1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44 
45 #include "usb.h"
46 
47 
48 /*-------------------------------------------------------------------------*/
49 
50 /*
51  * USB Host Controller Driver framework
52  *
53  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54  * HCD-specific behaviors/bugs.
55  *
56  * This does error checks, tracks devices and urbs, and delegates to a
57  * "hc_driver" only for code (and data) that really needs to know about
58  * hardware differences.  That includes root hub registers, i/o queues,
59  * and so on ... but as little else as possible.
60  *
61  * Shared code includes most of the "root hub" code (these are emulated,
62  * though each HC's hardware works differently) and PCI glue, plus request
63  * tracking overhead.  The HCD code should only block on spinlocks or on
64  * hardware handshaking; blocking on software events (such as other kernel
65  * threads releasing resources, or completing actions) is all generic.
66  *
67  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69  * only by the hub driver ... and that neither should be seen or used by
70  * usb client device drivers.
71  *
72  * Contributors of ideas or unattributed patches include: David Brownell,
73  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74  *
75  * HISTORY:
76  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
77  *		associated cleanup.  "usb_hcd" still != "usb_bus".
78  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
79  */
80 
81 /*-------------------------------------------------------------------------*/
82 
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86 
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90 
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS		64
93 struct usb_busmap {
94 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97 
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101 
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104 
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107 
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110 
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113 
is_root_hub(struct usb_device * udev)114 static inline int is_root_hub(struct usb_device *udev)
115 {
116 	return (udev->parent == NULL);
117 }
118 
119 /*-------------------------------------------------------------------------*/
120 
121 /*
122  * Sharable chunks of root hub code.
123  */
124 
125 /*-------------------------------------------------------------------------*/
126 
127 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
129 
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 	0x12,       /*  __u8  bLength; */
133 	0x01,       /*  __u8  bDescriptorType; Device */
134 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135 
136 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
137 	0x00,	    /*  __u8  bDeviceSubClass; */
138 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140 
141 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
142 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144 
145 	0x03,       /*  __u8  iManufacturer; */
146 	0x02,       /*  __u8  iProduct; */
147 	0x01,       /*  __u8  iSerialNumber; */
148 	0x01        /*  __u8  bNumConfigurations; */
149 };
150 
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153 	0x12,       /*  __u8  bLength; */
154 	0x01,       /*  __u8  bDescriptorType; Device */
155 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156 
157 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
158 	0x00,	    /*  __u8  bDeviceSubClass; */
159 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161 
162 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165 
166 	0x03,       /*  __u8  iManufacturer; */
167 	0x02,       /*  __u8  iProduct; */
168 	0x01,       /*  __u8  iSerialNumber; */
169 	0x01        /*  __u8  bNumConfigurations; */
170 };
171 
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173 
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176 	0x12,       /*  __u8  bLength; */
177 	0x01,       /*  __u8  bDescriptorType; Device */
178 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179 
180 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
181 	0x00,	    /*  __u8  bDeviceSubClass; */
182 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184 
185 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
186 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188 
189 	0x03,       /*  __u8  iManufacturer; */
190 	0x02,       /*  __u8  iProduct; */
191 	0x01,       /*  __u8  iSerialNumber; */
192 	0x01        /*  __u8  bNumConfigurations; */
193 };
194 
195 
196 /*-------------------------------------------------------------------------*/
197 
198 /* Configuration descriptors for our root hubs */
199 
200 static const u8 fs_rh_config_descriptor [] = {
201 
202 	/* one configuration */
203 	0x09,       /*  __u8  bLength; */
204 	0x02,       /*  __u8  bDescriptorType; Configuration */
205 	0x19, 0x00, /*  __le16 wTotalLength; */
206 	0x01,       /*  __u8  bNumInterfaces; (1) */
207 	0x01,       /*  __u8  bConfigurationValue; */
208 	0x00,       /*  __u8  iConfiguration; */
209 	0xc0,       /*  __u8  bmAttributes;
210 				 Bit 7: must be set,
211 				     6: Self-powered,
212 				     5: Remote wakeup,
213 				     4..0: resvd */
214 	0x00,       /*  __u8  MaxPower; */
215 
216 	/* USB 1.1:
217 	 * USB 2.0, single TT organization (mandatory):
218 	 *	one interface, protocol 0
219 	 *
220 	 * USB 2.0, multiple TT organization (optional):
221 	 *	two interfaces, protocols 1 (like single TT)
222 	 *	and 2 (multiple TT mode) ... config is
223 	 *	sometimes settable
224 	 *	NOT IMPLEMENTED
225 	 */
226 
227 	/* one interface */
228 	0x09,       /*  __u8  if_bLength; */
229 	0x04,       /*  __u8  if_bDescriptorType; Interface */
230 	0x00,       /*  __u8  if_bInterfaceNumber; */
231 	0x00,       /*  __u8  if_bAlternateSetting; */
232 	0x01,       /*  __u8  if_bNumEndpoints; */
233 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234 	0x00,       /*  __u8  if_bInterfaceSubClass; */
235 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236 	0x00,       /*  __u8  if_iInterface; */
237 
238 	/* one endpoint (status change endpoint) */
239 	0x07,       /*  __u8  ep_bLength; */
240 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246 
247 static const u8 hs_rh_config_descriptor [] = {
248 
249 	/* one configuration */
250 	0x09,       /*  __u8  bLength; */
251 	0x02,       /*  __u8  bDescriptorType; Configuration */
252 	0x19, 0x00, /*  __le16 wTotalLength; */
253 	0x01,       /*  __u8  bNumInterfaces; (1) */
254 	0x01,       /*  __u8  bConfigurationValue; */
255 	0x00,       /*  __u8  iConfiguration; */
256 	0xc0,       /*  __u8  bmAttributes;
257 				 Bit 7: must be set,
258 				     6: Self-powered,
259 				     5: Remote wakeup,
260 				     4..0: resvd */
261 	0x00,       /*  __u8  MaxPower; */
262 
263 	/* USB 1.1:
264 	 * USB 2.0, single TT organization (mandatory):
265 	 *	one interface, protocol 0
266 	 *
267 	 * USB 2.0, multiple TT organization (optional):
268 	 *	two interfaces, protocols 1 (like single TT)
269 	 *	and 2 (multiple TT mode) ... config is
270 	 *	sometimes settable
271 	 *	NOT IMPLEMENTED
272 	 */
273 
274 	/* one interface */
275 	0x09,       /*  __u8  if_bLength; */
276 	0x04,       /*  __u8  if_bDescriptorType; Interface */
277 	0x00,       /*  __u8  if_bInterfaceNumber; */
278 	0x00,       /*  __u8  if_bAlternateSetting; */
279 	0x01,       /*  __u8  if_bNumEndpoints; */
280 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281 	0x00,       /*  __u8  if_bInterfaceSubClass; */
282 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283 	0x00,       /*  __u8  if_iInterface; */
284 
285 	/* one endpoint (status change endpoint) */
286 	0x07,       /*  __u8  ep_bLength; */
287 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 		     * see hub.c:hub_configure() for details. */
292 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295 
296 static const u8 ss_rh_config_descriptor[] = {
297 	/* one configuration */
298 	0x09,       /*  __u8  bLength; */
299 	0x02,       /*  __u8  bDescriptorType; Configuration */
300 	0x1f, 0x00, /*  __le16 wTotalLength; */
301 	0x01,       /*  __u8  bNumInterfaces; (1) */
302 	0x01,       /*  __u8  bConfigurationValue; */
303 	0x00,       /*  __u8  iConfiguration; */
304 	0xc0,       /*  __u8  bmAttributes;
305 				 Bit 7: must be set,
306 				     6: Self-powered,
307 				     5: Remote wakeup,
308 				     4..0: resvd */
309 	0x00,       /*  __u8  MaxPower; */
310 
311 	/* one interface */
312 	0x09,       /*  __u8  if_bLength; */
313 	0x04,       /*  __u8  if_bDescriptorType; Interface */
314 	0x00,       /*  __u8  if_bInterfaceNumber; */
315 	0x00,       /*  __u8  if_bAlternateSetting; */
316 	0x01,       /*  __u8  if_bNumEndpoints; */
317 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318 	0x00,       /*  __u8  if_bInterfaceSubClass; */
319 	0x00,       /*  __u8  if_bInterfaceProtocol; */
320 	0x00,       /*  __u8  if_iInterface; */
321 
322 	/* one endpoint (status change endpoint) */
323 	0x07,       /*  __u8  ep_bLength; */
324 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 		     * see hub.c:hub_configure() for details. */
329 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331 
332 	/* one SuperSpeed endpoint companion descriptor */
333 	0x06,        /* __u8 ss_bLength */
334 	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339 
340 /*-------------------------------------------------------------------------*/
341 
342 /**
343  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
344  * @s: Null-terminated ASCII (actually ISO-8859-1) string
345  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
346  * @len: Length (in bytes; may be odd) of descriptor buffer.
347  *
348  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
349  * buflen, whichever is less.
350  *
351  * USB String descriptors can contain at most 126 characters; input
352  * strings longer than that are truncated.
353  */
354 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)355 ascii2desc(char const *s, u8 *buf, unsigned len)
356 {
357 	unsigned n, t = 2 + 2*strlen(s);
358 
359 	if (t > 254)
360 		t = 254;	/* Longest possible UTF string descriptor */
361 	if (len > t)
362 		len = t;
363 
364 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
365 
366 	n = len;
367 	while (n--) {
368 		*buf++ = t;
369 		if (!n--)
370 			break;
371 		*buf++ = t >> 8;
372 		t = (unsigned char)*s++;
373 	}
374 	return len;
375 }
376 
377 /**
378  * rh_string() - provides string descriptors for root hub
379  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
380  * @hcd: the host controller for this root hub
381  * @data: buffer for output packet
382  * @len: length of the provided buffer
383  *
384  * Produces either a manufacturer, product or serial number string for the
385  * virtual root hub device.
386  * Returns the number of bytes filled in: the length of the descriptor or
387  * of the provided buffer, whichever is less.
388  */
389 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)390 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
391 {
392 	char buf[100];
393 	char const *s;
394 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
395 
396 	// language ids
397 	switch (id) {
398 	case 0:
399 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
400 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
401 		if (len > 4)
402 			len = 4;
403 		memcpy(data, langids, len);
404 		return len;
405 	case 1:
406 		/* Serial number */
407 		s = hcd->self.bus_name;
408 		break;
409 	case 2:
410 		/* Product name */
411 		s = hcd->product_desc;
412 		break;
413 	case 3:
414 		/* Manufacturer */
415 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
416 			init_utsname()->release, hcd->driver->description);
417 		s = buf;
418 		break;
419 	default:
420 		/* Can't happen; caller guarantees it */
421 		return 0;
422 	}
423 
424 	return ascii2desc(s, data, len);
425 }
426 
427 
428 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)429 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
430 {
431 	struct usb_ctrlrequest *cmd;
432  	u16		typeReq, wValue, wIndex, wLength;
433 	u8		*ubuf = urb->transfer_buffer;
434 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
435 		__attribute__((aligned(4)));
436 	const u8	*bufp = tbuf;
437 	unsigned	len = 0;
438 	int		status;
439 	u8		patch_wakeup = 0;
440 	u8		patch_protocol = 0;
441 
442 	might_sleep();
443 
444 	spin_lock_irq(&hcd_root_hub_lock);
445 	status = usb_hcd_link_urb_to_ep(hcd, urb);
446 	spin_unlock_irq(&hcd_root_hub_lock);
447 	if (status)
448 		return status;
449 	urb->hcpriv = hcd;	/* Indicate it's queued */
450 
451 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
452 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
453 	wValue   = le16_to_cpu (cmd->wValue);
454 	wIndex   = le16_to_cpu (cmd->wIndex);
455 	wLength  = le16_to_cpu (cmd->wLength);
456 
457 	if (wLength > urb->transfer_buffer_length)
458 		goto error;
459 
460 	urb->actual_length = 0;
461 	switch (typeReq) {
462 
463 	/* DEVICE REQUESTS */
464 
465 	/* The root hub's remote wakeup enable bit is implemented using
466 	 * driver model wakeup flags.  If this system supports wakeup
467 	 * through USB, userspace may change the default "allow wakeup"
468 	 * policy through sysfs or these calls.
469 	 *
470 	 * Most root hubs support wakeup from downstream devices, for
471 	 * runtime power management (disabling USB clocks and reducing
472 	 * VBUS power usage).  However, not all of them do so; silicon,
473 	 * board, and BIOS bugs here are not uncommon, so these can't
474 	 * be treated quite like external hubs.
475 	 *
476 	 * Likewise, not all root hubs will pass wakeup events upstream,
477 	 * to wake up the whole system.  So don't assume root hub and
478 	 * controller capabilities are identical.
479 	 */
480 
481 	case DeviceRequest | USB_REQ_GET_STATUS:
482 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
483 					<< USB_DEVICE_REMOTE_WAKEUP)
484 				| (1 << USB_DEVICE_SELF_POWERED);
485 		tbuf [1] = 0;
486 		len = 2;
487 		break;
488 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
489 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
490 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
491 		else
492 			goto error;
493 		break;
494 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
495 		if (device_can_wakeup(&hcd->self.root_hub->dev)
496 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
497 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
498 		else
499 			goto error;
500 		break;
501 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
502 		tbuf [0] = 1;
503 		len = 1;
504 			/* FALLTHROUGH */
505 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
506 		break;
507 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
508 		switch (wValue & 0xff00) {
509 		case USB_DT_DEVICE << 8:
510 			switch (hcd->speed) {
511 			case HCD_USB3:
512 				bufp = usb3_rh_dev_descriptor;
513 				break;
514 			case HCD_USB2:
515 				bufp = usb2_rh_dev_descriptor;
516 				break;
517 			case HCD_USB11:
518 				bufp = usb11_rh_dev_descriptor;
519 				break;
520 			default:
521 				goto error;
522 			}
523 			len = 18;
524 			if (hcd->has_tt)
525 				patch_protocol = 1;
526 			break;
527 		case USB_DT_CONFIG << 8:
528 			switch (hcd->speed) {
529 			case HCD_USB3:
530 				bufp = ss_rh_config_descriptor;
531 				len = sizeof ss_rh_config_descriptor;
532 				break;
533 			case HCD_USB2:
534 				bufp = hs_rh_config_descriptor;
535 				len = sizeof hs_rh_config_descriptor;
536 				break;
537 			case HCD_USB11:
538 				bufp = fs_rh_config_descriptor;
539 				len = sizeof fs_rh_config_descriptor;
540 				break;
541 			default:
542 				goto error;
543 			}
544 			if (device_can_wakeup(&hcd->self.root_hub->dev))
545 				patch_wakeup = 1;
546 			break;
547 		case USB_DT_STRING << 8:
548 			if ((wValue & 0xff) < 4)
549 				urb->actual_length = rh_string(wValue & 0xff,
550 						hcd, ubuf, wLength);
551 			else /* unsupported IDs --> "protocol stall" */
552 				goto error;
553 			break;
554 		default:
555 			goto error;
556 		}
557 		break;
558 	case DeviceRequest | USB_REQ_GET_INTERFACE:
559 		tbuf [0] = 0;
560 		len = 1;
561 			/* FALLTHROUGH */
562 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
563 		break;
564 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
565 		// wValue == urb->dev->devaddr
566 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
567 			wValue);
568 		break;
569 
570 	/* INTERFACE REQUESTS (no defined feature/status flags) */
571 
572 	/* ENDPOINT REQUESTS */
573 
574 	case EndpointRequest | USB_REQ_GET_STATUS:
575 		// ENDPOINT_HALT flag
576 		tbuf [0] = 0;
577 		tbuf [1] = 0;
578 		len = 2;
579 			/* FALLTHROUGH */
580 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
581 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
582 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
583 		break;
584 
585 	/* CLASS REQUESTS (and errors) */
586 
587 	default:
588 		/* non-generic request */
589 		switch (typeReq) {
590 		case GetHubStatus:
591 		case GetPortStatus:
592 			len = 4;
593 			break;
594 		case GetHubDescriptor:
595 			len = sizeof (struct usb_hub_descriptor);
596 			break;
597 		}
598 		status = hcd->driver->hub_control (hcd,
599 			typeReq, wValue, wIndex,
600 			tbuf, wLength);
601 		break;
602 error:
603 		/* "protocol stall" on error */
604 		status = -EPIPE;
605 	}
606 
607 	if (status) {
608 		len = 0;
609 		if (status != -EPIPE) {
610 			dev_dbg (hcd->self.controller,
611 				"CTRL: TypeReq=0x%x val=0x%x "
612 				"idx=0x%x len=%d ==> %d\n",
613 				typeReq, wValue, wIndex,
614 				wLength, status);
615 		}
616 	}
617 	if (len) {
618 		if (urb->transfer_buffer_length < len)
619 			len = urb->transfer_buffer_length;
620 		urb->actual_length = len;
621 		// always USB_DIR_IN, toward host
622 		memcpy (ubuf, bufp, len);
623 
624 		/* report whether RH hardware supports remote wakeup */
625 		if (patch_wakeup &&
626 				len > offsetof (struct usb_config_descriptor,
627 						bmAttributes))
628 			((struct usb_config_descriptor *)ubuf)->bmAttributes
629 				|= USB_CONFIG_ATT_WAKEUP;
630 
631 		/* report whether RH hardware has an integrated TT */
632 		if (patch_protocol &&
633 				len > offsetof(struct usb_device_descriptor,
634 						bDeviceProtocol))
635 			((struct usb_device_descriptor *) ubuf)->
636 					bDeviceProtocol = 1;
637 	}
638 
639 	/* any errors get returned through the urb completion */
640 	spin_lock_irq(&hcd_root_hub_lock);
641 	usb_hcd_unlink_urb_from_ep(hcd, urb);
642 
643 	/* This peculiar use of spinlocks echoes what real HC drivers do.
644 	 * Avoiding calls to local_irq_disable/enable makes the code
645 	 * RT-friendly.
646 	 */
647 	spin_unlock(&hcd_root_hub_lock);
648 	usb_hcd_giveback_urb(hcd, urb, status);
649 	spin_lock(&hcd_root_hub_lock);
650 
651 	spin_unlock_irq(&hcd_root_hub_lock);
652 	return 0;
653 }
654 
655 /*-------------------------------------------------------------------------*/
656 
657 /*
658  * Root Hub interrupt transfers are polled using a timer if the
659  * driver requests it; otherwise the driver is responsible for
660  * calling usb_hcd_poll_rh_status() when an event occurs.
661  *
662  * Completions are called in_interrupt(), but they may or may not
663  * be in_irq().
664  */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)665 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
666 {
667 	struct urb	*urb;
668 	int		length;
669 	unsigned long	flags;
670 	char		buffer[6];	/* Any root hubs with > 31 ports? */
671 
672 	if (unlikely(!hcd->rh_pollable))
673 		return;
674 	if (!hcd->uses_new_polling && !hcd->status_urb)
675 		return;
676 
677 	length = hcd->driver->hub_status_data(hcd, buffer);
678 	if (length > 0) {
679 
680 		/* try to complete the status urb */
681 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
682 		urb = hcd->status_urb;
683 		if (urb) {
684 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
685 			hcd->status_urb = NULL;
686 			urb->actual_length = length;
687 			memcpy(urb->transfer_buffer, buffer, length);
688 
689 			usb_hcd_unlink_urb_from_ep(hcd, urb);
690 			spin_unlock(&hcd_root_hub_lock);
691 			usb_hcd_giveback_urb(hcd, urb, 0);
692 			spin_lock(&hcd_root_hub_lock);
693 		} else {
694 			length = 0;
695 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
696 		}
697 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
698 	}
699 
700 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
701 	 * exceed that limit if HZ is 100. The math is more clunky than
702 	 * maybe expected, this is to make sure that all timers for USB devices
703 	 * fire at the same time to give the CPU a break in between */
704 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
705 			(length == 0 && hcd->status_urb != NULL))
706 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
707 }
708 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
709 
710 /* timer callback */
rh_timer_func(unsigned long _hcd)711 static void rh_timer_func (unsigned long _hcd)
712 {
713 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
714 }
715 
716 /*-------------------------------------------------------------------------*/
717 
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)718 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
719 {
720 	int		retval;
721 	unsigned long	flags;
722 	unsigned	len = 1 + (urb->dev->maxchild / 8);
723 
724 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
725 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
726 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
727 		retval = -EINVAL;
728 		goto done;
729 	}
730 
731 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
732 	if (retval)
733 		goto done;
734 
735 	hcd->status_urb = urb;
736 	urb->hcpriv = hcd;	/* indicate it's queued */
737 	if (!hcd->uses_new_polling)
738 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
739 
740 	/* If a status change has already occurred, report it ASAP */
741 	else if (HCD_POLL_PENDING(hcd))
742 		mod_timer(&hcd->rh_timer, jiffies);
743 	retval = 0;
744  done:
745 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
746 	return retval;
747 }
748 
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)749 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
750 {
751 	if (usb_endpoint_xfer_int(&urb->ep->desc))
752 		return rh_queue_status (hcd, urb);
753 	if (usb_endpoint_xfer_control(&urb->ep->desc))
754 		return rh_call_control (hcd, urb);
755 	return -EINVAL;
756 }
757 
758 /*-------------------------------------------------------------------------*/
759 
760 /* Unlinks of root-hub control URBs are legal, but they don't do anything
761  * since these URBs always execute synchronously.
762  */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)763 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
764 {
765 	unsigned long	flags;
766 	int		rc;
767 
768 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
769 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
770 	if (rc)
771 		goto done;
772 
773 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
774 		;	/* Do nothing */
775 
776 	} else {				/* Status URB */
777 		if (!hcd->uses_new_polling)
778 			del_timer (&hcd->rh_timer);
779 		if (urb == hcd->status_urb) {
780 			hcd->status_urb = NULL;
781 			usb_hcd_unlink_urb_from_ep(hcd, urb);
782 
783 			spin_unlock(&hcd_root_hub_lock);
784 			usb_hcd_giveback_urb(hcd, urb, status);
785 			spin_lock(&hcd_root_hub_lock);
786 		}
787 	}
788  done:
789 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 	return rc;
791 }
792 
793 
794 
795 /*
796  * Show & store the current value of authorized_default
797  */
usb_host_authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)798 static ssize_t usb_host_authorized_default_show(struct device *dev,
799 						struct device_attribute *attr,
800 						char *buf)
801 {
802 	struct usb_device *rh_usb_dev = to_usb_device(dev);
803 	struct usb_bus *usb_bus = rh_usb_dev->bus;
804 	struct usb_hcd *usb_hcd;
805 
806 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
807 		return -ENODEV;
808 	usb_hcd = bus_to_hcd(usb_bus);
809 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
810 }
811 
usb_host_authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)812 static ssize_t usb_host_authorized_default_store(struct device *dev,
813 						 struct device_attribute *attr,
814 						 const char *buf, size_t size)
815 {
816 	ssize_t result;
817 	unsigned val;
818 	struct usb_device *rh_usb_dev = to_usb_device(dev);
819 	struct usb_bus *usb_bus = rh_usb_dev->bus;
820 	struct usb_hcd *usb_hcd;
821 
822 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
823 		return -ENODEV;
824 	usb_hcd = bus_to_hcd(usb_bus);
825 	result = sscanf(buf, "%u\n", &val);
826 	if (result == 1) {
827 		usb_hcd->authorized_default = val? 1 : 0;
828 		result = size;
829 	}
830 	else
831 		result = -EINVAL;
832 	return result;
833 }
834 
835 static DEVICE_ATTR(authorized_default, 0644,
836 	    usb_host_authorized_default_show,
837 	    usb_host_authorized_default_store);
838 
839 
840 /* Group all the USB bus attributes */
841 static struct attribute *usb_bus_attrs[] = {
842 		&dev_attr_authorized_default.attr,
843 		NULL,
844 };
845 
846 static struct attribute_group usb_bus_attr_group = {
847 	.name = NULL,	/* we want them in the same directory */
848 	.attrs = usb_bus_attrs,
849 };
850 
851 
852 
853 /*-------------------------------------------------------------------------*/
854 
855 /**
856  * usb_bus_init - shared initialization code
857  * @bus: the bus structure being initialized
858  *
859  * This code is used to initialize a usb_bus structure, memory for which is
860  * separately managed.
861  */
usb_bus_init(struct usb_bus * bus)862 static void usb_bus_init (struct usb_bus *bus)
863 {
864 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
865 
866 	bus->devnum_next = 1;
867 
868 	bus->root_hub = NULL;
869 	bus->busnum = -1;
870 	bus->bandwidth_allocated = 0;
871 	bus->bandwidth_int_reqs  = 0;
872 	bus->bandwidth_isoc_reqs = 0;
873 
874 	INIT_LIST_HEAD (&bus->bus_list);
875 }
876 
877 /*-------------------------------------------------------------------------*/
878 
879 /**
880  * usb_register_bus - registers the USB host controller with the usb core
881  * @bus: pointer to the bus to register
882  * Context: !in_interrupt()
883  *
884  * Assigns a bus number, and links the controller into usbcore data
885  * structures so that it can be seen by scanning the bus list.
886  */
usb_register_bus(struct usb_bus * bus)887 static int usb_register_bus(struct usb_bus *bus)
888 {
889 	int result = -E2BIG;
890 	int busnum;
891 
892 	mutex_lock(&usb_bus_list_lock);
893 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
894 	if (busnum >= USB_MAXBUS) {
895 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
896 		goto error_find_busnum;
897 	}
898 	set_bit (busnum, busmap.busmap);
899 	bus->busnum = busnum;
900 
901 	/* Add it to the local list of buses */
902 	list_add (&bus->bus_list, &usb_bus_list);
903 	mutex_unlock(&usb_bus_list_lock);
904 
905 	usb_notify_add_bus(bus);
906 
907 	dev_info (bus->controller, "new USB bus registered, assigned bus "
908 		  "number %d\n", bus->busnum);
909 	return 0;
910 
911 error_find_busnum:
912 	mutex_unlock(&usb_bus_list_lock);
913 	return result;
914 }
915 
916 /**
917  * usb_deregister_bus - deregisters the USB host controller
918  * @bus: pointer to the bus to deregister
919  * Context: !in_interrupt()
920  *
921  * Recycles the bus number, and unlinks the controller from usbcore data
922  * structures so that it won't be seen by scanning the bus list.
923  */
usb_deregister_bus(struct usb_bus * bus)924 static void usb_deregister_bus (struct usb_bus *bus)
925 {
926 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
927 
928 	/*
929 	 * NOTE: make sure that all the devices are removed by the
930 	 * controller code, as well as having it call this when cleaning
931 	 * itself up
932 	 */
933 	mutex_lock(&usb_bus_list_lock);
934 	list_del (&bus->bus_list);
935 	mutex_unlock(&usb_bus_list_lock);
936 
937 	usb_notify_remove_bus(bus);
938 
939 	clear_bit (bus->busnum, busmap.busmap);
940 }
941 
942 /**
943  * register_root_hub - called by usb_add_hcd() to register a root hub
944  * @hcd: host controller for this root hub
945  *
946  * This function registers the root hub with the USB subsystem.  It sets up
947  * the device properly in the device tree and then calls usb_new_device()
948  * to register the usb device.  It also assigns the root hub's USB address
949  * (always 1).
950  */
register_root_hub(struct usb_hcd * hcd)951 static int register_root_hub(struct usb_hcd *hcd)
952 {
953 	struct device *parent_dev = hcd->self.controller;
954 	struct usb_device *usb_dev = hcd->self.root_hub;
955 	const int devnum = 1;
956 	int retval;
957 
958 	usb_dev->devnum = devnum;
959 	usb_dev->bus->devnum_next = devnum + 1;
960 	memset (&usb_dev->bus->devmap.devicemap, 0,
961 			sizeof usb_dev->bus->devmap.devicemap);
962 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
963 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
964 
965 	mutex_lock(&usb_bus_list_lock);
966 
967 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
968 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
969 	if (retval != sizeof usb_dev->descriptor) {
970 		mutex_unlock(&usb_bus_list_lock);
971 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
972 				dev_name(&usb_dev->dev), retval);
973 		return (retval < 0) ? retval : -EMSGSIZE;
974 	}
975 
976 	retval = usb_new_device (usb_dev);
977 	if (retval) {
978 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
979 				dev_name(&usb_dev->dev), retval);
980 	}
981 	mutex_unlock(&usb_bus_list_lock);
982 
983 	if (retval == 0) {
984 		spin_lock_irq (&hcd_root_hub_lock);
985 		hcd->rh_registered = 1;
986 		spin_unlock_irq (&hcd_root_hub_lock);
987 
988 		/* Did the HC die before the root hub was registered? */
989 		if (HCD_DEAD(hcd) || hcd->state == HC_STATE_HALT)
990 			usb_hc_died (hcd);	/* This time clean up */
991 	}
992 
993 	return retval;
994 }
995 
996 
997 /*-------------------------------------------------------------------------*/
998 
999 /**
1000  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1001  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1002  * @is_input: true iff the transaction sends data to the host
1003  * @isoc: true for isochronous transactions, false for interrupt ones
1004  * @bytecount: how many bytes in the transaction.
1005  *
1006  * Returns approximate bus time in nanoseconds for a periodic transaction.
1007  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1008  * scheduled in software, this function is only used for such scheduling.
1009  */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1010 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1011 {
1012 	unsigned long	tmp;
1013 
1014 	switch (speed) {
1015 	case USB_SPEED_LOW: 	/* INTR only */
1016 		if (is_input) {
1017 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1018 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1019 		} else {
1020 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1021 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1022 		}
1023 	case USB_SPEED_FULL:	/* ISOC or INTR */
1024 		if (isoc) {
1025 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1026 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1027 		} else {
1028 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1029 			return (9107L + BW_HOST_DELAY + tmp);
1030 		}
1031 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1032 		// FIXME adjust for input vs output
1033 		if (isoc)
1034 			tmp = HS_NSECS_ISO (bytecount);
1035 		else
1036 			tmp = HS_NSECS (bytecount);
1037 		return tmp;
1038 	default:
1039 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1040 		return -1;
1041 	}
1042 }
1043 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1044 
1045 
1046 /*-------------------------------------------------------------------------*/
1047 
1048 /*
1049  * Generic HC operations.
1050  */
1051 
1052 /*-------------------------------------------------------------------------*/
1053 
1054 /**
1055  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1056  * @hcd: host controller to which @urb was submitted
1057  * @urb: URB being submitted
1058  *
1059  * Host controller drivers should call this routine in their enqueue()
1060  * method.  The HCD's private spinlock must be held and interrupts must
1061  * be disabled.  The actions carried out here are required for URB
1062  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1063  *
1064  * Returns 0 for no error, otherwise a negative error code (in which case
1065  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1066  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1067  * the private spinlock and returning.
1068  */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1069 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1070 {
1071 	int		rc = 0;
1072 
1073 	spin_lock(&hcd_urb_list_lock);
1074 
1075 	/* Check that the URB isn't being killed */
1076 	if (unlikely(atomic_read(&urb->reject))) {
1077 		rc = -EPERM;
1078 		goto done;
1079 	}
1080 
1081 	if (unlikely(!urb->ep->enabled)) {
1082 		rc = -ENOENT;
1083 		goto done;
1084 	}
1085 
1086 	if (unlikely(!urb->dev->can_submit)) {
1087 		rc = -EHOSTUNREACH;
1088 		goto done;
1089 	}
1090 
1091 	/*
1092 	 * Check the host controller's state and add the URB to the
1093 	 * endpoint's queue.
1094 	 */
1095 	if (HCD_RH_RUNNING(hcd)) {
1096 		urb->unlinked = 0;
1097 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1098 	} else {
1099 		rc = -ESHUTDOWN;
1100 		goto done;
1101 	}
1102  done:
1103 	spin_unlock(&hcd_urb_list_lock);
1104 	return rc;
1105 }
1106 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1107 
1108 /**
1109  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1110  * @hcd: host controller to which @urb was submitted
1111  * @urb: URB being checked for unlinkability
1112  * @status: error code to store in @urb if the unlink succeeds
1113  *
1114  * Host controller drivers should call this routine in their dequeue()
1115  * method.  The HCD's private spinlock must be held and interrupts must
1116  * be disabled.  The actions carried out here are required for making
1117  * sure than an unlink is valid.
1118  *
1119  * Returns 0 for no error, otherwise a negative error code (in which case
1120  * the dequeue() method must fail).  The possible error codes are:
1121  *
1122  *	-EIDRM: @urb was not submitted or has already completed.
1123  *		The completion function may not have been called yet.
1124  *
1125  *	-EBUSY: @urb has already been unlinked.
1126  */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1127 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1128 		int status)
1129 {
1130 	struct list_head	*tmp;
1131 
1132 	/* insist the urb is still queued */
1133 	list_for_each(tmp, &urb->ep->urb_list) {
1134 		if (tmp == &urb->urb_list)
1135 			break;
1136 	}
1137 	if (tmp != &urb->urb_list)
1138 		return -EIDRM;
1139 
1140 	/* Any status except -EINPROGRESS means something already started to
1141 	 * unlink this URB from the hardware.  So there's no more work to do.
1142 	 */
1143 	if (urb->unlinked)
1144 		return -EBUSY;
1145 	urb->unlinked = status;
1146 
1147 	/* IRQ setup can easily be broken so that USB controllers
1148 	 * never get completion IRQs ... maybe even the ones we need to
1149 	 * finish unlinking the initial failed usb_set_address()
1150 	 * or device descriptor fetch.
1151 	 */
1152 	if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1153 		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1154 			"Controller is probably using the wrong IRQ.\n");
1155 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1156 		if (hcd->shared_hcd)
1157 			set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
1158 	}
1159 
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1163 
1164 /**
1165  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1166  * @hcd: host controller to which @urb was submitted
1167  * @urb: URB being unlinked
1168  *
1169  * Host controller drivers should call this routine before calling
1170  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1171  * interrupts must be disabled.  The actions carried out here are required
1172  * for URB completion.
1173  */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1174 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1175 {
1176 	/* clear all state linking urb to this dev (and hcd) */
1177 	spin_lock(&hcd_urb_list_lock);
1178 	list_del_init(&urb->urb_list);
1179 	spin_unlock(&hcd_urb_list_lock);
1180 }
1181 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1182 
1183 /*
1184  * Some usb host controllers can only perform dma using a small SRAM area.
1185  * The usb core itself is however optimized for host controllers that can dma
1186  * using regular system memory - like pci devices doing bus mastering.
1187  *
1188  * To support host controllers with limited dma capabilites we provide dma
1189  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1190  * For this to work properly the host controller code must first use the
1191  * function dma_declare_coherent_memory() to point out which memory area
1192  * that should be used for dma allocations.
1193  *
1194  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1195  * dma using dma_alloc_coherent() which in turn allocates from the memory
1196  * area pointed out with dma_declare_coherent_memory().
1197  *
1198  * So, to summarize...
1199  *
1200  * - We need "local" memory, canonical example being
1201  *   a small SRAM on a discrete controller being the
1202  *   only memory that the controller can read ...
1203  *   (a) "normal" kernel memory is no good, and
1204  *   (b) there's not enough to share
1205  *
1206  * - The only *portable* hook for such stuff in the
1207  *   DMA framework is dma_declare_coherent_memory()
1208  *
1209  * - So we use that, even though the primary requirement
1210  *   is that the memory be "local" (hence addressible
1211  *   by that device), not "coherent".
1212  *
1213  */
1214 
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1215 static int hcd_alloc_coherent(struct usb_bus *bus,
1216 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1217 			      void **vaddr_handle, size_t size,
1218 			      enum dma_data_direction dir)
1219 {
1220 	unsigned char *vaddr;
1221 
1222 	if (*vaddr_handle == NULL) {
1223 		WARN_ON_ONCE(1);
1224 		return -EFAULT;
1225 	}
1226 
1227 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1228 				 mem_flags, dma_handle);
1229 	if (!vaddr)
1230 		return -ENOMEM;
1231 
1232 	/*
1233 	 * Store the virtual address of the buffer at the end
1234 	 * of the allocated dma buffer. The size of the buffer
1235 	 * may be uneven so use unaligned functions instead
1236 	 * of just rounding up. It makes sense to optimize for
1237 	 * memory footprint over access speed since the amount
1238 	 * of memory available for dma may be limited.
1239 	 */
1240 	put_unaligned((unsigned long)*vaddr_handle,
1241 		      (unsigned long *)(vaddr + size));
1242 
1243 	if (dir == DMA_TO_DEVICE)
1244 		memcpy(vaddr, *vaddr_handle, size);
1245 
1246 	*vaddr_handle = vaddr;
1247 	return 0;
1248 }
1249 
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1250 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1251 			      void **vaddr_handle, size_t size,
1252 			      enum dma_data_direction dir)
1253 {
1254 	unsigned char *vaddr = *vaddr_handle;
1255 
1256 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1257 
1258 	if (dir == DMA_FROM_DEVICE)
1259 		memcpy(vaddr, *vaddr_handle, size);
1260 
1261 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1262 
1263 	*vaddr_handle = vaddr;
1264 	*dma_handle = 0;
1265 }
1266 
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1267 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1268 {
1269 	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1270 		dma_unmap_single(hcd->self.controller,
1271 				urb->setup_dma,
1272 				sizeof(struct usb_ctrlrequest),
1273 				DMA_TO_DEVICE);
1274 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1275 		hcd_free_coherent(urb->dev->bus,
1276 				&urb->setup_dma,
1277 				(void **) &urb->setup_packet,
1278 				sizeof(struct usb_ctrlrequest),
1279 				DMA_TO_DEVICE);
1280 
1281 	/* Make it safe to call this routine more than once */
1282 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1283 }
1284 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1285 
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1286 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1287 {
1288 	if (hcd->driver->unmap_urb_for_dma)
1289 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1290 	else
1291 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1292 }
1293 
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1294 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1295 {
1296 	enum dma_data_direction dir;
1297 
1298 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1299 
1300 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1301 	if (urb->transfer_flags & URB_DMA_MAP_SG)
1302 		dma_unmap_sg(hcd->self.controller,
1303 				urb->sg,
1304 				urb->num_sgs,
1305 				dir);
1306 	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1307 		dma_unmap_page(hcd->self.controller,
1308 				urb->transfer_dma,
1309 				urb->transfer_buffer_length,
1310 				dir);
1311 	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1312 		dma_unmap_single(hcd->self.controller,
1313 				urb->transfer_dma,
1314 				urb->transfer_buffer_length,
1315 				dir);
1316 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1317 		hcd_free_coherent(urb->dev->bus,
1318 				&urb->transfer_dma,
1319 				&urb->transfer_buffer,
1320 				urb->transfer_buffer_length,
1321 				dir);
1322 
1323 	/* Make it safe to call this routine more than once */
1324 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1325 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1326 }
1327 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1328 
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1329 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1330 			   gfp_t mem_flags)
1331 {
1332 	if (hcd->driver->map_urb_for_dma)
1333 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1334 	else
1335 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1336 }
1337 
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1338 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1339 			    gfp_t mem_flags)
1340 {
1341 	enum dma_data_direction dir;
1342 	int ret = 0;
1343 
1344 	/* Map the URB's buffers for DMA access.
1345 	 * Lower level HCD code should use *_dma exclusively,
1346 	 * unless it uses pio or talks to another transport,
1347 	 * or uses the provided scatter gather list for bulk.
1348 	 */
1349 
1350 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1351 		if (hcd->self.uses_pio_for_control)
1352 			return ret;
1353 		if (hcd->self.uses_dma) {
1354 			urb->setup_dma = dma_map_single(
1355 					hcd->self.controller,
1356 					urb->setup_packet,
1357 					sizeof(struct usb_ctrlrequest),
1358 					DMA_TO_DEVICE);
1359 			if (dma_mapping_error(hcd->self.controller,
1360 						urb->setup_dma))
1361 				return -EAGAIN;
1362 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1363 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1364 			ret = hcd_alloc_coherent(
1365 					urb->dev->bus, mem_flags,
1366 					&urb->setup_dma,
1367 					(void **)&urb->setup_packet,
1368 					sizeof(struct usb_ctrlrequest),
1369 					DMA_TO_DEVICE);
1370 			if (ret)
1371 				return ret;
1372 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1373 		}
1374 	}
1375 
1376 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1377 	if (urb->transfer_buffer_length != 0
1378 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1379 		if (hcd->self.uses_dma) {
1380 			if (urb->num_sgs) {
1381 				int n = dma_map_sg(
1382 						hcd->self.controller,
1383 						urb->sg,
1384 						urb->num_sgs,
1385 						dir);
1386 				if (n <= 0)
1387 					ret = -EAGAIN;
1388 				else
1389 					urb->transfer_flags |= URB_DMA_MAP_SG;
1390 				if (n != urb->num_sgs) {
1391 					urb->num_sgs = n;
1392 					urb->transfer_flags |=
1393 							URB_DMA_SG_COMBINED;
1394 				}
1395 			} else if (urb->sg) {
1396 				struct scatterlist *sg = urb->sg;
1397 				urb->transfer_dma = dma_map_page(
1398 						hcd->self.controller,
1399 						sg_page(sg),
1400 						sg->offset,
1401 						urb->transfer_buffer_length,
1402 						dir);
1403 				if (dma_mapping_error(hcd->self.controller,
1404 						urb->transfer_dma))
1405 					ret = -EAGAIN;
1406 				else
1407 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1408 			} else {
1409 				urb->transfer_dma = dma_map_single(
1410 						hcd->self.controller,
1411 						urb->transfer_buffer,
1412 						urb->transfer_buffer_length,
1413 						dir);
1414 				if (dma_mapping_error(hcd->self.controller,
1415 						urb->transfer_dma))
1416 					ret = -EAGAIN;
1417 				else
1418 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1419 			}
1420 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1421 			ret = hcd_alloc_coherent(
1422 					urb->dev->bus, mem_flags,
1423 					&urb->transfer_dma,
1424 					&urb->transfer_buffer,
1425 					urb->transfer_buffer_length,
1426 					dir);
1427 			if (ret == 0)
1428 				urb->transfer_flags |= URB_MAP_LOCAL;
1429 		}
1430 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1431 				URB_SETUP_MAP_LOCAL)))
1432 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1433 	}
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1437 
1438 /*-------------------------------------------------------------------------*/
1439 
1440 /* may be called in any context with a valid urb->dev usecount
1441  * caller surrenders "ownership" of urb
1442  * expects usb_submit_urb() to have sanity checked and conditioned all
1443  * inputs in the urb
1444  */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1445 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1446 {
1447 	int			status;
1448 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1449 
1450 	/* increment urb's reference count as part of giving it to the HCD
1451 	 * (which will control it).  HCD guarantees that it either returns
1452 	 * an error or calls giveback(), but not both.
1453 	 */
1454 	usb_get_urb(urb);
1455 	atomic_inc(&urb->use_count);
1456 	atomic_inc(&urb->dev->urbnum);
1457 	usbmon_urb_submit(&hcd->self, urb);
1458 
1459 	/* NOTE requirements on root-hub callers (usbfs and the hub
1460 	 * driver, for now):  URBs' urb->transfer_buffer must be
1461 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1462 	 * they could clobber root hub response data.  Also, control
1463 	 * URBs must be submitted in process context with interrupts
1464 	 * enabled.
1465 	 */
1466 
1467 	if (is_root_hub(urb->dev)) {
1468 		status = rh_urb_enqueue(hcd, urb);
1469 	} else {
1470 		status = map_urb_for_dma(hcd, urb, mem_flags);
1471 		if (likely(status == 0)) {
1472 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1473 			if (unlikely(status))
1474 				unmap_urb_for_dma(hcd, urb);
1475 		}
1476 	}
1477 
1478 	if (unlikely(status)) {
1479 		usbmon_urb_submit_error(&hcd->self, urb, status);
1480 		urb->hcpriv = NULL;
1481 		INIT_LIST_HEAD(&urb->urb_list);
1482 		atomic_dec(&urb->use_count);
1483 		atomic_dec(&urb->dev->urbnum);
1484 		if (atomic_read(&urb->reject))
1485 			wake_up(&usb_kill_urb_queue);
1486 		usb_put_urb(urb);
1487 	}
1488 	return status;
1489 }
1490 
1491 /*-------------------------------------------------------------------------*/
1492 
1493 /* this makes the hcd giveback() the urb more quickly, by kicking it
1494  * off hardware queues (which may take a while) and returning it as
1495  * soon as practical.  we've already set up the urb's return status,
1496  * but we can't know if the callback completed already.
1497  */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1498 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1499 {
1500 	int		value;
1501 
1502 	if (is_root_hub(urb->dev))
1503 		value = usb_rh_urb_dequeue(hcd, urb, status);
1504 	else {
1505 
1506 		/* The only reason an HCD might fail this call is if
1507 		 * it has not yet fully queued the urb to begin with.
1508 		 * Such failures should be harmless. */
1509 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1510 	}
1511 	return value;
1512 }
1513 
1514 /*
1515  * called in any context
1516  *
1517  * caller guarantees urb won't be recycled till both unlink()
1518  * and the urb's completion function return
1519  */
usb_hcd_unlink_urb(struct urb * urb,int status)1520 int usb_hcd_unlink_urb (struct urb *urb, int status)
1521 {
1522 	struct usb_hcd		*hcd;
1523 	int			retval = -EIDRM;
1524 	unsigned long		flags;
1525 
1526 	/* Prevent the device and bus from going away while
1527 	 * the unlink is carried out.  If they are already gone
1528 	 * then urb->use_count must be 0, since disconnected
1529 	 * devices can't have any active URBs.
1530 	 */
1531 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1532 	if (atomic_read(&urb->use_count) > 0) {
1533 		retval = 0;
1534 		usb_get_dev(urb->dev);
1535 	}
1536 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1537 	if (retval == 0) {
1538 		hcd = bus_to_hcd(urb->dev->bus);
1539 		retval = unlink1(hcd, urb, status);
1540 		usb_put_dev(urb->dev);
1541 	}
1542 
1543 	if (retval == 0)
1544 		retval = -EINPROGRESS;
1545 	else if (retval != -EIDRM && retval != -EBUSY)
1546 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1547 				urb, retval);
1548 	return retval;
1549 }
1550 
1551 /*-------------------------------------------------------------------------*/
1552 
1553 /**
1554  * usb_hcd_giveback_urb - return URB from HCD to device driver
1555  * @hcd: host controller returning the URB
1556  * @urb: urb being returned to the USB device driver.
1557  * @status: completion status code for the URB.
1558  * Context: in_interrupt()
1559  *
1560  * This hands the URB from HCD to its USB device driver, using its
1561  * completion function.  The HCD has freed all per-urb resources
1562  * (and is done using urb->hcpriv).  It also released all HCD locks;
1563  * the device driver won't cause problems if it frees, modifies,
1564  * or resubmits this URB.
1565  *
1566  * If @urb was unlinked, the value of @status will be overridden by
1567  * @urb->unlinked.  Erroneous short transfers are detected in case
1568  * the HCD hasn't checked for them.
1569  */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1570 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1571 {
1572 	urb->hcpriv = NULL;
1573 	if (unlikely(urb->unlinked))
1574 		status = urb->unlinked;
1575 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1576 			urb->actual_length < urb->transfer_buffer_length &&
1577 			!status))
1578 		status = -EREMOTEIO;
1579 
1580 	unmap_urb_for_dma(hcd, urb);
1581 	usbmon_urb_complete(&hcd->self, urb, status);
1582 	usb_unanchor_urb(urb);
1583 
1584 	/* pass ownership to the completion handler */
1585 	urb->status = status;
1586 	urb->complete (urb);
1587 	atomic_dec (&urb->use_count);
1588 	if (unlikely(atomic_read(&urb->reject)))
1589 		wake_up (&usb_kill_urb_queue);
1590 	usb_put_urb (urb);
1591 }
1592 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1593 
1594 /*-------------------------------------------------------------------------*/
1595 
1596 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1597  * queue to drain completely.  The caller must first insure that no more
1598  * URBs can be submitted for this endpoint.
1599  */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1600 void usb_hcd_flush_endpoint(struct usb_device *udev,
1601 		struct usb_host_endpoint *ep)
1602 {
1603 	struct usb_hcd		*hcd;
1604 	struct urb		*urb;
1605 
1606 	if (!ep)
1607 		return;
1608 	might_sleep();
1609 	hcd = bus_to_hcd(udev->bus);
1610 
1611 	/* No more submits can occur */
1612 	spin_lock_irq(&hcd_urb_list_lock);
1613 rescan:
1614 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1615 		int	is_in;
1616 
1617 		if (urb->unlinked)
1618 			continue;
1619 		usb_get_urb (urb);
1620 		is_in = usb_urb_dir_in(urb);
1621 		spin_unlock(&hcd_urb_list_lock);
1622 
1623 		/* kick hcd */
1624 		unlink1(hcd, urb, -ESHUTDOWN);
1625 		dev_dbg (hcd->self.controller,
1626 			"shutdown urb %p ep%d%s%s\n",
1627 			urb, usb_endpoint_num(&ep->desc),
1628 			is_in ? "in" : "out",
1629 			({	char *s;
1630 
1631 				 switch (usb_endpoint_type(&ep->desc)) {
1632 				 case USB_ENDPOINT_XFER_CONTROL:
1633 					s = ""; break;
1634 				 case USB_ENDPOINT_XFER_BULK:
1635 					s = "-bulk"; break;
1636 				 case USB_ENDPOINT_XFER_INT:
1637 					s = "-intr"; break;
1638 				 default:
1639 			 		s = "-iso"; break;
1640 				};
1641 				s;
1642 			}));
1643 		usb_put_urb (urb);
1644 
1645 		/* list contents may have changed */
1646 		spin_lock(&hcd_urb_list_lock);
1647 		goto rescan;
1648 	}
1649 	spin_unlock_irq(&hcd_urb_list_lock);
1650 
1651 	/* Wait until the endpoint queue is completely empty */
1652 	while (!list_empty (&ep->urb_list)) {
1653 		spin_lock_irq(&hcd_urb_list_lock);
1654 
1655 		/* The list may have changed while we acquired the spinlock */
1656 		urb = NULL;
1657 		if (!list_empty (&ep->urb_list)) {
1658 			urb = list_entry (ep->urb_list.prev, struct urb,
1659 					urb_list);
1660 			usb_get_urb (urb);
1661 		}
1662 		spin_unlock_irq(&hcd_urb_list_lock);
1663 
1664 		if (urb) {
1665 			usb_kill_urb (urb);
1666 			usb_put_urb (urb);
1667 		}
1668 	}
1669 }
1670 
1671 /**
1672  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1673  *				the bus bandwidth
1674  * @udev: target &usb_device
1675  * @new_config: new configuration to install
1676  * @cur_alt: the current alternate interface setting
1677  * @new_alt: alternate interface setting that is being installed
1678  *
1679  * To change configurations, pass in the new configuration in new_config,
1680  * and pass NULL for cur_alt and new_alt.
1681  *
1682  * To reset a device's configuration (put the device in the ADDRESSED state),
1683  * pass in NULL for new_config, cur_alt, and new_alt.
1684  *
1685  * To change alternate interface settings, pass in NULL for new_config,
1686  * pass in the current alternate interface setting in cur_alt,
1687  * and pass in the new alternate interface setting in new_alt.
1688  *
1689  * Returns an error if the requested bandwidth change exceeds the
1690  * bus bandwidth or host controller internal resources.
1691  */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1692 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1693 		struct usb_host_config *new_config,
1694 		struct usb_host_interface *cur_alt,
1695 		struct usb_host_interface *new_alt)
1696 {
1697 	int num_intfs, i, j;
1698 	struct usb_host_interface *alt = NULL;
1699 	int ret = 0;
1700 	struct usb_hcd *hcd;
1701 	struct usb_host_endpoint *ep;
1702 
1703 	hcd = bus_to_hcd(udev->bus);
1704 	if (!hcd->driver->check_bandwidth)
1705 		return 0;
1706 
1707 	/* Configuration is being removed - set configuration 0 */
1708 	if (!new_config && !cur_alt) {
1709 		for (i = 1; i < 16; ++i) {
1710 			ep = udev->ep_out[i];
1711 			if (ep)
1712 				hcd->driver->drop_endpoint(hcd, udev, ep);
1713 			ep = udev->ep_in[i];
1714 			if (ep)
1715 				hcd->driver->drop_endpoint(hcd, udev, ep);
1716 		}
1717 		hcd->driver->check_bandwidth(hcd, udev);
1718 		return 0;
1719 	}
1720 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1721 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1722 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1723 	 * ok to exclude it.
1724 	 */
1725 	if (new_config) {
1726 		num_intfs = new_config->desc.bNumInterfaces;
1727 		/* Remove endpoints (except endpoint 0, which is always on the
1728 		 * schedule) from the old config from the schedule
1729 		 */
1730 		for (i = 1; i < 16; ++i) {
1731 			ep = udev->ep_out[i];
1732 			if (ep) {
1733 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1734 				if (ret < 0)
1735 					goto reset;
1736 			}
1737 			ep = udev->ep_in[i];
1738 			if (ep) {
1739 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1740 				if (ret < 0)
1741 					goto reset;
1742 			}
1743 		}
1744 		for (i = 0; i < num_intfs; ++i) {
1745 			struct usb_host_interface *first_alt;
1746 			int iface_num;
1747 
1748 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1749 			iface_num = first_alt->desc.bInterfaceNumber;
1750 			/* Set up endpoints for alternate interface setting 0 */
1751 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1752 			if (!alt)
1753 				/* No alt setting 0? Pick the first setting. */
1754 				alt = first_alt;
1755 
1756 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1757 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1758 				if (ret < 0)
1759 					goto reset;
1760 			}
1761 		}
1762 	}
1763 	if (cur_alt && new_alt) {
1764 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1765 				cur_alt->desc.bInterfaceNumber);
1766 
1767 		if (iface->resetting_device) {
1768 			/*
1769 			 * The USB core just reset the device, so the xHCI host
1770 			 * and the device will think alt setting 0 is installed.
1771 			 * However, the USB core will pass in the alternate
1772 			 * setting installed before the reset as cur_alt.  Dig
1773 			 * out the alternate setting 0 structure, or the first
1774 			 * alternate setting if a broken device doesn't have alt
1775 			 * setting 0.
1776 			 */
1777 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1778 			if (!cur_alt)
1779 				cur_alt = &iface->altsetting[0];
1780 		}
1781 
1782 		/* Drop all the endpoints in the current alt setting */
1783 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1784 			ret = hcd->driver->drop_endpoint(hcd, udev,
1785 					&cur_alt->endpoint[i]);
1786 			if (ret < 0)
1787 				goto reset;
1788 		}
1789 		/* Add all the endpoints in the new alt setting */
1790 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1791 			ret = hcd->driver->add_endpoint(hcd, udev,
1792 					&new_alt->endpoint[i]);
1793 			if (ret < 0)
1794 				goto reset;
1795 		}
1796 	}
1797 	ret = hcd->driver->check_bandwidth(hcd, udev);
1798 reset:
1799 	if (ret < 0)
1800 		hcd->driver->reset_bandwidth(hcd, udev);
1801 	return ret;
1802 }
1803 
1804 /* Disables the endpoint: synchronizes with the hcd to make sure all
1805  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1806  * have been called previously.  Use for set_configuration, set_interface,
1807  * driver removal, physical disconnect.
1808  *
1809  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1810  * type, maxpacket size, toggle, halt status, and scheduling.
1811  */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1812 void usb_hcd_disable_endpoint(struct usb_device *udev,
1813 		struct usb_host_endpoint *ep)
1814 {
1815 	struct usb_hcd		*hcd;
1816 
1817 	might_sleep();
1818 	hcd = bus_to_hcd(udev->bus);
1819 	if (hcd->driver->endpoint_disable)
1820 		hcd->driver->endpoint_disable(hcd, ep);
1821 }
1822 
1823 /**
1824  * usb_hcd_reset_endpoint - reset host endpoint state
1825  * @udev: USB device.
1826  * @ep:   the endpoint to reset.
1827  *
1828  * Resets any host endpoint state such as the toggle bit, sequence
1829  * number and current window.
1830  */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1831 void usb_hcd_reset_endpoint(struct usb_device *udev,
1832 			    struct usb_host_endpoint *ep)
1833 {
1834 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1835 
1836 	if (hcd->driver->endpoint_reset)
1837 		hcd->driver->endpoint_reset(hcd, ep);
1838 	else {
1839 		int epnum = usb_endpoint_num(&ep->desc);
1840 		int is_out = usb_endpoint_dir_out(&ep->desc);
1841 		int is_control = usb_endpoint_xfer_control(&ep->desc);
1842 
1843 		usb_settoggle(udev, epnum, is_out, 0);
1844 		if (is_control)
1845 			usb_settoggle(udev, epnum, !is_out, 0);
1846 	}
1847 }
1848 
1849 /**
1850  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1851  * @interface:		alternate setting that includes all endpoints.
1852  * @eps:		array of endpoints that need streams.
1853  * @num_eps:		number of endpoints in the array.
1854  * @num_streams:	number of streams to allocate.
1855  * @mem_flags:		flags hcd should use to allocate memory.
1856  *
1857  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1858  * Drivers may queue multiple transfers to different stream IDs, which may
1859  * complete in a different order than they were queued.
1860  */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)1861 int usb_alloc_streams(struct usb_interface *interface,
1862 		struct usb_host_endpoint **eps, unsigned int num_eps,
1863 		unsigned int num_streams, gfp_t mem_flags)
1864 {
1865 	struct usb_hcd *hcd;
1866 	struct usb_device *dev;
1867 	int i;
1868 
1869 	dev = interface_to_usbdev(interface);
1870 	hcd = bus_to_hcd(dev->bus);
1871 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1872 		return -EINVAL;
1873 	if (dev->speed != USB_SPEED_SUPER)
1874 		return -EINVAL;
1875 
1876 	/* Streams only apply to bulk endpoints. */
1877 	for (i = 0; i < num_eps; i++)
1878 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1879 			return -EINVAL;
1880 
1881 	return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1882 			num_streams, mem_flags);
1883 }
1884 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1885 
1886 /**
1887  * usb_free_streams - free bulk endpoint stream IDs.
1888  * @interface:	alternate setting that includes all endpoints.
1889  * @eps:	array of endpoints to remove streams from.
1890  * @num_eps:	number of endpoints in the array.
1891  * @mem_flags:	flags hcd should use to allocate memory.
1892  *
1893  * Reverts a group of bulk endpoints back to not using stream IDs.
1894  * Can fail if we are given bad arguments, or HCD is broken.
1895  */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)1896 void usb_free_streams(struct usb_interface *interface,
1897 		struct usb_host_endpoint **eps, unsigned int num_eps,
1898 		gfp_t mem_flags)
1899 {
1900 	struct usb_hcd *hcd;
1901 	struct usb_device *dev;
1902 	int i;
1903 
1904 	dev = interface_to_usbdev(interface);
1905 	hcd = bus_to_hcd(dev->bus);
1906 	if (dev->speed != USB_SPEED_SUPER)
1907 		return;
1908 
1909 	/* Streams only apply to bulk endpoints. */
1910 	for (i = 0; i < num_eps; i++)
1911 		if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1912 			return;
1913 
1914 	hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1915 }
1916 EXPORT_SYMBOL_GPL(usb_free_streams);
1917 
1918 /* Protect against drivers that try to unlink URBs after the device
1919  * is gone, by waiting until all unlinks for @udev are finished.
1920  * Since we don't currently track URBs by device, simply wait until
1921  * nothing is running in the locked region of usb_hcd_unlink_urb().
1922  */
usb_hcd_synchronize_unlinks(struct usb_device * udev)1923 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1924 {
1925 	spin_lock_irq(&hcd_urb_unlink_lock);
1926 	spin_unlock_irq(&hcd_urb_unlink_lock);
1927 }
1928 
1929 /*-------------------------------------------------------------------------*/
1930 
1931 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)1932 int usb_hcd_get_frame_number (struct usb_device *udev)
1933 {
1934 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1935 
1936 	if (!HCD_RH_RUNNING(hcd))
1937 		return -ESHUTDOWN;
1938 	return hcd->driver->get_frame_number (hcd);
1939 }
1940 
1941 /*-------------------------------------------------------------------------*/
1942 
1943 #ifdef	CONFIG_PM
1944 
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)1945 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1946 {
1947 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1948 	int		status;
1949 	int		old_state = hcd->state;
1950 
1951 	dev_dbg(&rhdev->dev, "bus %s%s\n",
1952 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1953 	if (HCD_DEAD(hcd)) {
1954 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1955 		return 0;
1956 	}
1957 
1958 	if (!hcd->driver->bus_suspend) {
1959 		status = -ENOENT;
1960 	} else {
1961 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1962 		hcd->state = HC_STATE_QUIESCING;
1963 		status = hcd->driver->bus_suspend(hcd);
1964 	}
1965 	if (status == 0) {
1966 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1967 		hcd->state = HC_STATE_SUSPENDED;
1968 	} else {
1969 		spin_lock_irq(&hcd_root_hub_lock);
1970 		if (!HCD_DEAD(hcd)) {
1971 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1972 			hcd->state = old_state;
1973 		}
1974 		spin_unlock_irq(&hcd_root_hub_lock);
1975 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1976 				"suspend", status);
1977 	}
1978 	return status;
1979 }
1980 
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)1981 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1982 {
1983 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1984 	int		status;
1985 	int		old_state = hcd->state;
1986 
1987 	dev_dbg(&rhdev->dev, "usb %s%s\n",
1988 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1989 	if (HCD_DEAD(hcd)) {
1990 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
1991 		return 0;
1992 	}
1993 	if (!hcd->driver->bus_resume)
1994 		return -ENOENT;
1995 	if (HCD_RH_RUNNING(hcd))
1996 		return 0;
1997 
1998 	hcd->state = HC_STATE_RESUMING;
1999 	status = hcd->driver->bus_resume(hcd);
2000 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2001 	if (status == 0) {
2002 		/* TRSMRCY = 10 msec */
2003 		msleep(10);
2004 		spin_lock_irq(&hcd_root_hub_lock);
2005 		if (!HCD_DEAD(hcd)) {
2006 			usb_set_device_state(rhdev, rhdev->actconfig
2007 					? USB_STATE_CONFIGURED
2008 					: USB_STATE_ADDRESS);
2009 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2010 			hcd->state = HC_STATE_RUNNING;
2011 		}
2012 		spin_unlock_irq(&hcd_root_hub_lock);
2013 	} else {
2014 		hcd->state = old_state;
2015 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2016 				"resume", status);
2017 		if (status != -ESHUTDOWN)
2018 			usb_hc_died(hcd);
2019 	}
2020 	return status;
2021 }
2022 
2023 #endif	/* CONFIG_PM */
2024 
2025 #ifdef	CONFIG_USB_SUSPEND
2026 
2027 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2028 static void hcd_resume_work(struct work_struct *work)
2029 {
2030 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2031 	struct usb_device *udev = hcd->self.root_hub;
2032 
2033 	usb_lock_device(udev);
2034 	usb_remote_wakeup(udev);
2035 	usb_unlock_device(udev);
2036 }
2037 
2038 /**
2039  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2040  * @hcd: host controller for this root hub
2041  *
2042  * The USB host controller calls this function when its root hub is
2043  * suspended (with the remote wakeup feature enabled) and a remote
2044  * wakeup request is received.  The routine submits a workqueue request
2045  * to resume the root hub (that is, manage its downstream ports again).
2046  */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2047 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2048 {
2049 	unsigned long flags;
2050 
2051 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2052 	if (hcd->rh_registered) {
2053 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2054 		queue_work(pm_wq, &hcd->wakeup_work);
2055 	}
2056 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2057 }
2058 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2059 
2060 #endif	/* CONFIG_USB_SUSPEND */
2061 
2062 /*-------------------------------------------------------------------------*/
2063 
2064 #ifdef	CONFIG_USB_OTG
2065 
2066 /**
2067  * usb_bus_start_enum - start immediate enumeration (for OTG)
2068  * @bus: the bus (must use hcd framework)
2069  * @port_num: 1-based number of port; usually bus->otg_port
2070  * Context: in_interrupt()
2071  *
2072  * Starts enumeration, with an immediate reset followed later by
2073  * khubd identifying and possibly configuring the device.
2074  * This is needed by OTG controller drivers, where it helps meet
2075  * HNP protocol timing requirements for starting a port reset.
2076  */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2077 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2078 {
2079 	struct usb_hcd		*hcd;
2080 	int			status = -EOPNOTSUPP;
2081 
2082 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2083 	 * boards with root hubs hooked up to internal devices (instead of
2084 	 * just the OTG port) may need more attention to resetting...
2085 	 */
2086 	hcd = container_of (bus, struct usb_hcd, self);
2087 	if (port_num && hcd->driver->start_port_reset)
2088 		status = hcd->driver->start_port_reset(hcd, port_num);
2089 
2090 	/* run khubd shortly after (first) root port reset finishes;
2091 	 * it may issue others, until at least 50 msecs have passed.
2092 	 */
2093 	if (status == 0)
2094 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2095 	return status;
2096 }
2097 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2098 
2099 #endif
2100 
2101 /*-------------------------------------------------------------------------*/
2102 
2103 /**
2104  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2105  * @irq: the IRQ being raised
2106  * @__hcd: pointer to the HCD whose IRQ is being signaled
2107  *
2108  * If the controller isn't HALTed, calls the driver's irq handler.
2109  * Checks whether the controller is now dead.
2110  */
usb_hcd_irq(int irq,void * __hcd)2111 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2112 {
2113 	struct usb_hcd		*hcd = __hcd;
2114 	unsigned long		flags;
2115 	irqreturn_t		rc;
2116 
2117 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
2118 	 * when the first handler doesn't use it.  So let's just
2119 	 * assume it's never used.
2120 	 */
2121 	local_irq_save(flags);
2122 
2123 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2124 		rc = IRQ_NONE;
2125 	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2126 		rc = IRQ_NONE;
2127 	} else {
2128 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2129 		if (hcd->shared_hcd)
2130 			set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
2131 
2132 		if (unlikely(hcd->state == HC_STATE_HALT))
2133 			usb_hc_died(hcd);
2134 		rc = IRQ_HANDLED;
2135 	}
2136 
2137 	local_irq_restore(flags);
2138 	return rc;
2139 }
2140 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2141 
2142 /*-------------------------------------------------------------------------*/
2143 
2144 /**
2145  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2146  * @hcd: pointer to the HCD representing the controller
2147  *
2148  * This is called by bus glue to report a USB host controller that died
2149  * while operations may still have been pending.  It's called automatically
2150  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2151  *
2152  * Only call this function with the primary HCD.
2153  */
usb_hc_died(struct usb_hcd * hcd)2154 void usb_hc_died (struct usb_hcd *hcd)
2155 {
2156 	unsigned long flags;
2157 
2158 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2159 
2160 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2161 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2162 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2163 	if (hcd->rh_registered) {
2164 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2165 
2166 		/* make khubd clean up old urbs and devices */
2167 		usb_set_device_state (hcd->self.root_hub,
2168 				USB_STATE_NOTATTACHED);
2169 		usb_kick_khubd (hcd->self.root_hub);
2170 	}
2171 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2172 		hcd = hcd->shared_hcd;
2173 		if (hcd->rh_registered) {
2174 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2175 
2176 			/* make khubd clean up old urbs and devices */
2177 			usb_set_device_state(hcd->self.root_hub,
2178 					USB_STATE_NOTATTACHED);
2179 			usb_kick_khubd(hcd->self.root_hub);
2180 		}
2181 	}
2182 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2183 	/* Make sure that the other roothub is also deallocated. */
2184 }
2185 EXPORT_SYMBOL_GPL (usb_hc_died);
2186 
2187 /*-------------------------------------------------------------------------*/
2188 
2189 /**
2190  * usb_create_shared_hcd - create and initialize an HCD structure
2191  * @driver: HC driver that will use this hcd
2192  * @dev: device for this HC, stored in hcd->self.controller
2193  * @bus_name: value to store in hcd->self.bus_name
2194  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2195  *              PCI device.  Only allocate certain resources for the primary HCD
2196  * Context: !in_interrupt()
2197  *
2198  * Allocate a struct usb_hcd, with extra space at the end for the
2199  * HC driver's private data.  Initialize the generic members of the
2200  * hcd structure.
2201  *
2202  * If memory is unavailable, returns NULL.
2203  */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2204 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2205 		struct device *dev, const char *bus_name,
2206 		struct usb_hcd *primary_hcd)
2207 {
2208 	struct usb_hcd *hcd;
2209 
2210 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2211 	if (!hcd) {
2212 		dev_dbg (dev, "hcd alloc failed\n");
2213 		return NULL;
2214 	}
2215 	if (primary_hcd == NULL) {
2216 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2217 				GFP_KERNEL);
2218 		if (!hcd->bandwidth_mutex) {
2219 			kfree(hcd);
2220 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2221 			return NULL;
2222 		}
2223 		mutex_init(hcd->bandwidth_mutex);
2224 		dev_set_drvdata(dev, hcd);
2225 	} else {
2226 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2227 		hcd->primary_hcd = primary_hcd;
2228 		primary_hcd->primary_hcd = primary_hcd;
2229 		hcd->shared_hcd = primary_hcd;
2230 		primary_hcd->shared_hcd = hcd;
2231 	}
2232 
2233 	kref_init(&hcd->kref);
2234 
2235 	usb_bus_init(&hcd->self);
2236 	hcd->self.controller = dev;
2237 	hcd->self.bus_name = bus_name;
2238 	hcd->self.uses_dma = (dev->dma_mask != NULL);
2239 
2240 	init_timer(&hcd->rh_timer);
2241 	hcd->rh_timer.function = rh_timer_func;
2242 	hcd->rh_timer.data = (unsigned long) hcd;
2243 #ifdef CONFIG_USB_SUSPEND
2244 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2245 #endif
2246 
2247 	hcd->driver = driver;
2248 	hcd->speed = driver->flags & HCD_MASK;
2249 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2250 			"USB Host Controller";
2251 	return hcd;
2252 }
2253 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2254 
2255 /**
2256  * usb_create_hcd - create and initialize an HCD structure
2257  * @driver: HC driver that will use this hcd
2258  * @dev: device for this HC, stored in hcd->self.controller
2259  * @bus_name: value to store in hcd->self.bus_name
2260  * Context: !in_interrupt()
2261  *
2262  * Allocate a struct usb_hcd, with extra space at the end for the
2263  * HC driver's private data.  Initialize the generic members of the
2264  * hcd structure.
2265  *
2266  * If memory is unavailable, returns NULL.
2267  */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2268 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2269 		struct device *dev, const char *bus_name)
2270 {
2271 	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2272 }
2273 EXPORT_SYMBOL_GPL(usb_create_hcd);
2274 
2275 /*
2276  * Roothubs that share one PCI device must also share the bandwidth mutex.
2277  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2278  * deallocated.
2279  *
2280  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2281  * freed.  When hcd_release() is called for the non-primary HCD, set the
2282  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2283  * freed shortly).
2284  */
hcd_release(struct kref * kref)2285 static void hcd_release (struct kref *kref)
2286 {
2287 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2288 
2289 	if (usb_hcd_is_primary_hcd(hcd))
2290 		kfree(hcd->bandwidth_mutex);
2291 	else
2292 		hcd->shared_hcd->shared_hcd = NULL;
2293 	kfree(hcd);
2294 }
2295 
usb_get_hcd(struct usb_hcd * hcd)2296 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2297 {
2298 	if (hcd)
2299 		kref_get (&hcd->kref);
2300 	return hcd;
2301 }
2302 EXPORT_SYMBOL_GPL(usb_get_hcd);
2303 
usb_put_hcd(struct usb_hcd * hcd)2304 void usb_put_hcd (struct usb_hcd *hcd)
2305 {
2306 	if (hcd)
2307 		kref_put (&hcd->kref, hcd_release);
2308 }
2309 EXPORT_SYMBOL_GPL(usb_put_hcd);
2310 
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2311 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2312 {
2313 	if (!hcd->primary_hcd)
2314 		return 1;
2315 	return hcd == hcd->primary_hcd;
2316 }
2317 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2318 
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2319 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2320 		unsigned int irqnum, unsigned long irqflags)
2321 {
2322 	int retval;
2323 
2324 	if (hcd->driver->irq) {
2325 
2326 		/* IRQF_DISABLED doesn't work as advertised when used together
2327 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2328 		 * interrupts we can remove it here.
2329 		 */
2330 		if (irqflags & IRQF_SHARED)
2331 			irqflags &= ~IRQF_DISABLED;
2332 
2333 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2334 				hcd->driver->description, hcd->self.busnum);
2335 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2336 				hcd->irq_descr, hcd);
2337 		if (retval != 0) {
2338 			dev_err(hcd->self.controller,
2339 					"request interrupt %d failed\n",
2340 					irqnum);
2341 			return retval;
2342 		}
2343 		hcd->irq = irqnum;
2344 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2345 				(hcd->driver->flags & HCD_MEMORY) ?
2346 					"io mem" : "io base",
2347 					(unsigned long long)hcd->rsrc_start);
2348 	} else {
2349 		hcd->irq = -1;
2350 		if (hcd->rsrc_start)
2351 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2352 					(hcd->driver->flags & HCD_MEMORY) ?
2353 					"io mem" : "io base",
2354 					(unsigned long long)hcd->rsrc_start);
2355 	}
2356 	return 0;
2357 }
2358 
2359 /**
2360  * usb_add_hcd - finish generic HCD structure initialization and register
2361  * @hcd: the usb_hcd structure to initialize
2362  * @irqnum: Interrupt line to allocate
2363  * @irqflags: Interrupt type flags
2364  *
2365  * Finish the remaining parts of generic HCD initialization: allocate the
2366  * buffers of consistent memory, register the bus, request the IRQ line,
2367  * and call the driver's reset() and start() routines.
2368  */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2369 int usb_add_hcd(struct usb_hcd *hcd,
2370 		unsigned int irqnum, unsigned long irqflags)
2371 {
2372 	int retval;
2373 	struct usb_device *rhdev;
2374 
2375 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2376 
2377 	hcd->authorized_default = hcd->wireless? 0 : 1;
2378 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2379 
2380 	/* HC is in reset state, but accessible.  Now do the one-time init,
2381 	 * bottom up so that hcds can customize the root hubs before khubd
2382 	 * starts talking to them.  (Note, bus id is assigned early too.)
2383 	 */
2384 	if ((retval = hcd_buffer_create(hcd)) != 0) {
2385 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2386 		return retval;
2387 	}
2388 
2389 	if ((retval = usb_register_bus(&hcd->self)) < 0)
2390 		goto err_register_bus;
2391 
2392 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2393 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2394 		retval = -ENOMEM;
2395 		goto err_allocate_root_hub;
2396 	}
2397 	hcd->self.root_hub = rhdev;
2398 
2399 	switch (hcd->speed) {
2400 	case HCD_USB11:
2401 		rhdev->speed = USB_SPEED_FULL;
2402 		break;
2403 	case HCD_USB2:
2404 		rhdev->speed = USB_SPEED_HIGH;
2405 		break;
2406 	case HCD_USB3:
2407 		rhdev->speed = USB_SPEED_SUPER;
2408 		break;
2409 	default:
2410 		goto err_set_rh_speed;
2411 	}
2412 
2413 	/* wakeup flag init defaults to "everything works" for root hubs,
2414 	 * but drivers can override it in reset() if needed, along with
2415 	 * recording the overall controller's system wakeup capability.
2416 	 */
2417 	device_init_wakeup(&rhdev->dev, 1);
2418 
2419 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2420 	 * registered.  But since the controller can die at any time,
2421 	 * let's initialize the flag before touching the hardware.
2422 	 */
2423 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2424 
2425 	/* "reset" is misnamed; its role is now one-time init. the controller
2426 	 * should already have been reset (and boot firmware kicked off etc).
2427 	 */
2428 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2429 		dev_err(hcd->self.controller, "can't setup\n");
2430 		goto err_hcd_driver_setup;
2431 	}
2432 	hcd->rh_pollable = 1;
2433 
2434 	/* NOTE: root hub and controller capabilities may not be the same */
2435 	if (device_can_wakeup(hcd->self.controller)
2436 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2437 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2438 
2439 	/* enable irqs just before we start the controller */
2440 	if (usb_hcd_is_primary_hcd(hcd)) {
2441 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2442 		if (retval)
2443 			goto err_request_irq;
2444 	}
2445 
2446 	hcd->state = HC_STATE_RUNNING;
2447 	retval = hcd->driver->start(hcd);
2448 	if (retval < 0) {
2449 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2450 		goto err_hcd_driver_start;
2451 	}
2452 
2453 	/* starting here, usbcore will pay attention to this root hub */
2454 	rhdev->bus_mA = min(500u, hcd->power_budget);
2455 	if ((retval = register_root_hub(hcd)) != 0)
2456 		goto err_register_root_hub;
2457 
2458 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2459 	if (retval < 0) {
2460 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2461 		       retval);
2462 		goto error_create_attr_group;
2463 	}
2464 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2465 		usb_hcd_poll_rh_status(hcd);
2466 	return retval;
2467 
2468 error_create_attr_group:
2469 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2470 	if (HC_IS_RUNNING(hcd->state))
2471 		hcd->state = HC_STATE_QUIESCING;
2472 	spin_lock_irq(&hcd_root_hub_lock);
2473 	hcd->rh_registered = 0;
2474 	spin_unlock_irq(&hcd_root_hub_lock);
2475 
2476 #ifdef CONFIG_USB_SUSPEND
2477 	cancel_work_sync(&hcd->wakeup_work);
2478 #endif
2479 	mutex_lock(&usb_bus_list_lock);
2480 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2481 	mutex_unlock(&usb_bus_list_lock);
2482 err_register_root_hub:
2483 	hcd->rh_pollable = 0;
2484 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2485 	del_timer_sync(&hcd->rh_timer);
2486 	hcd->driver->stop(hcd);
2487 	hcd->state = HC_STATE_HALT;
2488 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2489 	del_timer_sync(&hcd->rh_timer);
2490 err_hcd_driver_start:
2491 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2492 		free_irq(irqnum, hcd);
2493 err_request_irq:
2494 err_hcd_driver_setup:
2495 err_set_rh_speed:
2496 	usb_put_dev(hcd->self.root_hub);
2497 err_allocate_root_hub:
2498 	usb_deregister_bus(&hcd->self);
2499 err_register_bus:
2500 	hcd_buffer_destroy(hcd);
2501 	return retval;
2502 }
2503 EXPORT_SYMBOL_GPL(usb_add_hcd);
2504 
2505 /**
2506  * usb_remove_hcd - shutdown processing for generic HCDs
2507  * @hcd: the usb_hcd structure to remove
2508  * Context: !in_interrupt()
2509  *
2510  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2511  * invoking the HCD's stop() method.
2512  */
usb_remove_hcd(struct usb_hcd * hcd)2513 void usb_remove_hcd(struct usb_hcd *hcd)
2514 {
2515 	struct usb_device *rhdev = hcd->self.root_hub;
2516 
2517 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2518 
2519 	usb_get_dev(rhdev);
2520 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2521 
2522 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2523 	if (HC_IS_RUNNING (hcd->state))
2524 		hcd->state = HC_STATE_QUIESCING;
2525 
2526 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2527 	spin_lock_irq (&hcd_root_hub_lock);
2528 	hcd->rh_registered = 0;
2529 	spin_unlock_irq (&hcd_root_hub_lock);
2530 
2531 #ifdef CONFIG_USB_SUSPEND
2532 	cancel_work_sync(&hcd->wakeup_work);
2533 #endif
2534 
2535 	mutex_lock(&usb_bus_list_lock);
2536 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2537 	mutex_unlock(&usb_bus_list_lock);
2538 
2539 	/* Prevent any more root-hub status calls from the timer.
2540 	 * The HCD might still restart the timer (if a port status change
2541 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2542 	 * the hub_status_data() callback.
2543 	 */
2544 	hcd->rh_pollable = 0;
2545 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2546 	del_timer_sync(&hcd->rh_timer);
2547 
2548 	hcd->driver->stop(hcd);
2549 	hcd->state = HC_STATE_HALT;
2550 
2551 	/* In case the HCD restarted the timer, stop it again. */
2552 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2553 	del_timer_sync(&hcd->rh_timer);
2554 
2555 	if (usb_hcd_is_primary_hcd(hcd)) {
2556 		if (hcd->irq >= 0)
2557 			free_irq(hcd->irq, hcd);
2558 	}
2559 
2560 	usb_put_dev(hcd->self.root_hub);
2561 	usb_deregister_bus(&hcd->self);
2562 	hcd_buffer_destroy(hcd);
2563 }
2564 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2565 
2566 void
usb_hcd_platform_shutdown(struct platform_device * dev)2567 usb_hcd_platform_shutdown(struct platform_device* dev)
2568 {
2569 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2570 
2571 	if (hcd->driver->shutdown)
2572 		hcd->driver->shutdown(hcd);
2573 }
2574 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2575 
2576 /*-------------------------------------------------------------------------*/
2577 
2578 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2579 
2580 struct usb_mon_operations *mon_ops;
2581 
2582 /*
2583  * The registration is unlocked.
2584  * We do it this way because we do not want to lock in hot paths.
2585  *
2586  * Notice that the code is minimally error-proof. Because usbmon needs
2587  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2588  */
2589 
usb_mon_register(struct usb_mon_operations * ops)2590 int usb_mon_register (struct usb_mon_operations *ops)
2591 {
2592 
2593 	if (mon_ops)
2594 		return -EBUSY;
2595 
2596 	mon_ops = ops;
2597 	mb();
2598 	return 0;
2599 }
2600 EXPORT_SYMBOL_GPL (usb_mon_register);
2601 
usb_mon_deregister(void)2602 void usb_mon_deregister (void)
2603 {
2604 
2605 	if (mon_ops == NULL) {
2606 		printk(KERN_ERR "USB: monitor was not registered\n");
2607 		return;
2608 	}
2609 	mon_ops = NULL;
2610 	mb();
2611 }
2612 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2613 
2614 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2615