1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <asm/uaccess.h>
41
42 #include <trace/events/module.h>
43
44 extern int max_threads;
45
46 static struct workqueue_struct *khelper_wq;
47
48 #define CAP_BSET (void *)1
49 #define CAP_PI (void *)2
50
51 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
52 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
53 static DEFINE_SPINLOCK(umh_sysctl_lock);
54 static DECLARE_RWSEM(umhelper_sem);
55
56 #ifdef CONFIG_MODULES
57
58 /*
59 modprobe_path is set via /proc/sys.
60 */
61 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
62
free_modprobe_argv(struct subprocess_info * info)63 static void free_modprobe_argv(struct subprocess_info *info)
64 {
65 kfree(info->argv[3]); /* check call_modprobe() */
66 kfree(info->argv);
67 }
68
call_modprobe(char * module_name,int wait)69 static int call_modprobe(char *module_name, int wait)
70 {
71 static char *envp[] = {
72 "HOME=/",
73 "TERM=linux",
74 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
75 NULL
76 };
77
78 char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
79 if (!argv)
80 goto out;
81
82 module_name = kstrdup(module_name, GFP_KERNEL);
83 if (!module_name)
84 goto free_argv;
85
86 argv[0] = modprobe_path;
87 argv[1] = "-q";
88 argv[2] = "--";
89 argv[3] = module_name; /* check free_modprobe_argv() */
90 argv[4] = NULL;
91
92 return call_usermodehelper_fns(modprobe_path, argv, envp,
93 wait | UMH_KILLABLE, NULL, free_modprobe_argv, NULL);
94 free_argv:
95 kfree(argv);
96 out:
97 return -ENOMEM;
98 }
99
100 /**
101 * __request_module - try to load a kernel module
102 * @wait: wait (or not) for the operation to complete
103 * @fmt: printf style format string for the name of the module
104 * @...: arguments as specified in the format string
105 *
106 * Load a module using the user mode module loader. The function returns
107 * zero on success or a negative errno code on failure. Note that a
108 * successful module load does not mean the module did not then unload
109 * and exit on an error of its own. Callers must check that the service
110 * they requested is now available not blindly invoke it.
111 *
112 * If module auto-loading support is disabled then this function
113 * becomes a no-operation.
114 */
__request_module(bool wait,const char * fmt,...)115 int __request_module(bool wait, const char *fmt, ...)
116 {
117 va_list args;
118 char module_name[MODULE_NAME_LEN];
119 unsigned int max_modprobes;
120 int ret;
121 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
122 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
123 static int kmod_loop_msg;
124
125 va_start(args, fmt);
126 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
127 va_end(args);
128 if (ret >= MODULE_NAME_LEN)
129 return -ENAMETOOLONG;
130
131 ret = security_kernel_module_request(module_name);
132 if (ret)
133 return ret;
134
135 /* If modprobe needs a service that is in a module, we get a recursive
136 * loop. Limit the number of running kmod threads to max_threads/2 or
137 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
138 * would be to run the parents of this process, counting how many times
139 * kmod was invoked. That would mean accessing the internals of the
140 * process tables to get the command line, proc_pid_cmdline is static
141 * and it is not worth changing the proc code just to handle this case.
142 * KAO.
143 *
144 * "trace the ppid" is simple, but will fail if someone's
145 * parent exits. I think this is as good as it gets. --RR
146 */
147 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
148 atomic_inc(&kmod_concurrent);
149 if (atomic_read(&kmod_concurrent) > max_modprobes) {
150 /* We may be blaming an innocent here, but unlikely */
151 if (kmod_loop_msg < 5) {
152 printk(KERN_ERR
153 "request_module: runaway loop modprobe %s\n",
154 module_name);
155 kmod_loop_msg++;
156 }
157 atomic_dec(&kmod_concurrent);
158 return -ENOMEM;
159 }
160
161 trace_module_request(module_name, wait, _RET_IP_);
162
163 ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
164
165 atomic_dec(&kmod_concurrent);
166 return ret;
167 }
168 EXPORT_SYMBOL(__request_module);
169 #endif /* CONFIG_MODULES */
170
171 /*
172 * This is the task which runs the usermode application
173 */
____call_usermodehelper(void * data)174 static int ____call_usermodehelper(void *data)
175 {
176 struct subprocess_info *sub_info = data;
177 struct cred *new;
178 int retval;
179
180 spin_lock_irq(¤t->sighand->siglock);
181 flush_signal_handlers(current, 1);
182 spin_unlock_irq(¤t->sighand->siglock);
183
184 /* We can run anywhere, unlike our parent keventd(). */
185 set_cpus_allowed_ptr(current, cpu_all_mask);
186
187 /*
188 * Our parent is keventd, which runs with elevated scheduling priority.
189 * Avoid propagating that into the userspace child.
190 */
191 set_user_nice(current, 0);
192
193 retval = -ENOMEM;
194 new = prepare_kernel_cred(current);
195 if (!new)
196 goto fail;
197
198 spin_lock(&umh_sysctl_lock);
199 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
200 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
201 new->cap_inheritable);
202 spin_unlock(&umh_sysctl_lock);
203
204 if (sub_info->init) {
205 retval = sub_info->init(sub_info, new);
206 if (retval) {
207 abort_creds(new);
208 goto fail;
209 }
210 }
211
212 commit_creds(new);
213
214 retval = kernel_execve(sub_info->path,
215 (const char *const *)sub_info->argv,
216 (const char *const *)sub_info->envp);
217
218 /* Exec failed? */
219 fail:
220 sub_info->retval = retval;
221 return 0;
222 }
223
call_usermodehelper_freeinfo(struct subprocess_info * info)224 void call_usermodehelper_freeinfo(struct subprocess_info *info)
225 {
226 if (info->cleanup)
227 (*info->cleanup)(info);
228 kfree(info);
229 }
230 EXPORT_SYMBOL(call_usermodehelper_freeinfo);
231
umh_complete(struct subprocess_info * sub_info)232 static void umh_complete(struct subprocess_info *sub_info)
233 {
234 struct completion *comp = xchg(&sub_info->complete, NULL);
235 /*
236 * See call_usermodehelper_exec(). If xchg() returns NULL
237 * we own sub_info, the UMH_KILLABLE caller has gone away.
238 */
239 if (comp)
240 complete(comp);
241 else
242 call_usermodehelper_freeinfo(sub_info);
243 }
244
245 /* Keventd can't block, but this (a child) can. */
wait_for_helper(void * data)246 static int wait_for_helper(void *data)
247 {
248 struct subprocess_info *sub_info = data;
249 pid_t pid;
250
251 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
252 spin_lock_irq(¤t->sighand->siglock);
253 current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
254 spin_unlock_irq(¤t->sighand->siglock);
255
256 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
257 if (pid < 0) {
258 sub_info->retval = pid;
259 } else {
260 int ret = -ECHILD;
261 /*
262 * Normally it is bogus to call wait4() from in-kernel because
263 * wait4() wants to write the exit code to a userspace address.
264 * But wait_for_helper() always runs as keventd, and put_user()
265 * to a kernel address works OK for kernel threads, due to their
266 * having an mm_segment_t which spans the entire address space.
267 *
268 * Thus the __user pointer cast is valid here.
269 */
270 sys_wait4(pid, (int __user *)&ret, 0, NULL);
271
272 /*
273 * If ret is 0, either ____call_usermodehelper failed and the
274 * real error code is already in sub_info->retval or
275 * sub_info->retval is 0 anyway, so don't mess with it then.
276 */
277 if (ret)
278 sub_info->retval = ret;
279 }
280
281 umh_complete(sub_info);
282 return 0;
283 }
284
285 /* This is run by khelper thread */
__call_usermodehelper(struct work_struct * work)286 static void __call_usermodehelper(struct work_struct *work)
287 {
288 struct subprocess_info *sub_info =
289 container_of(work, struct subprocess_info, work);
290 int wait = sub_info->wait & ~UMH_KILLABLE;
291 pid_t pid;
292
293 /* CLONE_VFORK: wait until the usermode helper has execve'd
294 * successfully We need the data structures to stay around
295 * until that is done. */
296 if (wait == UMH_WAIT_PROC)
297 pid = kernel_thread(wait_for_helper, sub_info,
298 CLONE_FS | CLONE_FILES | SIGCHLD);
299 else
300 pid = kernel_thread(____call_usermodehelper, sub_info,
301 CLONE_VFORK | SIGCHLD);
302
303 switch (wait) {
304 case UMH_NO_WAIT:
305 call_usermodehelper_freeinfo(sub_info);
306 break;
307
308 case UMH_WAIT_PROC:
309 if (pid > 0)
310 break;
311 /* FALLTHROUGH */
312 case UMH_WAIT_EXEC:
313 if (pid < 0)
314 sub_info->retval = pid;
315 umh_complete(sub_info);
316 }
317 }
318
319 /*
320 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
321 * (used for preventing user land processes from being created after the user
322 * land has been frozen during a system-wide hibernation or suspend operation).
323 * Should always be manipulated under umhelper_sem acquired for write.
324 */
325 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
326
327 /* Number of helpers running */
328 static atomic_t running_helpers = ATOMIC_INIT(0);
329
330 /*
331 * Wait queue head used by usermodehelper_disable() to wait for all running
332 * helpers to finish.
333 */
334 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
335
336 /*
337 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
338 * to become 'false'.
339 */
340 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
341
342 /*
343 * Time to wait for running_helpers to become zero before the setting of
344 * usermodehelper_disabled in usermodehelper_disable() fails
345 */
346 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
347
usermodehelper_read_trylock(void)348 int usermodehelper_read_trylock(void)
349 {
350 DEFINE_WAIT(wait);
351 int ret = 0;
352
353 down_read(&umhelper_sem);
354 for (;;) {
355 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
356 TASK_INTERRUPTIBLE);
357 if (!usermodehelper_disabled)
358 break;
359
360 if (usermodehelper_disabled == UMH_DISABLED)
361 ret = -EAGAIN;
362
363 up_read(&umhelper_sem);
364
365 if (ret)
366 break;
367
368 schedule();
369 try_to_freeze();
370
371 down_read(&umhelper_sem);
372 }
373 finish_wait(&usermodehelper_disabled_waitq, &wait);
374 return ret;
375 }
376 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
377
usermodehelper_read_lock_wait(long timeout)378 long usermodehelper_read_lock_wait(long timeout)
379 {
380 DEFINE_WAIT(wait);
381
382 if (timeout < 0)
383 return -EINVAL;
384
385 down_read(&umhelper_sem);
386 for (;;) {
387 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
388 TASK_UNINTERRUPTIBLE);
389 if (!usermodehelper_disabled)
390 break;
391
392 up_read(&umhelper_sem);
393
394 timeout = schedule_timeout(timeout);
395 if (!timeout)
396 break;
397
398 down_read(&umhelper_sem);
399 }
400 finish_wait(&usermodehelper_disabled_waitq, &wait);
401 return timeout;
402 }
403 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
404
usermodehelper_read_unlock(void)405 void usermodehelper_read_unlock(void)
406 {
407 up_read(&umhelper_sem);
408 }
409 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
410
411 /**
412 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
413 * depth: New value to assign to usermodehelper_disabled.
414 *
415 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
416 * writing) and wakeup tasks waiting for it to change.
417 */
__usermodehelper_set_disable_depth(enum umh_disable_depth depth)418 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
419 {
420 down_write(&umhelper_sem);
421 usermodehelper_disabled = depth;
422 wake_up(&usermodehelper_disabled_waitq);
423 up_write(&umhelper_sem);
424 }
425
426 /**
427 * __usermodehelper_disable - Prevent new helpers from being started.
428 * @depth: New value to assign to usermodehelper_disabled.
429 *
430 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
431 */
__usermodehelper_disable(enum umh_disable_depth depth)432 int __usermodehelper_disable(enum umh_disable_depth depth)
433 {
434 long retval;
435
436 if (!depth)
437 return -EINVAL;
438
439 down_write(&umhelper_sem);
440 usermodehelper_disabled = depth;
441 up_write(&umhelper_sem);
442
443 /*
444 * From now on call_usermodehelper_exec() won't start any new
445 * helpers, so it is sufficient if running_helpers turns out to
446 * be zero at one point (it may be increased later, but that
447 * doesn't matter).
448 */
449 retval = wait_event_timeout(running_helpers_waitq,
450 atomic_read(&running_helpers) == 0,
451 RUNNING_HELPERS_TIMEOUT);
452 if (retval)
453 return 0;
454
455 __usermodehelper_set_disable_depth(UMH_ENABLED);
456 return -EAGAIN;
457 }
458
helper_lock(void)459 static void helper_lock(void)
460 {
461 atomic_inc(&running_helpers);
462 smp_mb__after_atomic_inc();
463 }
464
helper_unlock(void)465 static void helper_unlock(void)
466 {
467 if (atomic_dec_and_test(&running_helpers))
468 wake_up(&running_helpers_waitq);
469 }
470
471 /**
472 * call_usermodehelper_setup - prepare to call a usermode helper
473 * @path: path to usermode executable
474 * @argv: arg vector for process
475 * @envp: environment for process
476 * @gfp_mask: gfp mask for memory allocation
477 *
478 * Returns either %NULL on allocation failure, or a subprocess_info
479 * structure. This should be passed to call_usermodehelper_exec to
480 * exec the process and free the structure.
481 */
call_usermodehelper_setup(char * path,char ** argv,char ** envp,gfp_t gfp_mask)482 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
483 char **envp, gfp_t gfp_mask)
484 {
485 struct subprocess_info *sub_info;
486 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
487 if (!sub_info)
488 goto out;
489
490 INIT_WORK(&sub_info->work, __call_usermodehelper);
491 sub_info->path = path;
492 sub_info->argv = argv;
493 sub_info->envp = envp;
494 out:
495 return sub_info;
496 }
497 EXPORT_SYMBOL(call_usermodehelper_setup);
498
499 /**
500 * call_usermodehelper_setfns - set a cleanup/init function
501 * @info: a subprocess_info returned by call_usermodehelper_setup
502 * @cleanup: a cleanup function
503 * @init: an init function
504 * @data: arbitrary context sensitive data
505 *
506 * The init function is used to customize the helper process prior to
507 * exec. A non-zero return code causes the process to error out, exit,
508 * and return the failure to the calling process
509 *
510 * The cleanup function is just before ethe subprocess_info is about to
511 * be freed. This can be used for freeing the argv and envp. The
512 * Function must be runnable in either a process context or the
513 * context in which call_usermodehelper_exec is called.
514 */
call_usermodehelper_setfns(struct subprocess_info * info,int (* init)(struct subprocess_info * info,struct cred * new),void (* cleanup)(struct subprocess_info * info),void * data)515 void call_usermodehelper_setfns(struct subprocess_info *info,
516 int (*init)(struct subprocess_info *info, struct cred *new),
517 void (*cleanup)(struct subprocess_info *info),
518 void *data)
519 {
520 info->cleanup = cleanup;
521 info->init = init;
522 info->data = data;
523 }
524 EXPORT_SYMBOL(call_usermodehelper_setfns);
525
526 /**
527 * call_usermodehelper_exec - start a usermode application
528 * @sub_info: information about the subprocessa
529 * @wait: wait for the application to finish and return status.
530 * when -1 don't wait at all, but you get no useful error back when
531 * the program couldn't be exec'ed. This makes it safe to call
532 * from interrupt context.
533 *
534 * Runs a user-space application. The application is started
535 * asynchronously if wait is not set, and runs as a child of keventd.
536 * (ie. it runs with full root capabilities).
537 */
call_usermodehelper_exec(struct subprocess_info * sub_info,int wait)538 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
539 {
540 DECLARE_COMPLETION_ONSTACK(done);
541 int retval = 0;
542
543 helper_lock();
544 if (!sub_info->path) {
545 retval = -EINVAL;
546 goto out;
547 }
548
549 if (sub_info->path[0] == '\0')
550 goto out;
551
552 if (!khelper_wq || usermodehelper_disabled) {
553 retval = -EBUSY;
554 goto out;
555 }
556
557 sub_info->complete = &done;
558 sub_info->wait = wait;
559
560 queue_work(khelper_wq, &sub_info->work);
561 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
562 goto unlock;
563
564 if (wait & UMH_KILLABLE) {
565 retval = wait_for_completion_killable(&done);
566 if (!retval)
567 goto wait_done;
568
569 /* umh_complete() will see NULL and free sub_info */
570 if (xchg(&sub_info->complete, NULL))
571 goto unlock;
572 /* fallthrough, umh_complete() was already called */
573 }
574
575 wait_for_completion(&done);
576 wait_done:
577 retval = sub_info->retval;
578 out:
579 call_usermodehelper_freeinfo(sub_info);
580 unlock:
581 helper_unlock();
582 return retval;
583 }
584 EXPORT_SYMBOL(call_usermodehelper_exec);
585
proc_cap_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)586 static int proc_cap_handler(struct ctl_table *table, int write,
587 void __user *buffer, size_t *lenp, loff_t *ppos)
588 {
589 struct ctl_table t;
590 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
591 kernel_cap_t new_cap;
592 int err, i;
593
594 if (write && (!capable(CAP_SETPCAP) ||
595 !capable(CAP_SYS_MODULE)))
596 return -EPERM;
597
598 /*
599 * convert from the global kernel_cap_t to the ulong array to print to
600 * userspace if this is a read.
601 */
602 spin_lock(&umh_sysctl_lock);
603 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
604 if (table->data == CAP_BSET)
605 cap_array[i] = usermodehelper_bset.cap[i];
606 else if (table->data == CAP_PI)
607 cap_array[i] = usermodehelper_inheritable.cap[i];
608 else
609 BUG();
610 }
611 spin_unlock(&umh_sysctl_lock);
612
613 t = *table;
614 t.data = &cap_array;
615
616 /*
617 * actually read or write and array of ulongs from userspace. Remember
618 * these are least significant 32 bits first
619 */
620 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
621 if (err < 0)
622 return err;
623
624 /*
625 * convert from the sysctl array of ulongs to the kernel_cap_t
626 * internal representation
627 */
628 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
629 new_cap.cap[i] = cap_array[i];
630
631 /*
632 * Drop everything not in the new_cap (but don't add things)
633 */
634 spin_lock(&umh_sysctl_lock);
635 if (write) {
636 if (table->data == CAP_BSET)
637 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
638 if (table->data == CAP_PI)
639 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
640 }
641 spin_unlock(&umh_sysctl_lock);
642
643 return 0;
644 }
645
646 struct ctl_table usermodehelper_table[] = {
647 {
648 .procname = "bset",
649 .data = CAP_BSET,
650 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
651 .mode = 0600,
652 .proc_handler = proc_cap_handler,
653 },
654 {
655 .procname = "inheritable",
656 .data = CAP_PI,
657 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
658 .mode = 0600,
659 .proc_handler = proc_cap_handler,
660 },
661 { }
662 };
663
usermodehelper_init(void)664 void __init usermodehelper_init(void)
665 {
666 khelper_wq = create_singlethread_workqueue("khelper");
667 BUG_ON(!khelper_wq);
668 }
669