1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44 
45 #include "usb.h"
46 
47 
48 /*-------------------------------------------------------------------------*/
49 
50 /*
51  * USB Host Controller Driver framework
52  *
53  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54  * HCD-specific behaviors/bugs.
55  *
56  * This does error checks, tracks devices and urbs, and delegates to a
57  * "hc_driver" only for code (and data) that really needs to know about
58  * hardware differences.  That includes root hub registers, i/o queues,
59  * and so on ... but as little else as possible.
60  *
61  * Shared code includes most of the "root hub" code (these are emulated,
62  * though each HC's hardware works differently) and PCI glue, plus request
63  * tracking overhead.  The HCD code should only block on spinlocks or on
64  * hardware handshaking; blocking on software events (such as other kernel
65  * threads releasing resources, or completing actions) is all generic.
66  *
67  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69  * only by the hub driver ... and that neither should be seen or used by
70  * usb client device drivers.
71  *
72  * Contributors of ideas or unattributed patches include: David Brownell,
73  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74  *
75  * HISTORY:
76  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
77  *		associated cleanup.  "usb_hcd" still != "usb_bus".
78  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
79  */
80 
81 /*-------------------------------------------------------------------------*/
82 
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86 
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90 
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS		64
93 struct usb_busmap {
94 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97 
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101 
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104 
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107 
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110 
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113 
is_root_hub(struct usb_device * udev)114 static inline int is_root_hub(struct usb_device *udev)
115 {
116 	return (udev->parent == NULL);
117 }
118 
119 /*-------------------------------------------------------------------------*/
120 
121 /*
122  * Sharable chunks of root hub code.
123  */
124 
125 /*-------------------------------------------------------------------------*/
126 
127 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
129 
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 	0x12,       /*  __u8  bLength; */
133 	0x01,       /*  __u8  bDescriptorType; Device */
134 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135 
136 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
137 	0x00,	    /*  __u8  bDeviceSubClass; */
138 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140 
141 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
142 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144 
145 	0x03,       /*  __u8  iManufacturer; */
146 	0x02,       /*  __u8  iProduct; */
147 	0x01,       /*  __u8  iSerialNumber; */
148 	0x01        /*  __u8  bNumConfigurations; */
149 };
150 
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153 	0x12,       /*  __u8  bLength; */
154 	0x01,       /*  __u8  bDescriptorType; Device */
155 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156 
157 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
158 	0x00,	    /*  __u8  bDeviceSubClass; */
159 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161 
162 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165 
166 	0x03,       /*  __u8  iManufacturer; */
167 	0x02,       /*  __u8  iProduct; */
168 	0x01,       /*  __u8  iSerialNumber; */
169 	0x01        /*  __u8  bNumConfigurations; */
170 };
171 
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173 
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176 	0x12,       /*  __u8  bLength; */
177 	0x01,       /*  __u8  bDescriptorType; Device */
178 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179 
180 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
181 	0x00,	    /*  __u8  bDeviceSubClass; */
182 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184 
185 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
186 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188 
189 	0x03,       /*  __u8  iManufacturer; */
190 	0x02,       /*  __u8  iProduct; */
191 	0x01,       /*  __u8  iSerialNumber; */
192 	0x01        /*  __u8  bNumConfigurations; */
193 };
194 
195 
196 /*-------------------------------------------------------------------------*/
197 
198 /* Configuration descriptors for our root hubs */
199 
200 static const u8 fs_rh_config_descriptor [] = {
201 
202 	/* one configuration */
203 	0x09,       /*  __u8  bLength; */
204 	0x02,       /*  __u8  bDescriptorType; Configuration */
205 	0x19, 0x00, /*  __le16 wTotalLength; */
206 	0x01,       /*  __u8  bNumInterfaces; (1) */
207 	0x01,       /*  __u8  bConfigurationValue; */
208 	0x00,       /*  __u8  iConfiguration; */
209 	0xc0,       /*  __u8  bmAttributes;
210 				 Bit 7: must be set,
211 				     6: Self-powered,
212 				     5: Remote wakeup,
213 				     4..0: resvd */
214 	0x00,       /*  __u8  MaxPower; */
215 
216 	/* USB 1.1:
217 	 * USB 2.0, single TT organization (mandatory):
218 	 *	one interface, protocol 0
219 	 *
220 	 * USB 2.0, multiple TT organization (optional):
221 	 *	two interfaces, protocols 1 (like single TT)
222 	 *	and 2 (multiple TT mode) ... config is
223 	 *	sometimes settable
224 	 *	NOT IMPLEMENTED
225 	 */
226 
227 	/* one interface */
228 	0x09,       /*  __u8  if_bLength; */
229 	0x04,       /*  __u8  if_bDescriptorType; Interface */
230 	0x00,       /*  __u8  if_bInterfaceNumber; */
231 	0x00,       /*  __u8  if_bAlternateSetting; */
232 	0x01,       /*  __u8  if_bNumEndpoints; */
233 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234 	0x00,       /*  __u8  if_bInterfaceSubClass; */
235 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236 	0x00,       /*  __u8  if_iInterface; */
237 
238 	/* one endpoint (status change endpoint) */
239 	0x07,       /*  __u8  ep_bLength; */
240 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246 
247 static const u8 hs_rh_config_descriptor [] = {
248 
249 	/* one configuration */
250 	0x09,       /*  __u8  bLength; */
251 	0x02,       /*  __u8  bDescriptorType; Configuration */
252 	0x19, 0x00, /*  __le16 wTotalLength; */
253 	0x01,       /*  __u8  bNumInterfaces; (1) */
254 	0x01,       /*  __u8  bConfigurationValue; */
255 	0x00,       /*  __u8  iConfiguration; */
256 	0xc0,       /*  __u8  bmAttributes;
257 				 Bit 7: must be set,
258 				     6: Self-powered,
259 				     5: Remote wakeup,
260 				     4..0: resvd */
261 	0x00,       /*  __u8  MaxPower; */
262 
263 	/* USB 1.1:
264 	 * USB 2.0, single TT organization (mandatory):
265 	 *	one interface, protocol 0
266 	 *
267 	 * USB 2.0, multiple TT organization (optional):
268 	 *	two interfaces, protocols 1 (like single TT)
269 	 *	and 2 (multiple TT mode) ... config is
270 	 *	sometimes settable
271 	 *	NOT IMPLEMENTED
272 	 */
273 
274 	/* one interface */
275 	0x09,       /*  __u8  if_bLength; */
276 	0x04,       /*  __u8  if_bDescriptorType; Interface */
277 	0x00,       /*  __u8  if_bInterfaceNumber; */
278 	0x00,       /*  __u8  if_bAlternateSetting; */
279 	0x01,       /*  __u8  if_bNumEndpoints; */
280 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281 	0x00,       /*  __u8  if_bInterfaceSubClass; */
282 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283 	0x00,       /*  __u8  if_iInterface; */
284 
285 	/* one endpoint (status change endpoint) */
286 	0x07,       /*  __u8  ep_bLength; */
287 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 		     * see hub.c:hub_configure() for details. */
292 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295 
296 static const u8 ss_rh_config_descriptor[] = {
297 	/* one configuration */
298 	0x09,       /*  __u8  bLength; */
299 	0x02,       /*  __u8  bDescriptorType; Configuration */
300 	0x1f, 0x00, /*  __le16 wTotalLength; */
301 	0x01,       /*  __u8  bNumInterfaces; (1) */
302 	0x01,       /*  __u8  bConfigurationValue; */
303 	0x00,       /*  __u8  iConfiguration; */
304 	0xc0,       /*  __u8  bmAttributes;
305 				 Bit 7: must be set,
306 				     6: Self-powered,
307 				     5: Remote wakeup,
308 				     4..0: resvd */
309 	0x00,       /*  __u8  MaxPower; */
310 
311 	/* one interface */
312 	0x09,       /*  __u8  if_bLength; */
313 	0x04,       /*  __u8  if_bDescriptorType; Interface */
314 	0x00,       /*  __u8  if_bInterfaceNumber; */
315 	0x00,       /*  __u8  if_bAlternateSetting; */
316 	0x01,       /*  __u8  if_bNumEndpoints; */
317 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318 	0x00,       /*  __u8  if_bInterfaceSubClass; */
319 	0x00,       /*  __u8  if_bInterfaceProtocol; */
320 	0x00,       /*  __u8  if_iInterface; */
321 
322 	/* one endpoint (status change endpoint) */
323 	0x07,       /*  __u8  ep_bLength; */
324 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 		     * see hub.c:hub_configure() for details. */
329 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331 
332 	/* one SuperSpeed endpoint companion descriptor */
333 	0x06,        /* __u8 ss_bLength */
334 	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339 
340 /* authorized_default behaviour:
341  * -1 is authorized for all devices except wireless (old behaviour)
342  * 0 is unauthorized for all devices
343  * 1 is authorized for all devices
344  */
345 static int authorized_default = -1;
346 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347 MODULE_PARM_DESC(authorized_default,
348 		"Default USB device authorization: 0 is not authorized, 1 is "
349 		"authorized, -1 is authorized except for wireless USB (default, "
350 		"old behaviour");
351 /*-------------------------------------------------------------------------*/
352 
353 /**
354  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355  * @s: Null-terminated ASCII (actually ISO-8859-1) string
356  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357  * @len: Length (in bytes; may be odd) of descriptor buffer.
358  *
359  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360  * buflen, whichever is less.
361  *
362  * USB String descriptors can contain at most 126 characters; input
363  * strings longer than that are truncated.
364  */
365 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)366 ascii2desc(char const *s, u8 *buf, unsigned len)
367 {
368 	unsigned n, t = 2 + 2*strlen(s);
369 
370 	if (t > 254)
371 		t = 254;	/* Longest possible UTF string descriptor */
372 	if (len > t)
373 		len = t;
374 
375 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
376 
377 	n = len;
378 	while (n--) {
379 		*buf++ = t;
380 		if (!n--)
381 			break;
382 		*buf++ = t >> 8;
383 		t = (unsigned char)*s++;
384 	}
385 	return len;
386 }
387 
388 /**
389  * rh_string() - provides string descriptors for root hub
390  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391  * @hcd: the host controller for this root hub
392  * @data: buffer for output packet
393  * @len: length of the provided buffer
394  *
395  * Produces either a manufacturer, product or serial number string for the
396  * virtual root hub device.
397  * Returns the number of bytes filled in: the length of the descriptor or
398  * of the provided buffer, whichever is less.
399  */
400 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402 {
403 	char buf[100];
404 	char const *s;
405 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406 
407 	// language ids
408 	switch (id) {
409 	case 0:
410 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412 		if (len > 4)
413 			len = 4;
414 		memcpy(data, langids, len);
415 		return len;
416 	case 1:
417 		/* Serial number */
418 		s = hcd->self.bus_name;
419 		break;
420 	case 2:
421 		/* Product name */
422 		s = hcd->product_desc;
423 		break;
424 	case 3:
425 		/* Manufacturer */
426 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427 			init_utsname()->release, hcd->driver->description);
428 		s = buf;
429 		break;
430 	default:
431 		/* Can't happen; caller guarantees it */
432 		return 0;
433 	}
434 
435 	return ascii2desc(s, data, len);
436 }
437 
438 
439 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441 {
442 	struct usb_ctrlrequest *cmd;
443  	u16		typeReq, wValue, wIndex, wLength;
444 	u8		*ubuf = urb->transfer_buffer;
445 	/*
446 	 * tbuf should be as big as the BOS descriptor and
447 	 * the USB hub descriptor.
448 	 */
449 	u8		tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
450 		__attribute__((aligned(4)));
451 	const u8	*bufp = tbuf;
452 	unsigned	len = 0;
453 	int		status;
454 	u8		patch_wakeup = 0;
455 	u8		patch_protocol = 0;
456 
457 	might_sleep();
458 
459 	spin_lock_irq(&hcd_root_hub_lock);
460 	status = usb_hcd_link_urb_to_ep(hcd, urb);
461 	spin_unlock_irq(&hcd_root_hub_lock);
462 	if (status)
463 		return status;
464 	urb->hcpriv = hcd;	/* Indicate it's queued */
465 
466 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
467 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
468 	wValue   = le16_to_cpu (cmd->wValue);
469 	wIndex   = le16_to_cpu (cmd->wIndex);
470 	wLength  = le16_to_cpu (cmd->wLength);
471 
472 	if (wLength > urb->transfer_buffer_length)
473 		goto error;
474 
475 	urb->actual_length = 0;
476 	switch (typeReq) {
477 
478 	/* DEVICE REQUESTS */
479 
480 	/* The root hub's remote wakeup enable bit is implemented using
481 	 * driver model wakeup flags.  If this system supports wakeup
482 	 * through USB, userspace may change the default "allow wakeup"
483 	 * policy through sysfs or these calls.
484 	 *
485 	 * Most root hubs support wakeup from downstream devices, for
486 	 * runtime power management (disabling USB clocks and reducing
487 	 * VBUS power usage).  However, not all of them do so; silicon,
488 	 * board, and BIOS bugs here are not uncommon, so these can't
489 	 * be treated quite like external hubs.
490 	 *
491 	 * Likewise, not all root hubs will pass wakeup events upstream,
492 	 * to wake up the whole system.  So don't assume root hub and
493 	 * controller capabilities are identical.
494 	 */
495 
496 	case DeviceRequest | USB_REQ_GET_STATUS:
497 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
498 					<< USB_DEVICE_REMOTE_WAKEUP)
499 				| (1 << USB_DEVICE_SELF_POWERED);
500 		tbuf [1] = 0;
501 		len = 2;
502 		break;
503 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
504 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
505 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
506 		else
507 			goto error;
508 		break;
509 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
510 		if (device_can_wakeup(&hcd->self.root_hub->dev)
511 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
512 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
513 		else
514 			goto error;
515 		break;
516 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
517 		tbuf [0] = 1;
518 		len = 1;
519 			/* FALLTHROUGH */
520 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
521 		break;
522 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
523 		switch (wValue & 0xff00) {
524 		case USB_DT_DEVICE << 8:
525 			switch (hcd->speed) {
526 			case HCD_USB3:
527 				bufp = usb3_rh_dev_descriptor;
528 				break;
529 			case HCD_USB2:
530 				bufp = usb2_rh_dev_descriptor;
531 				break;
532 			case HCD_USB11:
533 				bufp = usb11_rh_dev_descriptor;
534 				break;
535 			default:
536 				goto error;
537 			}
538 			len = 18;
539 			if (hcd->has_tt)
540 				patch_protocol = 1;
541 			break;
542 		case USB_DT_CONFIG << 8:
543 			switch (hcd->speed) {
544 			case HCD_USB3:
545 				bufp = ss_rh_config_descriptor;
546 				len = sizeof ss_rh_config_descriptor;
547 				break;
548 			case HCD_USB2:
549 				bufp = hs_rh_config_descriptor;
550 				len = sizeof hs_rh_config_descriptor;
551 				break;
552 			case HCD_USB11:
553 				bufp = fs_rh_config_descriptor;
554 				len = sizeof fs_rh_config_descriptor;
555 				break;
556 			default:
557 				goto error;
558 			}
559 			if (device_can_wakeup(&hcd->self.root_hub->dev))
560 				patch_wakeup = 1;
561 			break;
562 		case USB_DT_STRING << 8:
563 			if ((wValue & 0xff) < 4)
564 				urb->actual_length = rh_string(wValue & 0xff,
565 						hcd, ubuf, wLength);
566 			else /* unsupported IDs --> "protocol stall" */
567 				goto error;
568 			break;
569 		case USB_DT_BOS << 8:
570 			goto nongeneric;
571 		default:
572 			goto error;
573 		}
574 		break;
575 	case DeviceRequest | USB_REQ_GET_INTERFACE:
576 		tbuf [0] = 0;
577 		len = 1;
578 			/* FALLTHROUGH */
579 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
580 		break;
581 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
582 		// wValue == urb->dev->devaddr
583 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
584 			wValue);
585 		break;
586 
587 	/* INTERFACE REQUESTS (no defined feature/status flags) */
588 
589 	/* ENDPOINT REQUESTS */
590 
591 	case EndpointRequest | USB_REQ_GET_STATUS:
592 		// ENDPOINT_HALT flag
593 		tbuf [0] = 0;
594 		tbuf [1] = 0;
595 		len = 2;
596 			/* FALLTHROUGH */
597 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
598 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
599 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
600 		break;
601 
602 	/* CLASS REQUESTS (and errors) */
603 
604 	default:
605 nongeneric:
606 		/* non-generic request */
607 		switch (typeReq) {
608 		case GetHubStatus:
609 		case GetPortStatus:
610 			len = 4;
611 			break;
612 		case GetHubDescriptor:
613 			len = sizeof (struct usb_hub_descriptor);
614 			break;
615 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
616 			/* len is returned by hub_control */
617 			break;
618 		}
619 		status = hcd->driver->hub_control (hcd,
620 			typeReq, wValue, wIndex,
621 			tbuf, wLength);
622 		break;
623 error:
624 		/* "protocol stall" on error */
625 		status = -EPIPE;
626 	}
627 
628 	if (status < 0) {
629 		len = 0;
630 		if (status != -EPIPE) {
631 			dev_dbg (hcd->self.controller,
632 				"CTRL: TypeReq=0x%x val=0x%x "
633 				"idx=0x%x len=%d ==> %d\n",
634 				typeReq, wValue, wIndex,
635 				wLength, status);
636 		}
637 	} else if (status > 0) {
638 		/* hub_control may return the length of data copied. */
639 		len = status;
640 		status = 0;
641 	}
642 	if (len) {
643 		if (urb->transfer_buffer_length < len)
644 			len = urb->transfer_buffer_length;
645 		urb->actual_length = len;
646 		// always USB_DIR_IN, toward host
647 		memcpy (ubuf, bufp, len);
648 
649 		/* report whether RH hardware supports remote wakeup */
650 		if (patch_wakeup &&
651 				len > offsetof (struct usb_config_descriptor,
652 						bmAttributes))
653 			((struct usb_config_descriptor *)ubuf)->bmAttributes
654 				|= USB_CONFIG_ATT_WAKEUP;
655 
656 		/* report whether RH hardware has an integrated TT */
657 		if (patch_protocol &&
658 				len > offsetof(struct usb_device_descriptor,
659 						bDeviceProtocol))
660 			((struct usb_device_descriptor *) ubuf)->
661 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
662 	}
663 
664 	/* any errors get returned through the urb completion */
665 	spin_lock_irq(&hcd_root_hub_lock);
666 	usb_hcd_unlink_urb_from_ep(hcd, urb);
667 
668 	/* This peculiar use of spinlocks echoes what real HC drivers do.
669 	 * Avoiding calls to local_irq_disable/enable makes the code
670 	 * RT-friendly.
671 	 */
672 	spin_unlock(&hcd_root_hub_lock);
673 	usb_hcd_giveback_urb(hcd, urb, status);
674 	spin_lock(&hcd_root_hub_lock);
675 
676 	spin_unlock_irq(&hcd_root_hub_lock);
677 	return 0;
678 }
679 
680 /*-------------------------------------------------------------------------*/
681 
682 /*
683  * Root Hub interrupt transfers are polled using a timer if the
684  * driver requests it; otherwise the driver is responsible for
685  * calling usb_hcd_poll_rh_status() when an event occurs.
686  *
687  * Completions are called in_interrupt(), but they may or may not
688  * be in_irq().
689  */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)690 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
691 {
692 	struct urb	*urb;
693 	int		length;
694 	unsigned long	flags;
695 	char		buffer[6];	/* Any root hubs with > 31 ports? */
696 
697 	if (unlikely(!hcd->rh_pollable))
698 		return;
699 	if (!hcd->uses_new_polling && !hcd->status_urb)
700 		return;
701 
702 	length = hcd->driver->hub_status_data(hcd, buffer);
703 	if (length > 0) {
704 
705 		/* try to complete the status urb */
706 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
707 		urb = hcd->status_urb;
708 		if (urb) {
709 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
710 			hcd->status_urb = NULL;
711 			urb->actual_length = length;
712 			memcpy(urb->transfer_buffer, buffer, length);
713 
714 			usb_hcd_unlink_urb_from_ep(hcd, urb);
715 			spin_unlock(&hcd_root_hub_lock);
716 			usb_hcd_giveback_urb(hcd, urb, 0);
717 			spin_lock(&hcd_root_hub_lock);
718 		} else {
719 			length = 0;
720 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
721 		}
722 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
723 	}
724 
725 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
726 	 * exceed that limit if HZ is 100. The math is more clunky than
727 	 * maybe expected, this is to make sure that all timers for USB devices
728 	 * fire at the same time to give the CPU a break in between */
729 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
730 			(length == 0 && hcd->status_urb != NULL))
731 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
732 }
733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
734 
735 /* timer callback */
rh_timer_func(unsigned long _hcd)736 static void rh_timer_func (unsigned long _hcd)
737 {
738 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
739 }
740 
741 /*-------------------------------------------------------------------------*/
742 
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)743 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
744 {
745 	int		retval;
746 	unsigned long	flags;
747 	unsigned	len = 1 + (urb->dev->maxchild / 8);
748 
749 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
750 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
751 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
752 		retval = -EINVAL;
753 		goto done;
754 	}
755 
756 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
757 	if (retval)
758 		goto done;
759 
760 	hcd->status_urb = urb;
761 	urb->hcpriv = hcd;	/* indicate it's queued */
762 	if (!hcd->uses_new_polling)
763 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764 
765 	/* If a status change has already occurred, report it ASAP */
766 	else if (HCD_POLL_PENDING(hcd))
767 		mod_timer(&hcd->rh_timer, jiffies);
768 	retval = 0;
769  done:
770 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
771 	return retval;
772 }
773 
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)774 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
775 {
776 	if (usb_endpoint_xfer_int(&urb->ep->desc))
777 		return rh_queue_status (hcd, urb);
778 	if (usb_endpoint_xfer_control(&urb->ep->desc))
779 		return rh_call_control (hcd, urb);
780 	return -EINVAL;
781 }
782 
783 /*-------------------------------------------------------------------------*/
784 
785 /* Unlinks of root-hub control URBs are legal, but they don't do anything
786  * since these URBs always execute synchronously.
787  */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)788 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
789 {
790 	unsigned long	flags;
791 	int		rc;
792 
793 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
794 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
795 	if (rc)
796 		goto done;
797 
798 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
799 		;	/* Do nothing */
800 
801 	} else {				/* Status URB */
802 		if (!hcd->uses_new_polling)
803 			del_timer (&hcd->rh_timer);
804 		if (urb == hcd->status_urb) {
805 			hcd->status_urb = NULL;
806 			usb_hcd_unlink_urb_from_ep(hcd, urb);
807 
808 			spin_unlock(&hcd_root_hub_lock);
809 			usb_hcd_giveback_urb(hcd, urb, status);
810 			spin_lock(&hcd_root_hub_lock);
811 		}
812 	}
813  done:
814 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
815 	return rc;
816 }
817 
818 
819 
820 /*
821  * Show & store the current value of authorized_default
822  */
usb_host_authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)823 static ssize_t usb_host_authorized_default_show(struct device *dev,
824 						struct device_attribute *attr,
825 						char *buf)
826 {
827 	struct usb_device *rh_usb_dev = to_usb_device(dev);
828 	struct usb_bus *usb_bus = rh_usb_dev->bus;
829 	struct usb_hcd *usb_hcd;
830 
831 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
832 		return -ENODEV;
833 	usb_hcd = bus_to_hcd(usb_bus);
834 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
835 }
836 
usb_host_authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)837 static ssize_t usb_host_authorized_default_store(struct device *dev,
838 						 struct device_attribute *attr,
839 						 const char *buf, size_t size)
840 {
841 	ssize_t result;
842 	unsigned val;
843 	struct usb_device *rh_usb_dev = to_usb_device(dev);
844 	struct usb_bus *usb_bus = rh_usb_dev->bus;
845 	struct usb_hcd *usb_hcd;
846 
847 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
848 		return -ENODEV;
849 	usb_hcd = bus_to_hcd(usb_bus);
850 	result = sscanf(buf, "%u\n", &val);
851 	if (result == 1) {
852 		usb_hcd->authorized_default = val? 1 : 0;
853 		result = size;
854 	}
855 	else
856 		result = -EINVAL;
857 	return result;
858 }
859 
860 static DEVICE_ATTR(authorized_default, 0644,
861 	    usb_host_authorized_default_show,
862 	    usb_host_authorized_default_store);
863 
864 
865 /* Group all the USB bus attributes */
866 static struct attribute *usb_bus_attrs[] = {
867 		&dev_attr_authorized_default.attr,
868 		NULL,
869 };
870 
871 static struct attribute_group usb_bus_attr_group = {
872 	.name = NULL,	/* we want them in the same directory */
873 	.attrs = usb_bus_attrs,
874 };
875 
876 
877 
878 /*-------------------------------------------------------------------------*/
879 
880 /**
881  * usb_bus_init - shared initialization code
882  * @bus: the bus structure being initialized
883  *
884  * This code is used to initialize a usb_bus structure, memory for which is
885  * separately managed.
886  */
usb_bus_init(struct usb_bus * bus)887 static void usb_bus_init (struct usb_bus *bus)
888 {
889 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890 
891 	bus->devnum_next = 1;
892 
893 	bus->root_hub = NULL;
894 	bus->busnum = -1;
895 	bus->bandwidth_allocated = 0;
896 	bus->bandwidth_int_reqs  = 0;
897 	bus->bandwidth_isoc_reqs = 0;
898 
899 	INIT_LIST_HEAD (&bus->bus_list);
900 }
901 
902 /*-------------------------------------------------------------------------*/
903 
904 /**
905  * usb_register_bus - registers the USB host controller with the usb core
906  * @bus: pointer to the bus to register
907  * Context: !in_interrupt()
908  *
909  * Assigns a bus number, and links the controller into usbcore data
910  * structures so that it can be seen by scanning the bus list.
911  */
usb_register_bus(struct usb_bus * bus)912 static int usb_register_bus(struct usb_bus *bus)
913 {
914 	int result = -E2BIG;
915 	int busnum;
916 
917 	mutex_lock(&usb_bus_list_lock);
918 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
919 	if (busnum >= USB_MAXBUS) {
920 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
921 		goto error_find_busnum;
922 	}
923 	set_bit (busnum, busmap.busmap);
924 	bus->busnum = busnum;
925 
926 	/* Add it to the local list of buses */
927 	list_add (&bus->bus_list, &usb_bus_list);
928 	mutex_unlock(&usb_bus_list_lock);
929 
930 	usb_notify_add_bus(bus);
931 
932 	dev_info (bus->controller, "new USB bus registered, assigned bus "
933 		  "number %d\n", bus->busnum);
934 	return 0;
935 
936 error_find_busnum:
937 	mutex_unlock(&usb_bus_list_lock);
938 	return result;
939 }
940 
941 /**
942  * usb_deregister_bus - deregisters the USB host controller
943  * @bus: pointer to the bus to deregister
944  * Context: !in_interrupt()
945  *
946  * Recycles the bus number, and unlinks the controller from usbcore data
947  * structures so that it won't be seen by scanning the bus list.
948  */
usb_deregister_bus(struct usb_bus * bus)949 static void usb_deregister_bus (struct usb_bus *bus)
950 {
951 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
952 
953 	/*
954 	 * NOTE: make sure that all the devices are removed by the
955 	 * controller code, as well as having it call this when cleaning
956 	 * itself up
957 	 */
958 	mutex_lock(&usb_bus_list_lock);
959 	list_del (&bus->bus_list);
960 	mutex_unlock(&usb_bus_list_lock);
961 
962 	usb_notify_remove_bus(bus);
963 
964 	clear_bit (bus->busnum, busmap.busmap);
965 }
966 
967 /**
968  * register_root_hub - called by usb_add_hcd() to register a root hub
969  * @hcd: host controller for this root hub
970  *
971  * This function registers the root hub with the USB subsystem.  It sets up
972  * the device properly in the device tree and then calls usb_new_device()
973  * to register the usb device.  It also assigns the root hub's USB address
974  * (always 1).
975  */
register_root_hub(struct usb_hcd * hcd)976 static int register_root_hub(struct usb_hcd *hcd)
977 {
978 	struct device *parent_dev = hcd->self.controller;
979 	struct usb_device *usb_dev = hcd->self.root_hub;
980 	const int devnum = 1;
981 	int retval;
982 
983 	usb_dev->devnum = devnum;
984 	usb_dev->bus->devnum_next = devnum + 1;
985 	memset (&usb_dev->bus->devmap.devicemap, 0,
986 			sizeof usb_dev->bus->devmap.devicemap);
987 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
988 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
989 
990 	mutex_lock(&usb_bus_list_lock);
991 
992 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
993 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
994 	if (retval != sizeof usb_dev->descriptor) {
995 		mutex_unlock(&usb_bus_list_lock);
996 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
997 				dev_name(&usb_dev->dev), retval);
998 		return (retval < 0) ? retval : -EMSGSIZE;
999 	}
1000 
1001 	retval = usb_new_device (usb_dev);
1002 	if (retval) {
1003 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1004 				dev_name(&usb_dev->dev), retval);
1005 	} else {
1006 		spin_lock_irq (&hcd_root_hub_lock);
1007 		hcd->rh_registered = 1;
1008 		spin_unlock_irq (&hcd_root_hub_lock);
1009 
1010 		/* Did the HC die before the root hub was registered? */
1011 		if (HCD_DEAD(hcd))
1012 			usb_hc_died (hcd);	/* This time clean up */
1013 	}
1014 	mutex_unlock(&usb_bus_list_lock);
1015 
1016 	return retval;
1017 }
1018 
1019 
1020 /*-------------------------------------------------------------------------*/
1021 
1022 /**
1023  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1024  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1025  * @is_input: true iff the transaction sends data to the host
1026  * @isoc: true for isochronous transactions, false for interrupt ones
1027  * @bytecount: how many bytes in the transaction.
1028  *
1029  * Returns approximate bus time in nanoseconds for a periodic transaction.
1030  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1031  * scheduled in software, this function is only used for such scheduling.
1032  */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1033 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1034 {
1035 	unsigned long	tmp;
1036 
1037 	switch (speed) {
1038 	case USB_SPEED_LOW: 	/* INTR only */
1039 		if (is_input) {
1040 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1041 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1042 		} else {
1043 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1044 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1045 		}
1046 	case USB_SPEED_FULL:	/* ISOC or INTR */
1047 		if (isoc) {
1048 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1049 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1050 		} else {
1051 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1052 			return (9107L + BW_HOST_DELAY + tmp);
1053 		}
1054 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1055 		// FIXME adjust for input vs output
1056 		if (isoc)
1057 			tmp = HS_NSECS_ISO (bytecount);
1058 		else
1059 			tmp = HS_NSECS (bytecount);
1060 		return tmp;
1061 	default:
1062 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1063 		return -1;
1064 	}
1065 }
1066 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1067 
1068 
1069 /*-------------------------------------------------------------------------*/
1070 
1071 /*
1072  * Generic HC operations.
1073  */
1074 
1075 /*-------------------------------------------------------------------------*/
1076 
1077 /**
1078  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1079  * @hcd: host controller to which @urb was submitted
1080  * @urb: URB being submitted
1081  *
1082  * Host controller drivers should call this routine in their enqueue()
1083  * method.  The HCD's private spinlock must be held and interrupts must
1084  * be disabled.  The actions carried out here are required for URB
1085  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1086  *
1087  * Returns 0 for no error, otherwise a negative error code (in which case
1088  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1089  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1090  * the private spinlock and returning.
1091  */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1092 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1093 {
1094 	int		rc = 0;
1095 
1096 	spin_lock(&hcd_urb_list_lock);
1097 
1098 	/* Check that the URB isn't being killed */
1099 	if (unlikely(atomic_read(&urb->reject))) {
1100 		rc = -EPERM;
1101 		goto done;
1102 	}
1103 
1104 	if (unlikely(!urb->ep->enabled)) {
1105 		rc = -ENOENT;
1106 		goto done;
1107 	}
1108 
1109 	if (unlikely(!urb->dev->can_submit)) {
1110 		rc = -EHOSTUNREACH;
1111 		goto done;
1112 	}
1113 
1114 	/*
1115 	 * Check the host controller's state and add the URB to the
1116 	 * endpoint's queue.
1117 	 */
1118 	if (HCD_RH_RUNNING(hcd)) {
1119 		urb->unlinked = 0;
1120 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1121 	} else {
1122 		rc = -ESHUTDOWN;
1123 		goto done;
1124 	}
1125  done:
1126 	spin_unlock(&hcd_urb_list_lock);
1127 	return rc;
1128 }
1129 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1130 
1131 /**
1132  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1133  * @hcd: host controller to which @urb was submitted
1134  * @urb: URB being checked for unlinkability
1135  * @status: error code to store in @urb if the unlink succeeds
1136  *
1137  * Host controller drivers should call this routine in their dequeue()
1138  * method.  The HCD's private spinlock must be held and interrupts must
1139  * be disabled.  The actions carried out here are required for making
1140  * sure than an unlink is valid.
1141  *
1142  * Returns 0 for no error, otherwise a negative error code (in which case
1143  * the dequeue() method must fail).  The possible error codes are:
1144  *
1145  *	-EIDRM: @urb was not submitted or has already completed.
1146  *		The completion function may not have been called yet.
1147  *
1148  *	-EBUSY: @urb has already been unlinked.
1149  */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1150 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1151 		int status)
1152 {
1153 	struct list_head	*tmp;
1154 
1155 	/* insist the urb is still queued */
1156 	list_for_each(tmp, &urb->ep->urb_list) {
1157 		if (tmp == &urb->urb_list)
1158 			break;
1159 	}
1160 	if (tmp != &urb->urb_list)
1161 		return -EIDRM;
1162 
1163 	/* Any status except -EINPROGRESS means something already started to
1164 	 * unlink this URB from the hardware.  So there's no more work to do.
1165 	 */
1166 	if (urb->unlinked)
1167 		return -EBUSY;
1168 	urb->unlinked = status;
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1172 
1173 /**
1174  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1175  * @hcd: host controller to which @urb was submitted
1176  * @urb: URB being unlinked
1177  *
1178  * Host controller drivers should call this routine before calling
1179  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1180  * interrupts must be disabled.  The actions carried out here are required
1181  * for URB completion.
1182  */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1183 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1184 {
1185 	/* clear all state linking urb to this dev (and hcd) */
1186 	spin_lock(&hcd_urb_list_lock);
1187 	list_del_init(&urb->urb_list);
1188 	spin_unlock(&hcd_urb_list_lock);
1189 }
1190 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1191 
1192 /*
1193  * Some usb host controllers can only perform dma using a small SRAM area.
1194  * The usb core itself is however optimized for host controllers that can dma
1195  * using regular system memory - like pci devices doing bus mastering.
1196  *
1197  * To support host controllers with limited dma capabilites we provide dma
1198  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1199  * For this to work properly the host controller code must first use the
1200  * function dma_declare_coherent_memory() to point out which memory area
1201  * that should be used for dma allocations.
1202  *
1203  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1204  * dma using dma_alloc_coherent() which in turn allocates from the memory
1205  * area pointed out with dma_declare_coherent_memory().
1206  *
1207  * So, to summarize...
1208  *
1209  * - We need "local" memory, canonical example being
1210  *   a small SRAM on a discrete controller being the
1211  *   only memory that the controller can read ...
1212  *   (a) "normal" kernel memory is no good, and
1213  *   (b) there's not enough to share
1214  *
1215  * - The only *portable* hook for such stuff in the
1216  *   DMA framework is dma_declare_coherent_memory()
1217  *
1218  * - So we use that, even though the primary requirement
1219  *   is that the memory be "local" (hence addressible
1220  *   by that device), not "coherent".
1221  *
1222  */
1223 
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1224 static int hcd_alloc_coherent(struct usb_bus *bus,
1225 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1226 			      void **vaddr_handle, size_t size,
1227 			      enum dma_data_direction dir)
1228 {
1229 	unsigned char *vaddr;
1230 
1231 	if (*vaddr_handle == NULL) {
1232 		WARN_ON_ONCE(1);
1233 		return -EFAULT;
1234 	}
1235 
1236 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1237 				 mem_flags, dma_handle);
1238 	if (!vaddr)
1239 		return -ENOMEM;
1240 
1241 	/*
1242 	 * Store the virtual address of the buffer at the end
1243 	 * of the allocated dma buffer. The size of the buffer
1244 	 * may be uneven so use unaligned functions instead
1245 	 * of just rounding up. It makes sense to optimize for
1246 	 * memory footprint over access speed since the amount
1247 	 * of memory available for dma may be limited.
1248 	 */
1249 	put_unaligned((unsigned long)*vaddr_handle,
1250 		      (unsigned long *)(vaddr + size));
1251 
1252 	if (dir == DMA_TO_DEVICE)
1253 		memcpy(vaddr, *vaddr_handle, size);
1254 
1255 	*vaddr_handle = vaddr;
1256 	return 0;
1257 }
1258 
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1259 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1260 			      void **vaddr_handle, size_t size,
1261 			      enum dma_data_direction dir)
1262 {
1263 	unsigned char *vaddr = *vaddr_handle;
1264 
1265 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1266 
1267 	if (dir == DMA_FROM_DEVICE)
1268 		memcpy(vaddr, *vaddr_handle, size);
1269 
1270 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1271 
1272 	*vaddr_handle = vaddr;
1273 	*dma_handle = 0;
1274 }
1275 
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1276 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1277 {
1278 	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1279 		dma_unmap_single(hcd->self.controller,
1280 				urb->setup_dma,
1281 				sizeof(struct usb_ctrlrequest),
1282 				DMA_TO_DEVICE);
1283 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1284 		hcd_free_coherent(urb->dev->bus,
1285 				&urb->setup_dma,
1286 				(void **) &urb->setup_packet,
1287 				sizeof(struct usb_ctrlrequest),
1288 				DMA_TO_DEVICE);
1289 
1290 	/* Make it safe to call this routine more than once */
1291 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1292 }
1293 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1294 
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1295 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1296 {
1297 	if (hcd->driver->unmap_urb_for_dma)
1298 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1299 	else
1300 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1301 }
1302 
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1303 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1304 {
1305 	enum dma_data_direction dir;
1306 
1307 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1308 
1309 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1310 	if (urb->transfer_flags & URB_DMA_MAP_SG)
1311 		dma_unmap_sg(hcd->self.controller,
1312 				urb->sg,
1313 				urb->num_sgs,
1314 				dir);
1315 	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1316 		dma_unmap_page(hcd->self.controller,
1317 				urb->transfer_dma,
1318 				urb->transfer_buffer_length,
1319 				dir);
1320 	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1321 		dma_unmap_single(hcd->self.controller,
1322 				urb->transfer_dma,
1323 				urb->transfer_buffer_length,
1324 				dir);
1325 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1326 		hcd_free_coherent(urb->dev->bus,
1327 				&urb->transfer_dma,
1328 				&urb->transfer_buffer,
1329 				urb->transfer_buffer_length,
1330 				dir);
1331 
1332 	/* Make it safe to call this routine more than once */
1333 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1334 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1335 }
1336 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1337 
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1338 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1339 			   gfp_t mem_flags)
1340 {
1341 	if (hcd->driver->map_urb_for_dma)
1342 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1343 	else
1344 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1345 }
1346 
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1347 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1348 			    gfp_t mem_flags)
1349 {
1350 	enum dma_data_direction dir;
1351 	int ret = 0;
1352 
1353 	/* Map the URB's buffers for DMA access.
1354 	 * Lower level HCD code should use *_dma exclusively,
1355 	 * unless it uses pio or talks to another transport,
1356 	 * or uses the provided scatter gather list for bulk.
1357 	 */
1358 
1359 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1360 		if (hcd->self.uses_pio_for_control)
1361 			return ret;
1362 		if (hcd->self.uses_dma) {
1363 			urb->setup_dma = dma_map_single(
1364 					hcd->self.controller,
1365 					urb->setup_packet,
1366 					sizeof(struct usb_ctrlrequest),
1367 					DMA_TO_DEVICE);
1368 			if (dma_mapping_error(hcd->self.controller,
1369 						urb->setup_dma))
1370 				return -EAGAIN;
1371 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1372 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1373 			ret = hcd_alloc_coherent(
1374 					urb->dev->bus, mem_flags,
1375 					&urb->setup_dma,
1376 					(void **)&urb->setup_packet,
1377 					sizeof(struct usb_ctrlrequest),
1378 					DMA_TO_DEVICE);
1379 			if (ret)
1380 				return ret;
1381 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1382 		}
1383 	}
1384 
1385 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1386 	if (urb->transfer_buffer_length != 0
1387 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1388 		if (hcd->self.uses_dma) {
1389 			if (urb->num_sgs) {
1390 				int n = dma_map_sg(
1391 						hcd->self.controller,
1392 						urb->sg,
1393 						urb->num_sgs,
1394 						dir);
1395 				if (n <= 0)
1396 					ret = -EAGAIN;
1397 				else
1398 					urb->transfer_flags |= URB_DMA_MAP_SG;
1399 				urb->num_mapped_sgs = n;
1400 				if (n != urb->num_sgs)
1401 					urb->transfer_flags |=
1402 							URB_DMA_SG_COMBINED;
1403 			} else if (urb->sg) {
1404 				struct scatterlist *sg = urb->sg;
1405 				urb->transfer_dma = dma_map_page(
1406 						hcd->self.controller,
1407 						sg_page(sg),
1408 						sg->offset,
1409 						urb->transfer_buffer_length,
1410 						dir);
1411 				if (dma_mapping_error(hcd->self.controller,
1412 						urb->transfer_dma))
1413 					ret = -EAGAIN;
1414 				else
1415 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1416 			} else {
1417 				urb->transfer_dma = dma_map_single(
1418 						hcd->self.controller,
1419 						urb->transfer_buffer,
1420 						urb->transfer_buffer_length,
1421 						dir);
1422 				if (dma_mapping_error(hcd->self.controller,
1423 						urb->transfer_dma))
1424 					ret = -EAGAIN;
1425 				else
1426 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1427 			}
1428 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1429 			ret = hcd_alloc_coherent(
1430 					urb->dev->bus, mem_flags,
1431 					&urb->transfer_dma,
1432 					&urb->transfer_buffer,
1433 					urb->transfer_buffer_length,
1434 					dir);
1435 			if (ret == 0)
1436 				urb->transfer_flags |= URB_MAP_LOCAL;
1437 		}
1438 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1439 				URB_SETUP_MAP_LOCAL)))
1440 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1441 	}
1442 	return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1445 
1446 /*-------------------------------------------------------------------------*/
1447 
1448 /* may be called in any context with a valid urb->dev usecount
1449  * caller surrenders "ownership" of urb
1450  * expects usb_submit_urb() to have sanity checked and conditioned all
1451  * inputs in the urb
1452  */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1453 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1454 {
1455 	int			status;
1456 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1457 
1458 	/* increment urb's reference count as part of giving it to the HCD
1459 	 * (which will control it).  HCD guarantees that it either returns
1460 	 * an error or calls giveback(), but not both.
1461 	 */
1462 	usb_get_urb(urb);
1463 	atomic_inc(&urb->use_count);
1464 	atomic_inc(&urb->dev->urbnum);
1465 	usbmon_urb_submit(&hcd->self, urb);
1466 
1467 	/* NOTE requirements on root-hub callers (usbfs and the hub
1468 	 * driver, for now):  URBs' urb->transfer_buffer must be
1469 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1470 	 * they could clobber root hub response data.  Also, control
1471 	 * URBs must be submitted in process context with interrupts
1472 	 * enabled.
1473 	 */
1474 
1475 	if (is_root_hub(urb->dev)) {
1476 		status = rh_urb_enqueue(hcd, urb);
1477 	} else {
1478 		status = map_urb_for_dma(hcd, urb, mem_flags);
1479 		if (likely(status == 0)) {
1480 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1481 			if (unlikely(status))
1482 				unmap_urb_for_dma(hcd, urb);
1483 		}
1484 	}
1485 
1486 	if (unlikely(status)) {
1487 		usbmon_urb_submit_error(&hcd->self, urb, status);
1488 		urb->hcpriv = NULL;
1489 		INIT_LIST_HEAD(&urb->urb_list);
1490 		atomic_dec(&urb->use_count);
1491 		atomic_dec(&urb->dev->urbnum);
1492 		if (atomic_read(&urb->reject))
1493 			wake_up(&usb_kill_urb_queue);
1494 		usb_put_urb(urb);
1495 	}
1496 	return status;
1497 }
1498 
1499 /*-------------------------------------------------------------------------*/
1500 
1501 /* this makes the hcd giveback() the urb more quickly, by kicking it
1502  * off hardware queues (which may take a while) and returning it as
1503  * soon as practical.  we've already set up the urb's return status,
1504  * but we can't know if the callback completed already.
1505  */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1506 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1507 {
1508 	int		value;
1509 
1510 	if (is_root_hub(urb->dev))
1511 		value = usb_rh_urb_dequeue(hcd, urb, status);
1512 	else {
1513 
1514 		/* The only reason an HCD might fail this call is if
1515 		 * it has not yet fully queued the urb to begin with.
1516 		 * Such failures should be harmless. */
1517 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1518 	}
1519 	return value;
1520 }
1521 
1522 /*
1523  * called in any context
1524  *
1525  * caller guarantees urb won't be recycled till both unlink()
1526  * and the urb's completion function return
1527  */
usb_hcd_unlink_urb(struct urb * urb,int status)1528 int usb_hcd_unlink_urb (struct urb *urb, int status)
1529 {
1530 	struct usb_hcd		*hcd;
1531 	int			retval = -EIDRM;
1532 	unsigned long		flags;
1533 
1534 	/* Prevent the device and bus from going away while
1535 	 * the unlink is carried out.  If they are already gone
1536 	 * then urb->use_count must be 0, since disconnected
1537 	 * devices can't have any active URBs.
1538 	 */
1539 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1540 	if (atomic_read(&urb->use_count) > 0) {
1541 		retval = 0;
1542 		usb_get_dev(urb->dev);
1543 	}
1544 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1545 	if (retval == 0) {
1546 		hcd = bus_to_hcd(urb->dev->bus);
1547 		retval = unlink1(hcd, urb, status);
1548 		usb_put_dev(urb->dev);
1549 	}
1550 
1551 	if (retval == 0)
1552 		retval = -EINPROGRESS;
1553 	else if (retval != -EIDRM && retval != -EBUSY)
1554 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1555 				urb, retval);
1556 	return retval;
1557 }
1558 
1559 /*-------------------------------------------------------------------------*/
1560 
1561 /**
1562  * usb_hcd_giveback_urb - return URB from HCD to device driver
1563  * @hcd: host controller returning the URB
1564  * @urb: urb being returned to the USB device driver.
1565  * @status: completion status code for the URB.
1566  * Context: in_interrupt()
1567  *
1568  * This hands the URB from HCD to its USB device driver, using its
1569  * completion function.  The HCD has freed all per-urb resources
1570  * (and is done using urb->hcpriv).  It also released all HCD locks;
1571  * the device driver won't cause problems if it frees, modifies,
1572  * or resubmits this URB.
1573  *
1574  * If @urb was unlinked, the value of @status will be overridden by
1575  * @urb->unlinked.  Erroneous short transfers are detected in case
1576  * the HCD hasn't checked for them.
1577  */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1578 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1579 {
1580 	urb->hcpriv = NULL;
1581 	if (unlikely(urb->unlinked))
1582 		status = urb->unlinked;
1583 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1584 			urb->actual_length < urb->transfer_buffer_length &&
1585 			!status))
1586 		status = -EREMOTEIO;
1587 
1588 	unmap_urb_for_dma(hcd, urb);
1589 	usbmon_urb_complete(&hcd->self, urb, status);
1590 	usb_unanchor_urb(urb);
1591 
1592 	/* pass ownership to the completion handler */
1593 	urb->status = status;
1594 	urb->complete (urb);
1595 	atomic_dec (&urb->use_count);
1596 	if (unlikely(atomic_read(&urb->reject)))
1597 		wake_up (&usb_kill_urb_queue);
1598 	usb_put_urb (urb);
1599 }
1600 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1601 
1602 /*-------------------------------------------------------------------------*/
1603 
1604 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1605  * queue to drain completely.  The caller must first insure that no more
1606  * URBs can be submitted for this endpoint.
1607  */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1608 void usb_hcd_flush_endpoint(struct usb_device *udev,
1609 		struct usb_host_endpoint *ep)
1610 {
1611 	struct usb_hcd		*hcd;
1612 	struct urb		*urb;
1613 
1614 	if (!ep)
1615 		return;
1616 	might_sleep();
1617 	hcd = bus_to_hcd(udev->bus);
1618 
1619 	/* No more submits can occur */
1620 	spin_lock_irq(&hcd_urb_list_lock);
1621 rescan:
1622 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1623 		int	is_in;
1624 
1625 		if (urb->unlinked)
1626 			continue;
1627 		usb_get_urb (urb);
1628 		is_in = usb_urb_dir_in(urb);
1629 		spin_unlock(&hcd_urb_list_lock);
1630 
1631 		/* kick hcd */
1632 		unlink1(hcd, urb, -ESHUTDOWN);
1633 		dev_dbg (hcd->self.controller,
1634 			"shutdown urb %p ep%d%s%s\n",
1635 			urb, usb_endpoint_num(&ep->desc),
1636 			is_in ? "in" : "out",
1637 			({	char *s;
1638 
1639 				 switch (usb_endpoint_type(&ep->desc)) {
1640 				 case USB_ENDPOINT_XFER_CONTROL:
1641 					s = ""; break;
1642 				 case USB_ENDPOINT_XFER_BULK:
1643 					s = "-bulk"; break;
1644 				 case USB_ENDPOINT_XFER_INT:
1645 					s = "-intr"; break;
1646 				 default:
1647 			 		s = "-iso"; break;
1648 				};
1649 				s;
1650 			}));
1651 		usb_put_urb (urb);
1652 
1653 		/* list contents may have changed */
1654 		spin_lock(&hcd_urb_list_lock);
1655 		goto rescan;
1656 	}
1657 	spin_unlock_irq(&hcd_urb_list_lock);
1658 
1659 	/* Wait until the endpoint queue is completely empty */
1660 	while (!list_empty (&ep->urb_list)) {
1661 		spin_lock_irq(&hcd_urb_list_lock);
1662 
1663 		/* The list may have changed while we acquired the spinlock */
1664 		urb = NULL;
1665 		if (!list_empty (&ep->urb_list)) {
1666 			urb = list_entry (ep->urb_list.prev, struct urb,
1667 					urb_list);
1668 			usb_get_urb (urb);
1669 		}
1670 		spin_unlock_irq(&hcd_urb_list_lock);
1671 
1672 		if (urb) {
1673 			usb_kill_urb (urb);
1674 			usb_put_urb (urb);
1675 		}
1676 	}
1677 }
1678 
1679 /**
1680  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1681  *				the bus bandwidth
1682  * @udev: target &usb_device
1683  * @new_config: new configuration to install
1684  * @cur_alt: the current alternate interface setting
1685  * @new_alt: alternate interface setting that is being installed
1686  *
1687  * To change configurations, pass in the new configuration in new_config,
1688  * and pass NULL for cur_alt and new_alt.
1689  *
1690  * To reset a device's configuration (put the device in the ADDRESSED state),
1691  * pass in NULL for new_config, cur_alt, and new_alt.
1692  *
1693  * To change alternate interface settings, pass in NULL for new_config,
1694  * pass in the current alternate interface setting in cur_alt,
1695  * and pass in the new alternate interface setting in new_alt.
1696  *
1697  * Returns an error if the requested bandwidth change exceeds the
1698  * bus bandwidth or host controller internal resources.
1699  */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1700 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1701 		struct usb_host_config *new_config,
1702 		struct usb_host_interface *cur_alt,
1703 		struct usb_host_interface *new_alt)
1704 {
1705 	int num_intfs, i, j;
1706 	struct usb_host_interface *alt = NULL;
1707 	int ret = 0;
1708 	struct usb_hcd *hcd;
1709 	struct usb_host_endpoint *ep;
1710 
1711 	hcd = bus_to_hcd(udev->bus);
1712 	if (!hcd->driver->check_bandwidth)
1713 		return 0;
1714 
1715 	/* Configuration is being removed - set configuration 0 */
1716 	if (!new_config && !cur_alt) {
1717 		for (i = 1; i < 16; ++i) {
1718 			ep = udev->ep_out[i];
1719 			if (ep)
1720 				hcd->driver->drop_endpoint(hcd, udev, ep);
1721 			ep = udev->ep_in[i];
1722 			if (ep)
1723 				hcd->driver->drop_endpoint(hcd, udev, ep);
1724 		}
1725 		hcd->driver->check_bandwidth(hcd, udev);
1726 		return 0;
1727 	}
1728 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1729 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1730 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1731 	 * ok to exclude it.
1732 	 */
1733 	if (new_config) {
1734 		num_intfs = new_config->desc.bNumInterfaces;
1735 		/* Remove endpoints (except endpoint 0, which is always on the
1736 		 * schedule) from the old config from the schedule
1737 		 */
1738 		for (i = 1; i < 16; ++i) {
1739 			ep = udev->ep_out[i];
1740 			if (ep) {
1741 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1742 				if (ret < 0)
1743 					goto reset;
1744 			}
1745 			ep = udev->ep_in[i];
1746 			if (ep) {
1747 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1748 				if (ret < 0)
1749 					goto reset;
1750 			}
1751 		}
1752 		for (i = 0; i < num_intfs; ++i) {
1753 			struct usb_host_interface *first_alt;
1754 			int iface_num;
1755 
1756 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1757 			iface_num = first_alt->desc.bInterfaceNumber;
1758 			/* Set up endpoints for alternate interface setting 0 */
1759 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1760 			if (!alt)
1761 				/* No alt setting 0? Pick the first setting. */
1762 				alt = first_alt;
1763 
1764 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1765 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1766 				if (ret < 0)
1767 					goto reset;
1768 			}
1769 		}
1770 	}
1771 	if (cur_alt && new_alt) {
1772 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1773 				cur_alt->desc.bInterfaceNumber);
1774 
1775 		if (!iface)
1776 			return -EINVAL;
1777 		if (iface->resetting_device) {
1778 			/*
1779 			 * The USB core just reset the device, so the xHCI host
1780 			 * and the device will think alt setting 0 is installed.
1781 			 * However, the USB core will pass in the alternate
1782 			 * setting installed before the reset as cur_alt.  Dig
1783 			 * out the alternate setting 0 structure, or the first
1784 			 * alternate setting if a broken device doesn't have alt
1785 			 * setting 0.
1786 			 */
1787 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1788 			if (!cur_alt)
1789 				cur_alt = &iface->altsetting[0];
1790 		}
1791 
1792 		/* Drop all the endpoints in the current alt setting */
1793 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1794 			ret = hcd->driver->drop_endpoint(hcd, udev,
1795 					&cur_alt->endpoint[i]);
1796 			if (ret < 0)
1797 				goto reset;
1798 		}
1799 		/* Add all the endpoints in the new alt setting */
1800 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1801 			ret = hcd->driver->add_endpoint(hcd, udev,
1802 					&new_alt->endpoint[i]);
1803 			if (ret < 0)
1804 				goto reset;
1805 		}
1806 	}
1807 	ret = hcd->driver->check_bandwidth(hcd, udev);
1808 reset:
1809 	if (ret < 0)
1810 		hcd->driver->reset_bandwidth(hcd, udev);
1811 	return ret;
1812 }
1813 
1814 /* Disables the endpoint: synchronizes with the hcd to make sure all
1815  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1816  * have been called previously.  Use for set_configuration, set_interface,
1817  * driver removal, physical disconnect.
1818  *
1819  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1820  * type, maxpacket size, toggle, halt status, and scheduling.
1821  */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1822 void usb_hcd_disable_endpoint(struct usb_device *udev,
1823 		struct usb_host_endpoint *ep)
1824 {
1825 	struct usb_hcd		*hcd;
1826 
1827 	might_sleep();
1828 	hcd = bus_to_hcd(udev->bus);
1829 	if (hcd->driver->endpoint_disable)
1830 		hcd->driver->endpoint_disable(hcd, ep);
1831 }
1832 
1833 /**
1834  * usb_hcd_reset_endpoint - reset host endpoint state
1835  * @udev: USB device.
1836  * @ep:   the endpoint to reset.
1837  *
1838  * Resets any host endpoint state such as the toggle bit, sequence
1839  * number and current window.
1840  */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1841 void usb_hcd_reset_endpoint(struct usb_device *udev,
1842 			    struct usb_host_endpoint *ep)
1843 {
1844 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1845 
1846 	if (hcd->driver->endpoint_reset)
1847 		hcd->driver->endpoint_reset(hcd, ep);
1848 	else {
1849 		int epnum = usb_endpoint_num(&ep->desc);
1850 		int is_out = usb_endpoint_dir_out(&ep->desc);
1851 		int is_control = usb_endpoint_xfer_control(&ep->desc);
1852 
1853 		usb_settoggle(udev, epnum, is_out, 0);
1854 		if (is_control)
1855 			usb_settoggle(udev, epnum, !is_out, 0);
1856 	}
1857 }
1858 
1859 /**
1860  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1861  * @interface:		alternate setting that includes all endpoints.
1862  * @eps:		array of endpoints that need streams.
1863  * @num_eps:		number of endpoints in the array.
1864  * @num_streams:	number of streams to allocate.
1865  * @mem_flags:		flags hcd should use to allocate memory.
1866  *
1867  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1868  * Drivers may queue multiple transfers to different stream IDs, which may
1869  * complete in a different order than they were queued.
1870  */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)1871 int usb_alloc_streams(struct usb_interface *interface,
1872 		struct usb_host_endpoint **eps, unsigned int num_eps,
1873 		unsigned int num_streams, gfp_t mem_flags)
1874 {
1875 	struct usb_hcd *hcd;
1876 	struct usb_device *dev;
1877 	int i;
1878 
1879 	dev = interface_to_usbdev(interface);
1880 	hcd = bus_to_hcd(dev->bus);
1881 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1882 		return -EINVAL;
1883 	if (dev->speed != USB_SPEED_SUPER)
1884 		return -EINVAL;
1885 
1886 	/* Streams only apply to bulk endpoints. */
1887 	for (i = 0; i < num_eps; i++)
1888 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1889 			return -EINVAL;
1890 
1891 	return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1892 			num_streams, mem_flags);
1893 }
1894 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1895 
1896 /**
1897  * usb_free_streams - free bulk endpoint stream IDs.
1898  * @interface:	alternate setting that includes all endpoints.
1899  * @eps:	array of endpoints to remove streams from.
1900  * @num_eps:	number of endpoints in the array.
1901  * @mem_flags:	flags hcd should use to allocate memory.
1902  *
1903  * Reverts a group of bulk endpoints back to not using stream IDs.
1904  * Can fail if we are given bad arguments, or HCD is broken.
1905  */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)1906 void usb_free_streams(struct usb_interface *interface,
1907 		struct usb_host_endpoint **eps, unsigned int num_eps,
1908 		gfp_t mem_flags)
1909 {
1910 	struct usb_hcd *hcd;
1911 	struct usb_device *dev;
1912 	int i;
1913 
1914 	dev = interface_to_usbdev(interface);
1915 	hcd = bus_to_hcd(dev->bus);
1916 	if (dev->speed != USB_SPEED_SUPER)
1917 		return;
1918 
1919 	/* Streams only apply to bulk endpoints. */
1920 	for (i = 0; i < num_eps; i++)
1921 		if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1922 			return;
1923 
1924 	hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1925 }
1926 EXPORT_SYMBOL_GPL(usb_free_streams);
1927 
1928 /* Protect against drivers that try to unlink URBs after the device
1929  * is gone, by waiting until all unlinks for @udev are finished.
1930  * Since we don't currently track URBs by device, simply wait until
1931  * nothing is running in the locked region of usb_hcd_unlink_urb().
1932  */
usb_hcd_synchronize_unlinks(struct usb_device * udev)1933 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1934 {
1935 	spin_lock_irq(&hcd_urb_unlink_lock);
1936 	spin_unlock_irq(&hcd_urb_unlink_lock);
1937 }
1938 
1939 /*-------------------------------------------------------------------------*/
1940 
1941 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)1942 int usb_hcd_get_frame_number (struct usb_device *udev)
1943 {
1944 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1945 
1946 	if (!HCD_RH_RUNNING(hcd))
1947 		return -ESHUTDOWN;
1948 	return hcd->driver->get_frame_number (hcd);
1949 }
1950 
1951 /*-------------------------------------------------------------------------*/
1952 
1953 #ifdef	CONFIG_PM
1954 
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)1955 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1956 {
1957 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1958 	int		status;
1959 	int		old_state = hcd->state;
1960 
1961 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1962 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
1963 			rhdev->do_remote_wakeup);
1964 	if (HCD_DEAD(hcd)) {
1965 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1966 		return 0;
1967 	}
1968 
1969 	if (!hcd->driver->bus_suspend) {
1970 		status = -ENOENT;
1971 	} else {
1972 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1973 		hcd->state = HC_STATE_QUIESCING;
1974 		status = hcd->driver->bus_suspend(hcd);
1975 	}
1976 	if (status == 0) {
1977 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1978 		hcd->state = HC_STATE_SUSPENDED;
1979 
1980 		/* Did we race with a root-hub wakeup event? */
1981 		if (rhdev->do_remote_wakeup) {
1982 			char	buffer[6];
1983 
1984 			status = hcd->driver->hub_status_data(hcd, buffer);
1985 			if (status != 0) {
1986 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
1987 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
1988 				status = -EBUSY;
1989 			}
1990 		}
1991 	} else {
1992 		spin_lock_irq(&hcd_root_hub_lock);
1993 		if (!HCD_DEAD(hcd)) {
1994 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1995 			hcd->state = old_state;
1996 		}
1997 		spin_unlock_irq(&hcd_root_hub_lock);
1998 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1999 				"suspend", status);
2000 	}
2001 	return status;
2002 }
2003 
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2004 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2005 {
2006 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2007 	int		status;
2008 	int		old_state = hcd->state;
2009 
2010 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2011 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2012 	if (HCD_DEAD(hcd)) {
2013 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2014 		return 0;
2015 	}
2016 	if (!hcd->driver->bus_resume)
2017 		return -ENOENT;
2018 	if (HCD_RH_RUNNING(hcd))
2019 		return 0;
2020 
2021 	hcd->state = HC_STATE_RESUMING;
2022 	status = hcd->driver->bus_resume(hcd);
2023 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2024 	if (status == 0) {
2025 		/* TRSMRCY = 10 msec */
2026 		msleep(10);
2027 		spin_lock_irq(&hcd_root_hub_lock);
2028 		if (!HCD_DEAD(hcd)) {
2029 			usb_set_device_state(rhdev, rhdev->actconfig
2030 					? USB_STATE_CONFIGURED
2031 					: USB_STATE_ADDRESS);
2032 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2033 			hcd->state = HC_STATE_RUNNING;
2034 		}
2035 		spin_unlock_irq(&hcd_root_hub_lock);
2036 	} else {
2037 		hcd->state = old_state;
2038 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2039 				"resume", status);
2040 		if (status != -ESHUTDOWN)
2041 			usb_hc_died(hcd);
2042 	}
2043 	return status;
2044 }
2045 
2046 #endif	/* CONFIG_PM */
2047 
2048 #ifdef	CONFIG_USB_SUSPEND
2049 
2050 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2051 static void hcd_resume_work(struct work_struct *work)
2052 {
2053 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2054 	struct usb_device *udev = hcd->self.root_hub;
2055 
2056 	usb_lock_device(udev);
2057 	usb_remote_wakeup(udev);
2058 	usb_unlock_device(udev);
2059 }
2060 
2061 /**
2062  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2063  * @hcd: host controller for this root hub
2064  *
2065  * The USB host controller calls this function when its root hub is
2066  * suspended (with the remote wakeup feature enabled) and a remote
2067  * wakeup request is received.  The routine submits a workqueue request
2068  * to resume the root hub (that is, manage its downstream ports again).
2069  */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2070 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2071 {
2072 	unsigned long flags;
2073 
2074 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2075 	if (hcd->rh_registered) {
2076 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2077 		queue_work(pm_wq, &hcd->wakeup_work);
2078 	}
2079 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2080 }
2081 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2082 
2083 #endif	/* CONFIG_USB_SUSPEND */
2084 
2085 /*-------------------------------------------------------------------------*/
2086 
2087 #ifdef	CONFIG_USB_OTG
2088 
2089 /**
2090  * usb_bus_start_enum - start immediate enumeration (for OTG)
2091  * @bus: the bus (must use hcd framework)
2092  * @port_num: 1-based number of port; usually bus->otg_port
2093  * Context: in_interrupt()
2094  *
2095  * Starts enumeration, with an immediate reset followed later by
2096  * khubd identifying and possibly configuring the device.
2097  * This is needed by OTG controller drivers, where it helps meet
2098  * HNP protocol timing requirements for starting a port reset.
2099  */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2100 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2101 {
2102 	struct usb_hcd		*hcd;
2103 	int			status = -EOPNOTSUPP;
2104 
2105 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2106 	 * boards with root hubs hooked up to internal devices (instead of
2107 	 * just the OTG port) may need more attention to resetting...
2108 	 */
2109 	hcd = container_of (bus, struct usb_hcd, self);
2110 	if (port_num && hcd->driver->start_port_reset)
2111 		status = hcd->driver->start_port_reset(hcd, port_num);
2112 
2113 	/* run khubd shortly after (first) root port reset finishes;
2114 	 * it may issue others, until at least 50 msecs have passed.
2115 	 */
2116 	if (status == 0)
2117 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2118 	return status;
2119 }
2120 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2121 
2122 #endif
2123 
2124 /*-------------------------------------------------------------------------*/
2125 
2126 /**
2127  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2128  * @irq: the IRQ being raised
2129  * @__hcd: pointer to the HCD whose IRQ is being signaled
2130  *
2131  * If the controller isn't HALTed, calls the driver's irq handler.
2132  * Checks whether the controller is now dead.
2133  */
usb_hcd_irq(int irq,void * __hcd)2134 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2135 {
2136 	struct usb_hcd		*hcd = __hcd;
2137 	unsigned long		flags;
2138 	irqreturn_t		rc;
2139 
2140 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
2141 	 * when the first handler doesn't use it.  So let's just
2142 	 * assume it's never used.
2143 	 */
2144 	local_irq_save(flags);
2145 
2146 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2147 		rc = IRQ_NONE;
2148 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2149 		rc = IRQ_NONE;
2150 	else
2151 		rc = IRQ_HANDLED;
2152 
2153 	local_irq_restore(flags);
2154 	return rc;
2155 }
2156 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2157 
2158 /*-------------------------------------------------------------------------*/
2159 
2160 /**
2161  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2162  * @hcd: pointer to the HCD representing the controller
2163  *
2164  * This is called by bus glue to report a USB host controller that died
2165  * while operations may still have been pending.  It's called automatically
2166  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2167  *
2168  * Only call this function with the primary HCD.
2169  */
usb_hc_died(struct usb_hcd * hcd)2170 void usb_hc_died (struct usb_hcd *hcd)
2171 {
2172 	unsigned long flags;
2173 
2174 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2175 
2176 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2177 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2178 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2179 	if (hcd->rh_registered) {
2180 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2181 
2182 		/* make khubd clean up old urbs and devices */
2183 		usb_set_device_state (hcd->self.root_hub,
2184 				USB_STATE_NOTATTACHED);
2185 		usb_kick_khubd (hcd->self.root_hub);
2186 	}
2187 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2188 		hcd = hcd->shared_hcd;
2189 		if (hcd->rh_registered) {
2190 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2191 
2192 			/* make khubd clean up old urbs and devices */
2193 			usb_set_device_state(hcd->self.root_hub,
2194 					USB_STATE_NOTATTACHED);
2195 			usb_kick_khubd(hcd->self.root_hub);
2196 		}
2197 	}
2198 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2199 	/* Make sure that the other roothub is also deallocated. */
2200 }
2201 EXPORT_SYMBOL_GPL (usb_hc_died);
2202 
2203 /*-------------------------------------------------------------------------*/
2204 
2205 /**
2206  * usb_create_shared_hcd - create and initialize an HCD structure
2207  * @driver: HC driver that will use this hcd
2208  * @dev: device for this HC, stored in hcd->self.controller
2209  * @bus_name: value to store in hcd->self.bus_name
2210  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2211  *              PCI device.  Only allocate certain resources for the primary HCD
2212  * Context: !in_interrupt()
2213  *
2214  * Allocate a struct usb_hcd, with extra space at the end for the
2215  * HC driver's private data.  Initialize the generic members of the
2216  * hcd structure.
2217  *
2218  * If memory is unavailable, returns NULL.
2219  */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2220 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2221 		struct device *dev, const char *bus_name,
2222 		struct usb_hcd *primary_hcd)
2223 {
2224 	struct usb_hcd *hcd;
2225 
2226 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2227 	if (!hcd) {
2228 		dev_dbg (dev, "hcd alloc failed\n");
2229 		return NULL;
2230 	}
2231 	if (primary_hcd == NULL) {
2232 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2233 				GFP_KERNEL);
2234 		if (!hcd->bandwidth_mutex) {
2235 			kfree(hcd);
2236 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2237 			return NULL;
2238 		}
2239 		mutex_init(hcd->bandwidth_mutex);
2240 		dev_set_drvdata(dev, hcd);
2241 	} else {
2242 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2243 		hcd->primary_hcd = primary_hcd;
2244 		primary_hcd->primary_hcd = primary_hcd;
2245 		hcd->shared_hcd = primary_hcd;
2246 		primary_hcd->shared_hcd = hcd;
2247 	}
2248 
2249 	kref_init(&hcd->kref);
2250 
2251 	usb_bus_init(&hcd->self);
2252 	hcd->self.controller = dev;
2253 	hcd->self.bus_name = bus_name;
2254 	hcd->self.uses_dma = (dev->dma_mask != NULL);
2255 
2256 	init_timer(&hcd->rh_timer);
2257 	hcd->rh_timer.function = rh_timer_func;
2258 	hcd->rh_timer.data = (unsigned long) hcd;
2259 #ifdef CONFIG_USB_SUSPEND
2260 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2261 #endif
2262 
2263 	hcd->driver = driver;
2264 	hcd->speed = driver->flags & HCD_MASK;
2265 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2266 			"USB Host Controller";
2267 	return hcd;
2268 }
2269 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2270 
2271 /**
2272  * usb_create_hcd - create and initialize an HCD structure
2273  * @driver: HC driver that will use this hcd
2274  * @dev: device for this HC, stored in hcd->self.controller
2275  * @bus_name: value to store in hcd->self.bus_name
2276  * Context: !in_interrupt()
2277  *
2278  * Allocate a struct usb_hcd, with extra space at the end for the
2279  * HC driver's private data.  Initialize the generic members of the
2280  * hcd structure.
2281  *
2282  * If memory is unavailable, returns NULL.
2283  */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2284 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2285 		struct device *dev, const char *bus_name)
2286 {
2287 	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2288 }
2289 EXPORT_SYMBOL_GPL(usb_create_hcd);
2290 
2291 /*
2292  * Roothubs that share one PCI device must also share the bandwidth mutex.
2293  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2294  * deallocated.
2295  *
2296  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2297  * freed.  When hcd_release() is called for the non-primary HCD, set the
2298  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2299  * freed shortly).
2300  */
hcd_release(struct kref * kref)2301 static void hcd_release (struct kref *kref)
2302 {
2303 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2304 
2305 	if (usb_hcd_is_primary_hcd(hcd))
2306 		kfree(hcd->bandwidth_mutex);
2307 	else
2308 		hcd->shared_hcd->shared_hcd = NULL;
2309 	kfree(hcd);
2310 }
2311 
usb_get_hcd(struct usb_hcd * hcd)2312 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2313 {
2314 	if (hcd)
2315 		kref_get (&hcd->kref);
2316 	return hcd;
2317 }
2318 EXPORT_SYMBOL_GPL(usb_get_hcd);
2319 
usb_put_hcd(struct usb_hcd * hcd)2320 void usb_put_hcd (struct usb_hcd *hcd)
2321 {
2322 	if (hcd)
2323 		kref_put (&hcd->kref, hcd_release);
2324 }
2325 EXPORT_SYMBOL_GPL(usb_put_hcd);
2326 
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2327 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2328 {
2329 	if (!hcd->primary_hcd)
2330 		return 1;
2331 	return hcd == hcd->primary_hcd;
2332 }
2333 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2334 
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2335 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2336 		unsigned int irqnum, unsigned long irqflags)
2337 {
2338 	int retval;
2339 
2340 	if (hcd->driver->irq) {
2341 
2342 		/* IRQF_DISABLED doesn't work as advertised when used together
2343 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2344 		 * interrupts we can remove it here.
2345 		 */
2346 		if (irqflags & IRQF_SHARED)
2347 			irqflags &= ~IRQF_DISABLED;
2348 
2349 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2350 				hcd->driver->description, hcd->self.busnum);
2351 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2352 				hcd->irq_descr, hcd);
2353 		if (retval != 0) {
2354 			dev_err(hcd->self.controller,
2355 					"request interrupt %d failed\n",
2356 					irqnum);
2357 			return retval;
2358 		}
2359 		hcd->irq = irqnum;
2360 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2361 				(hcd->driver->flags & HCD_MEMORY) ?
2362 					"io mem" : "io base",
2363 					(unsigned long long)hcd->rsrc_start);
2364 	} else {
2365 		hcd->irq = 0;
2366 		if (hcd->rsrc_start)
2367 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2368 					(hcd->driver->flags & HCD_MEMORY) ?
2369 					"io mem" : "io base",
2370 					(unsigned long long)hcd->rsrc_start);
2371 	}
2372 	return 0;
2373 }
2374 
2375 /**
2376  * usb_add_hcd - finish generic HCD structure initialization and register
2377  * @hcd: the usb_hcd structure to initialize
2378  * @irqnum: Interrupt line to allocate
2379  * @irqflags: Interrupt type flags
2380  *
2381  * Finish the remaining parts of generic HCD initialization: allocate the
2382  * buffers of consistent memory, register the bus, request the IRQ line,
2383  * and call the driver's reset() and start() routines.
2384  */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2385 int usb_add_hcd(struct usb_hcd *hcd,
2386 		unsigned int irqnum, unsigned long irqflags)
2387 {
2388 	int retval;
2389 	struct usb_device *rhdev;
2390 
2391 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2392 
2393 	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2394 	if (authorized_default < 0 || authorized_default > 1)
2395 		hcd->authorized_default = hcd->wireless? 0 : 1;
2396 	else
2397 		hcd->authorized_default = authorized_default;
2398 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2399 
2400 	/* HC is in reset state, but accessible.  Now do the one-time init,
2401 	 * bottom up so that hcds can customize the root hubs before khubd
2402 	 * starts talking to them.  (Note, bus id is assigned early too.)
2403 	 */
2404 	if ((retval = hcd_buffer_create(hcd)) != 0) {
2405 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2406 		return retval;
2407 	}
2408 
2409 	if ((retval = usb_register_bus(&hcd->self)) < 0)
2410 		goto err_register_bus;
2411 
2412 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2413 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2414 		retval = -ENOMEM;
2415 		goto err_allocate_root_hub;
2416 	}
2417 	hcd->self.root_hub = rhdev;
2418 
2419 	switch (hcd->speed) {
2420 	case HCD_USB11:
2421 		rhdev->speed = USB_SPEED_FULL;
2422 		break;
2423 	case HCD_USB2:
2424 		rhdev->speed = USB_SPEED_HIGH;
2425 		break;
2426 	case HCD_USB3:
2427 		rhdev->speed = USB_SPEED_SUPER;
2428 		break;
2429 	default:
2430 		retval = -EINVAL;
2431 		goto err_set_rh_speed;
2432 	}
2433 
2434 	/* wakeup flag init defaults to "everything works" for root hubs,
2435 	 * but drivers can override it in reset() if needed, along with
2436 	 * recording the overall controller's system wakeup capability.
2437 	 */
2438 	device_set_wakeup_capable(&rhdev->dev, 1);
2439 
2440 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2441 	 * registered.  But since the controller can die at any time,
2442 	 * let's initialize the flag before touching the hardware.
2443 	 */
2444 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2445 
2446 	/* "reset" is misnamed; its role is now one-time init. the controller
2447 	 * should already have been reset (and boot firmware kicked off etc).
2448 	 */
2449 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2450 		dev_err(hcd->self.controller, "can't setup\n");
2451 		goto err_hcd_driver_setup;
2452 	}
2453 	hcd->rh_pollable = 1;
2454 
2455 	/* NOTE: root hub and controller capabilities may not be the same */
2456 	if (device_can_wakeup(hcd->self.controller)
2457 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2458 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2459 
2460 	/* enable irqs just before we start the controller,
2461 	 * if the BIOS provides legacy PCI irqs.
2462 	 */
2463 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2464 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2465 		if (retval)
2466 			goto err_request_irq;
2467 	}
2468 
2469 	hcd->state = HC_STATE_RUNNING;
2470 	retval = hcd->driver->start(hcd);
2471 	if (retval < 0) {
2472 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2473 		goto err_hcd_driver_start;
2474 	}
2475 
2476 	/* starting here, usbcore will pay attention to this root hub */
2477 	rhdev->bus_mA = min(500u, hcd->power_budget);
2478 	if ((retval = register_root_hub(hcd)) != 0)
2479 		goto err_register_root_hub;
2480 
2481 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2482 	if (retval < 0) {
2483 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2484 		       retval);
2485 		goto error_create_attr_group;
2486 	}
2487 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2488 		usb_hcd_poll_rh_status(hcd);
2489 
2490 	/*
2491 	 * Host controllers don't generate their own wakeup requests;
2492 	 * they only forward requests from the root hub.  Therefore
2493 	 * controllers should always be enabled for remote wakeup.
2494 	 */
2495 	device_wakeup_enable(hcd->self.controller);
2496 	return retval;
2497 
2498 error_create_attr_group:
2499 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2500 	if (HC_IS_RUNNING(hcd->state))
2501 		hcd->state = HC_STATE_QUIESCING;
2502 	spin_lock_irq(&hcd_root_hub_lock);
2503 	hcd->rh_registered = 0;
2504 	spin_unlock_irq(&hcd_root_hub_lock);
2505 
2506 #ifdef CONFIG_USB_SUSPEND
2507 	cancel_work_sync(&hcd->wakeup_work);
2508 #endif
2509 	mutex_lock(&usb_bus_list_lock);
2510 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2511 	mutex_unlock(&usb_bus_list_lock);
2512 err_register_root_hub:
2513 	hcd->rh_pollable = 0;
2514 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2515 	del_timer_sync(&hcd->rh_timer);
2516 	hcd->driver->stop(hcd);
2517 	hcd->state = HC_STATE_HALT;
2518 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2519 	del_timer_sync(&hcd->rh_timer);
2520 err_hcd_driver_start:
2521 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2522 		free_irq(irqnum, hcd);
2523 err_request_irq:
2524 err_hcd_driver_setup:
2525 err_set_rh_speed:
2526 	usb_put_dev(hcd->self.root_hub);
2527 err_allocate_root_hub:
2528 	usb_deregister_bus(&hcd->self);
2529 err_register_bus:
2530 	hcd_buffer_destroy(hcd);
2531 	return retval;
2532 }
2533 EXPORT_SYMBOL_GPL(usb_add_hcd);
2534 
2535 /**
2536  * usb_remove_hcd - shutdown processing for generic HCDs
2537  * @hcd: the usb_hcd structure to remove
2538  * Context: !in_interrupt()
2539  *
2540  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2541  * invoking the HCD's stop() method.
2542  */
usb_remove_hcd(struct usb_hcd * hcd)2543 void usb_remove_hcd(struct usb_hcd *hcd)
2544 {
2545 	struct usb_device *rhdev = hcd->self.root_hub;
2546 
2547 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2548 
2549 	usb_get_dev(rhdev);
2550 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2551 
2552 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2553 	if (HC_IS_RUNNING (hcd->state))
2554 		hcd->state = HC_STATE_QUIESCING;
2555 
2556 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2557 	spin_lock_irq (&hcd_root_hub_lock);
2558 	hcd->rh_registered = 0;
2559 	spin_unlock_irq (&hcd_root_hub_lock);
2560 
2561 #ifdef CONFIG_USB_SUSPEND
2562 	cancel_work_sync(&hcd->wakeup_work);
2563 #endif
2564 
2565 	mutex_lock(&usb_bus_list_lock);
2566 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2567 	mutex_unlock(&usb_bus_list_lock);
2568 
2569 	/* Prevent any more root-hub status calls from the timer.
2570 	 * The HCD might still restart the timer (if a port status change
2571 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2572 	 * the hub_status_data() callback.
2573 	 */
2574 	hcd->rh_pollable = 0;
2575 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2576 	del_timer_sync(&hcd->rh_timer);
2577 
2578 	hcd->driver->stop(hcd);
2579 	hcd->state = HC_STATE_HALT;
2580 
2581 	/* In case the HCD restarted the timer, stop it again. */
2582 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2583 	del_timer_sync(&hcd->rh_timer);
2584 
2585 	if (usb_hcd_is_primary_hcd(hcd)) {
2586 		if (hcd->irq > 0)
2587 			free_irq(hcd->irq, hcd);
2588 	}
2589 
2590 	usb_put_dev(hcd->self.root_hub);
2591 	usb_deregister_bus(&hcd->self);
2592 	hcd_buffer_destroy(hcd);
2593 }
2594 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2595 
2596 void
usb_hcd_platform_shutdown(struct platform_device * dev)2597 usb_hcd_platform_shutdown(struct platform_device* dev)
2598 {
2599 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2600 
2601 	if (hcd->driver->shutdown)
2602 		hcd->driver->shutdown(hcd);
2603 }
2604 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2605 
2606 /*-------------------------------------------------------------------------*/
2607 
2608 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2609 
2610 struct usb_mon_operations *mon_ops;
2611 
2612 /*
2613  * The registration is unlocked.
2614  * We do it this way because we do not want to lock in hot paths.
2615  *
2616  * Notice that the code is minimally error-proof. Because usbmon needs
2617  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2618  */
2619 
usb_mon_register(struct usb_mon_operations * ops)2620 int usb_mon_register (struct usb_mon_operations *ops)
2621 {
2622 
2623 	if (mon_ops)
2624 		return -EBUSY;
2625 
2626 	mon_ops = ops;
2627 	mb();
2628 	return 0;
2629 }
2630 EXPORT_SYMBOL_GPL (usb_mon_register);
2631 
usb_mon_deregister(void)2632 void usb_mon_deregister (void)
2633 {
2634 
2635 	if (mon_ops == NULL) {
2636 		printk(KERN_ERR "USB: monitor was not registered\n");
2637 		return;
2638 	}
2639 	mon_ops = NULL;
2640 	mb();
2641 }
2642 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2643 
2644 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2645