_m2m_decoder_cmd(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_decoder_cmd * dc)1499 int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1500 struct v4l2_decoder_cmd *dc)
1501 {
1502 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1503 return -EINVAL;
1504
1505 if (dc->cmd == V4L2_DEC_CMD_STOP)
1506 return v4l2_update_last_buf_state(m2m_ctx);
1507
1508 if (m2m_ctx->is_draining)
1509 return -EBUSY;
1510
1511 if (m2m_ctx->has_stopped)
1512 m2m_ctx->has_stopped = false;
1513
1514 return 0;
1515 }
1516 EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd);
1517
v4l2_m2m_ioctl_encoder_cmd(struct file * file,void * priv,struct v4l2_encoder_cmd * ec)1518 int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv,
1519 struct v4l2_encoder_cmd *ec)
1520 {
1521 struct v4l2_fh *fh = file->private_data;
1522
1523 return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec);
1524 }
1525 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd);
1526
v4l2_m2m_ioctl_decoder_cmd(struct file * file,void * priv,struct v4l2_decoder_cmd * dc)1527 int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv,
1528 struct v4l2_decoder_cmd *dc)
1529 {
1530 struct v4l2_fh *fh = file->private_data;
1531
1532 return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc);
1533 }
1534 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd);
1535
v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file * file,void * fh,struct v4l2_decoder_cmd * dc)1536 int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh,
1537 struct v4l2_decoder_cmd *dc)
1538 {
1539 if (dc->cmd != V4L2_DEC_CMD_FLUSH)
1540 return -EINVAL;
1541
1542 dc->flags = 0;
1543
1544 return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd);
1547
v4l2_m2m_ioctl_stateless_decoder_cmd(struct file * file,void * priv,struct v4l2_decoder_cmd * dc)1548 int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv,
1549 struct v4l2_decoder_cmd *dc)
1550 {
1551 struct v4l2_fh *fh = file->private_data;
1552 struct vb2_v4l2_buffer *out_vb, *cap_vb;
1553 struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev;
1554 unsigned long flags;
1555 int ret;
1556
1557 ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc);
1558 if (ret < 0)
1559 return ret;
1560
1561 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
1562 out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx);
1563 cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx);
1564
1565 /*
1566 * If there is an out buffer pending, then clear any HOLD flag.
1567 *
1568 * By clearing this flag we ensure that when this output
1569 * buffer is processed any held capture buffer will be released.
1570 */
1571 if (out_vb) {
1572 out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
1573 } else if (cap_vb && cap_vb->is_held) {
1574 /*
1575 * If there were no output buffers, but there is a
1576 * capture buffer that is held, then release that
1577 * buffer.
1578 */
1579 cap_vb->is_held = false;
1580 v4l2_m2m_dst_buf_remove(fh->m2m_ctx);
1581 v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE);
1582 }
1583 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
1584
1585 return 0;
1586 }
1587 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd);
1588
1589 /*
1590 * v4l2_file_operations helpers. It is assumed here same lock is used
1591 * for the output and the capture buffer queue.
1592 */
1593
v4l2_m2m_fop_mmap(struct file * file,struct vm_area_struct * vma)1594 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1595 {
1596 struct v4l2_fh *fh = file->private_data;
1597
1598 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1599 }
1600 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1601
v4l2_m2m_fop_poll(struct file * file,poll_table * wait)1602 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1603 {
1604 struct v4l2_fh *fh = file->private_data;
1605 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1606 __poll_t ret;
1607
1608 if (m2m_ctx->q_lock)
1609 mutex_lock(m2m_ctx->q_lock);
1610
1611 ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1612
1613 if (m2m_ctx->q_lock)
1614 mutex_unlock(m2m_ctx->q_lock);
1615
1616 return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1619
1620