1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44
45 #include "usb.h"
46
47
48 /*-------------------------------------------------------------------------*/
49
50 /*
51 * USB Host Controller Driver framework
52 *
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
55 *
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences. That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
60 *
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead. The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
66 *
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
71 *
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74 *
75 * HISTORY:
76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
77 * associated cleanup. "usb_hcd" still != "usb_bus".
78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
79 */
80
81 /*-------------------------------------------------------------------------*/
82
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS 64
93 struct usb_busmap {
94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
is_root_hub(struct usb_device * udev)114 static inline int is_root_hub(struct usb_device *udev)
115 {
116 return (udev->parent == NULL);
117 }
118
119 /*-------------------------------------------------------------------------*/
120
121 /*
122 * Sharable chunks of root hub code.
123 */
124
125 /*-------------------------------------------------------------------------*/
126
127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
179
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
210 Bit 7: must be set,
211 6: Self-powered,
212 5: Remote wakeup,
213 4..0: resvd */
214 0x00, /* __u8 MaxPower; */
215
216 /* USB 1.1:
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
219 *
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
223 * sometimes settable
224 * NOT IMPLEMENTED
225 */
226
227 /* one interface */
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
237
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
257 Bit 7: must be set,
258 6: Self-powered,
259 5: Remote wakeup,
260 4..0: resvd */
261 0x00, /* __u8 MaxPower; */
262
263 /* USB 1.1:
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
266 *
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
270 * sometimes settable
271 * NOT IMPLEMENTED
272 */
273
274 /* one interface */
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
284
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x1f, 0x00, /* __le16 wTotalLength; */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
305 Bit 7: must be set,
306 6: Self-powered,
307 5: Remote wakeup,
308 4..0: resvd */
309 0x00, /* __u8 MaxPower; */
310
311 /* one interface */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
321
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
331
332 /* one SuperSpeed endpoint companion descriptor */
333 0x06, /* __u8 ss_bLength */
334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339
340 /* authorized_default behaviour:
341 * -1 is authorized for all devices except wireless (old behaviour)
342 * 0 is unauthorized for all devices
343 * 1 is authorized for all devices
344 */
345 static int authorized_default = -1;
346 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347 MODULE_PARM_DESC(authorized_default,
348 "Default USB device authorization: 0 is not authorized, 1 is "
349 "authorized, -1 is authorized except for wireless USB (default, "
350 "old behaviour");
351 /*-------------------------------------------------------------------------*/
352
353 /**
354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357 * @len: Length (in bytes; may be odd) of descriptor buffer.
358 *
359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360 * buflen, whichever is less.
361 *
362 * USB String descriptors can contain at most 126 characters; input
363 * strings longer than that are truncated.
364 */
365 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)366 ascii2desc(char const *s, u8 *buf, unsigned len)
367 {
368 unsigned n, t = 2 + 2*strlen(s);
369
370 if (t > 254)
371 t = 254; /* Longest possible UTF string descriptor */
372 if (len > t)
373 len = t;
374
375 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
376
377 n = len;
378 while (n--) {
379 *buf++ = t;
380 if (!n--)
381 break;
382 *buf++ = t >> 8;
383 t = (unsigned char)*s++;
384 }
385 return len;
386 }
387
388 /**
389 * rh_string() - provides string descriptors for root hub
390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391 * @hcd: the host controller for this root hub
392 * @data: buffer for output packet
393 * @len: length of the provided buffer
394 *
395 * Produces either a manufacturer, product or serial number string for the
396 * virtual root hub device.
397 * Returns the number of bytes filled in: the length of the descriptor or
398 * of the provided buffer, whichever is less.
399 */
400 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402 {
403 char buf[100];
404 char const *s;
405 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407 // language ids
408 switch (id) {
409 case 0:
410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412 if (len > 4)
413 len = 4;
414 memcpy(data, langids, len);
415 return len;
416 case 1:
417 /* Serial number */
418 s = hcd->self.bus_name;
419 break;
420 case 2:
421 /* Product name */
422 s = hcd->product_desc;
423 break;
424 case 3:
425 /* Manufacturer */
426 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427 init_utsname()->release, hcd->driver->description);
428 s = buf;
429 break;
430 default:
431 /* Can't happen; caller guarantees it */
432 return 0;
433 }
434
435 return ascii2desc(s, data, len);
436 }
437
438
439 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441 {
442 struct usb_ctrlrequest *cmd;
443 u16 typeReq, wValue, wIndex, wLength;
444 u8 *ubuf = urb->transfer_buffer;
445 /*
446 * tbuf should be as big as the BOS descriptor and
447 * the USB hub descriptor.
448 */
449 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
450 __attribute__((aligned(4)));
451 const u8 *bufp = tbuf;
452 unsigned len = 0;
453 int status;
454 u8 patch_wakeup = 0;
455 u8 patch_protocol = 0;
456
457 might_sleep();
458
459 spin_lock_irq(&hcd_root_hub_lock);
460 status = usb_hcd_link_urb_to_ep(hcd, urb);
461 spin_unlock_irq(&hcd_root_hub_lock);
462 if (status)
463 return status;
464 urb->hcpriv = hcd; /* Indicate it's queued */
465
466 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
467 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
468 wValue = le16_to_cpu (cmd->wValue);
469 wIndex = le16_to_cpu (cmd->wIndex);
470 wLength = le16_to_cpu (cmd->wLength);
471
472 if (wLength > urb->transfer_buffer_length)
473 goto error;
474
475 urb->actual_length = 0;
476 switch (typeReq) {
477
478 /* DEVICE REQUESTS */
479
480 /* The root hub's remote wakeup enable bit is implemented using
481 * driver model wakeup flags. If this system supports wakeup
482 * through USB, userspace may change the default "allow wakeup"
483 * policy through sysfs or these calls.
484 *
485 * Most root hubs support wakeup from downstream devices, for
486 * runtime power management (disabling USB clocks and reducing
487 * VBUS power usage). However, not all of them do so; silicon,
488 * board, and BIOS bugs here are not uncommon, so these can't
489 * be treated quite like external hubs.
490 *
491 * Likewise, not all root hubs will pass wakeup events upstream,
492 * to wake up the whole system. So don't assume root hub and
493 * controller capabilities are identical.
494 */
495
496 case DeviceRequest | USB_REQ_GET_STATUS:
497 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
498 << USB_DEVICE_REMOTE_WAKEUP)
499 | (1 << USB_DEVICE_SELF_POWERED);
500 tbuf [1] = 0;
501 len = 2;
502 break;
503 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
504 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
505 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
506 else
507 goto error;
508 break;
509 case DeviceOutRequest | USB_REQ_SET_FEATURE:
510 if (device_can_wakeup(&hcd->self.root_hub->dev)
511 && wValue == USB_DEVICE_REMOTE_WAKEUP)
512 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
513 else
514 goto error;
515 break;
516 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
517 tbuf [0] = 1;
518 len = 1;
519 /* FALLTHROUGH */
520 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
521 break;
522 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
523 switch (wValue & 0xff00) {
524 case USB_DT_DEVICE << 8:
525 switch (hcd->speed) {
526 case HCD_USB3:
527 bufp = usb3_rh_dev_descriptor;
528 break;
529 case HCD_USB2:
530 bufp = usb2_rh_dev_descriptor;
531 break;
532 case HCD_USB11:
533 bufp = usb11_rh_dev_descriptor;
534 break;
535 default:
536 goto error;
537 }
538 len = 18;
539 if (hcd->has_tt)
540 patch_protocol = 1;
541 break;
542 case USB_DT_CONFIG << 8:
543 switch (hcd->speed) {
544 case HCD_USB3:
545 bufp = ss_rh_config_descriptor;
546 len = sizeof ss_rh_config_descriptor;
547 break;
548 case HCD_USB2:
549 bufp = hs_rh_config_descriptor;
550 len = sizeof hs_rh_config_descriptor;
551 break;
552 case HCD_USB11:
553 bufp = fs_rh_config_descriptor;
554 len = sizeof fs_rh_config_descriptor;
555 break;
556 default:
557 goto error;
558 }
559 if (device_can_wakeup(&hcd->self.root_hub->dev))
560 patch_wakeup = 1;
561 break;
562 case USB_DT_STRING << 8:
563 if ((wValue & 0xff) < 4)
564 urb->actual_length = rh_string(wValue & 0xff,
565 hcd, ubuf, wLength);
566 else /* unsupported IDs --> "protocol stall" */
567 goto error;
568 break;
569 case USB_DT_BOS << 8:
570 goto nongeneric;
571 default:
572 goto error;
573 }
574 break;
575 case DeviceRequest | USB_REQ_GET_INTERFACE:
576 tbuf [0] = 0;
577 len = 1;
578 /* FALLTHROUGH */
579 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
580 break;
581 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
582 // wValue == urb->dev->devaddr
583 dev_dbg (hcd->self.controller, "root hub device address %d\n",
584 wValue);
585 break;
586
587 /* INTERFACE REQUESTS (no defined feature/status flags) */
588
589 /* ENDPOINT REQUESTS */
590
591 case EndpointRequest | USB_REQ_GET_STATUS:
592 // ENDPOINT_HALT flag
593 tbuf [0] = 0;
594 tbuf [1] = 0;
595 len = 2;
596 /* FALLTHROUGH */
597 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
598 case EndpointOutRequest | USB_REQ_SET_FEATURE:
599 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
600 break;
601
602 /* CLASS REQUESTS (and errors) */
603
604 default:
605 nongeneric:
606 /* non-generic request */
607 switch (typeReq) {
608 case GetHubStatus:
609 case GetPortStatus:
610 len = 4;
611 break;
612 case GetHubDescriptor:
613 len = sizeof (struct usb_hub_descriptor);
614 break;
615 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
616 /* len is returned by hub_control */
617 break;
618 }
619 status = hcd->driver->hub_control (hcd,
620 typeReq, wValue, wIndex,
621 tbuf, wLength);
622 break;
623 error:
624 /* "protocol stall" on error */
625 status = -EPIPE;
626 }
627
628 if (status < 0) {
629 len = 0;
630 if (status != -EPIPE) {
631 dev_dbg (hcd->self.controller,
632 "CTRL: TypeReq=0x%x val=0x%x "
633 "idx=0x%x len=%d ==> %d\n",
634 typeReq, wValue, wIndex,
635 wLength, status);
636 }
637 } else if (status > 0) {
638 /* hub_control may return the length of data copied. */
639 len = status;
640 status = 0;
641 }
642 if (len) {
643 if (urb->transfer_buffer_length < len)
644 len = urb->transfer_buffer_length;
645 urb->actual_length = len;
646 // always USB_DIR_IN, toward host
647 memcpy (ubuf, bufp, len);
648
649 /* report whether RH hardware supports remote wakeup */
650 if (patch_wakeup &&
651 len > offsetof (struct usb_config_descriptor,
652 bmAttributes))
653 ((struct usb_config_descriptor *)ubuf)->bmAttributes
654 |= USB_CONFIG_ATT_WAKEUP;
655
656 /* report whether RH hardware has an integrated TT */
657 if (patch_protocol &&
658 len > offsetof(struct usb_device_descriptor,
659 bDeviceProtocol))
660 ((struct usb_device_descriptor *) ubuf)->
661 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
662 }
663
664 /* any errors get returned through the urb completion */
665 spin_lock_irq(&hcd_root_hub_lock);
666 usb_hcd_unlink_urb_from_ep(hcd, urb);
667
668 /* This peculiar use of spinlocks echoes what real HC drivers do.
669 * Avoiding calls to local_irq_disable/enable makes the code
670 * RT-friendly.
671 */
672 spin_unlock(&hcd_root_hub_lock);
673 usb_hcd_giveback_urb(hcd, urb, status);
674 spin_lock(&hcd_root_hub_lock);
675
676 spin_unlock_irq(&hcd_root_hub_lock);
677 return 0;
678 }
679
680 /*-------------------------------------------------------------------------*/
681
682 /*
683 * Root Hub interrupt transfers are polled using a timer if the
684 * driver requests it; otherwise the driver is responsible for
685 * calling usb_hcd_poll_rh_status() when an event occurs.
686 *
687 * Completions are called in_interrupt(), but they may or may not
688 * be in_irq().
689 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)690 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
691 {
692 struct urb *urb;
693 int length;
694 unsigned long flags;
695 char buffer[6]; /* Any root hubs with > 31 ports? */
696
697 if (unlikely(!hcd->rh_pollable))
698 return;
699 if (!hcd->uses_new_polling && !hcd->status_urb)
700 return;
701
702 length = hcd->driver->hub_status_data(hcd, buffer);
703 if (length > 0) {
704
705 /* try to complete the status urb */
706 spin_lock_irqsave(&hcd_root_hub_lock, flags);
707 urb = hcd->status_urb;
708 if (urb) {
709 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
710 hcd->status_urb = NULL;
711 urb->actual_length = length;
712 memcpy(urb->transfer_buffer, buffer, length);
713
714 usb_hcd_unlink_urb_from_ep(hcd, urb);
715 spin_unlock(&hcd_root_hub_lock);
716 usb_hcd_giveback_urb(hcd, urb, 0);
717 spin_lock(&hcd_root_hub_lock);
718 } else {
719 length = 0;
720 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
721 }
722 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
723 }
724
725 /* The USB 2.0 spec says 256 ms. This is close enough and won't
726 * exceed that limit if HZ is 100. The math is more clunky than
727 * maybe expected, this is to make sure that all timers for USB devices
728 * fire at the same time to give the CPU a break in between */
729 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
730 (length == 0 && hcd->status_urb != NULL))
731 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
732 }
733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
734
735 /* timer callback */
rh_timer_func(unsigned long _hcd)736 static void rh_timer_func (unsigned long _hcd)
737 {
738 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
739 }
740
741 /*-------------------------------------------------------------------------*/
742
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)743 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
744 {
745 int retval;
746 unsigned long flags;
747 unsigned len = 1 + (urb->dev->maxchild / 8);
748
749 spin_lock_irqsave (&hcd_root_hub_lock, flags);
750 if (hcd->status_urb || urb->transfer_buffer_length < len) {
751 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
752 retval = -EINVAL;
753 goto done;
754 }
755
756 retval = usb_hcd_link_urb_to_ep(hcd, urb);
757 if (retval)
758 goto done;
759
760 hcd->status_urb = urb;
761 urb->hcpriv = hcd; /* indicate it's queued */
762 if (!hcd->uses_new_polling)
763 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764
765 /* If a status change has already occurred, report it ASAP */
766 else if (HCD_POLL_PENDING(hcd))
767 mod_timer(&hcd->rh_timer, jiffies);
768 retval = 0;
769 done:
770 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
771 return retval;
772 }
773
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)774 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
775 {
776 if (usb_endpoint_xfer_int(&urb->ep->desc))
777 return rh_queue_status (hcd, urb);
778 if (usb_endpoint_xfer_control(&urb->ep->desc))
779 return rh_call_control (hcd, urb);
780 return -EINVAL;
781 }
782
783 /*-------------------------------------------------------------------------*/
784
785 /* Unlinks of root-hub control URBs are legal, but they don't do anything
786 * since these URBs always execute synchronously.
787 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)788 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
789 {
790 unsigned long flags;
791 int rc;
792
793 spin_lock_irqsave(&hcd_root_hub_lock, flags);
794 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
795 if (rc)
796 goto done;
797
798 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
799 ; /* Do nothing */
800
801 } else { /* Status URB */
802 if (!hcd->uses_new_polling)
803 del_timer (&hcd->rh_timer);
804 if (urb == hcd->status_urb) {
805 hcd->status_urb = NULL;
806 usb_hcd_unlink_urb_from_ep(hcd, urb);
807
808 spin_unlock(&hcd_root_hub_lock);
809 usb_hcd_giveback_urb(hcd, urb, status);
810 spin_lock(&hcd_root_hub_lock);
811 }
812 }
813 done:
814 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
815 return rc;
816 }
817
818
819
820 /*
821 * Show & store the current value of authorized_default
822 */
usb_host_authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)823 static ssize_t usb_host_authorized_default_show(struct device *dev,
824 struct device_attribute *attr,
825 char *buf)
826 {
827 struct usb_device *rh_usb_dev = to_usb_device(dev);
828 struct usb_bus *usb_bus = rh_usb_dev->bus;
829 struct usb_hcd *usb_hcd;
830
831 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
832 return -ENODEV;
833 usb_hcd = bus_to_hcd(usb_bus);
834 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
835 }
836
usb_host_authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)837 static ssize_t usb_host_authorized_default_store(struct device *dev,
838 struct device_attribute *attr,
839 const char *buf, size_t size)
840 {
841 ssize_t result;
842 unsigned val;
843 struct usb_device *rh_usb_dev = to_usb_device(dev);
844 struct usb_bus *usb_bus = rh_usb_dev->bus;
845 struct usb_hcd *usb_hcd;
846
847 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
848 return -ENODEV;
849 usb_hcd = bus_to_hcd(usb_bus);
850 result = sscanf(buf, "%u\n", &val);
851 if (result == 1) {
852 usb_hcd->authorized_default = val? 1 : 0;
853 result = size;
854 }
855 else
856 result = -EINVAL;
857 return result;
858 }
859
860 static DEVICE_ATTR(authorized_default, 0644,
861 usb_host_authorized_default_show,
862 usb_host_authorized_default_store);
863
864
865 /* Group all the USB bus attributes */
866 static struct attribute *usb_bus_attrs[] = {
867 &dev_attr_authorized_default.attr,
868 NULL,
869 };
870
871 static struct attribute_group usb_bus_attr_group = {
872 .name = NULL, /* we want them in the same directory */
873 .attrs = usb_bus_attrs,
874 };
875
876
877
878 /*-------------------------------------------------------------------------*/
879
880 /**
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
883 *
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
886 */
usb_bus_init(struct usb_bus * bus)887 static void usb_bus_init (struct usb_bus *bus)
888 {
889 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891 bus->devnum_next = 1;
892
893 bus->root_hub = NULL;
894 bus->busnum = -1;
895 bus->bandwidth_allocated = 0;
896 bus->bandwidth_int_reqs = 0;
897 bus->bandwidth_isoc_reqs = 0;
898
899 INIT_LIST_HEAD (&bus->bus_list);
900 }
901
902 /*-------------------------------------------------------------------------*/
903
904 /**
905 * usb_register_bus - registers the USB host controller with the usb core
906 * @bus: pointer to the bus to register
907 * Context: !in_interrupt()
908 *
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
911 */
usb_register_bus(struct usb_bus * bus)912 static int usb_register_bus(struct usb_bus *bus)
913 {
914 int result = -E2BIG;
915 int busnum;
916
917 mutex_lock(&usb_bus_list_lock);
918 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
919 if (busnum >= USB_MAXBUS) {
920 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
921 goto error_find_busnum;
922 }
923 set_bit (busnum, busmap.busmap);
924 bus->busnum = busnum;
925
926 /* Add it to the local list of buses */
927 list_add (&bus->bus_list, &usb_bus_list);
928 mutex_unlock(&usb_bus_list_lock);
929
930 usb_notify_add_bus(bus);
931
932 dev_info (bus->controller, "new USB bus registered, assigned bus "
933 "number %d\n", bus->busnum);
934 return 0;
935
936 error_find_busnum:
937 mutex_unlock(&usb_bus_list_lock);
938 return result;
939 }
940
941 /**
942 * usb_deregister_bus - deregisters the USB host controller
943 * @bus: pointer to the bus to deregister
944 * Context: !in_interrupt()
945 *
946 * Recycles the bus number, and unlinks the controller from usbcore data
947 * structures so that it won't be seen by scanning the bus list.
948 */
usb_deregister_bus(struct usb_bus * bus)949 static void usb_deregister_bus (struct usb_bus *bus)
950 {
951 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
952
953 /*
954 * NOTE: make sure that all the devices are removed by the
955 * controller code, as well as having it call this when cleaning
956 * itself up
957 */
958 mutex_lock(&usb_bus_list_lock);
959 list_del (&bus->bus_list);
960 mutex_unlock(&usb_bus_list_lock);
961
962 usb_notify_remove_bus(bus);
963
964 clear_bit (bus->busnum, busmap.busmap);
965 }
966
967 /**
968 * register_root_hub - called by usb_add_hcd() to register a root hub
969 * @hcd: host controller for this root hub
970 *
971 * This function registers the root hub with the USB subsystem. It sets up
972 * the device properly in the device tree and then calls usb_new_device()
973 * to register the usb device. It also assigns the root hub's USB address
974 * (always 1).
975 */
register_root_hub(struct usb_hcd * hcd)976 static int register_root_hub(struct usb_hcd *hcd)
977 {
978 struct device *parent_dev = hcd->self.controller;
979 struct usb_device *usb_dev = hcd->self.root_hub;
980 const int devnum = 1;
981 int retval;
982
983 usb_dev->devnum = devnum;
984 usb_dev->bus->devnum_next = devnum + 1;
985 memset (&usb_dev->bus->devmap.devicemap, 0,
986 sizeof usb_dev->bus->devmap.devicemap);
987 set_bit (devnum, usb_dev->bus->devmap.devicemap);
988 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
989
990 mutex_lock(&usb_bus_list_lock);
991
992 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
993 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
994 if (retval != sizeof usb_dev->descriptor) {
995 mutex_unlock(&usb_bus_list_lock);
996 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
997 dev_name(&usb_dev->dev), retval);
998 return (retval < 0) ? retval : -EMSGSIZE;
999 }
1000
1001 retval = usb_new_device (usb_dev);
1002 if (retval) {
1003 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1004 dev_name(&usb_dev->dev), retval);
1005 } else {
1006 spin_lock_irq (&hcd_root_hub_lock);
1007 hcd->rh_registered = 1;
1008 spin_unlock_irq (&hcd_root_hub_lock);
1009
1010 /* Did the HC die before the root hub was registered? */
1011 if (HCD_DEAD(hcd))
1012 usb_hc_died (hcd); /* This time clean up */
1013 }
1014 mutex_unlock(&usb_bus_list_lock);
1015
1016 return retval;
1017 }
1018
1019
1020 /*-------------------------------------------------------------------------*/
1021
1022 /**
1023 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1024 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1025 * @is_input: true iff the transaction sends data to the host
1026 * @isoc: true for isochronous transactions, false for interrupt ones
1027 * @bytecount: how many bytes in the transaction.
1028 *
1029 * Returns approximate bus time in nanoseconds for a periodic transaction.
1030 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1031 * scheduled in software, this function is only used for such scheduling.
1032 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1033 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1034 {
1035 unsigned long tmp;
1036
1037 switch (speed) {
1038 case USB_SPEED_LOW: /* INTR only */
1039 if (is_input) {
1040 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1041 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1042 } else {
1043 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1044 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1045 }
1046 case USB_SPEED_FULL: /* ISOC or INTR */
1047 if (isoc) {
1048 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1049 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1050 } else {
1051 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1052 return (9107L + BW_HOST_DELAY + tmp);
1053 }
1054 case USB_SPEED_HIGH: /* ISOC or INTR */
1055 // FIXME adjust for input vs output
1056 if (isoc)
1057 tmp = HS_NSECS_ISO (bytecount);
1058 else
1059 tmp = HS_NSECS (bytecount);
1060 return tmp;
1061 default:
1062 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1063 return -1;
1064 }
1065 }
1066 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1067
1068
1069 /*-------------------------------------------------------------------------*/
1070
1071 /*
1072 * Generic HC operations.
1073 */
1074
1075 /*-------------------------------------------------------------------------*/
1076
1077 /**
1078 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1079 * @hcd: host controller to which @urb was submitted
1080 * @urb: URB being submitted
1081 *
1082 * Host controller drivers should call this routine in their enqueue()
1083 * method. The HCD's private spinlock must be held and interrupts must
1084 * be disabled. The actions carried out here are required for URB
1085 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1086 *
1087 * Returns 0 for no error, otherwise a negative error code (in which case
1088 * the enqueue() method must fail). If no error occurs but enqueue() fails
1089 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1090 * the private spinlock and returning.
1091 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1092 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1093 {
1094 int rc = 0;
1095
1096 spin_lock(&hcd_urb_list_lock);
1097
1098 /* Check that the URB isn't being killed */
1099 if (unlikely(atomic_read(&urb->reject))) {
1100 rc = -EPERM;
1101 goto done;
1102 }
1103
1104 if (unlikely(!urb->ep->enabled)) {
1105 rc = -ENOENT;
1106 goto done;
1107 }
1108
1109 if (unlikely(!urb->dev->can_submit)) {
1110 rc = -EHOSTUNREACH;
1111 goto done;
1112 }
1113
1114 /*
1115 * Check the host controller's state and add the URB to the
1116 * endpoint's queue.
1117 */
1118 if (HCD_RH_RUNNING(hcd)) {
1119 urb->unlinked = 0;
1120 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1121 } else {
1122 rc = -ESHUTDOWN;
1123 goto done;
1124 }
1125 done:
1126 spin_unlock(&hcd_urb_list_lock);
1127 return rc;
1128 }
1129 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1130
1131 /**
1132 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1133 * @hcd: host controller to which @urb was submitted
1134 * @urb: URB being checked for unlinkability
1135 * @status: error code to store in @urb if the unlink succeeds
1136 *
1137 * Host controller drivers should call this routine in their dequeue()
1138 * method. The HCD's private spinlock must be held and interrupts must
1139 * be disabled. The actions carried out here are required for making
1140 * sure than an unlink is valid.
1141 *
1142 * Returns 0 for no error, otherwise a negative error code (in which case
1143 * the dequeue() method must fail). The possible error codes are:
1144 *
1145 * -EIDRM: @urb was not submitted or has already completed.
1146 * The completion function may not have been called yet.
1147 *
1148 * -EBUSY: @urb has already been unlinked.
1149 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1150 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1151 int status)
1152 {
1153 struct list_head *tmp;
1154
1155 /* insist the urb is still queued */
1156 list_for_each(tmp, &urb->ep->urb_list) {
1157 if (tmp == &urb->urb_list)
1158 break;
1159 }
1160 if (tmp != &urb->urb_list)
1161 return -EIDRM;
1162
1163 /* Any status except -EINPROGRESS means something already started to
1164 * unlink this URB from the hardware. So there's no more work to do.
1165 */
1166 if (urb->unlinked)
1167 return -EBUSY;
1168 urb->unlinked = status;
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1172
1173 /**
1174 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1175 * @hcd: host controller to which @urb was submitted
1176 * @urb: URB being unlinked
1177 *
1178 * Host controller drivers should call this routine before calling
1179 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1180 * interrupts must be disabled. The actions carried out here are required
1181 * for URB completion.
1182 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1183 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1184 {
1185 /* clear all state linking urb to this dev (and hcd) */
1186 spin_lock(&hcd_urb_list_lock);
1187 list_del_init(&urb->urb_list);
1188 spin_unlock(&hcd_urb_list_lock);
1189 }
1190 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1191
1192 /*
1193 * Some usb host controllers can only perform dma using a small SRAM area.
1194 * The usb core itself is however optimized for host controllers that can dma
1195 * using regular system memory - like pci devices doing bus mastering.
1196 *
1197 * To support host controllers with limited dma capabilites we provide dma
1198 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1199 * For this to work properly the host controller code must first use the
1200 * function dma_declare_coherent_memory() to point out which memory area
1201 * that should be used for dma allocations.
1202 *
1203 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1204 * dma using dma_alloc_coherent() which in turn allocates from the memory
1205 * area pointed out with dma_declare_coherent_memory().
1206 *
1207 * So, to summarize...
1208 *
1209 * - We need "local" memory, canonical example being
1210 * a small SRAM on a discrete controller being the
1211 * only memory that the controller can read ...
1212 * (a) "normal" kernel memory is no good, and
1213 * (b) there's not enough to share
1214 *
1215 * - The only *portable* hook for such stuff in the
1216 * DMA framework is dma_declare_coherent_memory()
1217 *
1218 * - So we use that, even though the primary requirement
1219 * is that the memory be "local" (hence addressible
1220 * by that device), not "coherent".
1221 *
1222 */
1223
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1224 static int hcd_alloc_coherent(struct usb_bus *bus,
1225 gfp_t mem_flags, dma_addr_t *dma_handle,
1226 void **vaddr_handle, size_t size,
1227 enum dma_data_direction dir)
1228 {
1229 unsigned char *vaddr;
1230
1231 if (*vaddr_handle == NULL) {
1232 WARN_ON_ONCE(1);
1233 return -EFAULT;
1234 }
1235
1236 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1237 mem_flags, dma_handle);
1238 if (!vaddr)
1239 return -ENOMEM;
1240
1241 /*
1242 * Store the virtual address of the buffer at the end
1243 * of the allocated dma buffer. The size of the buffer
1244 * may be uneven so use unaligned functions instead
1245 * of just rounding up. It makes sense to optimize for
1246 * memory footprint over access speed since the amount
1247 * of memory available for dma may be limited.
1248 */
1249 put_unaligned((unsigned long)*vaddr_handle,
1250 (unsigned long *)(vaddr + size));
1251
1252 if (dir == DMA_TO_DEVICE)
1253 memcpy(vaddr, *vaddr_handle, size);
1254
1255 *vaddr_handle = vaddr;
1256 return 0;
1257 }
1258
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1259 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1260 void **vaddr_handle, size_t size,
1261 enum dma_data_direction dir)
1262 {
1263 unsigned char *vaddr = *vaddr_handle;
1264
1265 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1266
1267 if (dir == DMA_FROM_DEVICE)
1268 memcpy(vaddr, *vaddr_handle, size);
1269
1270 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1271
1272 *vaddr_handle = vaddr;
1273 *dma_handle = 0;
1274 }
1275
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1276 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1277 {
1278 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1279 dma_unmap_single(hcd->self.controller,
1280 urb->setup_dma,
1281 sizeof(struct usb_ctrlrequest),
1282 DMA_TO_DEVICE);
1283 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1284 hcd_free_coherent(urb->dev->bus,
1285 &urb->setup_dma,
1286 (void **) &urb->setup_packet,
1287 sizeof(struct usb_ctrlrequest),
1288 DMA_TO_DEVICE);
1289
1290 /* Make it safe to call this routine more than once */
1291 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1292 }
1293 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1294
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1295 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1296 {
1297 if (hcd->driver->unmap_urb_for_dma)
1298 hcd->driver->unmap_urb_for_dma(hcd, urb);
1299 else
1300 usb_hcd_unmap_urb_for_dma(hcd, urb);
1301 }
1302
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1303 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1304 {
1305 enum dma_data_direction dir;
1306
1307 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1308
1309 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1310 if (urb->transfer_flags & URB_DMA_MAP_SG)
1311 dma_unmap_sg(hcd->self.controller,
1312 urb->sg,
1313 urb->num_sgs,
1314 dir);
1315 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1316 dma_unmap_page(hcd->self.controller,
1317 urb->transfer_dma,
1318 urb->transfer_buffer_length,
1319 dir);
1320 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1321 dma_unmap_single(hcd->self.controller,
1322 urb->transfer_dma,
1323 urb->transfer_buffer_length,
1324 dir);
1325 else if (urb->transfer_flags & URB_MAP_LOCAL)
1326 hcd_free_coherent(urb->dev->bus,
1327 &urb->transfer_dma,
1328 &urb->transfer_buffer,
1329 urb->transfer_buffer_length,
1330 dir);
1331
1332 /* Make it safe to call this routine more than once */
1333 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1334 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1335 }
1336 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1337
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1338 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1339 gfp_t mem_flags)
1340 {
1341 if (hcd->driver->map_urb_for_dma)
1342 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1343 else
1344 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1345 }
1346
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1347 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1348 gfp_t mem_flags)
1349 {
1350 enum dma_data_direction dir;
1351 int ret = 0;
1352
1353 /* Map the URB's buffers for DMA access.
1354 * Lower level HCD code should use *_dma exclusively,
1355 * unless it uses pio or talks to another transport,
1356 * or uses the provided scatter gather list for bulk.
1357 */
1358
1359 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1360 if (hcd->self.uses_pio_for_control)
1361 return ret;
1362 if (hcd->self.uses_dma) {
1363 urb->setup_dma = dma_map_single(
1364 hcd->self.controller,
1365 urb->setup_packet,
1366 sizeof(struct usb_ctrlrequest),
1367 DMA_TO_DEVICE);
1368 if (dma_mapping_error(hcd->self.controller,
1369 urb->setup_dma))
1370 return -EAGAIN;
1371 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1372 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1373 ret = hcd_alloc_coherent(
1374 urb->dev->bus, mem_flags,
1375 &urb->setup_dma,
1376 (void **)&urb->setup_packet,
1377 sizeof(struct usb_ctrlrequest),
1378 DMA_TO_DEVICE);
1379 if (ret)
1380 return ret;
1381 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1382 }
1383 }
1384
1385 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1386 if (urb->transfer_buffer_length != 0
1387 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1388 if (hcd->self.uses_dma) {
1389 if (urb->num_sgs) {
1390 int n = dma_map_sg(
1391 hcd->self.controller,
1392 urb->sg,
1393 urb->num_sgs,
1394 dir);
1395 if (n <= 0)
1396 ret = -EAGAIN;
1397 else
1398 urb->transfer_flags |= URB_DMA_MAP_SG;
1399 urb->num_mapped_sgs = n;
1400 if (n != urb->num_sgs)
1401 urb->transfer_flags |=
1402 URB_DMA_SG_COMBINED;
1403 } else if (urb->sg) {
1404 struct scatterlist *sg = urb->sg;
1405 urb->transfer_dma = dma_map_page(
1406 hcd->self.controller,
1407 sg_page(sg),
1408 sg->offset,
1409 urb->transfer_buffer_length,
1410 dir);
1411 if (dma_mapping_error(hcd->self.controller,
1412 urb->transfer_dma))
1413 ret = -EAGAIN;
1414 else
1415 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1416 } else {
1417 urb->transfer_dma = dma_map_single(
1418 hcd->self.controller,
1419 urb->transfer_buffer,
1420 urb->transfer_buffer_length,
1421 dir);
1422 if (dma_mapping_error(hcd->self.controller,
1423 urb->transfer_dma))
1424 ret = -EAGAIN;
1425 else
1426 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1427 }
1428 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1429 ret = hcd_alloc_coherent(
1430 urb->dev->bus, mem_flags,
1431 &urb->transfer_dma,
1432 &urb->transfer_buffer,
1433 urb->transfer_buffer_length,
1434 dir);
1435 if (ret == 0)
1436 urb->transfer_flags |= URB_MAP_LOCAL;
1437 }
1438 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1439 URB_SETUP_MAP_LOCAL)))
1440 usb_hcd_unmap_urb_for_dma(hcd, urb);
1441 }
1442 return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1445
1446 /*-------------------------------------------------------------------------*/
1447
1448 /* may be called in any context with a valid urb->dev usecount
1449 * caller surrenders "ownership" of urb
1450 * expects usb_submit_urb() to have sanity checked and conditioned all
1451 * inputs in the urb
1452 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1453 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1454 {
1455 int status;
1456 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1457
1458 /* increment urb's reference count as part of giving it to the HCD
1459 * (which will control it). HCD guarantees that it either returns
1460 * an error or calls giveback(), but not both.
1461 */
1462 usb_get_urb(urb);
1463 atomic_inc(&urb->use_count);
1464 atomic_inc(&urb->dev->urbnum);
1465 usbmon_urb_submit(&hcd->self, urb);
1466
1467 /* NOTE requirements on root-hub callers (usbfs and the hub
1468 * driver, for now): URBs' urb->transfer_buffer must be
1469 * valid and usb_buffer_{sync,unmap}() not be needed, since
1470 * they could clobber root hub response data. Also, control
1471 * URBs must be submitted in process context with interrupts
1472 * enabled.
1473 */
1474
1475 if (is_root_hub(urb->dev)) {
1476 status = rh_urb_enqueue(hcd, urb);
1477 } else {
1478 status = map_urb_for_dma(hcd, urb, mem_flags);
1479 if (likely(status == 0)) {
1480 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1481 if (unlikely(status))
1482 unmap_urb_for_dma(hcd, urb);
1483 }
1484 }
1485
1486 if (unlikely(status)) {
1487 usbmon_urb_submit_error(&hcd->self, urb, status);
1488 urb->hcpriv = NULL;
1489 INIT_LIST_HEAD(&urb->urb_list);
1490 atomic_dec(&urb->use_count);
1491 atomic_dec(&urb->dev->urbnum);
1492 if (atomic_read(&urb->reject))
1493 wake_up(&usb_kill_urb_queue);
1494 usb_put_urb(urb);
1495 }
1496 return status;
1497 }
1498
1499 /*-------------------------------------------------------------------------*/
1500
1501 /* this makes the hcd giveback() the urb more quickly, by kicking it
1502 * off hardware queues (which may take a while) and returning it as
1503 * soon as practical. we've already set up the urb's return status,
1504 * but we can't know if the callback completed already.
1505 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1506 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1507 {
1508 int value;
1509
1510 if (is_root_hub(urb->dev))
1511 value = usb_rh_urb_dequeue(hcd, urb, status);
1512 else {
1513
1514 /* The only reason an HCD might fail this call is if
1515 * it has not yet fully queued the urb to begin with.
1516 * Such failures should be harmless. */
1517 value = hcd->driver->urb_dequeue(hcd, urb, status);
1518 }
1519 return value;
1520 }
1521
1522 /*
1523 * called in any context
1524 *
1525 * caller guarantees urb won't be recycled till both unlink()
1526 * and the urb's completion function return
1527 */
usb_hcd_unlink_urb(struct urb * urb,int status)1528 int usb_hcd_unlink_urb (struct urb *urb, int status)
1529 {
1530 struct usb_hcd *hcd;
1531 int retval = -EIDRM;
1532 unsigned long flags;
1533
1534 /* Prevent the device and bus from going away while
1535 * the unlink is carried out. If they are already gone
1536 * then urb->use_count must be 0, since disconnected
1537 * devices can't have any active URBs.
1538 */
1539 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1540 if (atomic_read(&urb->use_count) > 0) {
1541 retval = 0;
1542 usb_get_dev(urb->dev);
1543 }
1544 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1545 if (retval == 0) {
1546 hcd = bus_to_hcd(urb->dev->bus);
1547 retval = unlink1(hcd, urb, status);
1548 usb_put_dev(urb->dev);
1549 }
1550
1551 if (retval == 0)
1552 retval = -EINPROGRESS;
1553 else if (retval != -EIDRM && retval != -EBUSY)
1554 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1555 urb, retval);
1556 return retval;
1557 }
1558
1559 /*-------------------------------------------------------------------------*/
1560
1561 /**
1562 * usb_hcd_giveback_urb - return URB from HCD to device driver
1563 * @hcd: host controller returning the URB
1564 * @urb: urb being returned to the USB device driver.
1565 * @status: completion status code for the URB.
1566 * Context: in_interrupt()
1567 *
1568 * This hands the URB from HCD to its USB device driver, using its
1569 * completion function. The HCD has freed all per-urb resources
1570 * (and is done using urb->hcpriv). It also released all HCD locks;
1571 * the device driver won't cause problems if it frees, modifies,
1572 * or resubmits this URB.
1573 *
1574 * If @urb was unlinked, the value of @status will be overridden by
1575 * @urb->unlinked. Erroneous short transfers are detected in case
1576 * the HCD hasn't checked for them.
1577 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1578 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1579 {
1580 urb->hcpriv = NULL;
1581 if (unlikely(urb->unlinked))
1582 status = urb->unlinked;
1583 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1584 urb->actual_length < urb->transfer_buffer_length &&
1585 !status))
1586 status = -EREMOTEIO;
1587
1588 unmap_urb_for_dma(hcd, urb);
1589 usbmon_urb_complete(&hcd->self, urb, status);
1590 usb_unanchor_urb(urb);
1591
1592 /* pass ownership to the completion handler */
1593 urb->status = status;
1594 urb->complete (urb);
1595 atomic_dec (&urb->use_count);
1596 if (unlikely(atomic_read(&urb->reject)))
1597 wake_up (&usb_kill_urb_queue);
1598 usb_put_urb (urb);
1599 }
1600 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1601
1602 /*-------------------------------------------------------------------------*/
1603
1604 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1605 * queue to drain completely. The caller must first insure that no more
1606 * URBs can be submitted for this endpoint.
1607 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1608 void usb_hcd_flush_endpoint(struct usb_device *udev,
1609 struct usb_host_endpoint *ep)
1610 {
1611 struct usb_hcd *hcd;
1612 struct urb *urb;
1613
1614 if (!ep)
1615 return;
1616 might_sleep();
1617 hcd = bus_to_hcd(udev->bus);
1618
1619 /* No more submits can occur */
1620 spin_lock_irq(&hcd_urb_list_lock);
1621 rescan:
1622 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1623 int is_in;
1624
1625 if (urb->unlinked)
1626 continue;
1627 usb_get_urb (urb);
1628 is_in = usb_urb_dir_in(urb);
1629 spin_unlock(&hcd_urb_list_lock);
1630
1631 /* kick hcd */
1632 unlink1(hcd, urb, -ESHUTDOWN);
1633 dev_dbg (hcd->self.controller,
1634 "shutdown urb %p ep%d%s%s\n",
1635 urb, usb_endpoint_num(&ep->desc),
1636 is_in ? "in" : "out",
1637 ({ char *s;
1638
1639 switch (usb_endpoint_type(&ep->desc)) {
1640 case USB_ENDPOINT_XFER_CONTROL:
1641 s = ""; break;
1642 case USB_ENDPOINT_XFER_BULK:
1643 s = "-bulk"; break;
1644 case USB_ENDPOINT_XFER_INT:
1645 s = "-intr"; break;
1646 default:
1647 s = "-iso"; break;
1648 };
1649 s;
1650 }));
1651 usb_put_urb (urb);
1652
1653 /* list contents may have changed */
1654 spin_lock(&hcd_urb_list_lock);
1655 goto rescan;
1656 }
1657 spin_unlock_irq(&hcd_urb_list_lock);
1658
1659 /* Wait until the endpoint queue is completely empty */
1660 while (!list_empty (&ep->urb_list)) {
1661 spin_lock_irq(&hcd_urb_list_lock);
1662
1663 /* The list may have changed while we acquired the spinlock */
1664 urb = NULL;
1665 if (!list_empty (&ep->urb_list)) {
1666 urb = list_entry (ep->urb_list.prev, struct urb,
1667 urb_list);
1668 usb_get_urb (urb);
1669 }
1670 spin_unlock_irq(&hcd_urb_list_lock);
1671
1672 if (urb) {
1673 usb_kill_urb (urb);
1674 usb_put_urb (urb);
1675 }
1676 }
1677 }
1678
1679 /**
1680 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1681 * the bus bandwidth
1682 * @udev: target &usb_device
1683 * @new_config: new configuration to install
1684 * @cur_alt: the current alternate interface setting
1685 * @new_alt: alternate interface setting that is being installed
1686 *
1687 * To change configurations, pass in the new configuration in new_config,
1688 * and pass NULL for cur_alt and new_alt.
1689 *
1690 * To reset a device's configuration (put the device in the ADDRESSED state),
1691 * pass in NULL for new_config, cur_alt, and new_alt.
1692 *
1693 * To change alternate interface settings, pass in NULL for new_config,
1694 * pass in the current alternate interface setting in cur_alt,
1695 * and pass in the new alternate interface setting in new_alt.
1696 *
1697 * Returns an error if the requested bandwidth change exceeds the
1698 * bus bandwidth or host controller internal resources.
1699 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1700 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1701 struct usb_host_config *new_config,
1702 struct usb_host_interface *cur_alt,
1703 struct usb_host_interface *new_alt)
1704 {
1705 int num_intfs, i, j;
1706 struct usb_host_interface *alt = NULL;
1707 int ret = 0;
1708 struct usb_hcd *hcd;
1709 struct usb_host_endpoint *ep;
1710
1711 hcd = bus_to_hcd(udev->bus);
1712 if (!hcd->driver->check_bandwidth)
1713 return 0;
1714
1715 /* Configuration is being removed - set configuration 0 */
1716 if (!new_config && !cur_alt) {
1717 for (i = 1; i < 16; ++i) {
1718 ep = udev->ep_out[i];
1719 if (ep)
1720 hcd->driver->drop_endpoint(hcd, udev, ep);
1721 ep = udev->ep_in[i];
1722 if (ep)
1723 hcd->driver->drop_endpoint(hcd, udev, ep);
1724 }
1725 hcd->driver->check_bandwidth(hcd, udev);
1726 return 0;
1727 }
1728 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1729 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1730 * of the bus. There will always be bandwidth for endpoint 0, so it's
1731 * ok to exclude it.
1732 */
1733 if (new_config) {
1734 num_intfs = new_config->desc.bNumInterfaces;
1735 /* Remove endpoints (except endpoint 0, which is always on the
1736 * schedule) from the old config from the schedule
1737 */
1738 for (i = 1; i < 16; ++i) {
1739 ep = udev->ep_out[i];
1740 if (ep) {
1741 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1742 if (ret < 0)
1743 goto reset;
1744 }
1745 ep = udev->ep_in[i];
1746 if (ep) {
1747 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1748 if (ret < 0)
1749 goto reset;
1750 }
1751 }
1752 for (i = 0; i < num_intfs; ++i) {
1753 struct usb_host_interface *first_alt;
1754 int iface_num;
1755
1756 first_alt = &new_config->intf_cache[i]->altsetting[0];
1757 iface_num = first_alt->desc.bInterfaceNumber;
1758 /* Set up endpoints for alternate interface setting 0 */
1759 alt = usb_find_alt_setting(new_config, iface_num, 0);
1760 if (!alt)
1761 /* No alt setting 0? Pick the first setting. */
1762 alt = first_alt;
1763
1764 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1765 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1766 if (ret < 0)
1767 goto reset;
1768 }
1769 }
1770 }
1771 if (cur_alt && new_alt) {
1772 struct usb_interface *iface = usb_ifnum_to_if(udev,
1773 cur_alt->desc.bInterfaceNumber);
1774
1775 if (!iface)
1776 return -EINVAL;
1777 if (iface->resetting_device) {
1778 /*
1779 * The USB core just reset the device, so the xHCI host
1780 * and the device will think alt setting 0 is installed.
1781 * However, the USB core will pass in the alternate
1782 * setting installed before the reset as cur_alt. Dig
1783 * out the alternate setting 0 structure, or the first
1784 * alternate setting if a broken device doesn't have alt
1785 * setting 0.
1786 */
1787 cur_alt = usb_altnum_to_altsetting(iface, 0);
1788 if (!cur_alt)
1789 cur_alt = &iface->altsetting[0];
1790 }
1791
1792 /* Drop all the endpoints in the current alt setting */
1793 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1794 ret = hcd->driver->drop_endpoint(hcd, udev,
1795 &cur_alt->endpoint[i]);
1796 if (ret < 0)
1797 goto reset;
1798 }
1799 /* Add all the endpoints in the new alt setting */
1800 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1801 ret = hcd->driver->add_endpoint(hcd, udev,
1802 &new_alt->endpoint[i]);
1803 if (ret < 0)
1804 goto reset;
1805 }
1806 }
1807 ret = hcd->driver->check_bandwidth(hcd, udev);
1808 reset:
1809 if (ret < 0)
1810 hcd->driver->reset_bandwidth(hcd, udev);
1811 return ret;
1812 }
1813
1814 /* Disables the endpoint: synchronizes with the hcd to make sure all
1815 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1816 * have been called previously. Use for set_configuration, set_interface,
1817 * driver removal, physical disconnect.
1818 *
1819 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1820 * type, maxpacket size, toggle, halt status, and scheduling.
1821 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1822 void usb_hcd_disable_endpoint(struct usb_device *udev,
1823 struct usb_host_endpoint *ep)
1824 {
1825 struct usb_hcd *hcd;
1826
1827 might_sleep();
1828 hcd = bus_to_hcd(udev->bus);
1829 if (hcd->driver->endpoint_disable)
1830 hcd->driver->endpoint_disable(hcd, ep);
1831 }
1832
1833 /**
1834 * usb_hcd_reset_endpoint - reset host endpoint state
1835 * @udev: USB device.
1836 * @ep: the endpoint to reset.
1837 *
1838 * Resets any host endpoint state such as the toggle bit, sequence
1839 * number and current window.
1840 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1841 void usb_hcd_reset_endpoint(struct usb_device *udev,
1842 struct usb_host_endpoint *ep)
1843 {
1844 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1845
1846 if (hcd->driver->endpoint_reset)
1847 hcd->driver->endpoint_reset(hcd, ep);
1848 else {
1849 int epnum = usb_endpoint_num(&ep->desc);
1850 int is_out = usb_endpoint_dir_out(&ep->desc);
1851 int is_control = usb_endpoint_xfer_control(&ep->desc);
1852
1853 usb_settoggle(udev, epnum, is_out, 0);
1854 if (is_control)
1855 usb_settoggle(udev, epnum, !is_out, 0);
1856 }
1857 }
1858
1859 /**
1860 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1861 * @interface: alternate setting that includes all endpoints.
1862 * @eps: array of endpoints that need streams.
1863 * @num_eps: number of endpoints in the array.
1864 * @num_streams: number of streams to allocate.
1865 * @mem_flags: flags hcd should use to allocate memory.
1866 *
1867 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1868 * Drivers may queue multiple transfers to different stream IDs, which may
1869 * complete in a different order than they were queued.
1870 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)1871 int usb_alloc_streams(struct usb_interface *interface,
1872 struct usb_host_endpoint **eps, unsigned int num_eps,
1873 unsigned int num_streams, gfp_t mem_flags)
1874 {
1875 struct usb_hcd *hcd;
1876 struct usb_device *dev;
1877 int i;
1878
1879 dev = interface_to_usbdev(interface);
1880 hcd = bus_to_hcd(dev->bus);
1881 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1882 return -EINVAL;
1883 if (dev->speed != USB_SPEED_SUPER)
1884 return -EINVAL;
1885
1886 /* Streams only apply to bulk endpoints. */
1887 for (i = 0; i < num_eps; i++)
1888 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1889 return -EINVAL;
1890
1891 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1892 num_streams, mem_flags);
1893 }
1894 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1895
1896 /**
1897 * usb_free_streams - free bulk endpoint stream IDs.
1898 * @interface: alternate setting that includes all endpoints.
1899 * @eps: array of endpoints to remove streams from.
1900 * @num_eps: number of endpoints in the array.
1901 * @mem_flags: flags hcd should use to allocate memory.
1902 *
1903 * Reverts a group of bulk endpoints back to not using stream IDs.
1904 * Can fail if we are given bad arguments, or HCD is broken.
1905 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)1906 void usb_free_streams(struct usb_interface *interface,
1907 struct usb_host_endpoint **eps, unsigned int num_eps,
1908 gfp_t mem_flags)
1909 {
1910 struct usb_hcd *hcd;
1911 struct usb_device *dev;
1912 int i;
1913
1914 dev = interface_to_usbdev(interface);
1915 hcd = bus_to_hcd(dev->bus);
1916 if (dev->speed != USB_SPEED_SUPER)
1917 return;
1918
1919 /* Streams only apply to bulk endpoints. */
1920 for (i = 0; i < num_eps; i++)
1921 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1922 return;
1923
1924 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1925 }
1926 EXPORT_SYMBOL_GPL(usb_free_streams);
1927
1928 /* Protect against drivers that try to unlink URBs after the device
1929 * is gone, by waiting until all unlinks for @udev are finished.
1930 * Since we don't currently track URBs by device, simply wait until
1931 * nothing is running in the locked region of usb_hcd_unlink_urb().
1932 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)1933 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1934 {
1935 spin_lock_irq(&hcd_urb_unlink_lock);
1936 spin_unlock_irq(&hcd_urb_unlink_lock);
1937 }
1938
1939 /*-------------------------------------------------------------------------*/
1940
1941 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)1942 int usb_hcd_get_frame_number (struct usb_device *udev)
1943 {
1944 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1945
1946 if (!HCD_RH_RUNNING(hcd))
1947 return -ESHUTDOWN;
1948 return hcd->driver->get_frame_number (hcd);
1949 }
1950
1951 /*-------------------------------------------------------------------------*/
1952
1953 #ifdef CONFIG_PM
1954
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)1955 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1956 {
1957 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1958 int status;
1959 int old_state = hcd->state;
1960
1961 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1962 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
1963 rhdev->do_remote_wakeup);
1964 if (HCD_DEAD(hcd)) {
1965 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1966 return 0;
1967 }
1968
1969 if (!hcd->driver->bus_suspend) {
1970 status = -ENOENT;
1971 } else {
1972 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1973 hcd->state = HC_STATE_QUIESCING;
1974 status = hcd->driver->bus_suspend(hcd);
1975 }
1976 if (status == 0) {
1977 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1978 hcd->state = HC_STATE_SUSPENDED;
1979
1980 /* Did we race with a root-hub wakeup event? */
1981 if (rhdev->do_remote_wakeup) {
1982 char buffer[6];
1983
1984 status = hcd->driver->hub_status_data(hcd, buffer);
1985 if (status != 0) {
1986 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
1987 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
1988 status = -EBUSY;
1989 }
1990 }
1991 } else {
1992 spin_lock_irq(&hcd_root_hub_lock);
1993 if (!HCD_DEAD(hcd)) {
1994 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1995 hcd->state = old_state;
1996 }
1997 spin_unlock_irq(&hcd_root_hub_lock);
1998 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1999 "suspend", status);
2000 }
2001 return status;
2002 }
2003
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2004 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2005 {
2006 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2007 int status;
2008 int old_state = hcd->state;
2009
2010 dev_dbg(&rhdev->dev, "usb %sresume\n",
2011 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2012 if (HCD_DEAD(hcd)) {
2013 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2014 return 0;
2015 }
2016 if (!hcd->driver->bus_resume)
2017 return -ENOENT;
2018 if (HCD_RH_RUNNING(hcd))
2019 return 0;
2020
2021 hcd->state = HC_STATE_RESUMING;
2022 status = hcd->driver->bus_resume(hcd);
2023 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2024 if (status == 0) {
2025 /* TRSMRCY = 10 msec */
2026 msleep(10);
2027 spin_lock_irq(&hcd_root_hub_lock);
2028 if (!HCD_DEAD(hcd)) {
2029 usb_set_device_state(rhdev, rhdev->actconfig
2030 ? USB_STATE_CONFIGURED
2031 : USB_STATE_ADDRESS);
2032 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2033 hcd->state = HC_STATE_RUNNING;
2034 }
2035 spin_unlock_irq(&hcd_root_hub_lock);
2036 } else {
2037 hcd->state = old_state;
2038 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2039 "resume", status);
2040 if (status != -ESHUTDOWN)
2041 usb_hc_died(hcd);
2042 }
2043 return status;
2044 }
2045
2046 #endif /* CONFIG_PM */
2047
2048 #ifdef CONFIG_USB_SUSPEND
2049
2050 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2051 static void hcd_resume_work(struct work_struct *work)
2052 {
2053 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2054 struct usb_device *udev = hcd->self.root_hub;
2055
2056 usb_lock_device(udev);
2057 usb_remote_wakeup(udev);
2058 usb_unlock_device(udev);
2059 }
2060
2061 /**
2062 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2063 * @hcd: host controller for this root hub
2064 *
2065 * The USB host controller calls this function when its root hub is
2066 * suspended (with the remote wakeup feature enabled) and a remote
2067 * wakeup request is received. The routine submits a workqueue request
2068 * to resume the root hub (that is, manage its downstream ports again).
2069 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2070 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2071 {
2072 unsigned long flags;
2073
2074 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2075 if (hcd->rh_registered) {
2076 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2077 queue_work(pm_wq, &hcd->wakeup_work);
2078 }
2079 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2080 }
2081 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2082
2083 #endif /* CONFIG_USB_SUSPEND */
2084
2085 /*-------------------------------------------------------------------------*/
2086
2087 #ifdef CONFIG_USB_OTG
2088
2089 /**
2090 * usb_bus_start_enum - start immediate enumeration (for OTG)
2091 * @bus: the bus (must use hcd framework)
2092 * @port_num: 1-based number of port; usually bus->otg_port
2093 * Context: in_interrupt()
2094 *
2095 * Starts enumeration, with an immediate reset followed later by
2096 * khubd identifying and possibly configuring the device.
2097 * This is needed by OTG controller drivers, where it helps meet
2098 * HNP protocol timing requirements for starting a port reset.
2099 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2100 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2101 {
2102 struct usb_hcd *hcd;
2103 int status = -EOPNOTSUPP;
2104
2105 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2106 * boards with root hubs hooked up to internal devices (instead of
2107 * just the OTG port) may need more attention to resetting...
2108 */
2109 hcd = container_of (bus, struct usb_hcd, self);
2110 if (port_num && hcd->driver->start_port_reset)
2111 status = hcd->driver->start_port_reset(hcd, port_num);
2112
2113 /* run khubd shortly after (first) root port reset finishes;
2114 * it may issue others, until at least 50 msecs have passed.
2115 */
2116 if (status == 0)
2117 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2118 return status;
2119 }
2120 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2121
2122 #endif
2123
2124 /*-------------------------------------------------------------------------*/
2125
2126 /**
2127 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2128 * @irq: the IRQ being raised
2129 * @__hcd: pointer to the HCD whose IRQ is being signaled
2130 *
2131 * If the controller isn't HALTed, calls the driver's irq handler.
2132 * Checks whether the controller is now dead.
2133 */
usb_hcd_irq(int irq,void * __hcd)2134 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2135 {
2136 struct usb_hcd *hcd = __hcd;
2137 unsigned long flags;
2138 irqreturn_t rc;
2139
2140 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2141 * when the first handler doesn't use it. So let's just
2142 * assume it's never used.
2143 */
2144 local_irq_save(flags);
2145
2146 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2147 rc = IRQ_NONE;
2148 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2149 rc = IRQ_NONE;
2150 else
2151 rc = IRQ_HANDLED;
2152
2153 local_irq_restore(flags);
2154 return rc;
2155 }
2156 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2157
2158 /*-------------------------------------------------------------------------*/
2159
2160 /**
2161 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2162 * @hcd: pointer to the HCD representing the controller
2163 *
2164 * This is called by bus glue to report a USB host controller that died
2165 * while operations may still have been pending. It's called automatically
2166 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2167 *
2168 * Only call this function with the primary HCD.
2169 */
usb_hc_died(struct usb_hcd * hcd)2170 void usb_hc_died (struct usb_hcd *hcd)
2171 {
2172 unsigned long flags;
2173
2174 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2175
2176 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2177 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2178 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2179 if (hcd->rh_registered) {
2180 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2181
2182 /* make khubd clean up old urbs and devices */
2183 usb_set_device_state (hcd->self.root_hub,
2184 USB_STATE_NOTATTACHED);
2185 usb_kick_khubd (hcd->self.root_hub);
2186 }
2187 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2188 hcd = hcd->shared_hcd;
2189 if (hcd->rh_registered) {
2190 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2191
2192 /* make khubd clean up old urbs and devices */
2193 usb_set_device_state(hcd->self.root_hub,
2194 USB_STATE_NOTATTACHED);
2195 usb_kick_khubd(hcd->self.root_hub);
2196 }
2197 }
2198 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2199 /* Make sure that the other roothub is also deallocated. */
2200 }
2201 EXPORT_SYMBOL_GPL (usb_hc_died);
2202
2203 /*-------------------------------------------------------------------------*/
2204
2205 /**
2206 * usb_create_shared_hcd - create and initialize an HCD structure
2207 * @driver: HC driver that will use this hcd
2208 * @dev: device for this HC, stored in hcd->self.controller
2209 * @bus_name: value to store in hcd->self.bus_name
2210 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2211 * PCI device. Only allocate certain resources for the primary HCD
2212 * Context: !in_interrupt()
2213 *
2214 * Allocate a struct usb_hcd, with extra space at the end for the
2215 * HC driver's private data. Initialize the generic members of the
2216 * hcd structure.
2217 *
2218 * If memory is unavailable, returns NULL.
2219 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2220 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2221 struct device *dev, const char *bus_name,
2222 struct usb_hcd *primary_hcd)
2223 {
2224 struct usb_hcd *hcd;
2225
2226 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2227 if (!hcd) {
2228 dev_dbg (dev, "hcd alloc failed\n");
2229 return NULL;
2230 }
2231 if (primary_hcd == NULL) {
2232 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2233 GFP_KERNEL);
2234 if (!hcd->bandwidth_mutex) {
2235 kfree(hcd);
2236 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2237 return NULL;
2238 }
2239 mutex_init(hcd->bandwidth_mutex);
2240 dev_set_drvdata(dev, hcd);
2241 } else {
2242 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2243 hcd->primary_hcd = primary_hcd;
2244 primary_hcd->primary_hcd = primary_hcd;
2245 hcd->shared_hcd = primary_hcd;
2246 primary_hcd->shared_hcd = hcd;
2247 }
2248
2249 kref_init(&hcd->kref);
2250
2251 usb_bus_init(&hcd->self);
2252 hcd->self.controller = dev;
2253 hcd->self.bus_name = bus_name;
2254 hcd->self.uses_dma = (dev->dma_mask != NULL);
2255
2256 init_timer(&hcd->rh_timer);
2257 hcd->rh_timer.function = rh_timer_func;
2258 hcd->rh_timer.data = (unsigned long) hcd;
2259 #ifdef CONFIG_USB_SUSPEND
2260 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2261 #endif
2262
2263 hcd->driver = driver;
2264 hcd->speed = driver->flags & HCD_MASK;
2265 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2266 "USB Host Controller";
2267 return hcd;
2268 }
2269 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2270
2271 /**
2272 * usb_create_hcd - create and initialize an HCD structure
2273 * @driver: HC driver that will use this hcd
2274 * @dev: device for this HC, stored in hcd->self.controller
2275 * @bus_name: value to store in hcd->self.bus_name
2276 * Context: !in_interrupt()
2277 *
2278 * Allocate a struct usb_hcd, with extra space at the end for the
2279 * HC driver's private data. Initialize the generic members of the
2280 * hcd structure.
2281 *
2282 * If memory is unavailable, returns NULL.
2283 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2284 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2285 struct device *dev, const char *bus_name)
2286 {
2287 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2288 }
2289 EXPORT_SYMBOL_GPL(usb_create_hcd);
2290
2291 /*
2292 * Roothubs that share one PCI device must also share the bandwidth mutex.
2293 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2294 * deallocated.
2295 *
2296 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2297 * freed. When hcd_release() is called for the non-primary HCD, set the
2298 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2299 * freed shortly).
2300 */
hcd_release(struct kref * kref)2301 static void hcd_release (struct kref *kref)
2302 {
2303 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2304
2305 if (usb_hcd_is_primary_hcd(hcd))
2306 kfree(hcd->bandwidth_mutex);
2307 else
2308 hcd->shared_hcd->shared_hcd = NULL;
2309 kfree(hcd);
2310 }
2311
usb_get_hcd(struct usb_hcd * hcd)2312 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2313 {
2314 if (hcd)
2315 kref_get (&hcd->kref);
2316 return hcd;
2317 }
2318 EXPORT_SYMBOL_GPL(usb_get_hcd);
2319
usb_put_hcd(struct usb_hcd * hcd)2320 void usb_put_hcd (struct usb_hcd *hcd)
2321 {
2322 if (hcd)
2323 kref_put (&hcd->kref, hcd_release);
2324 }
2325 EXPORT_SYMBOL_GPL(usb_put_hcd);
2326
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2327 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2328 {
2329 if (!hcd->primary_hcd)
2330 return 1;
2331 return hcd == hcd->primary_hcd;
2332 }
2333 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2334
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2335 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2336 unsigned int irqnum, unsigned long irqflags)
2337 {
2338 int retval;
2339
2340 if (hcd->driver->irq) {
2341
2342 /* IRQF_DISABLED doesn't work as advertised when used together
2343 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2344 * interrupts we can remove it here.
2345 */
2346 if (irqflags & IRQF_SHARED)
2347 irqflags &= ~IRQF_DISABLED;
2348
2349 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2350 hcd->driver->description, hcd->self.busnum);
2351 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2352 hcd->irq_descr, hcd);
2353 if (retval != 0) {
2354 dev_err(hcd->self.controller,
2355 "request interrupt %d failed\n",
2356 irqnum);
2357 return retval;
2358 }
2359 hcd->irq = irqnum;
2360 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2361 (hcd->driver->flags & HCD_MEMORY) ?
2362 "io mem" : "io base",
2363 (unsigned long long)hcd->rsrc_start);
2364 } else {
2365 hcd->irq = 0;
2366 if (hcd->rsrc_start)
2367 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2368 (hcd->driver->flags & HCD_MEMORY) ?
2369 "io mem" : "io base",
2370 (unsigned long long)hcd->rsrc_start);
2371 }
2372 return 0;
2373 }
2374
2375 /**
2376 * usb_add_hcd - finish generic HCD structure initialization and register
2377 * @hcd: the usb_hcd structure to initialize
2378 * @irqnum: Interrupt line to allocate
2379 * @irqflags: Interrupt type flags
2380 *
2381 * Finish the remaining parts of generic HCD initialization: allocate the
2382 * buffers of consistent memory, register the bus, request the IRQ line,
2383 * and call the driver's reset() and start() routines.
2384 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2385 int usb_add_hcd(struct usb_hcd *hcd,
2386 unsigned int irqnum, unsigned long irqflags)
2387 {
2388 int retval;
2389 struct usb_device *rhdev;
2390
2391 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2392
2393 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2394 if (authorized_default < 0 || authorized_default > 1)
2395 hcd->authorized_default = hcd->wireless? 0 : 1;
2396 else
2397 hcd->authorized_default = authorized_default;
2398 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2399
2400 /* HC is in reset state, but accessible. Now do the one-time init,
2401 * bottom up so that hcds can customize the root hubs before khubd
2402 * starts talking to them. (Note, bus id is assigned early too.)
2403 */
2404 if ((retval = hcd_buffer_create(hcd)) != 0) {
2405 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2406 return retval;
2407 }
2408
2409 if ((retval = usb_register_bus(&hcd->self)) < 0)
2410 goto err_register_bus;
2411
2412 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2413 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2414 retval = -ENOMEM;
2415 goto err_allocate_root_hub;
2416 }
2417 hcd->self.root_hub = rhdev;
2418
2419 switch (hcd->speed) {
2420 case HCD_USB11:
2421 rhdev->speed = USB_SPEED_FULL;
2422 break;
2423 case HCD_USB2:
2424 rhdev->speed = USB_SPEED_HIGH;
2425 break;
2426 case HCD_USB3:
2427 rhdev->speed = USB_SPEED_SUPER;
2428 break;
2429 default:
2430 retval = -EINVAL;
2431 goto err_set_rh_speed;
2432 }
2433
2434 /* wakeup flag init defaults to "everything works" for root hubs,
2435 * but drivers can override it in reset() if needed, along with
2436 * recording the overall controller's system wakeup capability.
2437 */
2438 device_set_wakeup_capable(&rhdev->dev, 1);
2439
2440 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2441 * registered. But since the controller can die at any time,
2442 * let's initialize the flag before touching the hardware.
2443 */
2444 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2445
2446 /* "reset" is misnamed; its role is now one-time init. the controller
2447 * should already have been reset (and boot firmware kicked off etc).
2448 */
2449 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2450 dev_err(hcd->self.controller, "can't setup\n");
2451 goto err_hcd_driver_setup;
2452 }
2453 hcd->rh_pollable = 1;
2454
2455 /* NOTE: root hub and controller capabilities may not be the same */
2456 if (device_can_wakeup(hcd->self.controller)
2457 && device_can_wakeup(&hcd->self.root_hub->dev))
2458 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2459
2460 /* enable irqs just before we start the controller,
2461 * if the BIOS provides legacy PCI irqs.
2462 */
2463 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2464 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2465 if (retval)
2466 goto err_request_irq;
2467 }
2468
2469 hcd->state = HC_STATE_RUNNING;
2470 retval = hcd->driver->start(hcd);
2471 if (retval < 0) {
2472 dev_err(hcd->self.controller, "startup error %d\n", retval);
2473 goto err_hcd_driver_start;
2474 }
2475
2476 /* starting here, usbcore will pay attention to this root hub */
2477 rhdev->bus_mA = min(500u, hcd->power_budget);
2478 if ((retval = register_root_hub(hcd)) != 0)
2479 goto err_register_root_hub;
2480
2481 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2482 if (retval < 0) {
2483 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2484 retval);
2485 goto error_create_attr_group;
2486 }
2487 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2488 usb_hcd_poll_rh_status(hcd);
2489
2490 /*
2491 * Host controllers don't generate their own wakeup requests;
2492 * they only forward requests from the root hub. Therefore
2493 * controllers should always be enabled for remote wakeup.
2494 */
2495 device_wakeup_enable(hcd->self.controller);
2496 return retval;
2497
2498 error_create_attr_group:
2499 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2500 if (HC_IS_RUNNING(hcd->state))
2501 hcd->state = HC_STATE_QUIESCING;
2502 spin_lock_irq(&hcd_root_hub_lock);
2503 hcd->rh_registered = 0;
2504 spin_unlock_irq(&hcd_root_hub_lock);
2505
2506 #ifdef CONFIG_USB_SUSPEND
2507 cancel_work_sync(&hcd->wakeup_work);
2508 #endif
2509 mutex_lock(&usb_bus_list_lock);
2510 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2511 mutex_unlock(&usb_bus_list_lock);
2512 err_register_root_hub:
2513 hcd->rh_pollable = 0;
2514 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2515 del_timer_sync(&hcd->rh_timer);
2516 hcd->driver->stop(hcd);
2517 hcd->state = HC_STATE_HALT;
2518 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2519 del_timer_sync(&hcd->rh_timer);
2520 err_hcd_driver_start:
2521 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2522 free_irq(irqnum, hcd);
2523 err_request_irq:
2524 err_hcd_driver_setup:
2525 err_set_rh_speed:
2526 usb_put_dev(hcd->self.root_hub);
2527 err_allocate_root_hub:
2528 usb_deregister_bus(&hcd->self);
2529 err_register_bus:
2530 hcd_buffer_destroy(hcd);
2531 return retval;
2532 }
2533 EXPORT_SYMBOL_GPL(usb_add_hcd);
2534
2535 /**
2536 * usb_remove_hcd - shutdown processing for generic HCDs
2537 * @hcd: the usb_hcd structure to remove
2538 * Context: !in_interrupt()
2539 *
2540 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2541 * invoking the HCD's stop() method.
2542 */
usb_remove_hcd(struct usb_hcd * hcd)2543 void usb_remove_hcd(struct usb_hcd *hcd)
2544 {
2545 struct usb_device *rhdev = hcd->self.root_hub;
2546
2547 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2548
2549 usb_get_dev(rhdev);
2550 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2551
2552 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2553 if (HC_IS_RUNNING (hcd->state))
2554 hcd->state = HC_STATE_QUIESCING;
2555
2556 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2557 spin_lock_irq (&hcd_root_hub_lock);
2558 hcd->rh_registered = 0;
2559 spin_unlock_irq (&hcd_root_hub_lock);
2560
2561 #ifdef CONFIG_USB_SUSPEND
2562 cancel_work_sync(&hcd->wakeup_work);
2563 #endif
2564
2565 mutex_lock(&usb_bus_list_lock);
2566 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2567 mutex_unlock(&usb_bus_list_lock);
2568
2569 /* Prevent any more root-hub status calls from the timer.
2570 * The HCD might still restart the timer (if a port status change
2571 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2572 * the hub_status_data() callback.
2573 */
2574 hcd->rh_pollable = 0;
2575 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2576 del_timer_sync(&hcd->rh_timer);
2577
2578 hcd->driver->stop(hcd);
2579 hcd->state = HC_STATE_HALT;
2580
2581 /* In case the HCD restarted the timer, stop it again. */
2582 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2583 del_timer_sync(&hcd->rh_timer);
2584
2585 if (usb_hcd_is_primary_hcd(hcd)) {
2586 if (hcd->irq > 0)
2587 free_irq(hcd->irq, hcd);
2588 }
2589
2590 usb_put_dev(hcd->self.root_hub);
2591 usb_deregister_bus(&hcd->self);
2592 hcd_buffer_destroy(hcd);
2593 }
2594 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2595
2596 void
usb_hcd_platform_shutdown(struct platform_device * dev)2597 usb_hcd_platform_shutdown(struct platform_device* dev)
2598 {
2599 struct usb_hcd *hcd = platform_get_drvdata(dev);
2600
2601 if (hcd->driver->shutdown)
2602 hcd->driver->shutdown(hcd);
2603 }
2604 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2605
2606 /*-------------------------------------------------------------------------*/
2607
2608 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2609
2610 struct usb_mon_operations *mon_ops;
2611
2612 /*
2613 * The registration is unlocked.
2614 * We do it this way because we do not want to lock in hot paths.
2615 *
2616 * Notice that the code is minimally error-proof. Because usbmon needs
2617 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2618 */
2619
usb_mon_register(struct usb_mon_operations * ops)2620 int usb_mon_register (struct usb_mon_operations *ops)
2621 {
2622
2623 if (mon_ops)
2624 return -EBUSY;
2625
2626 mon_ops = ops;
2627 mb();
2628 return 0;
2629 }
2630 EXPORT_SYMBOL_GPL (usb_mon_register);
2631
usb_mon_deregister(void)2632 void usb_mon_deregister (void)
2633 {
2634
2635 if (mon_ops == NULL) {
2636 printk(KERN_ERR "USB: monitor was not registered\n");
2637 return;
2638 }
2639 mon_ops = NULL;
2640 mb();
2641 }
2642 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2643
2644 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2645