1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110 * Sharable chunks of root hub code.
111 */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157 };
158
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178 };
179
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199 };
200
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222 };
223
224
225 /*-------------------------------------------------------------------------*/
226
227 /* Configuration descriptors for our root hubs */
228
229 static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275
276 static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324
325 static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369
370 /* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376 #define USB_AUTHORIZE_WIRED -1
377 #define USB_AUTHORIZE_NONE 0
378 #define USB_AUTHORIZE_ALL 1
379 #define USB_AUTHORIZE_INTERNAL 2
380
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388
389 /**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423 }
424
425 /**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474 }
475
476
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663 nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691 error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741 }
742
743 /*-------------------------------------------------------------------------*/
744
745 /*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
751 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753 {
754 struct urb *urb;
755 int length;
756 int status;
757 unsigned long flags;
758 char buffer[6]; /* Any root hubs with > 31 ports? */
759
760 if (unlikely(!hcd->rh_pollable))
761 return;
762 if (!hcd->uses_new_polling && !hcd->status_urb)
763 return;
764
765 length = hcd->driver->hub_status_data(hcd, buffer);
766 if (length > 0) {
767
768 /* try to complete the status urb */
769 spin_lock_irqsave(&hcd_root_hub_lock, flags);
770 urb = hcd->status_urb;
771 if (urb) {
772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773 hcd->status_urb = NULL;
774 if (urb->transfer_buffer_length >= length) {
775 status = 0;
776 } else {
777 status = -EOVERFLOW;
778 length = urb->transfer_buffer_length;
779 }
780 urb->actual_length = length;
781 memcpy(urb->transfer_buffer, buffer, length);
782
783 usb_hcd_unlink_urb_from_ep(hcd, urb);
784 usb_hcd_giveback_urb(hcd, urb, status);
785 } else {
786 length = 0;
787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 }
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 }
791
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 (length == 0 && hcd->status_urb != NULL))
798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802 /* timer callback */
rh_timer_func(struct timer_list * t)803 static void rh_timer_func (struct timer_list *t)
804 {
805 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
806
807 usb_hcd_poll_rh_status(_hcd);
808 }
809
810 /*-------------------------------------------------------------------------*/
811
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
813 {
814 int retval;
815 unsigned long flags;
816 unsigned len = 1 + (urb->dev->maxchild / 8);
817
818 spin_lock_irqsave (&hcd_root_hub_lock, flags);
819 if (hcd->status_urb || urb->transfer_buffer_length < len) {
820 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
821 retval = -EINVAL;
822 goto done;
823 }
824
825 retval = usb_hcd_link_urb_to_ep(hcd, urb);
826 if (retval)
827 goto done;
828
829 hcd->status_urb = urb;
830 urb->hcpriv = hcd; /* indicate it's queued */
831 if (!hcd->uses_new_polling)
832 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
833
834 /* If a status change has already occurred, report it ASAP */
835 else if (HCD_POLL_PENDING(hcd))
836 mod_timer(&hcd->rh_timer, jiffies);
837 retval = 0;
838 done:
839 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
840 return retval;
841 }
842
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
844 {
845 if (usb_endpoint_xfer_int(&urb->ep->desc))
846 return rh_queue_status (hcd, urb);
847 if (usb_endpoint_xfer_control(&urb->ep->desc))
848 return rh_call_control (hcd, urb);
849 return -EINVAL;
850 }
851
852 /*-------------------------------------------------------------------------*/
853
854 /* Unlinks of root-hub control URBs are legal, but they don't do anything
855 * since these URBs always execute synchronously.
856 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
858 {
859 unsigned long flags;
860 int rc;
861
862 spin_lock_irqsave(&hcd_root_hub_lock, flags);
863 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
864 if (rc)
865 goto done;
866
867 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
868 ; /* Do nothing */
869
870 } else { /* Status URB */
871 if (!hcd->uses_new_polling)
872 del_timer (&hcd->rh_timer);
873 if (urb == hcd->status_urb) {
874 hcd->status_urb = NULL;
875 usb_hcd_unlink_urb_from_ep(hcd, urb);
876 usb_hcd_giveback_urb(hcd, urb, status);
877 }
878 }
879 done:
880 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
881 return rc;
882 }
883
884
885 /*-------------------------------------------------------------------------*/
886
887 /**
888 * usb_bus_init - shared initialization code
889 * @bus: the bus structure being initialized
890 *
891 * This code is used to initialize a usb_bus structure, memory for which is
892 * separately managed.
893 */
usb_bus_init(struct usb_bus * bus)894 static void usb_bus_init (struct usb_bus *bus)
895 {
896 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
897
898 bus->devnum_next = 1;
899
900 bus->root_hub = NULL;
901 bus->busnum = -1;
902 bus->bandwidth_allocated = 0;
903 bus->bandwidth_int_reqs = 0;
904 bus->bandwidth_isoc_reqs = 0;
905 mutex_init(&bus->devnum_next_mutex);
906 }
907
908 /*-------------------------------------------------------------------------*/
909
910 /**
911 * usb_register_bus - registers the USB host controller with the usb core
912 * @bus: pointer to the bus to register
913 *
914 * Context: task context, might sleep.
915 *
916 * Assigns a bus number, and links the controller into usbcore data
917 * structures so that it can be seen by scanning the bus list.
918 *
919 * Return: 0 if successful. A negative error code otherwise.
920 */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 int result = -E2BIG;
924 int busnum;
925
926 mutex_lock(&usb_bus_idr_lock);
927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 if (busnum < 0) {
929 pr_err("%s: failed to get bus number\n", usbcore_name);
930 goto error_find_busnum;
931 }
932 bus->busnum = busnum;
933 mutex_unlock(&usb_bus_idr_lock);
934
935 usb_notify_add_bus(bus);
936
937 dev_info (bus->controller, "new USB bus registered, assigned bus "
938 "number %d\n", bus->busnum);
939 return 0;
940
941 error_find_busnum:
942 mutex_unlock(&usb_bus_idr_lock);
943 return result;
944 }
945
946 /**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 *
950 * Context: task context, might sleep.
951 *
952 * Recycles the bus number, and unlinks the controller from usbcore data
953 * structures so that it won't be seen by scanning the bus list.
954 */
usb_deregister_bus(struct usb_bus * bus)955 static void usb_deregister_bus (struct usb_bus *bus)
956 {
957 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
958
959 /*
960 * NOTE: make sure that all the devices are removed by the
961 * controller code, as well as having it call this when cleaning
962 * itself up
963 */
964 mutex_lock(&usb_bus_idr_lock);
965 idr_remove(&usb_bus_idr, bus->busnum);
966 mutex_unlock(&usb_bus_idr_lock);
967
968 usb_notify_remove_bus(bus);
969 }
970
971 /**
972 * register_root_hub - called by usb_add_hcd() to register a root hub
973 * @hcd: host controller for this root hub
974 *
975 * This function registers the root hub with the USB subsystem. It sets up
976 * the device properly in the device tree and then calls usb_new_device()
977 * to register the usb device. It also assigns the root hub's USB address
978 * (always 1).
979 *
980 * Return: 0 if successful. A negative error code otherwise.
981 */
register_root_hub(struct usb_hcd * hcd)982 static int register_root_hub(struct usb_hcd *hcd)
983 {
984 struct device *parent_dev = hcd->self.controller;
985 struct usb_device *usb_dev = hcd->self.root_hub;
986 const int devnum = 1;
987 int retval;
988
989 usb_dev->devnum = devnum;
990 usb_dev->bus->devnum_next = devnum + 1;
991 set_bit (devnum, usb_dev->bus->devmap.devicemap);
992 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
993
994 mutex_lock(&usb_bus_idr_lock);
995
996 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
997 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
998 if (retval != sizeof usb_dev->descriptor) {
999 mutex_unlock(&usb_bus_idr_lock);
1000 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1001 dev_name(&usb_dev->dev), retval);
1002 return (retval < 0) ? retval : -EMSGSIZE;
1003 }
1004
1005 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1006 retval = usb_get_bos_descriptor(usb_dev);
1007 if (!retval) {
1008 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1009 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1010 mutex_unlock(&usb_bus_idr_lock);
1011 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1012 dev_name(&usb_dev->dev), retval);
1013 return retval;
1014 }
1015 }
1016
1017 retval = usb_new_device (usb_dev);
1018 if (retval) {
1019 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1020 dev_name(&usb_dev->dev), retval);
1021 } else {
1022 spin_lock_irq (&hcd_root_hub_lock);
1023 hcd->rh_registered = 1;
1024 spin_unlock_irq (&hcd_root_hub_lock);
1025
1026 /* Did the HC die before the root hub was registered? */
1027 if (HCD_DEAD(hcd))
1028 usb_hc_died (hcd); /* This time clean up */
1029 }
1030 mutex_unlock(&usb_bus_idr_lock);
1031
1032 return retval;
1033 }
1034
1035 /*
1036 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1037 * @bus: the bus which the root hub belongs to
1038 * @portnum: the port which is being resumed
1039 *
1040 * HCDs should call this function when they know that a resume signal is
1041 * being sent to a root-hub port. The root hub will be prevented from
1042 * going into autosuspend until usb_hcd_end_port_resume() is called.
1043 *
1044 * The bus's private lock must be held by the caller.
1045 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1046 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1047 {
1048 unsigned bit = 1 << portnum;
1049
1050 if (!(bus->resuming_ports & bit)) {
1051 bus->resuming_ports |= bit;
1052 pm_runtime_get_noresume(&bus->root_hub->dev);
1053 }
1054 }
1055 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1056
1057 /*
1058 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1059 * @bus: the bus which the root hub belongs to
1060 * @portnum: the port which is being resumed
1061 *
1062 * HCDs should call this function when they know that a resume signal has
1063 * stopped being sent to a root-hub port. The root hub will be allowed to
1064 * autosuspend again.
1065 *
1066 * The bus's private lock must be held by the caller.
1067 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1068 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1069 {
1070 unsigned bit = 1 << portnum;
1071
1072 if (bus->resuming_ports & bit) {
1073 bus->resuming_ports &= ~bit;
1074 pm_runtime_put_noidle(&bus->root_hub->dev);
1075 }
1076 }
1077 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1078
1079 /*-------------------------------------------------------------------------*/
1080
1081 /**
1082 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1083 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1084 * @is_input: true iff the transaction sends data to the host
1085 * @isoc: true for isochronous transactions, false for interrupt ones
1086 * @bytecount: how many bytes in the transaction.
1087 *
1088 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1089 *
1090 * Note:
1091 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1092 * scheduled in software, this function is only used for such scheduling.
1093 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1094 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1095 {
1096 unsigned long tmp;
1097
1098 switch (speed) {
1099 case USB_SPEED_LOW: /* INTR only */
1100 if (is_input) {
1101 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1102 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1103 } else {
1104 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1106 }
1107 case USB_SPEED_FULL: /* ISOC or INTR */
1108 if (isoc) {
1109 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1110 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1111 } else {
1112 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1113 return 9107L + BW_HOST_DELAY + tmp;
1114 }
1115 case USB_SPEED_HIGH: /* ISOC or INTR */
1116 /* FIXME adjust for input vs output */
1117 if (isoc)
1118 tmp = HS_NSECS_ISO (bytecount);
1119 else
1120 tmp = HS_NSECS (bytecount);
1121 return tmp;
1122 default:
1123 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1124 return -1;
1125 }
1126 }
1127 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1128
1129
1130 /*-------------------------------------------------------------------------*/
1131
1132 /*
1133 * Generic HC operations.
1134 */
1135
1136 /*-------------------------------------------------------------------------*/
1137
1138 /**
1139 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1140 * @hcd: host controller to which @urb was submitted
1141 * @urb: URB being submitted
1142 *
1143 * Host controller drivers should call this routine in their enqueue()
1144 * method. The HCD's private spinlock must be held and interrupts must
1145 * be disabled. The actions carried out here are required for URB
1146 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1147 *
1148 * Return: 0 for no error, otherwise a negative error code (in which case
1149 * the enqueue() method must fail). If no error occurs but enqueue() fails
1150 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1151 * the private spinlock and returning.
1152 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1153 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1154 {
1155 int rc = 0;
1156
1157 spin_lock(&hcd_urb_list_lock);
1158
1159 /* Check that the URB isn't being killed */
1160 if (unlikely(atomic_read(&urb->reject))) {
1161 rc = -EPERM;
1162 goto done;
1163 }
1164
1165 if (unlikely(!urb->ep->enabled)) {
1166 rc = -ENOENT;
1167 goto done;
1168 }
1169
1170 if (unlikely(!urb->dev->can_submit)) {
1171 rc = -EHOSTUNREACH;
1172 goto done;
1173 }
1174
1175 /*
1176 * Check the host controller's state and add the URB to the
1177 * endpoint's queue.
1178 */
1179 if (HCD_RH_RUNNING(hcd)) {
1180 urb->unlinked = 0;
1181 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1182 } else {
1183 rc = -ESHUTDOWN;
1184 goto done;
1185 }
1186 done:
1187 spin_unlock(&hcd_urb_list_lock);
1188 return rc;
1189 }
1190 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1191
1192 /**
1193 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1194 * @hcd: host controller to which @urb was submitted
1195 * @urb: URB being checked for unlinkability
1196 * @status: error code to store in @urb if the unlink succeeds
1197 *
1198 * Host controller drivers should call this routine in their dequeue()
1199 * method. The HCD's private spinlock must be held and interrupts must
1200 * be disabled. The actions carried out here are required for making
1201 * sure than an unlink is valid.
1202 *
1203 * Return: 0 for no error, otherwise a negative error code (in which case
1204 * the dequeue() method must fail). The possible error codes are:
1205 *
1206 * -EIDRM: @urb was not submitted or has already completed.
1207 * The completion function may not have been called yet.
1208 *
1209 * -EBUSY: @urb has already been unlinked.
1210 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1211 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1212 int status)
1213 {
1214 struct list_head *tmp;
1215
1216 /* insist the urb is still queued */
1217 list_for_each(tmp, &urb->ep->urb_list) {
1218 if (tmp == &urb->urb_list)
1219 break;
1220 }
1221 if (tmp != &urb->urb_list)
1222 return -EIDRM;
1223
1224 /* Any status except -EINPROGRESS means something already started to
1225 * unlink this URB from the hardware. So there's no more work to do.
1226 */
1227 if (urb->unlinked)
1228 return -EBUSY;
1229 urb->unlinked = status;
1230 return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1233
1234 /**
1235 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1236 * @hcd: host controller to which @urb was submitted
1237 * @urb: URB being unlinked
1238 *
1239 * Host controller drivers should call this routine before calling
1240 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1241 * interrupts must be disabled. The actions carried out here are required
1242 * for URB completion.
1243 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1244 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1245 {
1246 /* clear all state linking urb to this dev (and hcd) */
1247 spin_lock(&hcd_urb_list_lock);
1248 list_del_init(&urb->urb_list);
1249 spin_unlock(&hcd_urb_list_lock);
1250 }
1251 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1252
1253 /*
1254 * Some usb host controllers can only perform dma using a small SRAM area.
1255 * The usb core itself is however optimized for host controllers that can dma
1256 * using regular system memory - like pci devices doing bus mastering.
1257 *
1258 * To support host controllers with limited dma capabilities we provide dma
1259 * bounce buffers. This feature can be enabled by initializing
1260 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1261 *
1262 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1263 * data for dma using the genalloc API.
1264 *
1265 * So, to summarize...
1266 *
1267 * - We need "local" memory, canonical example being
1268 * a small SRAM on a discrete controller being the
1269 * only memory that the controller can read ...
1270 * (a) "normal" kernel memory is no good, and
1271 * (b) there's not enough to share
1272 *
1273 * - So we use that, even though the primary requirement
1274 * is that the memory be "local" (hence addressable
1275 * by that device), not "coherent".
1276 *
1277 */
1278
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1279 static int hcd_alloc_coherent(struct usb_bus *bus,
1280 gfp_t mem_flags, dma_addr_t *dma_handle,
1281 void **vaddr_handle, size_t size,
1282 enum dma_data_direction dir)
1283 {
1284 unsigned char *vaddr;
1285
1286 if (*vaddr_handle == NULL) {
1287 WARN_ON_ONCE(1);
1288 return -EFAULT;
1289 }
1290
1291 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1292 mem_flags, dma_handle);
1293 if (!vaddr)
1294 return -ENOMEM;
1295
1296 /*
1297 * Store the virtual address of the buffer at the end
1298 * of the allocated dma buffer. The size of the buffer
1299 * may be uneven so use unaligned functions instead
1300 * of just rounding up. It makes sense to optimize for
1301 * memory footprint over access speed since the amount
1302 * of memory available for dma may be limited.
1303 */
1304 put_unaligned((unsigned long)*vaddr_handle,
1305 (unsigned long *)(vaddr + size));
1306
1307 if (dir == DMA_TO_DEVICE)
1308 memcpy(vaddr, *vaddr_handle, size);
1309
1310 *vaddr_handle = vaddr;
1311 return 0;
1312 }
1313
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1314 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1315 void **vaddr_handle, size_t size,
1316 enum dma_data_direction dir)
1317 {
1318 unsigned char *vaddr = *vaddr_handle;
1319
1320 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1321
1322 if (dir == DMA_FROM_DEVICE)
1323 memcpy(vaddr, *vaddr_handle, size);
1324
1325 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1326
1327 *vaddr_handle = vaddr;
1328 *dma_handle = 0;
1329 }
1330
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1331 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1332 {
1333 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1334 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1335 dma_unmap_single(hcd->self.sysdev,
1336 urb->setup_dma,
1337 sizeof(struct usb_ctrlrequest),
1338 DMA_TO_DEVICE);
1339 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1340 hcd_free_coherent(urb->dev->bus,
1341 &urb->setup_dma,
1342 (void **) &urb->setup_packet,
1343 sizeof(struct usb_ctrlrequest),
1344 DMA_TO_DEVICE);
1345
1346 /* Make it safe to call this routine more than once */
1347 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1348 }
1349 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1350
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1351 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1352 {
1353 if (hcd->driver->unmap_urb_for_dma)
1354 hcd->driver->unmap_urb_for_dma(hcd, urb);
1355 else
1356 usb_hcd_unmap_urb_for_dma(hcd, urb);
1357 }
1358
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1359 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1360 {
1361 enum dma_data_direction dir;
1362
1363 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1364
1365 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1366 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1367 (urb->transfer_flags & URB_DMA_MAP_SG))
1368 dma_unmap_sg(hcd->self.sysdev,
1369 urb->sg,
1370 urb->num_sgs,
1371 dir);
1372 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1373 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1374 dma_unmap_page(hcd->self.sysdev,
1375 urb->transfer_dma,
1376 urb->transfer_buffer_length,
1377 dir);
1378 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1379 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1380 dma_unmap_single(hcd->self.sysdev,
1381 urb->transfer_dma,
1382 urb->transfer_buffer_length,
1383 dir);
1384 else if (urb->transfer_flags & URB_MAP_LOCAL)
1385 hcd_free_coherent(urb->dev->bus,
1386 &urb->transfer_dma,
1387 &urb->transfer_buffer,
1388 urb->transfer_buffer_length,
1389 dir);
1390
1391 /* Make it safe to call this routine more than once */
1392 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1393 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1394 }
1395 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1396
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1397 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1398 gfp_t mem_flags)
1399 {
1400 if (hcd->driver->map_urb_for_dma)
1401 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1402 else
1403 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1404 }
1405
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1406 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1407 gfp_t mem_flags)
1408 {
1409 enum dma_data_direction dir;
1410 int ret = 0;
1411
1412 /* Map the URB's buffers for DMA access.
1413 * Lower level HCD code should use *_dma exclusively,
1414 * unless it uses pio or talks to another transport,
1415 * or uses the provided scatter gather list for bulk.
1416 */
1417
1418 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1419 if (hcd->self.uses_pio_for_control)
1420 return ret;
1421 if (hcd->localmem_pool) {
1422 ret = hcd_alloc_coherent(
1423 urb->dev->bus, mem_flags,
1424 &urb->setup_dma,
1425 (void **)&urb->setup_packet,
1426 sizeof(struct usb_ctrlrequest),
1427 DMA_TO_DEVICE);
1428 if (ret)
1429 return ret;
1430 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1431 } else if (hcd_uses_dma(hcd)) {
1432 if (object_is_on_stack(urb->setup_packet)) {
1433 WARN_ONCE(1, "setup packet is on stack\n");
1434 return -EAGAIN;
1435 }
1436
1437 urb->setup_dma = dma_map_single(
1438 hcd->self.sysdev,
1439 urb->setup_packet,
1440 sizeof(struct usb_ctrlrequest),
1441 DMA_TO_DEVICE);
1442 if (dma_mapping_error(hcd->self.sysdev,
1443 urb->setup_dma))
1444 return -EAGAIN;
1445 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1446 }
1447 }
1448
1449 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1450 if (urb->transfer_buffer_length != 0
1451 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1452 if (hcd->localmem_pool) {
1453 ret = hcd_alloc_coherent(
1454 urb->dev->bus, mem_flags,
1455 &urb->transfer_dma,
1456 &urb->transfer_buffer,
1457 urb->transfer_buffer_length,
1458 dir);
1459 if (ret == 0)
1460 urb->transfer_flags |= URB_MAP_LOCAL;
1461 } else if (hcd_uses_dma(hcd)) {
1462 if (urb->num_sgs) {
1463 int n;
1464
1465 /* We don't support sg for isoc transfers ! */
1466 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1467 WARN_ON(1);
1468 return -EINVAL;
1469 }
1470
1471 n = dma_map_sg(
1472 hcd->self.sysdev,
1473 urb->sg,
1474 urb->num_sgs,
1475 dir);
1476 if (n <= 0)
1477 ret = -EAGAIN;
1478 else
1479 urb->transfer_flags |= URB_DMA_MAP_SG;
1480 urb->num_mapped_sgs = n;
1481 if (n != urb->num_sgs)
1482 urb->transfer_flags |=
1483 URB_DMA_SG_COMBINED;
1484 } else if (urb->sg) {
1485 struct scatterlist *sg = urb->sg;
1486 urb->transfer_dma = dma_map_page(
1487 hcd->self.sysdev,
1488 sg_page(sg),
1489 sg->offset,
1490 urb->transfer_buffer_length,
1491 dir);
1492 if (dma_mapping_error(hcd->self.sysdev,
1493 urb->transfer_dma))
1494 ret = -EAGAIN;
1495 else
1496 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1497 } else if (object_is_on_stack(urb->transfer_buffer)) {
1498 WARN_ONCE(1, "transfer buffer is on stack\n");
1499 ret = -EAGAIN;
1500 } else {
1501 urb->transfer_dma = dma_map_single(
1502 hcd->self.sysdev,
1503 urb->transfer_buffer,
1504 urb->transfer_buffer_length,
1505 dir);
1506 if (dma_mapping_error(hcd->self.sysdev,
1507 urb->transfer_dma))
1508 ret = -EAGAIN;
1509 else
1510 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1511 }
1512 }
1513 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1514 URB_SETUP_MAP_LOCAL)))
1515 usb_hcd_unmap_urb_for_dma(hcd, urb);
1516 }
1517 return ret;
1518 }
1519 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1520
1521 /*-------------------------------------------------------------------------*/
1522
1523 /* may be called in any context with a valid urb->dev usecount
1524 * caller surrenders "ownership" of urb
1525 * expects usb_submit_urb() to have sanity checked and conditioned all
1526 * inputs in the urb
1527 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1528 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1529 {
1530 int status;
1531 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1532
1533 /* increment urb's reference count as part of giving it to the HCD
1534 * (which will control it). HCD guarantees that it either returns
1535 * an error or calls giveback(), but not both.
1536 */
1537 usb_get_urb(urb);
1538 atomic_inc(&urb->use_count);
1539 atomic_inc(&urb->dev->urbnum);
1540 usbmon_urb_submit(&hcd->self, urb);
1541
1542 /* NOTE requirements on root-hub callers (usbfs and the hub
1543 * driver, for now): URBs' urb->transfer_buffer must be
1544 * valid and usb_buffer_{sync,unmap}() not be needed, since
1545 * they could clobber root hub response data. Also, control
1546 * URBs must be submitted in process context with interrupts
1547 * enabled.
1548 */
1549
1550 if (is_root_hub(urb->dev)) {
1551 status = rh_urb_enqueue(hcd, urb);
1552 } else {
1553 status = map_urb_for_dma(hcd, urb, mem_flags);
1554 if (likely(status == 0)) {
1555 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1556 if (unlikely(status))
1557 unmap_urb_for_dma(hcd, urb);
1558 }
1559 }
1560
1561 if (unlikely(status)) {
1562 usbmon_urb_submit_error(&hcd->self, urb, status);
1563 urb->hcpriv = NULL;
1564 INIT_LIST_HEAD(&urb->urb_list);
1565 atomic_dec(&urb->use_count);
1566 /*
1567 * Order the write of urb->use_count above before the read
1568 * of urb->reject below. Pairs with the memory barriers in
1569 * usb_kill_urb() and usb_poison_urb().
1570 */
1571 smp_mb__after_atomic();
1572
1573 atomic_dec(&urb->dev->urbnum);
1574 if (atomic_read(&urb->reject))
1575 wake_up(&usb_kill_urb_queue);
1576 usb_put_urb(urb);
1577 }
1578 return status;
1579 }
1580
1581 /*-------------------------------------------------------------------------*/
1582
1583 /* this makes the hcd giveback() the urb more quickly, by kicking it
1584 * off hardware queues (which may take a while) and returning it as
1585 * soon as practical. we've already set up the urb's return status,
1586 * but we can't know if the callback completed already.
1587 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1588 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1589 {
1590 int value;
1591
1592 if (is_root_hub(urb->dev))
1593 value = usb_rh_urb_dequeue(hcd, urb, status);
1594 else {
1595
1596 /* The only reason an HCD might fail this call is if
1597 * it has not yet fully queued the urb to begin with.
1598 * Such failures should be harmless. */
1599 value = hcd->driver->urb_dequeue(hcd, urb, status);
1600 }
1601 return value;
1602 }
1603
1604 /*
1605 * called in any context
1606 *
1607 * caller guarantees urb won't be recycled till both unlink()
1608 * and the urb's completion function return
1609 */
usb_hcd_unlink_urb(struct urb * urb,int status)1610 int usb_hcd_unlink_urb (struct urb *urb, int status)
1611 {
1612 struct usb_hcd *hcd;
1613 struct usb_device *udev = urb->dev;
1614 int retval = -EIDRM;
1615 unsigned long flags;
1616
1617 /* Prevent the device and bus from going away while
1618 * the unlink is carried out. If they are already gone
1619 * then urb->use_count must be 0, since disconnected
1620 * devices can't have any active URBs.
1621 */
1622 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1623 if (atomic_read(&urb->use_count) > 0) {
1624 retval = 0;
1625 usb_get_dev(udev);
1626 }
1627 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1628 if (retval == 0) {
1629 hcd = bus_to_hcd(urb->dev->bus);
1630 retval = unlink1(hcd, urb, status);
1631 if (retval == 0)
1632 retval = -EINPROGRESS;
1633 else if (retval != -EIDRM && retval != -EBUSY)
1634 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1635 urb, retval);
1636 usb_put_dev(udev);
1637 }
1638 return retval;
1639 }
1640
1641 /*-------------------------------------------------------------------------*/
1642
__usb_hcd_giveback_urb(struct urb * urb)1643 static void __usb_hcd_giveback_urb(struct urb *urb)
1644 {
1645 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1646 struct usb_anchor *anchor = urb->anchor;
1647 int status = urb->unlinked;
1648
1649 urb->hcpriv = NULL;
1650 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1651 urb->actual_length < urb->transfer_buffer_length &&
1652 !status))
1653 status = -EREMOTEIO;
1654
1655 unmap_urb_for_dma(hcd, urb);
1656 usbmon_urb_complete(&hcd->self, urb, status);
1657 usb_anchor_suspend_wakeups(anchor);
1658 usb_unanchor_urb(urb);
1659 if (likely(status == 0))
1660 usb_led_activity(USB_LED_EVENT_HOST);
1661
1662 /* pass ownership to the completion handler */
1663 urb->status = status;
1664 /*
1665 * This function can be called in task context inside another remote
1666 * coverage collection section, but kcov doesn't support that kind of
1667 * recursion yet. Only collect coverage in softirq context for now.
1668 */
1669 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1670 urb->complete(urb);
1671 kcov_remote_stop_softirq();
1672
1673 usb_anchor_resume_wakeups(anchor);
1674 atomic_dec(&urb->use_count);
1675 /*
1676 * Order the write of urb->use_count above before the read
1677 * of urb->reject below. Pairs with the memory barriers in
1678 * usb_kill_urb() and usb_poison_urb().
1679 */
1680 smp_mb__after_atomic();
1681
1682 if (unlikely(atomic_read(&urb->reject)))
1683 wake_up(&usb_kill_urb_queue);
1684 usb_put_urb(urb);
1685 }
1686
usb_giveback_urb_bh(struct tasklet_struct * t)1687 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1688 {
1689 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1690 struct list_head local_list;
1691
1692 spin_lock_irq(&bh->lock);
1693 bh->running = true;
1694 list_replace_init(&bh->head, &local_list);
1695 spin_unlock_irq(&bh->lock);
1696
1697 while (!list_empty(&local_list)) {
1698 struct urb *urb;
1699
1700 urb = list_entry(local_list.next, struct urb, urb_list);
1701 list_del_init(&urb->urb_list);
1702 bh->completing_ep = urb->ep;
1703 __usb_hcd_giveback_urb(urb);
1704 bh->completing_ep = NULL;
1705 }
1706
1707 /*
1708 * giveback new URBs next time to prevent this function
1709 * from not exiting for a long time.
1710 */
1711 spin_lock_irq(&bh->lock);
1712 if (!list_empty(&bh->head)) {
1713 if (bh->high_prio)
1714 tasklet_hi_schedule(&bh->bh);
1715 else
1716 tasklet_schedule(&bh->bh);
1717 }
1718 bh->running = false;
1719 spin_unlock_irq(&bh->lock);
1720 }
1721
1722 /**
1723 * usb_hcd_giveback_urb - return URB from HCD to device driver
1724 * @hcd: host controller returning the URB
1725 * @urb: urb being returned to the USB device driver.
1726 * @status: completion status code for the URB.
1727 *
1728 * Context: atomic. The completion callback is invoked in caller's context.
1729 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1730 * context (except for URBs submitted to the root hub which always complete in
1731 * caller's context).
1732 *
1733 * This hands the URB from HCD to its USB device driver, using its
1734 * completion function. The HCD has freed all per-urb resources
1735 * (and is done using urb->hcpriv). It also released all HCD locks;
1736 * the device driver won't cause problems if it frees, modifies,
1737 * or resubmits this URB.
1738 *
1739 * If @urb was unlinked, the value of @status will be overridden by
1740 * @urb->unlinked. Erroneous short transfers are detected in case
1741 * the HCD hasn't checked for them.
1742 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1743 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1744 {
1745 struct giveback_urb_bh *bh;
1746 bool running;
1747
1748 /* pass status to tasklet via unlinked */
1749 if (likely(!urb->unlinked))
1750 urb->unlinked = status;
1751
1752 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1753 __usb_hcd_giveback_urb(urb);
1754 return;
1755 }
1756
1757 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1758 bh = &hcd->high_prio_bh;
1759 else
1760 bh = &hcd->low_prio_bh;
1761
1762 spin_lock(&bh->lock);
1763 list_add_tail(&urb->urb_list, &bh->head);
1764 running = bh->running;
1765 spin_unlock(&bh->lock);
1766
1767 if (running)
1768 ;
1769 else if (bh->high_prio)
1770 tasklet_hi_schedule(&bh->bh);
1771 else
1772 tasklet_schedule(&bh->bh);
1773 }
1774 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1775
1776 /*-------------------------------------------------------------------------*/
1777
1778 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1779 * queue to drain completely. The caller must first insure that no more
1780 * URBs can be submitted for this endpoint.
1781 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1782 void usb_hcd_flush_endpoint(struct usb_device *udev,
1783 struct usb_host_endpoint *ep)
1784 {
1785 struct usb_hcd *hcd;
1786 struct urb *urb;
1787
1788 if (!ep)
1789 return;
1790 might_sleep();
1791 hcd = bus_to_hcd(udev->bus);
1792
1793 /* No more submits can occur */
1794 spin_lock_irq(&hcd_urb_list_lock);
1795 rescan:
1796 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1797 int is_in;
1798
1799 if (urb->unlinked)
1800 continue;
1801 usb_get_urb (urb);
1802 is_in = usb_urb_dir_in(urb);
1803 spin_unlock(&hcd_urb_list_lock);
1804
1805 /* kick hcd */
1806 unlink1(hcd, urb, -ESHUTDOWN);
1807 dev_dbg (hcd->self.controller,
1808 "shutdown urb %pK ep%d%s-%s\n",
1809 urb, usb_endpoint_num(&ep->desc),
1810 is_in ? "in" : "out",
1811 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1812 usb_put_urb (urb);
1813
1814 /* list contents may have changed */
1815 spin_lock(&hcd_urb_list_lock);
1816 goto rescan;
1817 }
1818 spin_unlock_irq(&hcd_urb_list_lock);
1819
1820 /* Wait until the endpoint queue is completely empty */
1821 while (!list_empty (&ep->urb_list)) {
1822 spin_lock_irq(&hcd_urb_list_lock);
1823
1824 /* The list may have changed while we acquired the spinlock */
1825 urb = NULL;
1826 if (!list_empty (&ep->urb_list)) {
1827 urb = list_entry (ep->urb_list.prev, struct urb,
1828 urb_list);
1829 usb_get_urb (urb);
1830 }
1831 spin_unlock_irq(&hcd_urb_list_lock);
1832
1833 if (urb) {
1834 usb_kill_urb (urb);
1835 usb_put_urb (urb);
1836 }
1837 }
1838 }
1839
1840 /**
1841 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1842 * the bus bandwidth
1843 * @udev: target &usb_device
1844 * @new_config: new configuration to install
1845 * @cur_alt: the current alternate interface setting
1846 * @new_alt: alternate interface setting that is being installed
1847 *
1848 * To change configurations, pass in the new configuration in new_config,
1849 * and pass NULL for cur_alt and new_alt.
1850 *
1851 * To reset a device's configuration (put the device in the ADDRESSED state),
1852 * pass in NULL for new_config, cur_alt, and new_alt.
1853 *
1854 * To change alternate interface settings, pass in NULL for new_config,
1855 * pass in the current alternate interface setting in cur_alt,
1856 * and pass in the new alternate interface setting in new_alt.
1857 *
1858 * Return: An error if the requested bandwidth change exceeds the
1859 * bus bandwidth or host controller internal resources.
1860 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1861 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1862 struct usb_host_config *new_config,
1863 struct usb_host_interface *cur_alt,
1864 struct usb_host_interface *new_alt)
1865 {
1866 int num_intfs, i, j;
1867 struct usb_host_interface *alt = NULL;
1868 int ret = 0;
1869 struct usb_hcd *hcd;
1870 struct usb_host_endpoint *ep;
1871
1872 hcd = bus_to_hcd(udev->bus);
1873 if (!hcd->driver->check_bandwidth)
1874 return 0;
1875
1876 /* Configuration is being removed - set configuration 0 */
1877 if (!new_config && !cur_alt) {
1878 for (i = 1; i < 16; ++i) {
1879 ep = udev->ep_out[i];
1880 if (ep)
1881 hcd->driver->drop_endpoint(hcd, udev, ep);
1882 ep = udev->ep_in[i];
1883 if (ep)
1884 hcd->driver->drop_endpoint(hcd, udev, ep);
1885 }
1886 hcd->driver->check_bandwidth(hcd, udev);
1887 return 0;
1888 }
1889 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1890 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1891 * of the bus. There will always be bandwidth for endpoint 0, so it's
1892 * ok to exclude it.
1893 */
1894 if (new_config) {
1895 num_intfs = new_config->desc.bNumInterfaces;
1896 /* Remove endpoints (except endpoint 0, which is always on the
1897 * schedule) from the old config from the schedule
1898 */
1899 for (i = 1; i < 16; ++i) {
1900 ep = udev->ep_out[i];
1901 if (ep) {
1902 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1903 if (ret < 0)
1904 goto reset;
1905 }
1906 ep = udev->ep_in[i];
1907 if (ep) {
1908 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1909 if (ret < 0)
1910 goto reset;
1911 }
1912 }
1913 for (i = 0; i < num_intfs; ++i) {
1914 struct usb_host_interface *first_alt;
1915 int iface_num;
1916
1917 first_alt = &new_config->intf_cache[i]->altsetting[0];
1918 iface_num = first_alt->desc.bInterfaceNumber;
1919 /* Set up endpoints for alternate interface setting 0 */
1920 alt = usb_find_alt_setting(new_config, iface_num, 0);
1921 if (!alt)
1922 /* No alt setting 0? Pick the first setting. */
1923 alt = first_alt;
1924
1925 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1926 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1927 if (ret < 0)
1928 goto reset;
1929 }
1930 }
1931 }
1932 if (cur_alt && new_alt) {
1933 struct usb_interface *iface = usb_ifnum_to_if(udev,
1934 cur_alt->desc.bInterfaceNumber);
1935
1936 if (!iface)
1937 return -EINVAL;
1938 if (iface->resetting_device) {
1939 /*
1940 * The USB core just reset the device, so the xHCI host
1941 * and the device will think alt setting 0 is installed.
1942 * However, the USB core will pass in the alternate
1943 * setting installed before the reset as cur_alt. Dig
1944 * out the alternate setting 0 structure, or the first
1945 * alternate setting if a broken device doesn't have alt
1946 * setting 0.
1947 */
1948 cur_alt = usb_altnum_to_altsetting(iface, 0);
1949 if (!cur_alt)
1950 cur_alt = &iface->altsetting[0];
1951 }
1952
1953 /* Drop all the endpoints in the current alt setting */
1954 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1955 ret = hcd->driver->drop_endpoint(hcd, udev,
1956 &cur_alt->endpoint[i]);
1957 if (ret < 0)
1958 goto reset;
1959 }
1960 /* Add all the endpoints in the new alt setting */
1961 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1962 ret = hcd->driver->add_endpoint(hcd, udev,
1963 &new_alt->endpoint[i]);
1964 if (ret < 0)
1965 goto reset;
1966 }
1967 }
1968 ret = hcd->driver->check_bandwidth(hcd, udev);
1969 reset:
1970 if (ret < 0)
1971 hcd->driver->reset_bandwidth(hcd, udev);
1972 return ret;
1973 }
1974
1975 /* Disables the endpoint: synchronizes with the hcd to make sure all
1976 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1977 * have been called previously. Use for set_configuration, set_interface,
1978 * driver removal, physical disconnect.
1979 *
1980 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1981 * type, maxpacket size, toggle, halt status, and scheduling.
1982 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1983 void usb_hcd_disable_endpoint(struct usb_device *udev,
1984 struct usb_host_endpoint *ep)
1985 {
1986 struct usb_hcd *hcd;
1987
1988 might_sleep();
1989 hcd = bus_to_hcd(udev->bus);
1990 if (hcd->driver->endpoint_disable)
1991 hcd->driver->endpoint_disable(hcd, ep);
1992 }
1993
1994 /**
1995 * usb_hcd_reset_endpoint - reset host endpoint state
1996 * @udev: USB device.
1997 * @ep: the endpoint to reset.
1998 *
1999 * Resets any host endpoint state such as the toggle bit, sequence
2000 * number and current window.
2001 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2002 void usb_hcd_reset_endpoint(struct usb_device *udev,
2003 struct usb_host_endpoint *ep)
2004 {
2005 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2006
2007 if (hcd->driver->endpoint_reset)
2008 hcd->driver->endpoint_reset(hcd, ep);
2009 else {
2010 int epnum = usb_endpoint_num(&ep->desc);
2011 int is_out = usb_endpoint_dir_out(&ep->desc);
2012 int is_control = usb_endpoint_xfer_control(&ep->desc);
2013
2014 usb_settoggle(udev, epnum, is_out, 0);
2015 if (is_control)
2016 usb_settoggle(udev, epnum, !is_out, 0);
2017 }
2018 }
2019
2020 /**
2021 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2022 * @interface: alternate setting that includes all endpoints.
2023 * @eps: array of endpoints that need streams.
2024 * @num_eps: number of endpoints in the array.
2025 * @num_streams: number of streams to allocate.
2026 * @mem_flags: flags hcd should use to allocate memory.
2027 *
2028 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2029 * Drivers may queue multiple transfers to different stream IDs, which may
2030 * complete in a different order than they were queued.
2031 *
2032 * Return: On success, the number of allocated streams. On failure, a negative
2033 * error code.
2034 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2035 int usb_alloc_streams(struct usb_interface *interface,
2036 struct usb_host_endpoint **eps, unsigned int num_eps,
2037 unsigned int num_streams, gfp_t mem_flags)
2038 {
2039 struct usb_hcd *hcd;
2040 struct usb_device *dev;
2041 int i, ret;
2042
2043 dev = interface_to_usbdev(interface);
2044 hcd = bus_to_hcd(dev->bus);
2045 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2046 return -EINVAL;
2047 if (dev->speed < USB_SPEED_SUPER)
2048 return -EINVAL;
2049 if (dev->state < USB_STATE_CONFIGURED)
2050 return -ENODEV;
2051
2052 for (i = 0; i < num_eps; i++) {
2053 /* Streams only apply to bulk endpoints. */
2054 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2055 return -EINVAL;
2056 /* Re-alloc is not allowed */
2057 if (eps[i]->streams)
2058 return -EINVAL;
2059 }
2060
2061 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2062 num_streams, mem_flags);
2063 if (ret < 0)
2064 return ret;
2065
2066 for (i = 0; i < num_eps; i++)
2067 eps[i]->streams = ret;
2068
2069 return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2072
2073 /**
2074 * usb_free_streams - free bulk endpoint stream IDs.
2075 * @interface: alternate setting that includes all endpoints.
2076 * @eps: array of endpoints to remove streams from.
2077 * @num_eps: number of endpoints in the array.
2078 * @mem_flags: flags hcd should use to allocate memory.
2079 *
2080 * Reverts a group of bulk endpoints back to not using stream IDs.
2081 * Can fail if we are given bad arguments, or HCD is broken.
2082 *
2083 * Return: 0 on success. On failure, a negative error code.
2084 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2085 int usb_free_streams(struct usb_interface *interface,
2086 struct usb_host_endpoint **eps, unsigned int num_eps,
2087 gfp_t mem_flags)
2088 {
2089 struct usb_hcd *hcd;
2090 struct usb_device *dev;
2091 int i, ret;
2092
2093 dev = interface_to_usbdev(interface);
2094 hcd = bus_to_hcd(dev->bus);
2095 if (dev->speed < USB_SPEED_SUPER)
2096 return -EINVAL;
2097
2098 /* Double-free is not allowed */
2099 for (i = 0; i < num_eps; i++)
2100 if (!eps[i] || !eps[i]->streams)
2101 return -EINVAL;
2102
2103 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2104 if (ret < 0)
2105 return ret;
2106
2107 for (i = 0; i < num_eps; i++)
2108 eps[i]->streams = 0;
2109
2110 return ret;
2111 }
2112 EXPORT_SYMBOL_GPL(usb_free_streams);
2113
2114 /* Protect against drivers that try to unlink URBs after the device
2115 * is gone, by waiting until all unlinks for @udev are finished.
2116 * Since we don't currently track URBs by device, simply wait until
2117 * nothing is running in the locked region of usb_hcd_unlink_urb().
2118 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2119 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2120 {
2121 spin_lock_irq(&hcd_urb_unlink_lock);
2122 spin_unlock_irq(&hcd_urb_unlink_lock);
2123 }
2124
2125 /*-------------------------------------------------------------------------*/
2126
2127 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2128 int usb_hcd_get_frame_number (struct usb_device *udev)
2129 {
2130 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2131
2132 if (!HCD_RH_RUNNING(hcd))
2133 return -ESHUTDOWN;
2134 return hcd->driver->get_frame_number (hcd);
2135 }
2136
2137 /*-------------------------------------------------------------------------*/
2138 #ifdef CONFIG_USB_HCD_TEST_MODE
2139
usb_ehset_completion(struct urb * urb)2140 static void usb_ehset_completion(struct urb *urb)
2141 {
2142 struct completion *done = urb->context;
2143
2144 complete(done);
2145 }
2146 /*
2147 * Allocate and initialize a control URB. This request will be used by the
2148 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2149 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2150 * Return NULL if failed.
2151 */
request_single_step_set_feature_urb(struct usb_device * udev,void * dr,void * buf,struct completion * done)2152 static struct urb *request_single_step_set_feature_urb(
2153 struct usb_device *udev,
2154 void *dr,
2155 void *buf,
2156 struct completion *done)
2157 {
2158 struct urb *urb;
2159 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2160 struct usb_host_endpoint *ep;
2161
2162 urb = usb_alloc_urb(0, GFP_KERNEL);
2163 if (!urb)
2164 return NULL;
2165
2166 urb->pipe = usb_rcvctrlpipe(udev, 0);
2167 ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out)
2168 [usb_pipeendpoint(urb->pipe)];
2169 if (!ep) {
2170 usb_free_urb(urb);
2171 return NULL;
2172 }
2173
2174 urb->ep = ep;
2175 urb->dev = udev;
2176 urb->setup_packet = (void *)dr;
2177 urb->transfer_buffer = buf;
2178 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2179 urb->complete = usb_ehset_completion;
2180 urb->status = -EINPROGRESS;
2181 urb->actual_length = 0;
2182 urb->transfer_flags = URB_DIR_IN;
2183 usb_get_urb(urb);
2184 atomic_inc(&urb->use_count);
2185 atomic_inc(&urb->dev->urbnum);
2186 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2187 usb_put_urb(urb);
2188 usb_free_urb(urb);
2189 return NULL;
2190 }
2191
2192 urb->context = done;
2193 return urb;
2194 }
2195
ehset_single_step_set_feature(struct usb_hcd * hcd,int port)2196 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2197 {
2198 int retval = -ENOMEM;
2199 struct usb_ctrlrequest *dr;
2200 struct urb *urb;
2201 struct usb_device *udev;
2202 struct usb_device_descriptor *buf;
2203 DECLARE_COMPLETION_ONSTACK(done);
2204
2205 /* Obtain udev of the rhub's child port */
2206 udev = usb_hub_find_child(hcd->self.root_hub, port);
2207 if (!udev) {
2208 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2209 return -ENODEV;
2210 }
2211 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2212 if (!buf)
2213 return -ENOMEM;
2214
2215 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2216 if (!dr) {
2217 kfree(buf);
2218 return -ENOMEM;
2219 }
2220
2221 /* Fill Setup packet for GetDescriptor */
2222 dr->bRequestType = USB_DIR_IN;
2223 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2224 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2225 dr->wIndex = 0;
2226 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2227 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2228 if (!urb)
2229 goto cleanup;
2230
2231 /* Submit just the SETUP stage */
2232 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2233 if (retval)
2234 goto out1;
2235 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2236 usb_kill_urb(urb);
2237 retval = -ETIMEDOUT;
2238 dev_err(hcd->self.controller,
2239 "%s SETUP stage timed out on ep0\n", __func__);
2240 goto out1;
2241 }
2242 msleep(15 * 1000);
2243
2244 /* Complete remaining DATA and STATUS stages using the same URB */
2245 urb->status = -EINPROGRESS;
2246 usb_get_urb(urb);
2247 atomic_inc(&urb->use_count);
2248 atomic_inc(&urb->dev->urbnum);
2249 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2250 if (!retval && !wait_for_completion_timeout(&done,
2251 msecs_to_jiffies(2000))) {
2252 usb_kill_urb(urb);
2253 retval = -ETIMEDOUT;
2254 dev_err(hcd->self.controller,
2255 "%s IN stage timed out on ep0\n", __func__);
2256 }
2257 out1:
2258 usb_free_urb(urb);
2259 cleanup:
2260 kfree(dr);
2261 kfree(buf);
2262 return retval;
2263 }
2264 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2265 #endif /* CONFIG_USB_HCD_TEST_MODE */
2266
2267 /*-------------------------------------------------------------------------*/
2268
2269 #ifdef CONFIG_PM
2270
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2271 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2272 {
2273 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2274 int status;
2275 int old_state = hcd->state;
2276
2277 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2278 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2279 rhdev->do_remote_wakeup);
2280 if (HCD_DEAD(hcd)) {
2281 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2282 return 0;
2283 }
2284
2285 if (!hcd->driver->bus_suspend) {
2286 status = -ENOENT;
2287 } else {
2288 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2289 hcd->state = HC_STATE_QUIESCING;
2290 status = hcd->driver->bus_suspend(hcd);
2291 }
2292 if (status == 0) {
2293 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2294 hcd->state = HC_STATE_SUSPENDED;
2295
2296 if (!PMSG_IS_AUTO(msg))
2297 usb_phy_roothub_suspend(hcd->self.sysdev,
2298 hcd->phy_roothub);
2299
2300 /* Did we race with a root-hub wakeup event? */
2301 if (rhdev->do_remote_wakeup) {
2302 char buffer[6];
2303
2304 status = hcd->driver->hub_status_data(hcd, buffer);
2305 if (status != 0) {
2306 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2307 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2308 status = -EBUSY;
2309 }
2310 }
2311 } else {
2312 spin_lock_irq(&hcd_root_hub_lock);
2313 if (!HCD_DEAD(hcd)) {
2314 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2315 hcd->state = old_state;
2316 }
2317 spin_unlock_irq(&hcd_root_hub_lock);
2318 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2319 "suspend", status);
2320 }
2321 return status;
2322 }
2323
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2324 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2325 {
2326 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2327 int status;
2328 int old_state = hcd->state;
2329
2330 dev_dbg(&rhdev->dev, "usb %sresume\n",
2331 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2332 if (HCD_DEAD(hcd)) {
2333 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2334 return 0;
2335 }
2336
2337 if (!PMSG_IS_AUTO(msg)) {
2338 status = usb_phy_roothub_resume(hcd->self.sysdev,
2339 hcd->phy_roothub);
2340 if (status)
2341 return status;
2342 }
2343
2344 if (!hcd->driver->bus_resume)
2345 return -ENOENT;
2346 if (HCD_RH_RUNNING(hcd))
2347 return 0;
2348
2349 hcd->state = HC_STATE_RESUMING;
2350 status = hcd->driver->bus_resume(hcd);
2351 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2352 if (status == 0)
2353 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2354
2355 if (status == 0) {
2356 struct usb_device *udev;
2357 int port1;
2358
2359 spin_lock_irq(&hcd_root_hub_lock);
2360 if (!HCD_DEAD(hcd)) {
2361 usb_set_device_state(rhdev, rhdev->actconfig
2362 ? USB_STATE_CONFIGURED
2363 : USB_STATE_ADDRESS);
2364 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2365 hcd->state = HC_STATE_RUNNING;
2366 }
2367 spin_unlock_irq(&hcd_root_hub_lock);
2368
2369 /*
2370 * Check whether any of the enabled ports on the root hub are
2371 * unsuspended. If they are then a TRSMRCY delay is needed
2372 * (this is what the USB-2 spec calls a "global resume").
2373 * Otherwise we can skip the delay.
2374 */
2375 usb_hub_for_each_child(rhdev, port1, udev) {
2376 if (udev->state != USB_STATE_NOTATTACHED &&
2377 !udev->port_is_suspended) {
2378 usleep_range(10000, 11000); /* TRSMRCY */
2379 break;
2380 }
2381 }
2382 } else {
2383 hcd->state = old_state;
2384 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2385 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2386 "resume", status);
2387 if (status != -ESHUTDOWN)
2388 usb_hc_died(hcd);
2389 }
2390 return status;
2391 }
2392
2393 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2394 static void hcd_resume_work(struct work_struct *work)
2395 {
2396 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2397 struct usb_device *udev = hcd->self.root_hub;
2398
2399 usb_remote_wakeup(udev);
2400 }
2401
2402 /**
2403 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2404 * @hcd: host controller for this root hub
2405 *
2406 * The USB host controller calls this function when its root hub is
2407 * suspended (with the remote wakeup feature enabled) and a remote
2408 * wakeup request is received. The routine submits a workqueue request
2409 * to resume the root hub (that is, manage its downstream ports again).
2410 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2411 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2412 {
2413 unsigned long flags;
2414
2415 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2416 if (hcd->rh_registered) {
2417 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2418 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2419 queue_work(pm_wq, &hcd->wakeup_work);
2420 }
2421 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2422 }
2423 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2424
2425 #endif /* CONFIG_PM */
2426
2427 /*-------------------------------------------------------------------------*/
2428
2429 #ifdef CONFIG_USB_OTG
2430
2431 /**
2432 * usb_bus_start_enum - start immediate enumeration (for OTG)
2433 * @bus: the bus (must use hcd framework)
2434 * @port_num: 1-based number of port; usually bus->otg_port
2435 * Context: atomic
2436 *
2437 * Starts enumeration, with an immediate reset followed later by
2438 * hub_wq identifying and possibly configuring the device.
2439 * This is needed by OTG controller drivers, where it helps meet
2440 * HNP protocol timing requirements for starting a port reset.
2441 *
2442 * Return: 0 if successful.
2443 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2444 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2445 {
2446 struct usb_hcd *hcd;
2447 int status = -EOPNOTSUPP;
2448
2449 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2450 * boards with root hubs hooked up to internal devices (instead of
2451 * just the OTG port) may need more attention to resetting...
2452 */
2453 hcd = bus_to_hcd(bus);
2454 if (port_num && hcd->driver->start_port_reset)
2455 status = hcd->driver->start_port_reset(hcd, port_num);
2456
2457 /* allocate hub_wq shortly after (first) root port reset finishes;
2458 * it may issue others, until at least 50 msecs have passed.
2459 */
2460 if (status == 0)
2461 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2462 return status;
2463 }
2464 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2465
2466 #endif
2467
2468 /*-------------------------------------------------------------------------*/
2469
2470 /**
2471 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2472 * @irq: the IRQ being raised
2473 * @__hcd: pointer to the HCD whose IRQ is being signaled
2474 *
2475 * If the controller isn't HALTed, calls the driver's irq handler.
2476 * Checks whether the controller is now dead.
2477 *
2478 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2479 */
usb_hcd_irq(int irq,void * __hcd)2480 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2481 {
2482 struct usb_hcd *hcd = __hcd;
2483 irqreturn_t rc;
2484
2485 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2486 rc = IRQ_NONE;
2487 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2488 rc = IRQ_NONE;
2489 else
2490 rc = IRQ_HANDLED;
2491
2492 return rc;
2493 }
2494 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2495
2496 /*-------------------------------------------------------------------------*/
2497
2498 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2499 static void hcd_died_work(struct work_struct *work)
2500 {
2501 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2502 static char *env[] = {
2503 "ERROR=DEAD",
2504 NULL
2505 };
2506
2507 /* Notify user space that the host controller has died */
2508 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2509 }
2510
2511 /**
2512 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2513 * @hcd: pointer to the HCD representing the controller
2514 *
2515 * This is called by bus glue to report a USB host controller that died
2516 * while operations may still have been pending. It's called automatically
2517 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2518 *
2519 * Only call this function with the primary HCD.
2520 */
usb_hc_died(struct usb_hcd * hcd)2521 void usb_hc_died (struct usb_hcd *hcd)
2522 {
2523 unsigned long flags;
2524
2525 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2526
2527 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2528 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2529 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2530 if (hcd->rh_registered) {
2531 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2532
2533 /* make hub_wq clean up old urbs and devices */
2534 usb_set_device_state (hcd->self.root_hub,
2535 USB_STATE_NOTATTACHED);
2536 usb_kick_hub_wq(hcd->self.root_hub);
2537 }
2538 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2539 hcd = hcd->shared_hcd;
2540 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2541 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2542 if (hcd->rh_registered) {
2543 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2544
2545 /* make hub_wq clean up old urbs and devices */
2546 usb_set_device_state(hcd->self.root_hub,
2547 USB_STATE_NOTATTACHED);
2548 usb_kick_hub_wq(hcd->self.root_hub);
2549 }
2550 }
2551
2552 /* Handle the case where this function gets called with a shared HCD */
2553 if (usb_hcd_is_primary_hcd(hcd))
2554 schedule_work(&hcd->died_work);
2555 else
2556 schedule_work(&hcd->primary_hcd->died_work);
2557
2558 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2559 /* Make sure that the other roothub is also deallocated. */
2560 }
2561 EXPORT_SYMBOL_GPL (usb_hc_died);
2562
2563 /*-------------------------------------------------------------------------*/
2564
init_giveback_urb_bh(struct giveback_urb_bh * bh)2565 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2566 {
2567
2568 spin_lock_init(&bh->lock);
2569 INIT_LIST_HEAD(&bh->head);
2570 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2571 }
2572
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2573 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2574 struct device *sysdev, struct device *dev, const char *bus_name,
2575 struct usb_hcd *primary_hcd)
2576 {
2577 struct usb_hcd *hcd;
2578
2579 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2580 if (!hcd)
2581 return NULL;
2582 if (primary_hcd == NULL) {
2583 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2584 GFP_KERNEL);
2585 if (!hcd->address0_mutex) {
2586 kfree(hcd);
2587 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2588 return NULL;
2589 }
2590 mutex_init(hcd->address0_mutex);
2591 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2592 GFP_KERNEL);
2593 if (!hcd->bandwidth_mutex) {
2594 kfree(hcd->address0_mutex);
2595 kfree(hcd);
2596 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2597 return NULL;
2598 }
2599 mutex_init(hcd->bandwidth_mutex);
2600 dev_set_drvdata(dev, hcd);
2601 } else {
2602 mutex_lock(&usb_port_peer_mutex);
2603 hcd->address0_mutex = primary_hcd->address0_mutex;
2604 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2605 hcd->primary_hcd = primary_hcd;
2606 primary_hcd->primary_hcd = primary_hcd;
2607 hcd->shared_hcd = primary_hcd;
2608 primary_hcd->shared_hcd = hcd;
2609 mutex_unlock(&usb_port_peer_mutex);
2610 }
2611
2612 kref_init(&hcd->kref);
2613
2614 usb_bus_init(&hcd->self);
2615 hcd->self.controller = dev;
2616 hcd->self.sysdev = sysdev;
2617 hcd->self.bus_name = bus_name;
2618
2619 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2620 #ifdef CONFIG_PM
2621 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2622 #endif
2623
2624 INIT_WORK(&hcd->died_work, hcd_died_work);
2625
2626 hcd->driver = driver;
2627 hcd->speed = driver->flags & HCD_MASK;
2628 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2629 "USB Host Controller";
2630 return hcd;
2631 }
2632 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2633
2634 /**
2635 * usb_create_shared_hcd - create and initialize an HCD structure
2636 * @driver: HC driver that will use this hcd
2637 * @dev: device for this HC, stored in hcd->self.controller
2638 * @bus_name: value to store in hcd->self.bus_name
2639 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2640 * PCI device. Only allocate certain resources for the primary HCD
2641 *
2642 * Context: task context, might sleep.
2643 *
2644 * Allocate a struct usb_hcd, with extra space at the end for the
2645 * HC driver's private data. Initialize the generic members of the
2646 * hcd structure.
2647 *
2648 * Return: On success, a pointer to the created and initialized HCD structure.
2649 * On failure (e.g. if memory is unavailable), %NULL.
2650 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2651 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2652 struct device *dev, const char *bus_name,
2653 struct usb_hcd *primary_hcd)
2654 {
2655 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2656 }
2657 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2658
2659 /**
2660 * usb_create_hcd - create and initialize an HCD structure
2661 * @driver: HC driver that will use this hcd
2662 * @dev: device for this HC, stored in hcd->self.controller
2663 * @bus_name: value to store in hcd->self.bus_name
2664 *
2665 * Context: task context, might sleep.
2666 *
2667 * Allocate a struct usb_hcd, with extra space at the end for the
2668 * HC driver's private data. Initialize the generic members of the
2669 * hcd structure.
2670 *
2671 * Return: On success, a pointer to the created and initialized HCD
2672 * structure. On failure (e.g. if memory is unavailable), %NULL.
2673 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2674 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2675 struct device *dev, const char *bus_name)
2676 {
2677 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2678 }
2679 EXPORT_SYMBOL_GPL(usb_create_hcd);
2680
2681 /*
2682 * Roothubs that share one PCI device must also share the bandwidth mutex.
2683 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2684 * deallocated.
2685 *
2686 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2687 * freed. When hcd_release() is called for either hcd in a peer set,
2688 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2689 */
hcd_release(struct kref * kref)2690 static void hcd_release(struct kref *kref)
2691 {
2692 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2693
2694 mutex_lock(&usb_port_peer_mutex);
2695 if (hcd->shared_hcd) {
2696 struct usb_hcd *peer = hcd->shared_hcd;
2697
2698 peer->shared_hcd = NULL;
2699 peer->primary_hcd = NULL;
2700 } else {
2701 kfree(hcd->address0_mutex);
2702 kfree(hcd->bandwidth_mutex);
2703 }
2704 mutex_unlock(&usb_port_peer_mutex);
2705 kfree(hcd);
2706 }
2707
usb_get_hcd(struct usb_hcd * hcd)2708 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2709 {
2710 if (hcd)
2711 kref_get (&hcd->kref);
2712 return hcd;
2713 }
2714 EXPORT_SYMBOL_GPL(usb_get_hcd);
2715
usb_put_hcd(struct usb_hcd * hcd)2716 void usb_put_hcd (struct usb_hcd *hcd)
2717 {
2718 if (hcd)
2719 kref_put (&hcd->kref, hcd_release);
2720 }
2721 EXPORT_SYMBOL_GPL(usb_put_hcd);
2722
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2723 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2724 {
2725 if (!hcd->primary_hcd)
2726 return 1;
2727 return hcd == hcd->primary_hcd;
2728 }
2729 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2730
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2731 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2732 {
2733 if (!hcd->driver->find_raw_port_number)
2734 return port1;
2735
2736 return hcd->driver->find_raw_port_number(hcd, port1);
2737 }
2738
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2739 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2740 unsigned int irqnum, unsigned long irqflags)
2741 {
2742 int retval;
2743
2744 if (hcd->driver->irq) {
2745
2746 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2747 hcd->driver->description, hcd->self.busnum);
2748 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2749 hcd->irq_descr, hcd);
2750 if (retval != 0) {
2751 dev_err(hcd->self.controller,
2752 "request interrupt %d failed\n",
2753 irqnum);
2754 return retval;
2755 }
2756 hcd->irq = irqnum;
2757 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2758 (hcd->driver->flags & HCD_MEMORY) ?
2759 "io mem" : "io port",
2760 (unsigned long long)hcd->rsrc_start);
2761 } else {
2762 hcd->irq = 0;
2763 if (hcd->rsrc_start)
2764 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2765 (hcd->driver->flags & HCD_MEMORY) ?
2766 "io mem" : "io port",
2767 (unsigned long long)hcd->rsrc_start);
2768 }
2769 return 0;
2770 }
2771
2772 /*
2773 * Before we free this root hub, flush in-flight peering attempts
2774 * and disable peer lookups
2775 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2776 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2777 {
2778 struct usb_device *rhdev;
2779
2780 mutex_lock(&usb_port_peer_mutex);
2781 rhdev = hcd->self.root_hub;
2782 hcd->self.root_hub = NULL;
2783 mutex_unlock(&usb_port_peer_mutex);
2784 usb_put_dev(rhdev);
2785 }
2786
2787 /**
2788 * usb_stop_hcd - Halt the HCD
2789 * @hcd: the usb_hcd that has to be halted
2790 *
2791 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2792 */
usb_stop_hcd(struct usb_hcd * hcd)2793 static void usb_stop_hcd(struct usb_hcd *hcd)
2794 {
2795 hcd->rh_pollable = 0;
2796 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2797 del_timer_sync(&hcd->rh_timer);
2798
2799 hcd->driver->stop(hcd);
2800 hcd->state = HC_STATE_HALT;
2801
2802 /* In case the HCD restarted the timer, stop it again. */
2803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2804 del_timer_sync(&hcd->rh_timer);
2805 }
2806
2807 /**
2808 * usb_add_hcd - finish generic HCD structure initialization and register
2809 * @hcd: the usb_hcd structure to initialize
2810 * @irqnum: Interrupt line to allocate
2811 * @irqflags: Interrupt type flags
2812 *
2813 * Finish the remaining parts of generic HCD initialization: allocate the
2814 * buffers of consistent memory, register the bus, request the IRQ line,
2815 * and call the driver's reset() and start() routines.
2816 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2817 int usb_add_hcd(struct usb_hcd *hcd,
2818 unsigned int irqnum, unsigned long irqflags)
2819 {
2820 int retval;
2821 struct usb_device *rhdev;
2822 struct usb_hcd *shared_hcd;
2823
2824 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2825 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2826 if (IS_ERR(hcd->phy_roothub))
2827 return PTR_ERR(hcd->phy_roothub);
2828
2829 retval = usb_phy_roothub_init(hcd->phy_roothub);
2830 if (retval)
2831 return retval;
2832
2833 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2834 PHY_MODE_USB_HOST_SS);
2835 if (retval)
2836 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2837 PHY_MODE_USB_HOST);
2838 if (retval)
2839 goto err_usb_phy_roothub_power_on;
2840
2841 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2842 if (retval)
2843 goto err_usb_phy_roothub_power_on;
2844 }
2845
2846 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2847
2848 switch (authorized_default) {
2849 case USB_AUTHORIZE_NONE:
2850 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2851 break;
2852
2853 case USB_AUTHORIZE_ALL:
2854 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2855 break;
2856
2857 case USB_AUTHORIZE_INTERNAL:
2858 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2859 break;
2860
2861 case USB_AUTHORIZE_WIRED:
2862 default:
2863 hcd->dev_policy = hcd->wireless ?
2864 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2865 break;
2866 }
2867
2868 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2869
2870 /* per default all interfaces are authorized */
2871 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2872
2873 /* HC is in reset state, but accessible. Now do the one-time init,
2874 * bottom up so that hcds can customize the root hubs before hub_wq
2875 * starts talking to them. (Note, bus id is assigned early too.)
2876 */
2877 retval = hcd_buffer_create(hcd);
2878 if (retval != 0) {
2879 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2880 goto err_create_buf;
2881 }
2882
2883 retval = usb_register_bus(&hcd->self);
2884 if (retval < 0)
2885 goto err_register_bus;
2886
2887 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2888 if (rhdev == NULL) {
2889 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2890 retval = -ENOMEM;
2891 goto err_allocate_root_hub;
2892 }
2893 mutex_lock(&usb_port_peer_mutex);
2894 hcd->self.root_hub = rhdev;
2895 mutex_unlock(&usb_port_peer_mutex);
2896
2897 rhdev->rx_lanes = 1;
2898 rhdev->tx_lanes = 1;
2899 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2900
2901 switch (hcd->speed) {
2902 case HCD_USB11:
2903 rhdev->speed = USB_SPEED_FULL;
2904 break;
2905 case HCD_USB2:
2906 rhdev->speed = USB_SPEED_HIGH;
2907 break;
2908 case HCD_USB25:
2909 rhdev->speed = USB_SPEED_WIRELESS;
2910 break;
2911 case HCD_USB3:
2912 rhdev->speed = USB_SPEED_SUPER;
2913 break;
2914 case HCD_USB32:
2915 rhdev->rx_lanes = 2;
2916 rhdev->tx_lanes = 2;
2917 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2918 rhdev->speed = USB_SPEED_SUPER_PLUS;
2919 break;
2920 case HCD_USB31:
2921 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2922 rhdev->speed = USB_SPEED_SUPER_PLUS;
2923 break;
2924 default:
2925 retval = -EINVAL;
2926 goto err_set_rh_speed;
2927 }
2928
2929 /* wakeup flag init defaults to "everything works" for root hubs,
2930 * but drivers can override it in reset() if needed, along with
2931 * recording the overall controller's system wakeup capability.
2932 */
2933 device_set_wakeup_capable(&rhdev->dev, 1);
2934
2935 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2936 * registered. But since the controller can die at any time,
2937 * let's initialize the flag before touching the hardware.
2938 */
2939 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2940
2941 /* "reset" is misnamed; its role is now one-time init. the controller
2942 * should already have been reset (and boot firmware kicked off etc).
2943 */
2944 if (hcd->driver->reset) {
2945 retval = hcd->driver->reset(hcd);
2946 if (retval < 0) {
2947 dev_err(hcd->self.controller, "can't setup: %d\n",
2948 retval);
2949 goto err_hcd_driver_setup;
2950 }
2951 }
2952 hcd->rh_pollable = 1;
2953
2954 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2955 if (retval)
2956 goto err_hcd_driver_setup;
2957
2958 /* NOTE: root hub and controller capabilities may not be the same */
2959 if (device_can_wakeup(hcd->self.controller)
2960 && device_can_wakeup(&hcd->self.root_hub->dev))
2961 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2962
2963 /* initialize tasklets */
2964 init_giveback_urb_bh(&hcd->high_prio_bh);
2965 hcd->high_prio_bh.high_prio = true;
2966 init_giveback_urb_bh(&hcd->low_prio_bh);
2967
2968 /* enable irqs just before we start the controller,
2969 * if the BIOS provides legacy PCI irqs.
2970 */
2971 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2972 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2973 if (retval)
2974 goto err_request_irq;
2975 }
2976
2977 hcd->state = HC_STATE_RUNNING;
2978 retval = hcd->driver->start(hcd);
2979 if (retval < 0) {
2980 dev_err(hcd->self.controller, "startup error %d\n", retval);
2981 goto err_hcd_driver_start;
2982 }
2983
2984 /* starting here, usbcore will pay attention to the shared HCD roothub */
2985 shared_hcd = hcd->shared_hcd;
2986 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2987 retval = register_root_hub(shared_hcd);
2988 if (retval != 0)
2989 goto err_register_root_hub;
2990
2991 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2992 usb_hcd_poll_rh_status(shared_hcd);
2993 }
2994
2995 /* starting here, usbcore will pay attention to this root hub */
2996 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2997 retval = register_root_hub(hcd);
2998 if (retval != 0)
2999 goto err_register_root_hub;
3000
3001 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
3002 usb_hcd_poll_rh_status(hcd);
3003 }
3004
3005 return retval;
3006
3007 err_register_root_hub:
3008 usb_stop_hcd(hcd);
3009 err_hcd_driver_start:
3010 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3011 free_irq(irqnum, hcd);
3012 err_request_irq:
3013 err_hcd_driver_setup:
3014 err_set_rh_speed:
3015 usb_put_invalidate_rhdev(hcd);
3016 err_allocate_root_hub:
3017 usb_deregister_bus(&hcd->self);
3018 err_register_bus:
3019 hcd_buffer_destroy(hcd);
3020 err_create_buf:
3021 usb_phy_roothub_power_off(hcd->phy_roothub);
3022 err_usb_phy_roothub_power_on:
3023 usb_phy_roothub_exit(hcd->phy_roothub);
3024
3025 return retval;
3026 }
3027 EXPORT_SYMBOL_GPL(usb_add_hcd);
3028
3029 /**
3030 * usb_remove_hcd - shutdown processing for generic HCDs
3031 * @hcd: the usb_hcd structure to remove
3032 *
3033 * Context: task context, might sleep.
3034 *
3035 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3036 * invoking the HCD's stop() method.
3037 */
usb_remove_hcd(struct usb_hcd * hcd)3038 void usb_remove_hcd(struct usb_hcd *hcd)
3039 {
3040 struct usb_device *rhdev;
3041 bool rh_registered;
3042
3043 if (!hcd) {
3044 pr_debug("%s: hcd is NULL\n", __func__);
3045 return;
3046 }
3047 rhdev = hcd->self.root_hub;
3048
3049 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3050
3051 usb_get_dev(rhdev);
3052 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3053 if (HC_IS_RUNNING (hcd->state))
3054 hcd->state = HC_STATE_QUIESCING;
3055
3056 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3057 spin_lock_irq (&hcd_root_hub_lock);
3058 rh_registered = hcd->rh_registered;
3059 hcd->rh_registered = 0;
3060 spin_unlock_irq (&hcd_root_hub_lock);
3061
3062 #ifdef CONFIG_PM
3063 cancel_work_sync(&hcd->wakeup_work);
3064 #endif
3065 cancel_work_sync(&hcd->died_work);
3066
3067 mutex_lock(&usb_bus_idr_lock);
3068 if (rh_registered)
3069 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3070 mutex_unlock(&usb_bus_idr_lock);
3071
3072 /*
3073 * tasklet_kill() isn't needed here because:
3074 * - driver's disconnect() called from usb_disconnect() should
3075 * make sure its URBs are completed during the disconnect()
3076 * callback
3077 *
3078 * - it is too late to run complete() here since driver may have
3079 * been removed already now
3080 */
3081
3082 /* Prevent any more root-hub status calls from the timer.
3083 * The HCD might still restart the timer (if a port status change
3084 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3085 * the hub_status_data() callback.
3086 */
3087 usb_stop_hcd(hcd);
3088
3089 if (usb_hcd_is_primary_hcd(hcd)) {
3090 if (hcd->irq > 0)
3091 free_irq(hcd->irq, hcd);
3092 }
3093
3094 usb_deregister_bus(&hcd->self);
3095 hcd_buffer_destroy(hcd);
3096
3097 usb_phy_roothub_power_off(hcd->phy_roothub);
3098 usb_phy_roothub_exit(hcd->phy_roothub);
3099
3100 usb_put_invalidate_rhdev(hcd);
3101 hcd->flags = 0;
3102 }
3103 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3104
3105 void
usb_hcd_platform_shutdown(struct platform_device * dev)3106 usb_hcd_platform_shutdown(struct platform_device *dev)
3107 {
3108 struct usb_hcd *hcd = platform_get_drvdata(dev);
3109
3110 /* No need for pm_runtime_put(), we're shutting down */
3111 pm_runtime_get_sync(&dev->dev);
3112
3113 if (hcd->driver->shutdown)
3114 hcd->driver->shutdown(hcd);
3115 }
3116 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3117
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)3118 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3119 dma_addr_t dma, size_t size)
3120 {
3121 int err;
3122 void *local_mem;
3123
3124 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3125 dev_to_node(hcd->self.sysdev),
3126 dev_name(hcd->self.sysdev));
3127 if (IS_ERR(hcd->localmem_pool))
3128 return PTR_ERR(hcd->localmem_pool);
3129
3130 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3131 size, MEMREMAP_WC);
3132 if (IS_ERR(local_mem))
3133 return PTR_ERR(local_mem);
3134
3135 /*
3136 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3137 * It's not backed by system memory and thus there's no kernel mapping
3138 * for it.
3139 */
3140 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3141 dma, size, dev_to_node(hcd->self.sysdev));
3142 if (err < 0) {
3143 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3144 err);
3145 return err;
3146 }
3147
3148 return 0;
3149 }
3150 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3151
3152 /*-------------------------------------------------------------------------*/
3153
3154 #if IS_ENABLED(CONFIG_USB_MON)
3155
3156 const struct usb_mon_operations *mon_ops;
3157
3158 /*
3159 * The registration is unlocked.
3160 * We do it this way because we do not want to lock in hot paths.
3161 *
3162 * Notice that the code is minimally error-proof. Because usbmon needs
3163 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3164 */
3165
usb_mon_register(const struct usb_mon_operations * ops)3166 int usb_mon_register(const struct usb_mon_operations *ops)
3167 {
3168
3169 if (mon_ops)
3170 return -EBUSY;
3171
3172 mon_ops = ops;
3173 mb();
3174 return 0;
3175 }
3176 EXPORT_SYMBOL_GPL (usb_mon_register);
3177
usb_mon_deregister(void)3178 void usb_mon_deregister (void)
3179 {
3180
3181 if (mon_ops == NULL) {
3182 printk(KERN_ERR "USB: monitor was not registered\n");
3183 return;
3184 }
3185 mon_ops = NULL;
3186 mb();
3187 }
3188 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3189
3190 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3191