1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * uvc_video.c -- USB Video Class driver - Video handling
4 *
5 * Copyright (C) 2005-2010
6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/usb.h>
16 #include <linux/usb/hcd.h>
17 #include <linux/videodev2.h>
18 #include <linux/vmalloc.h>
19 #include <linux/wait.h>
20 #include <linux/atomic.h>
21 #include <asm/unaligned.h>
22
23 #include <media/v4l2-common.h>
24
25 #include "uvcvideo.h"
26
27 /* ------------------------------------------------------------------------
28 * UVC Controls
29 */
30
__uvc_query_ctrl(struct uvc_device * dev,u8 query,u8 unit,u8 intfnum,u8 cs,void * data,u16 size,int timeout)31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
32 u8 intfnum, u8 cs, void *data, u16 size,
33 int timeout)
34 {
35 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
36 unsigned int pipe;
37
38 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
39 : usb_sndctrlpipe(dev->udev, 0);
40 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
41
42 return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
43 unit << 8 | intfnum, data, size, timeout);
44 }
45
uvc_query_name(u8 query)46 static const char *uvc_query_name(u8 query)
47 {
48 switch (query) {
49 case UVC_SET_CUR:
50 return "SET_CUR";
51 case UVC_GET_CUR:
52 return "GET_CUR";
53 case UVC_GET_MIN:
54 return "GET_MIN";
55 case UVC_GET_MAX:
56 return "GET_MAX";
57 case UVC_GET_RES:
58 return "GET_RES";
59 case UVC_GET_LEN:
60 return "GET_LEN";
61 case UVC_GET_INFO:
62 return "GET_INFO";
63 case UVC_GET_DEF:
64 return "GET_DEF";
65 default:
66 return "<invalid>";
67 }
68 }
69
uvc_query_ctrl(struct uvc_device * dev,u8 query,u8 unit,u8 intfnum,u8 cs,void * data,u16 size)70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
71 u8 intfnum, u8 cs, void *data, u16 size)
72 {
73 int ret;
74 u8 error;
75 u8 tmp;
76
77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 UVC_CTRL_CONTROL_TIMEOUT);
79 if (likely(ret == size))
80 return 0;
81
82 dev_err(&dev->udev->dev,
83 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
84 uvc_query_name(query), cs, unit, ret, size);
85
86 if (ret != -EPIPE)
87 return ret;
88
89 tmp = *(u8 *)data;
90
91 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum,
92 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1,
93 UVC_CTRL_CONTROL_TIMEOUT);
94
95 error = *(u8 *)data;
96 *(u8 *)data = tmp;
97
98 if (ret != 1)
99 return ret < 0 ? ret : -EPIPE;
100
101 uvc_dbg(dev, CONTROL, "Control error %u\n", error);
102
103 switch (error) {
104 case 0:
105 /* Cannot happen - we received a STALL */
106 return -EPIPE;
107 case 1: /* Not ready */
108 return -EBUSY;
109 case 2: /* Wrong state */
110 return -EILSEQ;
111 case 3: /* Power */
112 return -EREMOTE;
113 case 4: /* Out of range */
114 return -ERANGE;
115 case 5: /* Invalid unit */
116 case 6: /* Invalid control */
117 case 7: /* Invalid Request */
118 /*
119 * The firmware has not properly implemented
120 * the control or there has been a HW error.
121 */
122 return -EIO;
123 case 8: /* Invalid value within range */
124 return -EINVAL;
125 default: /* reserved or unknown */
126 break;
127 }
128
129 return -EPIPE;
130 }
131
uvc_fixup_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl)132 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
133 struct uvc_streaming_control *ctrl)
134 {
135 static const struct usb_device_id elgato_cam_link_4k = {
136 USB_DEVICE(0x0fd9, 0x0066)
137 };
138 struct uvc_format *format = NULL;
139 struct uvc_frame *frame = NULL;
140 unsigned int i;
141
142 /*
143 * The response of the Elgato Cam Link 4K is incorrect: The second byte
144 * contains bFormatIndex (instead of being the second byte of bmHint).
145 * The first byte is always zero. The third byte is always 1.
146 *
147 * The UVC 1.5 class specification defines the first five bits in the
148 * bmHint bitfield. The remaining bits are reserved and should be zero.
149 * Therefore a valid bmHint will be less than 32.
150 *
151 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
152 * MCU: 20.02.19, FPGA: 67
153 */
154 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) &&
155 ctrl->bmHint > 255) {
156 u8 corrected_format_index = ctrl->bmHint >> 8;
157
158 uvc_dbg(stream->dev, VIDEO,
159 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
160 ctrl->bmHint, ctrl->bFormatIndex,
161 1, corrected_format_index);
162 ctrl->bmHint = 1;
163 ctrl->bFormatIndex = corrected_format_index;
164 }
165
166 for (i = 0; i < stream->nformats; ++i) {
167 if (stream->format[i].index == ctrl->bFormatIndex) {
168 format = &stream->format[i];
169 break;
170 }
171 }
172
173 if (format == NULL)
174 return;
175
176 for (i = 0; i < format->nframes; ++i) {
177 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
178 frame = &format->frame[i];
179 break;
180 }
181 }
182
183 if (frame == NULL)
184 return;
185
186 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
187 (ctrl->dwMaxVideoFrameSize == 0 &&
188 stream->dev->uvc_version < 0x0110))
189 ctrl->dwMaxVideoFrameSize =
190 frame->dwMaxVideoFrameBufferSize;
191
192 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
193 * compute the bandwidth on 16 bits and erroneously sign-extend it to
194 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
195 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
196 */
197 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
198 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
199
200 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
201 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
202 stream->intf->num_altsetting > 1) {
203 u32 interval;
204 u32 bandwidth;
205
206 interval = (ctrl->dwFrameInterval > 100000)
207 ? ctrl->dwFrameInterval
208 : frame->dwFrameInterval[0];
209
210 /* Compute a bandwidth estimation by multiplying the frame
211 * size by the number of video frames per second, divide the
212 * result by the number of USB frames (or micro-frames for
213 * high-speed devices) per second and add the UVC header size
214 * (assumed to be 12 bytes long).
215 */
216 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
217 bandwidth *= 10000000 / interval + 1;
218 bandwidth /= 1000;
219 if (stream->dev->udev->speed == USB_SPEED_HIGH)
220 bandwidth /= 8;
221 bandwidth += 12;
222
223 /* The bandwidth estimate is too low for many cameras. Don't use
224 * maximum packet sizes lower than 1024 bytes to try and work
225 * around the problem. According to measurements done on two
226 * different camera models, the value is high enough to get most
227 * resolutions working while not preventing two simultaneous
228 * VGA streams at 15 fps.
229 */
230 bandwidth = max_t(u32, bandwidth, 1024);
231
232 ctrl->dwMaxPayloadTransferSize = bandwidth;
233 }
234 }
235
uvc_video_ctrl_size(struct uvc_streaming * stream)236 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
237 {
238 /*
239 * Return the size of the video probe and commit controls, which depends
240 * on the protocol version.
241 */
242 if (stream->dev->uvc_version < 0x0110)
243 return 26;
244 else if (stream->dev->uvc_version < 0x0150)
245 return 34;
246 else
247 return 48;
248 }
249
uvc_get_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe,u8 query)250 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
251 struct uvc_streaming_control *ctrl, int probe, u8 query)
252 {
253 u16 size = uvc_video_ctrl_size(stream);
254 u8 *data;
255 int ret;
256
257 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
258 query == UVC_GET_DEF)
259 return -EIO;
260
261 data = kmalloc(size, GFP_KERNEL);
262 if (data == NULL)
263 return -ENOMEM;
264
265 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
266 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
267 size, uvc_timeout_param);
268
269 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
270 /* Some cameras, mostly based on Bison Electronics chipsets,
271 * answer a GET_MIN or GET_MAX request with the wCompQuality
272 * field only.
273 */
274 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
275 "compliance - GET_MIN/MAX(PROBE) incorrectly "
276 "supported. Enabling workaround.\n");
277 memset(ctrl, 0, sizeof(*ctrl));
278 ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
279 ret = 0;
280 goto out;
281 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
282 /* Many cameras don't support the GET_DEF request on their
283 * video probe control. Warn once and return, the caller will
284 * fall back to GET_CUR.
285 */
286 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
287 "compliance - GET_DEF(PROBE) not supported. "
288 "Enabling workaround.\n");
289 ret = -EIO;
290 goto out;
291 } else if (ret != size) {
292 dev_err(&stream->intf->dev,
293 "Failed to query (%u) UVC %s control : %d (exp. %u).\n",
294 query, probe ? "probe" : "commit", ret, size);
295 ret = -EIO;
296 goto out;
297 }
298
299 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
300 ctrl->bFormatIndex = data[2];
301 ctrl->bFrameIndex = data[3];
302 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
303 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
304 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
305 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
306 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
307 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
308 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
309 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
310
311 if (size >= 34) {
312 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
313 ctrl->bmFramingInfo = data[30];
314 ctrl->bPreferedVersion = data[31];
315 ctrl->bMinVersion = data[32];
316 ctrl->bMaxVersion = data[33];
317 } else {
318 ctrl->dwClockFrequency = stream->dev->clock_frequency;
319 ctrl->bmFramingInfo = 0;
320 ctrl->bPreferedVersion = 0;
321 ctrl->bMinVersion = 0;
322 ctrl->bMaxVersion = 0;
323 }
324
325 /* Some broken devices return null or wrong dwMaxVideoFrameSize and
326 * dwMaxPayloadTransferSize fields. Try to get the value from the
327 * format and frame descriptors.
328 */
329 uvc_fixup_video_ctrl(stream, ctrl);
330 ret = 0;
331
332 out:
333 kfree(data);
334 return ret;
335 }
336
uvc_set_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe)337 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
338 struct uvc_streaming_control *ctrl, int probe)
339 {
340 u16 size = uvc_video_ctrl_size(stream);
341 u8 *data;
342 int ret;
343
344 data = kzalloc(size, GFP_KERNEL);
345 if (data == NULL)
346 return -ENOMEM;
347
348 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
349 data[2] = ctrl->bFormatIndex;
350 data[3] = ctrl->bFrameIndex;
351 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
352 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
353 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
354 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
355 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
356 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
357 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
358 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
359
360 if (size >= 34) {
361 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
362 data[30] = ctrl->bmFramingInfo;
363 data[31] = ctrl->bPreferedVersion;
364 data[32] = ctrl->bMinVersion;
365 data[33] = ctrl->bMaxVersion;
366 }
367
368 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
369 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
370 size, uvc_timeout_param);
371 if (ret != size) {
372 dev_err(&stream->intf->dev,
373 "Failed to set UVC %s control : %d (exp. %u).\n",
374 probe ? "probe" : "commit", ret, size);
375 ret = -EIO;
376 }
377
378 kfree(data);
379 return ret;
380 }
381
uvc_probe_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)382 int uvc_probe_video(struct uvc_streaming *stream,
383 struct uvc_streaming_control *probe)
384 {
385 struct uvc_streaming_control probe_min, probe_max;
386 unsigned int i;
387 int ret;
388
389 /* Perform probing. The device should adjust the requested values
390 * according to its capabilities. However, some devices, namely the
391 * first generation UVC Logitech webcams, don't implement the Video
392 * Probe control properly, and just return the needed bandwidth. For
393 * that reason, if the needed bandwidth exceeds the maximum available
394 * bandwidth, try to lower the quality.
395 */
396 ret = uvc_set_video_ctrl(stream, probe, 1);
397 if (ret < 0)
398 goto done;
399
400 /* Get the minimum and maximum values for compression settings. */
401 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
402 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
403 if (ret < 0)
404 goto done;
405 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
406 if (ret < 0)
407 goto done;
408
409 probe->wCompQuality = probe_max.wCompQuality;
410 }
411
412 for (i = 0; i < 2; ++i) {
413 ret = uvc_set_video_ctrl(stream, probe, 1);
414 if (ret < 0)
415 goto done;
416 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
417 if (ret < 0)
418 goto done;
419
420 if (stream->intf->num_altsetting == 1)
421 break;
422
423 if (probe->dwMaxPayloadTransferSize <= stream->maxpsize)
424 break;
425
426 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
427 ret = -ENOSPC;
428 goto done;
429 }
430
431 /* TODO: negotiate compression parameters */
432 probe->wKeyFrameRate = probe_min.wKeyFrameRate;
433 probe->wPFrameRate = probe_min.wPFrameRate;
434 probe->wCompQuality = probe_max.wCompQuality;
435 probe->wCompWindowSize = probe_min.wCompWindowSize;
436 }
437
438 done:
439 return ret;
440 }
441
uvc_commit_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)442 static int uvc_commit_video(struct uvc_streaming *stream,
443 struct uvc_streaming_control *probe)
444 {
445 return uvc_set_video_ctrl(stream, probe, 0);
446 }
447
448 /* -----------------------------------------------------------------------------
449 * Clocks and timestamps
450 */
451
uvc_video_get_time(void)452 static inline ktime_t uvc_video_get_time(void)
453 {
454 if (uvc_clock_param == CLOCK_MONOTONIC)
455 return ktime_get();
456 else
457 return ktime_get_real();
458 }
459
460 static void
uvc_video_clock_decode(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)461 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
462 const u8 *data, int len)
463 {
464 struct uvc_clock_sample *sample;
465 unsigned int header_size;
466 bool has_pts = false;
467 bool has_scr = false;
468 unsigned long flags;
469 ktime_t time;
470 u16 host_sof;
471 u16 dev_sof;
472
473 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
474 case UVC_STREAM_PTS | UVC_STREAM_SCR:
475 header_size = 12;
476 has_pts = true;
477 has_scr = true;
478 break;
479 case UVC_STREAM_PTS:
480 header_size = 6;
481 has_pts = true;
482 break;
483 case UVC_STREAM_SCR:
484 header_size = 8;
485 has_scr = true;
486 break;
487 default:
488 header_size = 2;
489 break;
490 }
491
492 /* Check for invalid headers. */
493 if (len < header_size)
494 return;
495
496 /* Extract the timestamps:
497 *
498 * - store the frame PTS in the buffer structure
499 * - if the SCR field is present, retrieve the host SOF counter and
500 * kernel timestamps and store them with the SCR STC and SOF fields
501 * in the ring buffer
502 */
503 if (has_pts && buf != NULL)
504 buf->pts = get_unaligned_le32(&data[2]);
505
506 if (!has_scr)
507 return;
508
509 /* To limit the amount of data, drop SCRs with an SOF identical to the
510 * previous one.
511 */
512 dev_sof = get_unaligned_le16(&data[header_size - 2]);
513 if (dev_sof == stream->clock.last_sof)
514 return;
515
516 stream->clock.last_sof = dev_sof;
517
518 host_sof = usb_get_current_frame_number(stream->dev->udev);
519 time = uvc_video_get_time();
520
521 /* The UVC specification allows device implementations that can't obtain
522 * the USB frame number to keep their own frame counters as long as they
523 * match the size and frequency of the frame number associated with USB
524 * SOF tokens. The SOF values sent by such devices differ from the USB
525 * SOF tokens by a fixed offset that needs to be estimated and accounted
526 * for to make timestamp recovery as accurate as possible.
527 *
528 * The offset is estimated the first time a device SOF value is received
529 * as the difference between the host and device SOF values. As the two
530 * SOF values can differ slightly due to transmission delays, consider
531 * that the offset is null if the difference is not higher than 10 ms
532 * (negative differences can not happen and are thus considered as an
533 * offset). The video commit control wDelay field should be used to
534 * compute a dynamic threshold instead of using a fixed 10 ms value, but
535 * devices don't report reliable wDelay values.
536 *
537 * See uvc_video_clock_host_sof() for an explanation regarding why only
538 * the 8 LSBs of the delta are kept.
539 */
540 if (stream->clock.sof_offset == (u16)-1) {
541 u16 delta_sof = (host_sof - dev_sof) & 255;
542 if (delta_sof >= 10)
543 stream->clock.sof_offset = delta_sof;
544 else
545 stream->clock.sof_offset = 0;
546 }
547
548 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
549
550 spin_lock_irqsave(&stream->clock.lock, flags);
551
552 sample = &stream->clock.samples[stream->clock.head];
553 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
554 sample->dev_sof = dev_sof;
555 sample->host_sof = host_sof;
556 sample->host_time = time;
557
558 /* Update the sliding window head and count. */
559 stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
560
561 if (stream->clock.count < stream->clock.size)
562 stream->clock.count++;
563
564 spin_unlock_irqrestore(&stream->clock.lock, flags);
565 }
566
uvc_video_clock_reset(struct uvc_streaming * stream)567 static void uvc_video_clock_reset(struct uvc_streaming *stream)
568 {
569 struct uvc_clock *clock = &stream->clock;
570
571 clock->head = 0;
572 clock->count = 0;
573 clock->last_sof = -1;
574 clock->sof_offset = -1;
575 }
576
uvc_video_clock_init(struct uvc_streaming * stream)577 static int uvc_video_clock_init(struct uvc_streaming *stream)
578 {
579 struct uvc_clock *clock = &stream->clock;
580
581 spin_lock_init(&clock->lock);
582 clock->size = 32;
583
584 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples),
585 GFP_KERNEL);
586 if (clock->samples == NULL)
587 return -ENOMEM;
588
589 uvc_video_clock_reset(stream);
590
591 return 0;
592 }
593
uvc_video_clock_cleanup(struct uvc_streaming * stream)594 static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
595 {
596 kfree(stream->clock.samples);
597 stream->clock.samples = NULL;
598 }
599
600 /*
601 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
602 *
603 * Host SOF counters reported by usb_get_current_frame_number() usually don't
604 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
605 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
606 * controller and its configuration.
607 *
608 * We thus need to recover the SOF value corresponding to the host frame number.
609 * As the device and host frame numbers are sampled in a short interval, the
610 * difference between their values should be equal to a small delta plus an
611 * integer multiple of 256 caused by the host frame number limited precision.
612 *
613 * To obtain the recovered host SOF value, compute the small delta by masking
614 * the high bits of the host frame counter and device SOF difference and add it
615 * to the device SOF value.
616 */
uvc_video_clock_host_sof(const struct uvc_clock_sample * sample)617 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
618 {
619 /* The delta value can be negative. */
620 s8 delta_sof;
621
622 delta_sof = (sample->host_sof - sample->dev_sof) & 255;
623
624 return (sample->dev_sof + delta_sof) & 2047;
625 }
626
627 /*
628 * uvc_video_clock_update - Update the buffer timestamp
629 *
630 * This function converts the buffer PTS timestamp to the host clock domain by
631 * going through the USB SOF clock domain and stores the result in the V4L2
632 * buffer timestamp field.
633 *
634 * The relationship between the device clock and the host clock isn't known.
635 * However, the device and the host share the common USB SOF clock which can be
636 * used to recover that relationship.
637 *
638 * The relationship between the device clock and the USB SOF clock is considered
639 * to be linear over the clock samples sliding window and is given by
640 *
641 * SOF = m * PTS + p
642 *
643 * Several methods to compute the slope (m) and intercept (p) can be used. As
644 * the clock drift should be small compared to the sliding window size, we
645 * assume that the line that goes through the points at both ends of the window
646 * is a good approximation. Naming those points P1 and P2, we get
647 *
648 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
649 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
650 *
651 * or
652 *
653 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
654 *
655 * to avoid losing precision in the division. Similarly, the host timestamp is
656 * computed with
657 *
658 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
659 *
660 * SOF values are coded on 11 bits by USB. We extend their precision with 16
661 * decimal bits, leading to a 11.16 coding.
662 *
663 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
664 * be normalized using the nominal device clock frequency reported through the
665 * UVC descriptors.
666 *
667 * Both the PTS/STC and SOF counters roll over, after a fixed but device
668 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
669 * sliding window size is smaller than the rollover period, differences computed
670 * on unsigned integers will produce the correct result. However, the p term in
671 * the linear relations will be miscomputed.
672 *
673 * To fix the issue, we subtract a constant from the PTS and STC values to bring
674 * PTS to half the 32 bit STC range. The sliding window STC values then fit into
675 * the 32 bit range without any rollover.
676 *
677 * Similarly, we add 2048 to the device SOF values to make sure that the SOF
678 * computed by (1) will never be smaller than 0. This offset is then compensated
679 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
680 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
681 * lower than 4096, and the host SOF counters can have rolled over to 2048. This
682 * case is handled by subtracting 2048 from the SOF value if it exceeds the host
683 * SOF value at the end of the sliding window.
684 *
685 * Finally we subtract a constant from the host timestamps to bring the first
686 * timestamp of the sliding window to 1s.
687 */
uvc_video_clock_update(struct uvc_streaming * stream,struct vb2_v4l2_buffer * vbuf,struct uvc_buffer * buf)688 void uvc_video_clock_update(struct uvc_streaming *stream,
689 struct vb2_v4l2_buffer *vbuf,
690 struct uvc_buffer *buf)
691 {
692 struct uvc_clock *clock = &stream->clock;
693 struct uvc_clock_sample *first;
694 struct uvc_clock_sample *last;
695 unsigned long flags;
696 u64 timestamp;
697 u32 delta_stc;
698 u32 y1, y2;
699 u32 x1, x2;
700 u32 mean;
701 u32 sof;
702 u64 y;
703
704 if (!uvc_hw_timestamps_param)
705 return;
706
707 /*
708 * We will get called from __vb2_queue_cancel() if there are buffers
709 * done but not dequeued by the user, but the sample array has already
710 * been released at that time. Just bail out in that case.
711 */
712 if (!clock->samples)
713 return;
714
715 spin_lock_irqsave(&clock->lock, flags);
716
717 if (clock->count < clock->size)
718 goto done;
719
720 first = &clock->samples[clock->head];
721 last = &clock->samples[(clock->head - 1) % clock->size];
722
723 /* First step, PTS to SOF conversion. */
724 delta_stc = buf->pts - (1UL << 31);
725 x1 = first->dev_stc - delta_stc;
726 x2 = last->dev_stc - delta_stc;
727 if (x1 == x2)
728 goto done;
729
730 y1 = (first->dev_sof + 2048) << 16;
731 y2 = (last->dev_sof + 2048) << 16;
732 if (y2 < y1)
733 y2 += 2048 << 16;
734
735 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
736 - (u64)y2 * (u64)x1;
737 y = div_u64(y, x2 - x1);
738
739 sof = y;
740
741 uvc_dbg(stream->dev, CLOCK,
742 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
743 stream->dev->name, buf->pts,
744 y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
745 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
746 x1, x2, y1, y2, clock->sof_offset);
747
748 /* Second step, SOF to host clock conversion. */
749 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
750 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
751 if (x2 < x1)
752 x2 += 2048 << 16;
753 if (x1 == x2)
754 goto done;
755
756 y1 = NSEC_PER_SEC;
757 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
758
759 /* Interpolated and host SOF timestamps can wrap around at slightly
760 * different times. Handle this by adding or removing 2048 to or from
761 * the computed SOF value to keep it close to the SOF samples mean
762 * value.
763 */
764 mean = (x1 + x2) / 2;
765 if (mean - (1024 << 16) > sof)
766 sof += 2048 << 16;
767 else if (sof > mean + (1024 << 16))
768 sof -= 2048 << 16;
769
770 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
771 - (u64)y2 * (u64)x1;
772 y = div_u64(y, x2 - x1);
773
774 timestamp = ktime_to_ns(first->host_time) + y - y1;
775
776 uvc_dbg(stream->dev, CLOCK,
777 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
778 stream->dev->name,
779 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
780 y, timestamp, vbuf->vb2_buf.timestamp,
781 x1, first->host_sof, first->dev_sof,
782 x2, last->host_sof, last->dev_sof, y1, y2);
783
784 /* Update the V4L2 buffer. */
785 vbuf->vb2_buf.timestamp = timestamp;
786
787 done:
788 spin_unlock_irqrestore(&clock->lock, flags);
789 }
790
791 /* ------------------------------------------------------------------------
792 * Stream statistics
793 */
794
uvc_video_stats_decode(struct uvc_streaming * stream,const u8 * data,int len)795 static void uvc_video_stats_decode(struct uvc_streaming *stream,
796 const u8 *data, int len)
797 {
798 unsigned int header_size;
799 bool has_pts = false;
800 bool has_scr = false;
801 u16 scr_sof;
802 u32 scr_stc;
803 u32 pts;
804
805 if (stream->stats.stream.nb_frames == 0 &&
806 stream->stats.frame.nb_packets == 0)
807 stream->stats.stream.start_ts = ktime_get();
808
809 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
810 case UVC_STREAM_PTS | UVC_STREAM_SCR:
811 header_size = 12;
812 has_pts = true;
813 has_scr = true;
814 break;
815 case UVC_STREAM_PTS:
816 header_size = 6;
817 has_pts = true;
818 break;
819 case UVC_STREAM_SCR:
820 header_size = 8;
821 has_scr = true;
822 break;
823 default:
824 header_size = 2;
825 break;
826 }
827
828 /* Check for invalid headers. */
829 if (len < header_size || data[0] < header_size) {
830 stream->stats.frame.nb_invalid++;
831 return;
832 }
833
834 /* Extract the timestamps. */
835 if (has_pts)
836 pts = get_unaligned_le32(&data[2]);
837
838 if (has_scr) {
839 scr_stc = get_unaligned_le32(&data[header_size - 6]);
840 scr_sof = get_unaligned_le16(&data[header_size - 2]);
841 }
842
843 /* Is PTS constant through the whole frame ? */
844 if (has_pts && stream->stats.frame.nb_pts) {
845 if (stream->stats.frame.pts != pts) {
846 stream->stats.frame.nb_pts_diffs++;
847 stream->stats.frame.last_pts_diff =
848 stream->stats.frame.nb_packets;
849 }
850 }
851
852 if (has_pts) {
853 stream->stats.frame.nb_pts++;
854 stream->stats.frame.pts = pts;
855 }
856
857 /* Do all frames have a PTS in their first non-empty packet, or before
858 * their first empty packet ?
859 */
860 if (stream->stats.frame.size == 0) {
861 if (len > header_size)
862 stream->stats.frame.has_initial_pts = has_pts;
863 if (len == header_size && has_pts)
864 stream->stats.frame.has_early_pts = true;
865 }
866
867 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
868 if (has_scr && stream->stats.frame.nb_scr) {
869 if (stream->stats.frame.scr_stc != scr_stc)
870 stream->stats.frame.nb_scr_diffs++;
871 }
872
873 if (has_scr) {
874 /* Expand the SOF counter to 32 bits and store its value. */
875 if (stream->stats.stream.nb_frames > 0 ||
876 stream->stats.frame.nb_scr > 0)
877 stream->stats.stream.scr_sof_count +=
878 (scr_sof - stream->stats.stream.scr_sof) % 2048;
879 stream->stats.stream.scr_sof = scr_sof;
880
881 stream->stats.frame.nb_scr++;
882 stream->stats.frame.scr_stc = scr_stc;
883 stream->stats.frame.scr_sof = scr_sof;
884
885 if (scr_sof < stream->stats.stream.min_sof)
886 stream->stats.stream.min_sof = scr_sof;
887 if (scr_sof > stream->stats.stream.max_sof)
888 stream->stats.stream.max_sof = scr_sof;
889 }
890
891 /* Record the first non-empty packet number. */
892 if (stream->stats.frame.size == 0 && len > header_size)
893 stream->stats.frame.first_data = stream->stats.frame.nb_packets;
894
895 /* Update the frame size. */
896 stream->stats.frame.size += len - header_size;
897
898 /* Update the packets counters. */
899 stream->stats.frame.nb_packets++;
900 if (len <= header_size)
901 stream->stats.frame.nb_empty++;
902
903 if (data[1] & UVC_STREAM_ERR)
904 stream->stats.frame.nb_errors++;
905 }
906
uvc_video_stats_update(struct uvc_streaming * stream)907 static void uvc_video_stats_update(struct uvc_streaming *stream)
908 {
909 struct uvc_stats_frame *frame = &stream->stats.frame;
910
911 uvc_dbg(stream->dev, STATS,
912 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n",
913 stream->sequence, frame->first_data,
914 frame->nb_packets - frame->nb_empty, frame->nb_packets,
915 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
916 frame->has_early_pts ? "" : "!",
917 frame->has_initial_pts ? "" : "!",
918 frame->nb_scr_diffs, frame->nb_scr,
919 frame->pts, frame->scr_stc, frame->scr_sof);
920
921 stream->stats.stream.nb_frames++;
922 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
923 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
924 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
925 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
926
927 if (frame->has_early_pts)
928 stream->stats.stream.nb_pts_early++;
929 if (frame->has_initial_pts)
930 stream->stats.stream.nb_pts_initial++;
931 if (frame->last_pts_diff <= frame->first_data)
932 stream->stats.stream.nb_pts_constant++;
933 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
934 stream->stats.stream.nb_scr_count_ok++;
935 if (frame->nb_scr_diffs + 1 == frame->nb_scr)
936 stream->stats.stream.nb_scr_diffs_ok++;
937
938 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
939 }
940
uvc_video_stats_dump(struct uvc_streaming * stream,char * buf,size_t size)941 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
942 size_t size)
943 {
944 unsigned int scr_sof_freq;
945 unsigned int duration;
946 size_t count = 0;
947
948 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
949 * frequency this will not overflow before more than 1h.
950 */
951 duration = ktime_ms_delta(stream->stats.stream.stop_ts,
952 stream->stats.stream.start_ts);
953 if (duration != 0)
954 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
955 / duration;
956 else
957 scr_sof_freq = 0;
958
959 count += scnprintf(buf + count, size - count,
960 "frames: %u\npackets: %u\nempty: %u\n"
961 "errors: %u\ninvalid: %u\n",
962 stream->stats.stream.nb_frames,
963 stream->stats.stream.nb_packets,
964 stream->stats.stream.nb_empty,
965 stream->stats.stream.nb_errors,
966 stream->stats.stream.nb_invalid);
967 count += scnprintf(buf + count, size - count,
968 "pts: %u early, %u initial, %u ok\n",
969 stream->stats.stream.nb_pts_early,
970 stream->stats.stream.nb_pts_initial,
971 stream->stats.stream.nb_pts_constant);
972 count += scnprintf(buf + count, size - count,
973 "scr: %u count ok, %u diff ok\n",
974 stream->stats.stream.nb_scr_count_ok,
975 stream->stats.stream.nb_scr_diffs_ok);
976 count += scnprintf(buf + count, size - count,
977 "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
978 stream->stats.stream.min_sof,
979 stream->stats.stream.max_sof,
980 scr_sof_freq / 1000, scr_sof_freq % 1000);
981
982 return count;
983 }
984
uvc_video_stats_start(struct uvc_streaming * stream)985 static void uvc_video_stats_start(struct uvc_streaming *stream)
986 {
987 memset(&stream->stats, 0, sizeof(stream->stats));
988 stream->stats.stream.min_sof = 2048;
989 }
990
uvc_video_stats_stop(struct uvc_streaming * stream)991 static void uvc_video_stats_stop(struct uvc_streaming *stream)
992 {
993 stream->stats.stream.stop_ts = ktime_get();
994 }
995
996 /* ------------------------------------------------------------------------
997 * Video codecs
998 */
999
1000 /* Video payload decoding is handled by uvc_video_decode_start(),
1001 * uvc_video_decode_data() and uvc_video_decode_end().
1002 *
1003 * uvc_video_decode_start is called with URB data at the start of a bulk or
1004 * isochronous payload. It processes header data and returns the header size
1005 * in bytes if successful. If an error occurs, it returns a negative error
1006 * code. The following error codes have special meanings.
1007 *
1008 * - EAGAIN informs the caller that the current video buffer should be marked
1009 * as done, and that the function should be called again with the same data
1010 * and a new video buffer. This is used when end of frame conditions can be
1011 * reliably detected at the beginning of the next frame only.
1012 *
1013 * If an error other than -EAGAIN is returned, the caller will drop the current
1014 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
1015 * made until the next payload. -ENODATA can be used to drop the current
1016 * payload if no other error code is appropriate.
1017 *
1018 * uvc_video_decode_data is called for every URB with URB data. It copies the
1019 * data to the video buffer.
1020 *
1021 * uvc_video_decode_end is called with header data at the end of a bulk or
1022 * isochronous payload. It performs any additional header data processing and
1023 * returns 0 or a negative error code if an error occurred. As header data have
1024 * already been processed by uvc_video_decode_start, this functions isn't
1025 * required to perform sanity checks a second time.
1026 *
1027 * For isochronous transfers where a payload is always transferred in a single
1028 * URB, the three functions will be called in a row.
1029 *
1030 * To let the decoder process header data and update its internal state even
1031 * when no video buffer is available, uvc_video_decode_start must be prepared
1032 * to be called with a NULL buf parameter. uvc_video_decode_data and
1033 * uvc_video_decode_end will never be called with a NULL buffer.
1034 */
uvc_video_decode_start(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)1035 static int uvc_video_decode_start(struct uvc_streaming *stream,
1036 struct uvc_buffer *buf, const u8 *data, int len)
1037 {
1038 u8 fid;
1039
1040 /* Sanity checks:
1041 * - packet must be at least 2 bytes long
1042 * - bHeaderLength value must be at least 2 bytes (see above)
1043 * - bHeaderLength value can't be larger than the packet size.
1044 */
1045 if (len < 2 || data[0] < 2 || data[0] > len) {
1046 stream->stats.frame.nb_invalid++;
1047 return -EINVAL;
1048 }
1049
1050 fid = data[1] & UVC_STREAM_FID;
1051
1052 /* Increase the sequence number regardless of any buffer states, so
1053 * that discontinuous sequence numbers always indicate lost frames.
1054 */
1055 if (stream->last_fid != fid) {
1056 stream->sequence++;
1057 if (stream->sequence)
1058 uvc_video_stats_update(stream);
1059 }
1060
1061 uvc_video_clock_decode(stream, buf, data, len);
1062 uvc_video_stats_decode(stream, data, len);
1063
1064 /* Store the payload FID bit and return immediately when the buffer is
1065 * NULL.
1066 */
1067 if (buf == NULL) {
1068 stream->last_fid = fid;
1069 return -ENODATA;
1070 }
1071
1072 /* Mark the buffer as bad if the error bit is set. */
1073 if (data[1] & UVC_STREAM_ERR) {
1074 uvc_dbg(stream->dev, FRAME,
1075 "Marking buffer as bad (error bit set)\n");
1076 buf->error = 1;
1077 }
1078
1079 /* Synchronize to the input stream by waiting for the FID bit to be
1080 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
1081 * stream->last_fid is initialized to -1, so the first isochronous
1082 * frame will always be in sync.
1083 *
1084 * If the device doesn't toggle the FID bit, invert stream->last_fid
1085 * when the EOF bit is set to force synchronisation on the next packet.
1086 */
1087 if (buf->state != UVC_BUF_STATE_ACTIVE) {
1088 if (fid == stream->last_fid) {
1089 uvc_dbg(stream->dev, FRAME,
1090 "Dropping payload (out of sync)\n");
1091 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1092 (data[1] & UVC_STREAM_EOF))
1093 stream->last_fid ^= UVC_STREAM_FID;
1094 return -ENODATA;
1095 }
1096
1097 buf->buf.field = V4L2_FIELD_NONE;
1098 buf->buf.sequence = stream->sequence;
1099 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time());
1100
1101 /* TODO: Handle PTS and SCR. */
1102 buf->state = UVC_BUF_STATE_ACTIVE;
1103 }
1104
1105 /* Mark the buffer as done if we're at the beginning of a new frame.
1106 * End of frame detection is better implemented by checking the EOF
1107 * bit (FID bit toggling is delayed by one frame compared to the EOF
1108 * bit), but some devices don't set the bit at end of frame (and the
1109 * last payload can be lost anyway). We thus must check if the FID has
1110 * been toggled.
1111 *
1112 * stream->last_fid is initialized to -1, so the first isochronous
1113 * frame will never trigger an end of frame detection.
1114 *
1115 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1116 * as it doesn't make sense to return an empty buffer. This also
1117 * avoids detecting end of frame conditions at FID toggling if the
1118 * previous payload had the EOF bit set.
1119 */
1120 if (fid != stream->last_fid && buf->bytesused != 0) {
1121 uvc_dbg(stream->dev, FRAME,
1122 "Frame complete (FID bit toggled)\n");
1123 buf->state = UVC_BUF_STATE_READY;
1124 return -EAGAIN;
1125 }
1126
1127 stream->last_fid = fid;
1128
1129 return data[0];
1130 }
1131
uvc_stream_dir(struct uvc_streaming * stream)1132 static inline enum dma_data_direction uvc_stream_dir(
1133 struct uvc_streaming *stream)
1134 {
1135 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1136 return DMA_FROM_DEVICE;
1137 else
1138 return DMA_TO_DEVICE;
1139 }
1140
uvc_stream_to_dmadev(struct uvc_streaming * stream)1141 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream)
1142 {
1143 return bus_to_hcd(stream->dev->udev->bus)->self.sysdev;
1144 }
1145
uvc_submit_urb(struct uvc_urb * uvc_urb,gfp_t mem_flags)1146 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags)
1147 {
1148 /* Sync DMA. */
1149 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream),
1150 uvc_urb->sgt,
1151 uvc_stream_dir(uvc_urb->stream));
1152 return usb_submit_urb(uvc_urb->urb, mem_flags);
1153 }
1154
1155 /*
1156 * uvc_video_decode_data_work: Asynchronous memcpy processing
1157 *
1158 * Copy URB data to video buffers in process context, releasing buffer
1159 * references and requeuing the URB when done.
1160 */
uvc_video_copy_data_work(struct work_struct * work)1161 static void uvc_video_copy_data_work(struct work_struct *work)
1162 {
1163 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work);
1164 unsigned int i;
1165 int ret;
1166
1167 for (i = 0; i < uvc_urb->async_operations; i++) {
1168 struct uvc_copy_op *op = &uvc_urb->copy_operations[i];
1169
1170 memcpy(op->dst, op->src, op->len);
1171
1172 /* Release reference taken on this buffer. */
1173 uvc_queue_buffer_release(op->buf);
1174 }
1175
1176 ret = uvc_submit_urb(uvc_urb, GFP_KERNEL);
1177 if (ret < 0)
1178 dev_err(&uvc_urb->stream->intf->dev,
1179 "Failed to resubmit video URB (%d).\n", ret);
1180 }
1181
uvc_video_decode_data(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,const u8 * data,int len)1182 static void uvc_video_decode_data(struct uvc_urb *uvc_urb,
1183 struct uvc_buffer *buf, const u8 *data, int len)
1184 {
1185 unsigned int active_op = uvc_urb->async_operations;
1186 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op];
1187 unsigned int maxlen;
1188
1189 if (len <= 0)
1190 return;
1191
1192 maxlen = buf->length - buf->bytesused;
1193
1194 /* Take a buffer reference for async work. */
1195 kref_get(&buf->ref);
1196
1197 op->buf = buf;
1198 op->src = data;
1199 op->dst = buf->mem + buf->bytesused;
1200 op->len = min_t(unsigned int, len, maxlen);
1201
1202 buf->bytesused += op->len;
1203
1204 /* Complete the current frame if the buffer size was exceeded. */
1205 if (len > maxlen) {
1206 uvc_dbg(uvc_urb->stream->dev, FRAME,
1207 "Frame complete (overflow)\n");
1208 buf->error = 1;
1209 buf->state = UVC_BUF_STATE_READY;
1210 }
1211
1212 uvc_urb->async_operations++;
1213 }
1214
uvc_video_decode_end(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)1215 static void uvc_video_decode_end(struct uvc_streaming *stream,
1216 struct uvc_buffer *buf, const u8 *data, int len)
1217 {
1218 /* Mark the buffer as done if the EOF marker is set. */
1219 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1220 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n");
1221 if (data[0] == len)
1222 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n");
1223 buf->state = UVC_BUF_STATE_READY;
1224 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1225 stream->last_fid ^= UVC_STREAM_FID;
1226 }
1227 }
1228
1229 /* Video payload encoding is handled by uvc_video_encode_header() and
1230 * uvc_video_encode_data(). Only bulk transfers are currently supported.
1231 *
1232 * uvc_video_encode_header is called at the start of a payload. It adds header
1233 * data to the transfer buffer and returns the header size. As the only known
1234 * UVC output device transfers a whole frame in a single payload, the EOF bit
1235 * is always set in the header.
1236 *
1237 * uvc_video_encode_data is called for every URB and copies the data from the
1238 * video buffer to the transfer buffer.
1239 */
uvc_video_encode_header(struct uvc_streaming * stream,struct uvc_buffer * buf,u8 * data,int len)1240 static int uvc_video_encode_header(struct uvc_streaming *stream,
1241 struct uvc_buffer *buf, u8 *data, int len)
1242 {
1243 data[0] = 2; /* Header length */
1244 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1245 | (stream->last_fid & UVC_STREAM_FID);
1246 return 2;
1247 }
1248
uvc_video_encode_data(struct uvc_streaming * stream,struct uvc_buffer * buf,u8 * data,int len)1249 static int uvc_video_encode_data(struct uvc_streaming *stream,
1250 struct uvc_buffer *buf, u8 *data, int len)
1251 {
1252 struct uvc_video_queue *queue = &stream->queue;
1253 unsigned int nbytes;
1254 void *mem;
1255
1256 /* Copy video data to the URB buffer. */
1257 mem = buf->mem + queue->buf_used;
1258 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1259 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1260 nbytes);
1261 memcpy(data, mem, nbytes);
1262
1263 queue->buf_used += nbytes;
1264
1265 return nbytes;
1266 }
1267
1268 /* ------------------------------------------------------------------------
1269 * Metadata
1270 */
1271
1272 /*
1273 * Additionally to the payload headers we also want to provide the user with USB
1274 * Frame Numbers and system time values. The resulting buffer is thus composed
1275 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame
1276 * Number, and a copy of the payload header.
1277 *
1278 * Ideally we want to capture all payload headers for each frame. However, their
1279 * number is unknown and unbound. We thus drop headers that contain no vendor
1280 * data and that either contain no SCR value or an SCR value identical to the
1281 * previous header.
1282 */
uvc_video_decode_meta(struct uvc_streaming * stream,struct uvc_buffer * meta_buf,const u8 * mem,unsigned int length)1283 static void uvc_video_decode_meta(struct uvc_streaming *stream,
1284 struct uvc_buffer *meta_buf,
1285 const u8 *mem, unsigned int length)
1286 {
1287 struct uvc_meta_buf *meta;
1288 size_t len_std = 2;
1289 bool has_pts, has_scr;
1290 unsigned long flags;
1291 unsigned int sof;
1292 ktime_t time;
1293 const u8 *scr;
1294
1295 if (!meta_buf || length == 2)
1296 return;
1297
1298 if (meta_buf->length - meta_buf->bytesused <
1299 length + sizeof(meta->ns) + sizeof(meta->sof)) {
1300 meta_buf->error = 1;
1301 return;
1302 }
1303
1304 has_pts = mem[1] & UVC_STREAM_PTS;
1305 has_scr = mem[1] & UVC_STREAM_SCR;
1306
1307 if (has_pts) {
1308 len_std += 4;
1309 scr = mem + 6;
1310 } else {
1311 scr = mem + 2;
1312 }
1313
1314 if (has_scr)
1315 len_std += 6;
1316
1317 if (stream->meta.format == V4L2_META_FMT_UVC)
1318 length = len_std;
1319
1320 if (length == len_std && (!has_scr ||
1321 !memcmp(scr, stream->clock.last_scr, 6)))
1322 return;
1323
1324 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
1325 local_irq_save(flags);
1326 time = uvc_video_get_time();
1327 sof = usb_get_current_frame_number(stream->dev->udev);
1328 local_irq_restore(flags);
1329 put_unaligned(ktime_to_ns(time), &meta->ns);
1330 put_unaligned(sof, &meta->sof);
1331
1332 if (has_scr)
1333 memcpy(stream->clock.last_scr, scr, 6);
1334
1335 memcpy(&meta->length, mem, length);
1336 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
1337
1338 uvc_dbg(stream->dev, FRAME,
1339 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1340 __func__, ktime_to_ns(time), meta->sof, meta->length,
1341 meta->flags,
1342 has_pts ? *(u32 *)meta->buf : 0,
1343 has_scr ? *(u32 *)scr : 0,
1344 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
1345 }
1346
1347 /* ------------------------------------------------------------------------
1348 * URB handling
1349 */
1350
1351 /*
1352 * Set error flag for incomplete buffer.
1353 */
uvc_video_validate_buffer(const struct uvc_streaming * stream,struct uvc_buffer * buf)1354 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1355 struct uvc_buffer *buf)
1356 {
1357 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1358 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1359 buf->error = 1;
1360 }
1361
1362 /*
1363 * Completion handler for video URBs.
1364 */
1365
uvc_video_next_buffers(struct uvc_streaming * stream,struct uvc_buffer ** video_buf,struct uvc_buffer ** meta_buf)1366 static void uvc_video_next_buffers(struct uvc_streaming *stream,
1367 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
1368 {
1369 uvc_video_validate_buffer(stream, *video_buf);
1370
1371 if (*meta_buf) {
1372 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
1373 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
1374
1375 vb2_meta->sequence = vb2_video->sequence;
1376 vb2_meta->field = vb2_video->field;
1377 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
1378
1379 (*meta_buf)->state = UVC_BUF_STATE_READY;
1380 if (!(*meta_buf)->error)
1381 (*meta_buf)->error = (*video_buf)->error;
1382 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
1383 *meta_buf);
1384 }
1385 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
1386 }
1387
uvc_video_decode_isoc(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1388 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb,
1389 struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1390 {
1391 struct urb *urb = uvc_urb->urb;
1392 struct uvc_streaming *stream = uvc_urb->stream;
1393 u8 *mem;
1394 int ret, i;
1395
1396 for (i = 0; i < urb->number_of_packets; ++i) {
1397 if (urb->iso_frame_desc[i].status < 0) {
1398 uvc_dbg(stream->dev, FRAME,
1399 "USB isochronous frame lost (%d)\n",
1400 urb->iso_frame_desc[i].status);
1401 /* Mark the buffer as faulty. */
1402 if (buf != NULL)
1403 buf->error = 1;
1404 continue;
1405 }
1406
1407 /* Decode the payload header. */
1408 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1409 do {
1410 ret = uvc_video_decode_start(stream, buf, mem,
1411 urb->iso_frame_desc[i].actual_length);
1412 if (ret == -EAGAIN)
1413 uvc_video_next_buffers(stream, &buf, &meta_buf);
1414 } while (ret == -EAGAIN);
1415
1416 if (ret < 0)
1417 continue;
1418
1419 uvc_video_decode_meta(stream, meta_buf, mem, ret);
1420
1421 /* Decode the payload data. */
1422 uvc_video_decode_data(uvc_urb, buf, mem + ret,
1423 urb->iso_frame_desc[i].actual_length - ret);
1424
1425 /* Process the header again. */
1426 uvc_video_decode_end(stream, buf, mem,
1427 urb->iso_frame_desc[i].actual_length);
1428
1429 if (buf->state == UVC_BUF_STATE_READY)
1430 uvc_video_next_buffers(stream, &buf, &meta_buf);
1431 }
1432 }
1433
uvc_video_decode_bulk(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1434 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb,
1435 struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1436 {
1437 struct urb *urb = uvc_urb->urb;
1438 struct uvc_streaming *stream = uvc_urb->stream;
1439 u8 *mem;
1440 int len, ret;
1441
1442 /*
1443 * Ignore ZLPs if they're not part of a frame, otherwise process them
1444 * to trigger the end of payload detection.
1445 */
1446 if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1447 return;
1448
1449 mem = urb->transfer_buffer;
1450 len = urb->actual_length;
1451 stream->bulk.payload_size += len;
1452
1453 /* If the URB is the first of its payload, decode and save the
1454 * header.
1455 */
1456 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1457 do {
1458 ret = uvc_video_decode_start(stream, buf, mem, len);
1459 if (ret == -EAGAIN)
1460 uvc_video_next_buffers(stream, &buf, &meta_buf);
1461 } while (ret == -EAGAIN);
1462
1463 /* If an error occurred skip the rest of the payload. */
1464 if (ret < 0 || buf == NULL) {
1465 stream->bulk.skip_payload = 1;
1466 } else {
1467 memcpy(stream->bulk.header, mem, ret);
1468 stream->bulk.header_size = ret;
1469
1470 uvc_video_decode_meta(stream, meta_buf, mem, ret);
1471
1472 mem += ret;
1473 len -= ret;
1474 }
1475 }
1476
1477 /* The buffer queue might have been cancelled while a bulk transfer
1478 * was in progress, so we can reach here with buf equal to NULL. Make
1479 * sure buf is never dereferenced if NULL.
1480 */
1481
1482 /* Prepare video data for processing. */
1483 if (!stream->bulk.skip_payload && buf != NULL)
1484 uvc_video_decode_data(uvc_urb, buf, mem, len);
1485
1486 /* Detect the payload end by a URB smaller than the maximum size (or
1487 * a payload size equal to the maximum) and process the header again.
1488 */
1489 if (urb->actual_length < urb->transfer_buffer_length ||
1490 stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1491 if (!stream->bulk.skip_payload && buf != NULL) {
1492 uvc_video_decode_end(stream, buf, stream->bulk.header,
1493 stream->bulk.payload_size);
1494 if (buf->state == UVC_BUF_STATE_READY)
1495 uvc_video_next_buffers(stream, &buf, &meta_buf);
1496 }
1497
1498 stream->bulk.header_size = 0;
1499 stream->bulk.skip_payload = 0;
1500 stream->bulk.payload_size = 0;
1501 }
1502 }
1503
uvc_video_encode_bulk(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1504 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb,
1505 struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1506 {
1507 struct urb *urb = uvc_urb->urb;
1508 struct uvc_streaming *stream = uvc_urb->stream;
1509
1510 u8 *mem = urb->transfer_buffer;
1511 int len = stream->urb_size, ret;
1512
1513 if (buf == NULL) {
1514 urb->transfer_buffer_length = 0;
1515 return;
1516 }
1517
1518 /* If the URB is the first of its payload, add the header. */
1519 if (stream->bulk.header_size == 0) {
1520 ret = uvc_video_encode_header(stream, buf, mem, len);
1521 stream->bulk.header_size = ret;
1522 stream->bulk.payload_size += ret;
1523 mem += ret;
1524 len -= ret;
1525 }
1526
1527 /* Process video data. */
1528 ret = uvc_video_encode_data(stream, buf, mem, len);
1529
1530 stream->bulk.payload_size += ret;
1531 len -= ret;
1532
1533 if (buf->bytesused == stream->queue.buf_used ||
1534 stream->bulk.payload_size == stream->bulk.max_payload_size) {
1535 if (buf->bytesused == stream->queue.buf_used) {
1536 stream->queue.buf_used = 0;
1537 buf->state = UVC_BUF_STATE_READY;
1538 buf->buf.sequence = ++stream->sequence;
1539 uvc_queue_next_buffer(&stream->queue, buf);
1540 stream->last_fid ^= UVC_STREAM_FID;
1541 }
1542
1543 stream->bulk.header_size = 0;
1544 stream->bulk.payload_size = 0;
1545 }
1546
1547 urb->transfer_buffer_length = stream->urb_size - len;
1548 }
1549
uvc_video_complete(struct urb * urb)1550 static void uvc_video_complete(struct urb *urb)
1551 {
1552 struct uvc_urb *uvc_urb = urb->context;
1553 struct uvc_streaming *stream = uvc_urb->stream;
1554 struct uvc_video_queue *queue = &stream->queue;
1555 struct uvc_video_queue *qmeta = &stream->meta.queue;
1556 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
1557 struct uvc_buffer *buf = NULL;
1558 struct uvc_buffer *buf_meta = NULL;
1559 unsigned long flags;
1560 int ret;
1561
1562 switch (urb->status) {
1563 case 0:
1564 break;
1565
1566 default:
1567 dev_warn(&stream->intf->dev,
1568 "Non-zero status (%d) in video completion handler.\n",
1569 urb->status);
1570 fallthrough;
1571 case -ENOENT: /* usb_poison_urb() called. */
1572 if (stream->frozen)
1573 return;
1574 fallthrough;
1575 case -ECONNRESET: /* usb_unlink_urb() called. */
1576 case -ESHUTDOWN: /* The endpoint is being disabled. */
1577 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1578 if (vb2_qmeta)
1579 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
1580 return;
1581 }
1582
1583 buf = uvc_queue_get_current_buffer(queue);
1584
1585 if (vb2_qmeta) {
1586 spin_lock_irqsave(&qmeta->irqlock, flags);
1587 if (!list_empty(&qmeta->irqqueue))
1588 buf_meta = list_first_entry(&qmeta->irqqueue,
1589 struct uvc_buffer, queue);
1590 spin_unlock_irqrestore(&qmeta->irqlock, flags);
1591 }
1592
1593 /* Re-initialise the URB async work. */
1594 uvc_urb->async_operations = 0;
1595
1596 /* Sync DMA and invalidate vmap range. */
1597 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream),
1598 uvc_urb->sgt, uvc_stream_dir(stream));
1599 invalidate_kernel_vmap_range(uvc_urb->buffer,
1600 uvc_urb->stream->urb_size);
1601
1602 /*
1603 * Process the URB headers, and optionally queue expensive memcpy tasks
1604 * to be deferred to a work queue.
1605 */
1606 stream->decode(uvc_urb, buf, buf_meta);
1607
1608 /* If no async work is needed, resubmit the URB immediately. */
1609 if (!uvc_urb->async_operations) {
1610 ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC);
1611 if (ret < 0)
1612 dev_err(&stream->intf->dev,
1613 "Failed to resubmit video URB (%d).\n", ret);
1614 return;
1615 }
1616
1617 queue_work(stream->async_wq, &uvc_urb->work);
1618 }
1619
1620 /*
1621 * Free transfer buffers.
1622 */
uvc_free_urb_buffers(struct uvc_streaming * stream)1623 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1624 {
1625 struct device *dma_dev = uvc_stream_to_dmadev(stream);
1626 struct uvc_urb *uvc_urb;
1627
1628 for_each_uvc_urb(uvc_urb, stream) {
1629 if (!uvc_urb->buffer)
1630 continue;
1631
1632 dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer);
1633 dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt,
1634 uvc_stream_dir(stream));
1635
1636 uvc_urb->buffer = NULL;
1637 uvc_urb->sgt = NULL;
1638 }
1639
1640 stream->urb_size = 0;
1641 }
1642
uvc_alloc_urb_buffer(struct uvc_streaming * stream,struct uvc_urb * uvc_urb,gfp_t gfp_flags)1643 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream,
1644 struct uvc_urb *uvc_urb, gfp_t gfp_flags)
1645 {
1646 struct device *dma_dev = uvc_stream_to_dmadev(stream);
1647
1648 uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size,
1649 uvc_stream_dir(stream),
1650 gfp_flags, 0);
1651 if (!uvc_urb->sgt)
1652 return false;
1653 uvc_urb->dma = uvc_urb->sgt->sgl->dma_address;
1654
1655 uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size,
1656 uvc_urb->sgt);
1657 if (!uvc_urb->buffer) {
1658 dma_free_noncontiguous(dma_dev, stream->urb_size,
1659 uvc_urb->sgt,
1660 uvc_stream_dir(stream));
1661 uvc_urb->sgt = NULL;
1662 return false;
1663 }
1664
1665 return true;
1666 }
1667
1668 /*
1669 * Allocate transfer buffers. This function can be called with buffers
1670 * already allocated when resuming from suspend, in which case it will
1671 * return without touching the buffers.
1672 *
1673 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1674 * system is too low on memory try successively smaller numbers of packets
1675 * until allocation succeeds.
1676 *
1677 * Return the number of allocated packets on success or 0 when out of memory.
1678 */
uvc_alloc_urb_buffers(struct uvc_streaming * stream,unsigned int size,unsigned int psize,gfp_t gfp_flags)1679 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1680 unsigned int size, unsigned int psize, gfp_t gfp_flags)
1681 {
1682 unsigned int npackets;
1683 unsigned int i;
1684
1685 /* Buffers are already allocated, bail out. */
1686 if (stream->urb_size)
1687 return stream->urb_size / psize;
1688
1689 /* Compute the number of packets. Bulk endpoints might transfer UVC
1690 * payloads across multiple URBs.
1691 */
1692 npackets = DIV_ROUND_UP(size, psize);
1693 if (npackets > UVC_MAX_PACKETS)
1694 npackets = UVC_MAX_PACKETS;
1695
1696 /* Retry allocations until one succeed. */
1697 for (; npackets > 1; npackets /= 2) {
1698 stream->urb_size = psize * npackets;
1699
1700 for (i = 0; i < UVC_URBS; ++i) {
1701 struct uvc_urb *uvc_urb = &stream->uvc_urb[i];
1702
1703 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) {
1704 uvc_free_urb_buffers(stream);
1705 break;
1706 }
1707
1708 uvc_urb->stream = stream;
1709 }
1710
1711 if (i == UVC_URBS) {
1712 uvc_dbg(stream->dev, VIDEO,
1713 "Allocated %u URB buffers of %ux%u bytes each\n",
1714 UVC_URBS, npackets, psize);
1715 return npackets;
1716 }
1717 }
1718
1719 uvc_dbg(stream->dev, VIDEO,
1720 "Failed to allocate URB buffers (%u bytes per packet)\n",
1721 psize);
1722 return 0;
1723 }
1724
1725 /*
1726 * Uninitialize isochronous/bulk URBs and free transfer buffers.
1727 */
uvc_video_stop_transfer(struct uvc_streaming * stream,int free_buffers)1728 static void uvc_video_stop_transfer(struct uvc_streaming *stream,
1729 int free_buffers)
1730 {
1731 struct uvc_urb *uvc_urb;
1732
1733 uvc_video_stats_stop(stream);
1734
1735 /*
1736 * We must poison the URBs rather than kill them to ensure that even
1737 * after the completion handler returns, any asynchronous workqueues
1738 * will be prevented from resubmitting the URBs.
1739 */
1740 for_each_uvc_urb(uvc_urb, stream)
1741 usb_poison_urb(uvc_urb->urb);
1742
1743 flush_workqueue(stream->async_wq);
1744
1745 for_each_uvc_urb(uvc_urb, stream) {
1746 usb_free_urb(uvc_urb->urb);
1747 uvc_urb->urb = NULL;
1748 }
1749
1750 if (free_buffers)
1751 uvc_free_urb_buffers(stream);
1752 }
1753
1754 /*
1755 * Compute the maximum number of bytes per interval for an endpoint.
1756 */
uvc_endpoint_max_bpi(struct usb_device * dev,struct usb_host_endpoint * ep)1757 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep)
1758 {
1759 u16 psize;
1760
1761 switch (dev->speed) {
1762 case USB_SPEED_SUPER:
1763 case USB_SPEED_SUPER_PLUS:
1764 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1765 default:
1766 psize = usb_endpoint_maxp(&ep->desc);
1767 psize *= usb_endpoint_maxp_mult(&ep->desc);
1768 return psize;
1769 }
1770 }
1771
1772 /*
1773 * Initialize isochronous URBs and allocate transfer buffers. The packet size
1774 * is given by the endpoint.
1775 */
uvc_init_video_isoc(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1776 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1777 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1778 {
1779 struct urb *urb;
1780 struct uvc_urb *uvc_urb;
1781 unsigned int npackets, i;
1782 u16 psize;
1783 u32 size;
1784
1785 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1786 size = stream->ctrl.dwMaxVideoFrameSize;
1787
1788 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1789 if (npackets == 0)
1790 return -ENOMEM;
1791
1792 size = npackets * psize;
1793
1794 for_each_uvc_urb(uvc_urb, stream) {
1795 urb = usb_alloc_urb(npackets, gfp_flags);
1796 if (urb == NULL) {
1797 uvc_video_stop_transfer(stream, 1);
1798 return -ENOMEM;
1799 }
1800
1801 urb->dev = stream->dev->udev;
1802 urb->context = uvc_urb;
1803 urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1804 ep->desc.bEndpointAddress);
1805 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1806 urb->transfer_dma = uvc_urb->dma;
1807 urb->interval = ep->desc.bInterval;
1808 urb->transfer_buffer = uvc_urb->buffer;
1809 urb->complete = uvc_video_complete;
1810 urb->number_of_packets = npackets;
1811 urb->transfer_buffer_length = size;
1812
1813 for (i = 0; i < npackets; ++i) {
1814 urb->iso_frame_desc[i].offset = i * psize;
1815 urb->iso_frame_desc[i].length = psize;
1816 }
1817
1818 uvc_urb->urb = urb;
1819 }
1820
1821 return 0;
1822 }
1823
1824 /*
1825 * Initialize bulk URBs and allocate transfer buffers. The packet size is
1826 * given by the endpoint.
1827 */
uvc_init_video_bulk(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1828 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1829 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1830 {
1831 struct urb *urb;
1832 struct uvc_urb *uvc_urb;
1833 unsigned int npackets, pipe;
1834 u16 psize;
1835 u32 size;
1836
1837 psize = usb_endpoint_maxp(&ep->desc);
1838 size = stream->ctrl.dwMaxPayloadTransferSize;
1839 stream->bulk.max_payload_size = size;
1840
1841 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1842 if (npackets == 0)
1843 return -ENOMEM;
1844
1845 size = npackets * psize;
1846
1847 if (usb_endpoint_dir_in(&ep->desc))
1848 pipe = usb_rcvbulkpipe(stream->dev->udev,
1849 ep->desc.bEndpointAddress);
1850 else
1851 pipe = usb_sndbulkpipe(stream->dev->udev,
1852 ep->desc.bEndpointAddress);
1853
1854 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1855 size = 0;
1856
1857 for_each_uvc_urb(uvc_urb, stream) {
1858 urb = usb_alloc_urb(0, gfp_flags);
1859 if (urb == NULL) {
1860 uvc_video_stop_transfer(stream, 1);
1861 return -ENOMEM;
1862 }
1863
1864 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer,
1865 size, uvc_video_complete, uvc_urb);
1866 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1867 urb->transfer_dma = uvc_urb->dma;
1868
1869 uvc_urb->urb = urb;
1870 }
1871
1872 return 0;
1873 }
1874
1875 /*
1876 * Initialize isochronous/bulk URBs and allocate transfer buffers.
1877 */
uvc_video_start_transfer(struct uvc_streaming * stream,gfp_t gfp_flags)1878 static int uvc_video_start_transfer(struct uvc_streaming *stream,
1879 gfp_t gfp_flags)
1880 {
1881 struct usb_interface *intf = stream->intf;
1882 struct usb_host_endpoint *ep;
1883 struct uvc_urb *uvc_urb;
1884 unsigned int i;
1885 int ret;
1886
1887 stream->sequence = -1;
1888 stream->last_fid = -1;
1889 stream->bulk.header_size = 0;
1890 stream->bulk.skip_payload = 0;
1891 stream->bulk.payload_size = 0;
1892
1893 uvc_video_stats_start(stream);
1894
1895 if (intf->num_altsetting > 1) {
1896 struct usb_host_endpoint *best_ep = NULL;
1897 unsigned int best_psize = UINT_MAX;
1898 unsigned int bandwidth;
1899 unsigned int altsetting;
1900 int intfnum = stream->intfnum;
1901
1902 /* Isochronous endpoint, select the alternate setting. */
1903 bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1904
1905 if (bandwidth == 0) {
1906 uvc_dbg(stream->dev, VIDEO,
1907 "Device requested null bandwidth, defaulting to lowest\n");
1908 bandwidth = 1;
1909 } else {
1910 uvc_dbg(stream->dev, VIDEO,
1911 "Device requested %u B/frame bandwidth\n",
1912 bandwidth);
1913 }
1914
1915 for (i = 0; i < intf->num_altsetting; ++i) {
1916 struct usb_host_interface *alts;
1917 unsigned int psize;
1918
1919 alts = &intf->altsetting[i];
1920 ep = uvc_find_endpoint(alts,
1921 stream->header.bEndpointAddress);
1922 if (ep == NULL)
1923 continue;
1924
1925 /* Check if the bandwidth is high enough. */
1926 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1927 if (psize >= bandwidth && psize <= best_psize) {
1928 altsetting = alts->desc.bAlternateSetting;
1929 best_psize = psize;
1930 best_ep = ep;
1931 }
1932 }
1933
1934 if (best_ep == NULL) {
1935 uvc_dbg(stream->dev, VIDEO,
1936 "No fast enough alt setting for requested bandwidth\n");
1937 return -EIO;
1938 }
1939
1940 uvc_dbg(stream->dev, VIDEO,
1941 "Selecting alternate setting %u (%u B/frame bandwidth)\n",
1942 altsetting, best_psize);
1943
1944 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1945 if (ret < 0)
1946 return ret;
1947
1948 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1949 } else {
1950 /* Bulk endpoint, proceed to URB initialization. */
1951 ep = uvc_find_endpoint(&intf->altsetting[0],
1952 stream->header.bEndpointAddress);
1953 if (ep == NULL)
1954 return -EIO;
1955
1956 /* Reject broken descriptors. */
1957 if (usb_endpoint_maxp(&ep->desc) == 0)
1958 return -EIO;
1959
1960 ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1961 }
1962
1963 if (ret < 0)
1964 return ret;
1965
1966 /* Submit the URBs. */
1967 for_each_uvc_urb(uvc_urb, stream) {
1968 ret = uvc_submit_urb(uvc_urb, gfp_flags);
1969 if (ret < 0) {
1970 dev_err(&stream->intf->dev,
1971 "Failed to submit URB %u (%d).\n",
1972 uvc_urb_index(uvc_urb), ret);
1973 uvc_video_stop_transfer(stream, 1);
1974 return ret;
1975 }
1976 }
1977
1978 /* The Logitech C920 temporarily forgets that it should not be adjusting
1979 * Exposure Absolute during init so restore controls to stored values.
1980 */
1981 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
1982 uvc_ctrl_restore_values(stream->dev);
1983
1984 return 0;
1985 }
1986
1987 /* --------------------------------------------------------------------------
1988 * Suspend/resume
1989 */
1990
1991 /*
1992 * Stop streaming without disabling the video queue.
1993 *
1994 * To let userspace applications resume without trouble, we must not touch the
1995 * video buffers in any way. We mark the device as frozen to make sure the URB
1996 * completion handler won't try to cancel the queue when we kill the URBs.
1997 */
uvc_video_suspend(struct uvc_streaming * stream)1998 int uvc_video_suspend(struct uvc_streaming *stream)
1999 {
2000 if (!uvc_queue_streaming(&stream->queue))
2001 return 0;
2002
2003 stream->frozen = 1;
2004 uvc_video_stop_transfer(stream, 0);
2005 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2006 return 0;
2007 }
2008
2009 /*
2010 * Reconfigure the video interface and restart streaming if it was enabled
2011 * before suspend.
2012 *
2013 * If an error occurs, disable the video queue. This will wake all pending
2014 * buffers, making sure userspace applications are notified of the problem
2015 * instead of waiting forever.
2016 */
uvc_video_resume(struct uvc_streaming * stream,int reset)2017 int uvc_video_resume(struct uvc_streaming *stream, int reset)
2018 {
2019 int ret;
2020
2021 /* If the bus has been reset on resume, set the alternate setting to 0.
2022 * This should be the default value, but some devices crash or otherwise
2023 * misbehave if they don't receive a SET_INTERFACE request before any
2024 * other video control request.
2025 */
2026 if (reset)
2027 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2028
2029 stream->frozen = 0;
2030
2031 uvc_video_clock_reset(stream);
2032
2033 if (!uvc_queue_streaming(&stream->queue))
2034 return 0;
2035
2036 ret = uvc_commit_video(stream, &stream->ctrl);
2037 if (ret < 0)
2038 return ret;
2039
2040 return uvc_video_start_transfer(stream, GFP_NOIO);
2041 }
2042
2043 /* ------------------------------------------------------------------------
2044 * Video device
2045 */
2046
2047 /*
2048 * Initialize the UVC video device by switching to alternate setting 0 and
2049 * retrieve the default format.
2050 *
2051 * Some cameras (namely the Fuji Finepix) set the format and frame
2052 * indexes to zero. The UVC standard doesn't clearly make this a spec
2053 * violation, so try to silently fix the values if possible.
2054 *
2055 * This function is called before registering the device with V4L.
2056 */
uvc_video_init(struct uvc_streaming * stream)2057 int uvc_video_init(struct uvc_streaming *stream)
2058 {
2059 struct uvc_streaming_control *probe = &stream->ctrl;
2060 struct uvc_format *format = NULL;
2061 struct uvc_frame *frame = NULL;
2062 struct uvc_urb *uvc_urb;
2063 unsigned int i;
2064 int ret;
2065
2066 if (stream->nformats == 0) {
2067 dev_info(&stream->intf->dev,
2068 "No supported video formats found.\n");
2069 return -EINVAL;
2070 }
2071
2072 atomic_set(&stream->active, 0);
2073
2074 /* Alternate setting 0 should be the default, yet the XBox Live Vision
2075 * Cam (and possibly other devices) crash or otherwise misbehave if
2076 * they don't receive a SET_INTERFACE request before any other video
2077 * control request.
2078 */
2079 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2080
2081 /* Set the streaming probe control with default streaming parameters
2082 * retrieved from the device. Webcams that don't support GET_DEF
2083 * requests on the probe control will just keep their current streaming
2084 * parameters.
2085 */
2086 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
2087 uvc_set_video_ctrl(stream, probe, 1);
2088
2089 /* Initialize the streaming parameters with the probe control current
2090 * value. This makes sure SET_CUR requests on the streaming commit
2091 * control will always use values retrieved from a successful GET_CUR
2092 * request on the probe control, as required by the UVC specification.
2093 */
2094 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
2095 if (ret < 0)
2096 return ret;
2097
2098 /* Check if the default format descriptor exists. Use the first
2099 * available format otherwise.
2100 */
2101 for (i = stream->nformats; i > 0; --i) {
2102 format = &stream->format[i-1];
2103 if (format->index == probe->bFormatIndex)
2104 break;
2105 }
2106
2107 if (format->nframes == 0) {
2108 dev_info(&stream->intf->dev,
2109 "No frame descriptor found for the default format.\n");
2110 return -EINVAL;
2111 }
2112
2113 /* Zero bFrameIndex might be correct. Stream-based formats (including
2114 * MPEG-2 TS and DV) do not support frames but have a dummy frame
2115 * descriptor with bFrameIndex set to zero. If the default frame
2116 * descriptor is not found, use the first available frame.
2117 */
2118 for (i = format->nframes; i > 0; --i) {
2119 frame = &format->frame[i-1];
2120 if (frame->bFrameIndex == probe->bFrameIndex)
2121 break;
2122 }
2123
2124 probe->bFormatIndex = format->index;
2125 probe->bFrameIndex = frame->bFrameIndex;
2126
2127 stream->def_format = format;
2128 stream->cur_format = format;
2129 stream->cur_frame = frame;
2130
2131 /* Select the video decoding function */
2132 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
2133 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
2134 stream->decode = uvc_video_decode_isight;
2135 else if (stream->intf->num_altsetting > 1)
2136 stream->decode = uvc_video_decode_isoc;
2137 else
2138 stream->decode = uvc_video_decode_bulk;
2139 } else {
2140 if (stream->intf->num_altsetting == 1)
2141 stream->decode = uvc_video_encode_bulk;
2142 else {
2143 dev_info(&stream->intf->dev,
2144 "Isochronous endpoints are not supported for video output devices.\n");
2145 return -EINVAL;
2146 }
2147 }
2148
2149 /* Prepare asynchronous work items. */
2150 for_each_uvc_urb(uvc_urb, stream)
2151 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
2152
2153 return 0;
2154 }
2155
uvc_video_start_streaming(struct uvc_streaming * stream)2156 int uvc_video_start_streaming(struct uvc_streaming *stream)
2157 {
2158 int ret;
2159
2160 ret = uvc_video_clock_init(stream);
2161 if (ret < 0)
2162 return ret;
2163
2164 /* Commit the streaming parameters. */
2165 ret = uvc_commit_video(stream, &stream->ctrl);
2166 if (ret < 0)
2167 goto error_commit;
2168
2169 ret = uvc_video_start_transfer(stream, GFP_KERNEL);
2170 if (ret < 0)
2171 goto error_video;
2172
2173 return 0;
2174
2175 error_video:
2176 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2177 error_commit:
2178 uvc_video_clock_cleanup(stream);
2179
2180 return ret;
2181 }
2182
uvc_video_stop_streaming(struct uvc_streaming * stream)2183 void uvc_video_stop_streaming(struct uvc_streaming *stream)
2184 {
2185 uvc_video_stop_transfer(stream, 1);
2186
2187 if (stream->intf->num_altsetting > 1) {
2188 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2189 } else {
2190 /* UVC doesn't specify how to inform a bulk-based device
2191 * when the video stream is stopped. Windows sends a
2192 * CLEAR_FEATURE(HALT) request to the video streaming
2193 * bulk endpoint, mimic the same behaviour.
2194 */
2195 unsigned int epnum = stream->header.bEndpointAddress
2196 & USB_ENDPOINT_NUMBER_MASK;
2197 unsigned int dir = stream->header.bEndpointAddress
2198 & USB_ENDPOINT_DIR_MASK;
2199 unsigned int pipe;
2200
2201 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
2202 usb_clear_halt(stream->dev->udev, pipe);
2203 }
2204
2205 uvc_video_clock_cleanup(stream);
2206 }
2207