1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/init.h>
6 #include <linux/log2.h>
7 #include <linux/usb.h>
8 #include <linux/wait.h>
9 #include <linux/usb/hcd.h>
10
11 #define to_urb(d) container_of(d, struct urb, kref)
12
13
urb_destroy(struct kref * kref)14 static void urb_destroy(struct kref *kref)
15 {
16 struct urb *urb = to_urb(kref);
17
18 if (urb->transfer_flags & URB_FREE_BUFFER)
19 kfree(urb->transfer_buffer);
20
21 kfree(urb);
22 }
23
24 /**
25 * usb_init_urb - initializes a urb so that it can be used by a USB driver
26 * @urb: pointer to the urb to initialize
27 *
28 * Initializes a urb so that the USB subsystem can use it properly.
29 *
30 * If a urb is created with a call to usb_alloc_urb() it is not
31 * necessary to call this function. Only use this if you allocate the
32 * space for a struct urb on your own. If you call this function, be
33 * careful when freeing the memory for your urb that it is no longer in
34 * use by the USB core.
35 *
36 * Only use this function if you _really_ understand what you are doing.
37 */
usb_init_urb(struct urb * urb)38 void usb_init_urb(struct urb *urb)
39 {
40 if (urb) {
41 memset(urb, 0, sizeof(*urb));
42 kref_init(&urb->kref);
43 INIT_LIST_HEAD(&urb->anchor_list);
44 }
45 }
46 EXPORT_SYMBOL_GPL(usb_init_urb);
47
48 /**
49 * usb_alloc_urb - creates a new urb for a USB driver to use
50 * @iso_packets: number of iso packets for this urb
51 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
52 * valid options for this.
53 *
54 * Creates an urb for the USB driver to use, initializes a few internal
55 * structures, incrementes the usage counter, and returns a pointer to it.
56 *
57 * If no memory is available, NULL is returned.
58 *
59 * If the driver want to use this urb for interrupt, control, or bulk
60 * endpoints, pass '0' as the number of iso packets.
61 *
62 * The driver must call usb_free_urb() when it is finished with the urb.
63 */
usb_alloc_urb(int iso_packets,gfp_t mem_flags)64 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
65 {
66 struct urb *urb;
67
68 urb = kmalloc(sizeof(struct urb) +
69 iso_packets * sizeof(struct usb_iso_packet_descriptor),
70 mem_flags);
71 if (!urb) {
72 printk(KERN_ERR "alloc_urb: kmalloc failed\n");
73 return NULL;
74 }
75 usb_init_urb(urb);
76 return urb;
77 }
78 EXPORT_SYMBOL_GPL(usb_alloc_urb);
79
80 /**
81 * usb_free_urb - frees the memory used by a urb when all users of it are finished
82 * @urb: pointer to the urb to free, may be NULL
83 *
84 * Must be called when a user of a urb is finished with it. When the last user
85 * of the urb calls this function, the memory of the urb is freed.
86 *
87 * Note: The transfer buffer associated with the urb is not freed unless the
88 * URB_FREE_BUFFER transfer flag is set.
89 */
usb_free_urb(struct urb * urb)90 void usb_free_urb(struct urb *urb)
91 {
92 if (urb)
93 kref_put(&urb->kref, urb_destroy);
94 }
95 EXPORT_SYMBOL_GPL(usb_free_urb);
96
97 /**
98 * usb_get_urb - increments the reference count of the urb
99 * @urb: pointer to the urb to modify, may be NULL
100 *
101 * This must be called whenever a urb is transferred from a device driver to a
102 * host controller driver. This allows proper reference counting to happen
103 * for urbs.
104 *
105 * A pointer to the urb with the incremented reference counter is returned.
106 */
usb_get_urb(struct urb * urb)107 struct urb *usb_get_urb(struct urb *urb)
108 {
109 if (urb)
110 kref_get(&urb->kref);
111 return urb;
112 }
113 EXPORT_SYMBOL_GPL(usb_get_urb);
114
115 /**
116 * usb_anchor_urb - anchors an URB while it is processed
117 * @urb: pointer to the urb to anchor
118 * @anchor: pointer to the anchor
119 *
120 * This can be called to have access to URBs which are to be executed
121 * without bothering to track them
122 */
usb_anchor_urb(struct urb * urb,struct usb_anchor * anchor)123 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124 {
125 unsigned long flags;
126
127 spin_lock_irqsave(&anchor->lock, flags);
128 usb_get_urb(urb);
129 list_add_tail(&urb->anchor_list, &anchor->urb_list);
130 urb->anchor = anchor;
131
132 if (unlikely(anchor->poisoned)) {
133 atomic_inc(&urb->reject);
134 }
135
136 spin_unlock_irqrestore(&anchor->lock, flags);
137 }
138 EXPORT_SYMBOL_GPL(usb_anchor_urb);
139
140 /* Callers must hold anchor->lock */
__usb_unanchor_urb(struct urb * urb,struct usb_anchor * anchor)141 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
142 {
143 urb->anchor = NULL;
144 list_del(&urb->anchor_list);
145 usb_put_urb(urb);
146 if (list_empty(&anchor->urb_list))
147 wake_up(&anchor->wait);
148 }
149
150 /**
151 * usb_unanchor_urb - unanchors an URB
152 * @urb: pointer to the urb to anchor
153 *
154 * Call this to stop the system keeping track of this URB
155 */
usb_unanchor_urb(struct urb * urb)156 void usb_unanchor_urb(struct urb *urb)
157 {
158 unsigned long flags;
159 struct usb_anchor *anchor;
160
161 if (!urb)
162 return;
163
164 anchor = urb->anchor;
165 if (!anchor)
166 return;
167
168 spin_lock_irqsave(&anchor->lock, flags);
169 /*
170 * At this point, we could be competing with another thread which
171 * has the same intention. To protect the urb from being unanchored
172 * twice, only the winner of the race gets the job.
173 */
174 if (likely(anchor == urb->anchor))
175 __usb_unanchor_urb(urb, anchor);
176 spin_unlock_irqrestore(&anchor->lock, flags);
177 }
178 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
179
180 /*-------------------------------------------------------------------*/
181
182 /**
183 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
184 * @urb: pointer to the urb describing the request
185 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
186 * of valid options for this.
187 *
188 * This submits a transfer request, and transfers control of the URB
189 * describing that request to the USB subsystem. Request completion will
190 * be indicated later, asynchronously, by calling the completion handler.
191 * The three types of completion are success, error, and unlink
192 * (a software-induced fault, also called "request cancellation").
193 *
194 * URBs may be submitted in interrupt context.
195 *
196 * The caller must have correctly initialized the URB before submitting
197 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
198 * available to ensure that most fields are correctly initialized, for
199 * the particular kind of transfer, although they will not initialize
200 * any transfer flags.
201 *
202 * Successful submissions return 0; otherwise this routine returns a
203 * negative error number. If the submission is successful, the complete()
204 * callback from the URB will be called exactly once, when the USB core and
205 * Host Controller Driver (HCD) are finished with the URB. When the completion
206 * function is called, control of the URB is returned to the device
207 * driver which issued the request. The completion handler may then
208 * immediately free or reuse that URB.
209 *
210 * With few exceptions, USB device drivers should never access URB fields
211 * provided by usbcore or the HCD until its complete() is called.
212 * The exceptions relate to periodic transfer scheduling. For both
213 * interrupt and isochronous urbs, as part of successful URB submission
214 * urb->interval is modified to reflect the actual transfer period used
215 * (normally some power of two units). And for isochronous urbs,
216 * urb->start_frame is modified to reflect when the URB's transfers were
217 * scheduled to start. Not all isochronous transfer scheduling policies
218 * will work, but most host controller drivers should easily handle ISO
219 * queues going from now until 10-200 msec into the future.
220 *
221 * For control endpoints, the synchronous usb_control_msg() call is
222 * often used (in non-interrupt context) instead of this call.
223 * That is often used through convenience wrappers, for the requests
224 * that are standardized in the USB 2.0 specification. For bulk
225 * endpoints, a synchronous usb_bulk_msg() call is available.
226 *
227 * Request Queuing:
228 *
229 * URBs may be submitted to endpoints before previous ones complete, to
230 * minimize the impact of interrupt latencies and system overhead on data
231 * throughput. With that queuing policy, an endpoint's queue would never
232 * be empty. This is required for continuous isochronous data streams,
233 * and may also be required for some kinds of interrupt transfers. Such
234 * queuing also maximizes bandwidth utilization by letting USB controllers
235 * start work on later requests before driver software has finished the
236 * completion processing for earlier (successful) requests.
237 *
238 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
239 * than one. This was previously a HCD-specific behavior, except for ISO
240 * transfers. Non-isochronous endpoint queues are inactive during cleanup
241 * after faults (transfer errors or cancellation).
242 *
243 * Reserved Bandwidth Transfers:
244 *
245 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
246 * using the interval specified in the urb. Submitting the first urb to
247 * the endpoint reserves the bandwidth necessary to make those transfers.
248 * If the USB subsystem can't allocate sufficient bandwidth to perform
249 * the periodic request, submitting such a periodic request should fail.
250 *
251 * For devices under xHCI, the bandwidth is reserved at configuration time, or
252 * when the alt setting is selected. If there is not enough bus bandwidth, the
253 * configuration/alt setting request will fail. Therefore, submissions to
254 * periodic endpoints on devices under xHCI should never fail due to bandwidth
255 * constraints.
256 *
257 * Device drivers must explicitly request that repetition, by ensuring that
258 * some URB is always on the endpoint's queue (except possibly for short
259 * periods during completion callacks). When there is no longer an urb
260 * queued, the endpoint's bandwidth reservation is canceled. This means
261 * drivers can use their completion handlers to ensure they keep bandwidth
262 * they need, by reinitializing and resubmitting the just-completed urb
263 * until the driver longer needs that periodic bandwidth.
264 *
265 * Memory Flags:
266 *
267 * The general rules for how to decide which mem_flags to use
268 * are the same as for kmalloc. There are four
269 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
270 * GFP_ATOMIC.
271 *
272 * GFP_NOFS is not ever used, as it has not been implemented yet.
273 *
274 * GFP_ATOMIC is used when
275 * (a) you are inside a completion handler, an interrupt, bottom half,
276 * tasklet or timer, or
277 * (b) you are holding a spinlock or rwlock (does not apply to
278 * semaphores), or
279 * (c) current->state != TASK_RUNNING, this is the case only after
280 * you've changed it.
281 *
282 * GFP_NOIO is used in the block io path and error handling of storage
283 * devices.
284 *
285 * All other situations use GFP_KERNEL.
286 *
287 * Some more specific rules for mem_flags can be inferred, such as
288 * (1) start_xmit, timeout, and receive methods of network drivers must
289 * use GFP_ATOMIC (they are called with a spinlock held);
290 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
291 * called with a spinlock held);
292 * (3) If you use a kernel thread with a network driver you must use
293 * GFP_NOIO, unless (b) or (c) apply;
294 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
295 * apply or your are in a storage driver's block io path;
296 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
297 * (6) changing firmware on a running storage or net device uses
298 * GFP_NOIO, unless b) or c) apply
299 *
300 */
usb_submit_urb(struct urb * urb,gfp_t mem_flags)301 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
302 {
303 int xfertype, max;
304 struct usb_device *dev;
305 struct usb_host_endpoint *ep;
306 int is_out;
307
308 if (!urb || urb->hcpriv || !urb->complete)
309 return -EINVAL;
310 dev = urb->dev;
311 if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
312 return -ENODEV;
313
314 /* For now, get the endpoint from the pipe. Eventually drivers
315 * will be required to set urb->ep directly and we will eliminate
316 * urb->pipe.
317 */
318 ep = usb_pipe_endpoint(dev, urb->pipe);
319 if (!ep)
320 return -ENOENT;
321
322 urb->ep = ep;
323 urb->status = -EINPROGRESS;
324 urb->actual_length = 0;
325
326 /* Lots of sanity checks, so HCDs can rely on clean data
327 * and don't need to duplicate tests
328 */
329 xfertype = usb_endpoint_type(&ep->desc);
330 if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
331 struct usb_ctrlrequest *setup =
332 (struct usb_ctrlrequest *) urb->setup_packet;
333
334 if (!setup)
335 return -ENOEXEC;
336 is_out = !(setup->bRequestType & USB_DIR_IN) ||
337 !setup->wLength;
338 } else {
339 is_out = usb_endpoint_dir_out(&ep->desc);
340 }
341
342 /* Clear the internal flags and cache the direction for later use */
343 urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
344 URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
345 URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
346 URB_DMA_SG_COMBINED);
347 urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
348
349 if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
350 dev->state < USB_STATE_CONFIGURED)
351 return -ENODEV;
352
353 max = usb_endpoint_maxp(&ep->desc);
354 if (max <= 0) {
355 dev_dbg(&dev->dev,
356 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
357 usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
358 __func__, max);
359 return -EMSGSIZE;
360 }
361
362 /* periodic transfers limit size per frame/uframe,
363 * but drivers only control those sizes for ISO.
364 * while we're checking, initialize return status.
365 */
366 if (xfertype == USB_ENDPOINT_XFER_ISOC) {
367 int n, len;
368
369 /* SuperSpeed isoc endpoints have up to 16 bursts of up to
370 * 3 packets each
371 */
372 if (dev->speed == USB_SPEED_SUPER) {
373 int burst = 1 + ep->ss_ep_comp.bMaxBurst;
374 int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
375 max *= burst;
376 max *= mult;
377 }
378
379 /* "high bandwidth" mode, 1-3 packets/uframe? */
380 if (dev->speed == USB_SPEED_HIGH) {
381 int mult = 1 + ((max >> 11) & 0x03);
382 max &= 0x07ff;
383 max *= mult;
384 }
385
386 if (urb->number_of_packets <= 0)
387 return -EINVAL;
388 for (n = 0; n < urb->number_of_packets; n++) {
389 len = urb->iso_frame_desc[n].length;
390 if (len < 0 || len > max)
391 return -EMSGSIZE;
392 urb->iso_frame_desc[n].status = -EXDEV;
393 urb->iso_frame_desc[n].actual_length = 0;
394 }
395 }
396
397 /* the I/O buffer must be mapped/unmapped, except when length=0 */
398 if (urb->transfer_buffer_length > INT_MAX)
399 return -EMSGSIZE;
400
401 #ifdef DEBUG
402 /* stuff that drivers shouldn't do, but which shouldn't
403 * cause problems in HCDs if they get it wrong.
404 */
405 {
406 unsigned int allowed;
407 static int pipetypes[4] = {
408 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
409 };
410
411 /* Check that the pipe's type matches the endpoint's type */
412 if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
413 dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
414 usb_pipetype(urb->pipe), pipetypes[xfertype]);
415
416 /* Check against a simple/standard policy */
417 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
418 URB_FREE_BUFFER);
419 switch (xfertype) {
420 case USB_ENDPOINT_XFER_BULK:
421 if (is_out)
422 allowed |= URB_ZERO_PACKET;
423 /* FALLTHROUGH */
424 case USB_ENDPOINT_XFER_CONTROL:
425 allowed |= URB_NO_FSBR; /* only affects UHCI */
426 /* FALLTHROUGH */
427 default: /* all non-iso endpoints */
428 if (!is_out)
429 allowed |= URB_SHORT_NOT_OK;
430 break;
431 case USB_ENDPOINT_XFER_ISOC:
432 allowed |= URB_ISO_ASAP;
433 break;
434 }
435 allowed &= urb->transfer_flags;
436
437 /* warn if submitter gave bogus flags */
438 if (allowed != urb->transfer_flags)
439 dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
440 urb->transfer_flags, allowed);
441 }
442 #endif
443 /*
444 * Force periodic transfer intervals to be legal values that are
445 * a power of two (so HCDs don't need to).
446 *
447 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
448 * supports different values... this uses EHCI/UHCI defaults (and
449 * EHCI can use smaller non-default values).
450 */
451 switch (xfertype) {
452 case USB_ENDPOINT_XFER_ISOC:
453 case USB_ENDPOINT_XFER_INT:
454 /* too small? */
455 switch (dev->speed) {
456 case USB_SPEED_WIRELESS:
457 if (urb->interval < 6)
458 return -EINVAL;
459 break;
460 default:
461 if (urb->interval <= 0)
462 return -EINVAL;
463 break;
464 }
465 /* too big? */
466 switch (dev->speed) {
467 case USB_SPEED_SUPER: /* units are 125us */
468 /* Handle up to 2^(16-1) microframes */
469 if (urb->interval > (1 << 15))
470 return -EINVAL;
471 max = 1 << 15;
472 break;
473 case USB_SPEED_WIRELESS:
474 if (urb->interval > 16)
475 return -EINVAL;
476 break;
477 case USB_SPEED_HIGH: /* units are microframes */
478 /* NOTE usb handles 2^15 */
479 if (urb->interval > (1024 * 8))
480 urb->interval = 1024 * 8;
481 max = 1024 * 8;
482 break;
483 case USB_SPEED_FULL: /* units are frames/msec */
484 case USB_SPEED_LOW:
485 if (xfertype == USB_ENDPOINT_XFER_INT) {
486 if (urb->interval > 255)
487 return -EINVAL;
488 /* NOTE ohci only handles up to 32 */
489 max = 128;
490 } else {
491 if (urb->interval > 1024)
492 urb->interval = 1024;
493 /* NOTE usb and ohci handle up to 2^15 */
494 max = 1024;
495 }
496 break;
497 default:
498 return -EINVAL;
499 }
500 if (dev->speed != USB_SPEED_WIRELESS) {
501 /* Round down to a power of 2, no more than max */
502 urb->interval = min(max, 1 << ilog2(urb->interval));
503 }
504 }
505
506 return usb_hcd_submit_urb(urb, mem_flags);
507 }
508 EXPORT_SYMBOL_GPL(usb_submit_urb);
509
510 /*-------------------------------------------------------------------*/
511
512 /**
513 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
514 * @urb: pointer to urb describing a previously submitted request,
515 * may be NULL
516 *
517 * This routine cancels an in-progress request. URBs complete only once
518 * per submission, and may be canceled only once per submission.
519 * Successful cancellation means termination of @urb will be expedited
520 * and the completion handler will be called with a status code
521 * indicating that the request has been canceled (rather than any other
522 * code).
523 *
524 * Drivers should not call this routine or related routines, such as
525 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
526 * method has returned. The disconnect function should synchronize with
527 * a driver's I/O routines to insure that all URB-related activity has
528 * completed before it returns.
529 *
530 * This request is asynchronous, however the HCD might call the ->complete()
531 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
532 * must not hold any locks that may be taken by the completion function.
533 * Success is indicated by returning -EINPROGRESS, at which time the URB will
534 * probably not yet have been given back to the device driver. When it is
535 * eventually called, the completion function will see @urb->status ==
536 * -ECONNRESET.
537 * Failure is indicated by usb_unlink_urb() returning any other value.
538 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
539 * never submitted, or it was unlinked before, or the hardware is already
540 * finished with it), even if the completion handler has not yet run.
541 *
542 * The URB must not be deallocated while this routine is running. In
543 * particular, when a driver calls this routine, it must insure that the
544 * completion handler cannot deallocate the URB.
545 *
546 * Unlinking and Endpoint Queues:
547 *
548 * [The behaviors and guarantees described below do not apply to virtual
549 * root hubs but only to endpoint queues for physical USB devices.]
550 *
551 * Host Controller Drivers (HCDs) place all the URBs for a particular
552 * endpoint in a queue. Normally the queue advances as the controller
553 * hardware processes each request. But when an URB terminates with an
554 * error its queue generally stops (see below), at least until that URB's
555 * completion routine returns. It is guaranteed that a stopped queue
556 * will not restart until all its unlinked URBs have been fully retired,
557 * with their completion routines run, even if that's not until some time
558 * after the original completion handler returns. The same behavior and
559 * guarantee apply when an URB terminates because it was unlinked.
560 *
561 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
562 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
563 * and -EREMOTEIO. Control endpoint queues behave the same way except
564 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
565 * for isochronous endpoints are treated differently, because they must
566 * advance at fixed rates. Such queues do not stop when an URB
567 * encounters an error or is unlinked. An unlinked isochronous URB may
568 * leave a gap in the stream of packets; it is undefined whether such
569 * gaps can be filled in.
570 *
571 * Note that early termination of an URB because a short packet was
572 * received will generate a -EREMOTEIO error if and only if the
573 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
574 * drivers can build deep queues for large or complex bulk transfers
575 * and clean them up reliably after any sort of aborted transfer by
576 * unlinking all pending URBs at the first fault.
577 *
578 * When a control URB terminates with an error other than -EREMOTEIO, it
579 * is quite likely that the status stage of the transfer will not take
580 * place.
581 */
usb_unlink_urb(struct urb * urb)582 int usb_unlink_urb(struct urb *urb)
583 {
584 if (!urb)
585 return -EINVAL;
586 if (!urb->dev)
587 return -ENODEV;
588 if (!urb->ep)
589 return -EIDRM;
590 return usb_hcd_unlink_urb(urb, -ECONNRESET);
591 }
592 EXPORT_SYMBOL_GPL(usb_unlink_urb);
593
594 /**
595 * usb_kill_urb - cancel a transfer request and wait for it to finish
596 * @urb: pointer to URB describing a previously submitted request,
597 * may be NULL
598 *
599 * This routine cancels an in-progress request. It is guaranteed that
600 * upon return all completion handlers will have finished and the URB
601 * will be totally idle and available for reuse. These features make
602 * this an ideal way to stop I/O in a disconnect() callback or close()
603 * function. If the request has not already finished or been unlinked
604 * the completion handler will see urb->status == -ENOENT.
605 *
606 * While the routine is running, attempts to resubmit the URB will fail
607 * with error -EPERM. Thus even if the URB's completion handler always
608 * tries to resubmit, it will not succeed and the URB will become idle.
609 *
610 * The URB must not be deallocated while this routine is running. In
611 * particular, when a driver calls this routine, it must insure that the
612 * completion handler cannot deallocate the URB.
613 *
614 * This routine may not be used in an interrupt context (such as a bottom
615 * half or a completion handler), or when holding a spinlock, or in other
616 * situations where the caller can't schedule().
617 *
618 * This routine should not be called by a driver after its disconnect
619 * method has returned.
620 */
usb_kill_urb(struct urb * urb)621 void usb_kill_urb(struct urb *urb)
622 {
623 might_sleep();
624 if (!(urb && urb->dev && urb->ep))
625 return;
626 atomic_inc(&urb->reject);
627
628 usb_hcd_unlink_urb(urb, -ENOENT);
629 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
630
631 atomic_dec(&urb->reject);
632 }
633 EXPORT_SYMBOL_GPL(usb_kill_urb);
634
635 /**
636 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
637 * @urb: pointer to URB describing a previously submitted request,
638 * may be NULL
639 *
640 * This routine cancels an in-progress request. It is guaranteed that
641 * upon return all completion handlers will have finished and the URB
642 * will be totally idle and cannot be reused. These features make
643 * this an ideal way to stop I/O in a disconnect() callback.
644 * If the request has not already finished or been unlinked
645 * the completion handler will see urb->status == -ENOENT.
646 *
647 * After and while the routine runs, attempts to resubmit the URB will fail
648 * with error -EPERM. Thus even if the URB's completion handler always
649 * tries to resubmit, it will not succeed and the URB will become idle.
650 *
651 * The URB must not be deallocated while this routine is running. In
652 * particular, when a driver calls this routine, it must insure that the
653 * completion handler cannot deallocate the URB.
654 *
655 * This routine may not be used in an interrupt context (such as a bottom
656 * half or a completion handler), or when holding a spinlock, or in other
657 * situations where the caller can't schedule().
658 *
659 * This routine should not be called by a driver after its disconnect
660 * method has returned.
661 */
usb_poison_urb(struct urb * urb)662 void usb_poison_urb(struct urb *urb)
663 {
664 might_sleep();
665 if (!(urb && urb->dev && urb->ep))
666 return;
667 atomic_inc(&urb->reject);
668
669 usb_hcd_unlink_urb(urb, -ENOENT);
670 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
671 }
672 EXPORT_SYMBOL_GPL(usb_poison_urb);
673
usb_unpoison_urb(struct urb * urb)674 void usb_unpoison_urb(struct urb *urb)
675 {
676 if (!urb)
677 return;
678
679 atomic_dec(&urb->reject);
680 }
681 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
682
683 /**
684 * usb_block_urb - reliably prevent further use of an URB
685 * @urb: pointer to URB to be blocked, may be NULL
686 *
687 * After the routine has run, attempts to resubmit the URB will fail
688 * with error -EPERM. Thus even if the URB's completion handler always
689 * tries to resubmit, it will not succeed and the URB will become idle.
690 *
691 * The URB must not be deallocated while this routine is running. In
692 * particular, when a driver calls this routine, it must insure that the
693 * completion handler cannot deallocate the URB.
694 */
usb_block_urb(struct urb * urb)695 void usb_block_urb(struct urb *urb)
696 {
697 if (!urb)
698 return;
699
700 atomic_inc(&urb->reject);
701 }
702 EXPORT_SYMBOL_GPL(usb_block_urb);
703
704 /**
705 * usb_kill_anchored_urbs - cancel transfer requests en masse
706 * @anchor: anchor the requests are bound to
707 *
708 * this allows all outstanding URBs to be killed starting
709 * from the back of the queue
710 *
711 * This routine should not be called by a driver after its disconnect
712 * method has returned.
713 */
usb_kill_anchored_urbs(struct usb_anchor * anchor)714 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
715 {
716 struct urb *victim;
717
718 spin_lock_irq(&anchor->lock);
719 while (!list_empty(&anchor->urb_list)) {
720 victim = list_entry(anchor->urb_list.prev, struct urb,
721 anchor_list);
722 /* we must make sure the URB isn't freed before we kill it*/
723 usb_get_urb(victim);
724 spin_unlock_irq(&anchor->lock);
725 /* this will unanchor the URB */
726 usb_kill_urb(victim);
727 usb_put_urb(victim);
728 spin_lock_irq(&anchor->lock);
729 }
730 spin_unlock_irq(&anchor->lock);
731 }
732 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
733
734
735 /**
736 * usb_poison_anchored_urbs - cease all traffic from an anchor
737 * @anchor: anchor the requests are bound to
738 *
739 * this allows all outstanding URBs to be poisoned starting
740 * from the back of the queue. Newly added URBs will also be
741 * poisoned
742 *
743 * This routine should not be called by a driver after its disconnect
744 * method has returned.
745 */
usb_poison_anchored_urbs(struct usb_anchor * anchor)746 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
747 {
748 struct urb *victim;
749
750 spin_lock_irq(&anchor->lock);
751 anchor->poisoned = 1;
752 while (!list_empty(&anchor->urb_list)) {
753 victim = list_entry(anchor->urb_list.prev, struct urb,
754 anchor_list);
755 /* we must make sure the URB isn't freed before we kill it*/
756 usb_get_urb(victim);
757 spin_unlock_irq(&anchor->lock);
758 /* this will unanchor the URB */
759 usb_poison_urb(victim);
760 usb_put_urb(victim);
761 spin_lock_irq(&anchor->lock);
762 }
763 spin_unlock_irq(&anchor->lock);
764 }
765 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
766
767 /**
768 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
769 * @anchor: anchor the requests are bound to
770 *
771 * Reverses the effect of usb_poison_anchored_urbs
772 * the anchor can be used normally after it returns
773 */
usb_unpoison_anchored_urbs(struct usb_anchor * anchor)774 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
775 {
776 unsigned long flags;
777 struct urb *lazarus;
778
779 spin_lock_irqsave(&anchor->lock, flags);
780 list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
781 usb_unpoison_urb(lazarus);
782 }
783 anchor->poisoned = 0;
784 spin_unlock_irqrestore(&anchor->lock, flags);
785 }
786 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
787 /**
788 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
789 * @anchor: anchor the requests are bound to
790 *
791 * this allows all outstanding URBs to be unlinked starting
792 * from the back of the queue. This function is asynchronous.
793 * The unlinking is just tiggered. It may happen after this
794 * function has returned.
795 *
796 * This routine should not be called by a driver after its disconnect
797 * method has returned.
798 */
usb_unlink_anchored_urbs(struct usb_anchor * anchor)799 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
800 {
801 struct urb *victim;
802
803 while ((victim = usb_get_from_anchor(anchor)) != NULL) {
804 usb_unlink_urb(victim);
805 usb_put_urb(victim);
806 }
807 }
808 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
809
810 /**
811 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
812 * @anchor: the anchor you want to become unused
813 * @timeout: how long you are willing to wait in milliseconds
814 *
815 * Call this is you want to be sure all an anchor's
816 * URBs have finished
817 */
usb_wait_anchor_empty_timeout(struct usb_anchor * anchor,unsigned int timeout)818 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
819 unsigned int timeout)
820 {
821 return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
822 msecs_to_jiffies(timeout));
823 }
824 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
825
826 /**
827 * usb_get_from_anchor - get an anchor's oldest urb
828 * @anchor: the anchor whose urb you want
829 *
830 * this will take the oldest urb from an anchor,
831 * unanchor and return it
832 */
usb_get_from_anchor(struct usb_anchor * anchor)833 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
834 {
835 struct urb *victim;
836 unsigned long flags;
837
838 spin_lock_irqsave(&anchor->lock, flags);
839 if (!list_empty(&anchor->urb_list)) {
840 victim = list_entry(anchor->urb_list.next, struct urb,
841 anchor_list);
842 usb_get_urb(victim);
843 __usb_unanchor_urb(victim, anchor);
844 } else {
845 victim = NULL;
846 }
847 spin_unlock_irqrestore(&anchor->lock, flags);
848
849 return victim;
850 }
851
852 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
853
854 /**
855 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
856 * @anchor: the anchor whose urbs you want to unanchor
857 *
858 * use this to get rid of all an anchor's urbs
859 */
usb_scuttle_anchored_urbs(struct usb_anchor * anchor)860 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
861 {
862 struct urb *victim;
863 unsigned long flags;
864
865 spin_lock_irqsave(&anchor->lock, flags);
866 while (!list_empty(&anchor->urb_list)) {
867 victim = list_entry(anchor->urb_list.prev, struct urb,
868 anchor_list);
869 __usb_unanchor_urb(victim, anchor);
870 }
871 spin_unlock_irqrestore(&anchor->lock, flags);
872 }
873
874 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
875
876 /**
877 * usb_anchor_empty - is an anchor empty
878 * @anchor: the anchor you want to query
879 *
880 * returns 1 if the anchor has no urbs associated with it
881 */
usb_anchor_empty(struct usb_anchor * anchor)882 int usb_anchor_empty(struct usb_anchor *anchor)
883 {
884 return list_empty(&anchor->urb_list);
885 }
886
887 EXPORT_SYMBOL_GPL(usb_anchor_empty);
888
889