1 /*
2 * message.c - synchronous message handling
3 */
4
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h> /* for usbcore internals */
18 #include <asm/byteorder.h>
19
20 #include "usb.h"
21
22 static void cancel_async_set_config(struct usb_device *udev);
23
24 struct api_context {
25 struct completion done;
26 int status;
27 };
28
usb_api_blocking_completion(struct urb * urb)29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 struct api_context *ctx = urb->context;
32
33 ctx->status = urb->status;
34 complete(&ctx->done);
35 }
36
37
38 /*
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
43 */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 struct api_context ctx;
47 unsigned long expire;
48 int retval;
49
50 init_completion(&ctx.done);
51 urb->context = &ctx;
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
54 if (unlikely(retval))
55 goto out;
56
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 usb_kill_urb(urb);
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
64 current->comm,
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
67 urb->actual_length,
68 urb->transfer_buffer_length);
69 } else
70 retval = ctx.status;
71 out:
72 if (actual_length)
73 *actual_length = urb->actual_length;
74
75 usb_free_urb(urb);
76 return retval;
77 }
78
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 unsigned int pipe,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
85 {
86 struct urb *urb;
87 int retv;
88 int length;
89
90 urb = usb_alloc_urb(0, GFP_NOIO);
91 if (!urb)
92 return -ENOMEM;
93
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
96
97 retv = usb_start_wait_urb(urb, timeout, &length);
98 if (retv < 0)
99 return retv;
100 else
101 return length;
102 }
103
104 /**
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
116 *
117 * Context: !in_interrupt ()
118 *
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
121 *
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
124 *
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
131 */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
135 {
136 struct usb_ctrlrequest *dr;
137 int ret;
138
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 if (!dr)
141 return -ENOMEM;
142
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
148
149 /* dbg("usb_control_msg"); */
150
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152
153 kfree(dr);
154
155 return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158
159 /**
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 * in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
169 *
170 * Context: !in_interrupt ()
171 *
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
174 *
175 * If successful, it returns 0, otherwise a negative error number. The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
177 *
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler. If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete. Since you don't have a handle on the URB used, you can't cancel
183 * the request.
184 */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
187 {
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191
192 /**
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 * in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
202 *
203 * Context: !in_interrupt ()
204 *
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
207 *
208 * If successful, it returns 0, otherwise a negative error number. The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
210 *
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
216 * the request.
217 *
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
222 */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
225 {
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
228
229 ep = usb_pipe_endpoint(usb_dev, pipe);
230 if (!ep || len < 0)
231 return -EINVAL;
232
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
236
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
246
247 return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251 /*-------------------------------------------------------------------*/
252
sg_clean(struct usb_sg_request * io)253 static void sg_clean(struct usb_sg_request *io)
254 {
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs [io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
260 }
261 io->dev = NULL;
262 }
263
sg_complete(struct urb * urb)264 static void sg_complete(struct urb *urb)
265 {
266 struct usb_sg_request *io = urb->context;
267 int status = urb->status;
268
269 spin_lock(&io->lock);
270
271 /* In 2.5 we require hcds' endpoint queues not to progress after fault
272 * reports, until the completion callback (this!) returns. That lets
273 * device driver code (like this routine) unlink queued urbs first,
274 * if it needs to, since the HC won't work on them at all. So it's
275 * not possible for page N+1 to overwrite page N, and so on.
276 *
277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 * complete before the HCD can get requests away from hardware,
279 * though never during cleanup after a hard fault.
280 */
281 if (io->status
282 && (io->status != -ECONNRESET
283 || status != -ECONNRESET)
284 && urb->actual_length) {
285 dev_err(io->dev->bus->controller,
286 "dev %s ep%d%s scatterlist error %d/%d\n",
287 io->dev->devpath,
288 usb_endpoint_num(&urb->ep->desc),
289 usb_urb_dir_in(urb) ? "in" : "out",
290 status, io->status);
291 /* BUG (); */
292 }
293
294 if (io->status == 0 && status && status != -ECONNRESET) {
295 int i, found, retval;
296
297 io->status = status;
298
299 /* the previous urbs, and this one, completed already.
300 * unlink pending urbs so they won't rx/tx bad data.
301 * careful: unlink can sometimes be synchronous...
302 */
303 spin_unlock(&io->lock);
304 for (i = 0, found = 0; i < io->entries; i++) {
305 if (!io->urbs [i] || !io->urbs [i]->dev)
306 continue;
307 if (found) {
308 retval = usb_unlink_urb(io->urbs [i]);
309 if (retval != -EINPROGRESS &&
310 retval != -ENODEV &&
311 retval != -EBUSY)
312 dev_err(&io->dev->dev,
313 "%s, unlink --> %d\n",
314 __func__, retval);
315 } else if (urb == io->urbs [i])
316 found = 1;
317 }
318 spin_lock(&io->lock);
319 }
320 urb->dev = NULL;
321
322 /* on the last completion, signal usb_sg_wait() */
323 io->bytes += urb->actual_length;
324 io->count--;
325 if (!io->count)
326 complete(&io->complete);
327
328 spin_unlock(&io->lock);
329 }
330
331
332 /**
333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334 * @io: request block being initialized. until usb_sg_wait() returns,
335 * treat this as a pointer to an opaque block of memory,
336 * @dev: the usb device that will send or receive the data
337 * @pipe: endpoint "pipe" used to transfer the data
338 * @period: polling rate for interrupt endpoints, in frames or
339 * (for high speed endpoints) microframes; ignored for bulk
340 * @sg: scatterlist entries
341 * @nents: how many entries in the scatterlist
342 * @length: how many bytes to send from the scatterlist, or zero to
343 * send every byte identified in the list.
344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
345 *
346 * Returns zero for success, else a negative errno value. This initializes a
347 * scatter/gather request, allocating resources such as I/O mappings and urb
348 * memory (except maybe memory used by USB controller drivers).
349 *
350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
351 * complete (or to be canceled) and then cleans up all resources allocated by
352 * usb_sg_init().
353 *
354 * The request may be canceled with usb_sg_cancel(), either before or after
355 * usb_sg_wait() is called.
356 */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)357 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
358 unsigned pipe, unsigned period, struct scatterlist *sg,
359 int nents, size_t length, gfp_t mem_flags)
360 {
361 int i;
362 int urb_flags;
363 int use_sg;
364
365 if (!io || !dev || !sg
366 || usb_pipecontrol(pipe)
367 || usb_pipeisoc(pipe)
368 || nents <= 0)
369 return -EINVAL;
370
371 spin_lock_init(&io->lock);
372 io->dev = dev;
373 io->pipe = pipe;
374
375 if (dev->bus->sg_tablesize > 0) {
376 use_sg = true;
377 io->entries = 1;
378 } else {
379 use_sg = false;
380 io->entries = nents;
381 }
382
383 /* initialize all the urbs we'll use */
384 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
385 if (!io->urbs)
386 goto nomem;
387
388 urb_flags = URB_NO_INTERRUPT;
389 if (usb_pipein(pipe))
390 urb_flags |= URB_SHORT_NOT_OK;
391
392 for_each_sg(sg, sg, io->entries, i) {
393 struct urb *urb;
394 unsigned len;
395
396 urb = usb_alloc_urb(0, mem_flags);
397 if (!urb) {
398 io->entries = i;
399 goto nomem;
400 }
401 io->urbs[i] = urb;
402
403 urb->dev = NULL;
404 urb->pipe = pipe;
405 urb->interval = period;
406 urb->transfer_flags = urb_flags;
407 urb->complete = sg_complete;
408 urb->context = io;
409 urb->sg = sg;
410
411 if (use_sg) {
412 /* There is no single transfer buffer */
413 urb->transfer_buffer = NULL;
414 urb->num_sgs = nents;
415
416 /* A length of zero means transfer the whole sg list */
417 len = length;
418 if (len == 0) {
419 struct scatterlist *sg2;
420 int j;
421
422 for_each_sg(sg, sg2, nents, j)
423 len += sg2->length;
424 }
425 } else {
426 /*
427 * Some systems can't use DMA; they use PIO instead.
428 * For their sakes, transfer_buffer is set whenever
429 * possible.
430 */
431 if (!PageHighMem(sg_page(sg)))
432 urb->transfer_buffer = sg_virt(sg);
433 else
434 urb->transfer_buffer = NULL;
435
436 len = sg->length;
437 if (length) {
438 len = min_t(unsigned, len, length);
439 length -= len;
440 if (length == 0)
441 io->entries = i + 1;
442 }
443 }
444 urb->transfer_buffer_length = len;
445 }
446 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
447
448 /* transaction state */
449 io->count = io->entries;
450 io->status = 0;
451 io->bytes = 0;
452 init_completion(&io->complete);
453 return 0;
454
455 nomem:
456 sg_clean(io);
457 return -ENOMEM;
458 }
459 EXPORT_SYMBOL_GPL(usb_sg_init);
460
461 /**
462 * usb_sg_wait - synchronously execute scatter/gather request
463 * @io: request block handle, as initialized with usb_sg_init().
464 * some fields become accessible when this call returns.
465 * Context: !in_interrupt ()
466 *
467 * This function blocks until the specified I/O operation completes. It
468 * leverages the grouping of the related I/O requests to get good transfer
469 * rates, by queueing the requests. At higher speeds, such queuing can
470 * significantly improve USB throughput.
471 *
472 * There are three kinds of completion for this function.
473 * (1) success, where io->status is zero. The number of io->bytes
474 * transferred is as requested.
475 * (2) error, where io->status is a negative errno value. The number
476 * of io->bytes transferred before the error is usually less
477 * than requested, and can be nonzero.
478 * (3) cancellation, a type of error with status -ECONNRESET that
479 * is initiated by usb_sg_cancel().
480 *
481 * When this function returns, all memory allocated through usb_sg_init() or
482 * this call will have been freed. The request block parameter may still be
483 * passed to usb_sg_cancel(), or it may be freed. It could also be
484 * reinitialized and then reused.
485 *
486 * Data Transfer Rates:
487 *
488 * Bulk transfers are valid for full or high speed endpoints.
489 * The best full speed data rate is 19 packets of 64 bytes each
490 * per frame, or 1216 bytes per millisecond.
491 * The best high speed data rate is 13 packets of 512 bytes each
492 * per microframe, or 52 KBytes per millisecond.
493 *
494 * The reason to use interrupt transfers through this API would most likely
495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
496 * could be transferred. That capability is less useful for low or full
497 * speed interrupt endpoints, which allow at most one packet per millisecond,
498 * of at most 8 or 64 bytes (respectively).
499 *
500 * It is not necessary to call this function to reserve bandwidth for devices
501 * under an xHCI host controller, as the bandwidth is reserved when the
502 * configuration or interface alt setting is selected.
503 */
usb_sg_wait(struct usb_sg_request * io)504 void usb_sg_wait(struct usb_sg_request *io)
505 {
506 int i;
507 int entries = io->entries;
508
509 /* queue the urbs. */
510 spin_lock_irq(&io->lock);
511 i = 0;
512 while (i < entries && !io->status) {
513 int retval;
514
515 io->urbs[i]->dev = io->dev;
516 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
517
518 /* after we submit, let completions or cancelations fire;
519 * we handshake using io->status.
520 */
521 spin_unlock_irq(&io->lock);
522 switch (retval) {
523 /* maybe we retrying will recover */
524 case -ENXIO: /* hc didn't queue this one */
525 case -EAGAIN:
526 case -ENOMEM:
527 io->urbs[i]->dev = NULL;
528 retval = 0;
529 yield();
530 break;
531
532 /* no error? continue immediately.
533 *
534 * NOTE: to work better with UHCI (4K I/O buffer may
535 * need 3K of TDs) it may be good to limit how many
536 * URBs are queued at once; N milliseconds?
537 */
538 case 0:
539 ++i;
540 cpu_relax();
541 break;
542
543 /* fail any uncompleted urbs */
544 default:
545 io->urbs[i]->dev = NULL;
546 io->urbs[i]->status = retval;
547 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
548 __func__, retval);
549 usb_sg_cancel(io);
550 }
551 spin_lock_irq(&io->lock);
552 if (retval && (io->status == 0 || io->status == -ECONNRESET))
553 io->status = retval;
554 }
555 io->count -= entries - i;
556 if (io->count == 0)
557 complete(&io->complete);
558 spin_unlock_irq(&io->lock);
559
560 /* OK, yes, this could be packaged as non-blocking.
561 * So could the submit loop above ... but it's easier to
562 * solve neither problem than to solve both!
563 */
564 wait_for_completion(&io->complete);
565
566 sg_clean(io);
567 }
568 EXPORT_SYMBOL_GPL(usb_sg_wait);
569
570 /**
571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
572 * @io: request block, initialized with usb_sg_init()
573 *
574 * This stops a request after it has been started by usb_sg_wait().
575 * It can also prevents one initialized by usb_sg_init() from starting,
576 * so that call just frees resources allocated to the request.
577 */
usb_sg_cancel(struct usb_sg_request * io)578 void usb_sg_cancel(struct usb_sg_request *io)
579 {
580 unsigned long flags;
581
582 spin_lock_irqsave(&io->lock, flags);
583
584 /* shut everything down, if it didn't already */
585 if (!io->status) {
586 int i;
587
588 io->status = -ECONNRESET;
589 spin_unlock(&io->lock);
590 for (i = 0; i < io->entries; i++) {
591 int retval;
592
593 if (!io->urbs [i]->dev)
594 continue;
595 retval = usb_unlink_urb(io->urbs [i]);
596 if (retval != -EINPROGRESS && retval != -EBUSY)
597 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
598 __func__, retval);
599 }
600 spin_lock(&io->lock);
601 }
602 spin_unlock_irqrestore(&io->lock, flags);
603 }
604 EXPORT_SYMBOL_GPL(usb_sg_cancel);
605
606 /*-------------------------------------------------------------------*/
607
608 /**
609 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
610 * @dev: the device whose descriptor is being retrieved
611 * @type: the descriptor type (USB_DT_*)
612 * @index: the number of the descriptor
613 * @buf: where to put the descriptor
614 * @size: how big is "buf"?
615 * Context: !in_interrupt ()
616 *
617 * Gets a USB descriptor. Convenience functions exist to simplify
618 * getting some types of descriptors. Use
619 * usb_get_string() or usb_string() for USB_DT_STRING.
620 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
621 * are part of the device structure.
622 * In addition to a number of USB-standard descriptors, some
623 * devices also use class-specific or vendor-specific descriptors.
624 *
625 * This call is synchronous, and may not be used in an interrupt context.
626 *
627 * Returns the number of bytes received on success, or else the status code
628 * returned by the underlying usb_control_msg() call.
629 */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)630 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
631 unsigned char index, void *buf, int size)
632 {
633 int i;
634 int result;
635
636 memset(buf, 0, size); /* Make sure we parse really received data */
637
638 for (i = 0; i < 3; ++i) {
639 /* retry on length 0 or error; some devices are flakey */
640 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
641 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
642 (type << 8) + index, 0, buf, size,
643 USB_CTRL_GET_TIMEOUT);
644 if (result <= 0 && result != -ETIMEDOUT)
645 continue;
646 if (result > 1 && ((u8 *)buf)[1] != type) {
647 result = -ENODATA;
648 continue;
649 }
650 break;
651 }
652 return result;
653 }
654 EXPORT_SYMBOL_GPL(usb_get_descriptor);
655
656 /**
657 * usb_get_string - gets a string descriptor
658 * @dev: the device whose string descriptor is being retrieved
659 * @langid: code for language chosen (from string descriptor zero)
660 * @index: the number of the descriptor
661 * @buf: where to put the string
662 * @size: how big is "buf"?
663 * Context: !in_interrupt ()
664 *
665 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
666 * in little-endian byte order).
667 * The usb_string() function will often be a convenient way to turn
668 * these strings into kernel-printable form.
669 *
670 * Strings may be referenced in device, configuration, interface, or other
671 * descriptors, and could also be used in vendor-specific ways.
672 *
673 * This call is synchronous, and may not be used in an interrupt context.
674 *
675 * Returns the number of bytes received on success, or else the status code
676 * returned by the underlying usb_control_msg() call.
677 */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)678 static int usb_get_string(struct usb_device *dev, unsigned short langid,
679 unsigned char index, void *buf, int size)
680 {
681 int i;
682 int result;
683
684 for (i = 0; i < 3; ++i) {
685 /* retry on length 0 or stall; some devices are flakey */
686 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
687 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
688 (USB_DT_STRING << 8) + index, langid, buf, size,
689 USB_CTRL_GET_TIMEOUT);
690 if (result == 0 || result == -EPIPE)
691 continue;
692 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
693 result = -ENODATA;
694 continue;
695 }
696 break;
697 }
698 return result;
699 }
700
usb_try_string_workarounds(unsigned char * buf,int * length)701 static void usb_try_string_workarounds(unsigned char *buf, int *length)
702 {
703 int newlength, oldlength = *length;
704
705 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
706 if (!isprint(buf[newlength]) || buf[newlength + 1])
707 break;
708
709 if (newlength > 2) {
710 buf[0] = newlength;
711 *length = newlength;
712 }
713 }
714
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)715 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
716 unsigned int index, unsigned char *buf)
717 {
718 int rc;
719
720 /* Try to read the string descriptor by asking for the maximum
721 * possible number of bytes */
722 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
723 rc = -EIO;
724 else
725 rc = usb_get_string(dev, langid, index, buf, 255);
726
727 /* If that failed try to read the descriptor length, then
728 * ask for just that many bytes */
729 if (rc < 2) {
730 rc = usb_get_string(dev, langid, index, buf, 2);
731 if (rc == 2)
732 rc = usb_get_string(dev, langid, index, buf, buf[0]);
733 }
734
735 if (rc >= 2) {
736 if (!buf[0] && !buf[1])
737 usb_try_string_workarounds(buf, &rc);
738
739 /* There might be extra junk at the end of the descriptor */
740 if (buf[0] < rc)
741 rc = buf[0];
742
743 rc = rc - (rc & 1); /* force a multiple of two */
744 }
745
746 if (rc < 2)
747 rc = (rc < 0 ? rc : -EINVAL);
748
749 return rc;
750 }
751
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)752 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
753 {
754 int err;
755
756 if (dev->have_langid)
757 return 0;
758
759 if (dev->string_langid < 0)
760 return -EPIPE;
761
762 err = usb_string_sub(dev, 0, 0, tbuf);
763
764 /* If the string was reported but is malformed, default to english
765 * (0x0409) */
766 if (err == -ENODATA || (err > 0 && err < 4)) {
767 dev->string_langid = 0x0409;
768 dev->have_langid = 1;
769 dev_err(&dev->dev,
770 "string descriptor 0 malformed (err = %d), "
771 "defaulting to 0x%04x\n",
772 err, dev->string_langid);
773 return 0;
774 }
775
776 /* In case of all other errors, we assume the device is not able to
777 * deal with strings at all. Set string_langid to -1 in order to
778 * prevent any string to be retrieved from the device */
779 if (err < 0) {
780 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
781 err);
782 dev->string_langid = -1;
783 return -EPIPE;
784 }
785
786 /* always use the first langid listed */
787 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
788 dev->have_langid = 1;
789 dev_dbg(&dev->dev, "default language 0x%04x\n",
790 dev->string_langid);
791 return 0;
792 }
793
794 /**
795 * usb_string - returns UTF-8 version of a string descriptor
796 * @dev: the device whose string descriptor is being retrieved
797 * @index: the number of the descriptor
798 * @buf: where to put the string
799 * @size: how big is "buf"?
800 * Context: !in_interrupt ()
801 *
802 * This converts the UTF-16LE encoded strings returned by devices, from
803 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
804 * that are more usable in most kernel contexts. Note that this function
805 * chooses strings in the first language supported by the device.
806 *
807 * This call is synchronous, and may not be used in an interrupt context.
808 *
809 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
810 */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)811 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
812 {
813 unsigned char *tbuf;
814 int err;
815
816 if (dev->state == USB_STATE_SUSPENDED)
817 return -EHOSTUNREACH;
818 if (size <= 0 || !buf || !index)
819 return -EINVAL;
820 buf[0] = 0;
821 tbuf = kmalloc(256, GFP_NOIO);
822 if (!tbuf)
823 return -ENOMEM;
824
825 err = usb_get_langid(dev, tbuf);
826 if (err < 0)
827 goto errout;
828
829 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
830 if (err < 0)
831 goto errout;
832
833 size--; /* leave room for trailing NULL char in output buffer */
834 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
835 UTF16_LITTLE_ENDIAN, buf, size);
836 buf[err] = 0;
837
838 if (tbuf[1] != USB_DT_STRING)
839 dev_dbg(&dev->dev,
840 "wrong descriptor type %02x for string %d (\"%s\")\n",
841 tbuf[1], index, buf);
842
843 errout:
844 kfree(tbuf);
845 return err;
846 }
847 EXPORT_SYMBOL_GPL(usb_string);
848
849 /* one UTF-8-encoded 16-bit character has at most three bytes */
850 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
851
852 /**
853 * usb_cache_string - read a string descriptor and cache it for later use
854 * @udev: the device whose string descriptor is being read
855 * @index: the descriptor index
856 *
857 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
858 * or NULL if the index is 0 or the string could not be read.
859 */
usb_cache_string(struct usb_device * udev,int index)860 char *usb_cache_string(struct usb_device *udev, int index)
861 {
862 char *buf;
863 char *smallbuf = NULL;
864 int len;
865
866 if (index <= 0)
867 return NULL;
868
869 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
870 if (buf) {
871 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
872 if (len > 0) {
873 smallbuf = kmalloc(++len, GFP_NOIO);
874 if (!smallbuf)
875 return buf;
876 memcpy(smallbuf, buf, len);
877 }
878 kfree(buf);
879 }
880 return smallbuf;
881 }
882
883 /*
884 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
885 * @dev: the device whose device descriptor is being updated
886 * @size: how much of the descriptor to read
887 * Context: !in_interrupt ()
888 *
889 * Updates the copy of the device descriptor stored in the device structure,
890 * which dedicates space for this purpose.
891 *
892 * Not exported, only for use by the core. If drivers really want to read
893 * the device descriptor directly, they can call usb_get_descriptor() with
894 * type = USB_DT_DEVICE and index = 0.
895 *
896 * This call is synchronous, and may not be used in an interrupt context.
897 *
898 * Returns the number of bytes received on success, or else the status code
899 * returned by the underlying usb_control_msg() call.
900 */
usb_get_device_descriptor(struct usb_device * dev,unsigned int size)901 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
902 {
903 struct usb_device_descriptor *desc;
904 int ret;
905
906 if (size > sizeof(*desc))
907 return -EINVAL;
908 desc = kmalloc(sizeof(*desc), GFP_NOIO);
909 if (!desc)
910 return -ENOMEM;
911
912 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
913 if (ret >= 0)
914 memcpy(&dev->descriptor, desc, size);
915 kfree(desc);
916 return ret;
917 }
918
919 /**
920 * usb_get_status - issues a GET_STATUS call
921 * @dev: the device whose status is being checked
922 * @type: USB_RECIP_*; for device, interface, or endpoint
923 * @target: zero (for device), else interface or endpoint number
924 * @data: pointer to two bytes of bitmap data
925 * Context: !in_interrupt ()
926 *
927 * Returns device, interface, or endpoint status. Normally only of
928 * interest to see if the device is self powered, or has enabled the
929 * remote wakeup facility; or whether a bulk or interrupt endpoint
930 * is halted ("stalled").
931 *
932 * Bits in these status bitmaps are set using the SET_FEATURE request,
933 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
934 * function should be used to clear halt ("stall") status.
935 *
936 * This call is synchronous, and may not be used in an interrupt context.
937 *
938 * Returns the number of bytes received on success, or else the status code
939 * returned by the underlying usb_control_msg() call.
940 */
usb_get_status(struct usb_device * dev,int type,int target,void * data)941 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
942 {
943 int ret;
944 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
945
946 if (!status)
947 return -ENOMEM;
948
949 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
950 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
951 sizeof(*status), USB_CTRL_GET_TIMEOUT);
952
953 *(u16 *)data = *status;
954 kfree(status);
955 return ret;
956 }
957 EXPORT_SYMBOL_GPL(usb_get_status);
958
959 /**
960 * usb_clear_halt - tells device to clear endpoint halt/stall condition
961 * @dev: device whose endpoint is halted
962 * @pipe: endpoint "pipe" being cleared
963 * Context: !in_interrupt ()
964 *
965 * This is used to clear halt conditions for bulk and interrupt endpoints,
966 * as reported by URB completion status. Endpoints that are halted are
967 * sometimes referred to as being "stalled". Such endpoints are unable
968 * to transmit or receive data until the halt status is cleared. Any URBs
969 * queued for such an endpoint should normally be unlinked by the driver
970 * before clearing the halt condition, as described in sections 5.7.5
971 * and 5.8.5 of the USB 2.0 spec.
972 *
973 * Note that control and isochronous endpoints don't halt, although control
974 * endpoints report "protocol stall" (for unsupported requests) using the
975 * same status code used to report a true stall.
976 *
977 * This call is synchronous, and may not be used in an interrupt context.
978 *
979 * Returns zero on success, or else the status code returned by the
980 * underlying usb_control_msg() call.
981 */
usb_clear_halt(struct usb_device * dev,int pipe)982 int usb_clear_halt(struct usb_device *dev, int pipe)
983 {
984 int result;
985 int endp = usb_pipeendpoint(pipe);
986
987 if (usb_pipein(pipe))
988 endp |= USB_DIR_IN;
989
990 /* we don't care if it wasn't halted first. in fact some devices
991 * (like some ibmcam model 1 units) seem to expect hosts to make
992 * this request for iso endpoints, which can't halt!
993 */
994 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
995 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
996 USB_ENDPOINT_HALT, endp, NULL, 0,
997 USB_CTRL_SET_TIMEOUT);
998
999 /* don't un-halt or force to DATA0 except on success */
1000 if (result < 0)
1001 return result;
1002
1003 /* NOTE: seems like Microsoft and Apple don't bother verifying
1004 * the clear "took", so some devices could lock up if you check...
1005 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1006 *
1007 * NOTE: make sure the logic here doesn't diverge much from
1008 * the copy in usb-storage, for as long as we need two copies.
1009 */
1010
1011 usb_reset_endpoint(dev, endp);
1012
1013 return 0;
1014 }
1015 EXPORT_SYMBOL_GPL(usb_clear_halt);
1016
create_intf_ep_devs(struct usb_interface * intf)1017 static int create_intf_ep_devs(struct usb_interface *intf)
1018 {
1019 struct usb_device *udev = interface_to_usbdev(intf);
1020 struct usb_host_interface *alt = intf->cur_altsetting;
1021 int i;
1022
1023 if (intf->ep_devs_created || intf->unregistering)
1024 return 0;
1025
1026 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1027 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1028 intf->ep_devs_created = 1;
1029 return 0;
1030 }
1031
remove_intf_ep_devs(struct usb_interface * intf)1032 static void remove_intf_ep_devs(struct usb_interface *intf)
1033 {
1034 struct usb_host_interface *alt = intf->cur_altsetting;
1035 int i;
1036
1037 if (!intf->ep_devs_created)
1038 return;
1039
1040 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1041 usb_remove_ep_devs(&alt->endpoint[i]);
1042 intf->ep_devs_created = 0;
1043 }
1044
1045 /**
1046 * usb_disable_endpoint -- Disable an endpoint by address
1047 * @dev: the device whose endpoint is being disabled
1048 * @epaddr: the endpoint's address. Endpoint number for output,
1049 * endpoint number + USB_DIR_IN for input
1050 * @reset_hardware: flag to erase any endpoint state stored in the
1051 * controller hardware
1052 *
1053 * Disables the endpoint for URB submission and nukes all pending URBs.
1054 * If @reset_hardware is set then also deallocates hcd/hardware state
1055 * for the endpoint.
1056 */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1057 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1058 bool reset_hardware)
1059 {
1060 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1061 struct usb_host_endpoint *ep;
1062
1063 if (!dev)
1064 return;
1065
1066 if (usb_endpoint_out(epaddr)) {
1067 ep = dev->ep_out[epnum];
1068 if (reset_hardware)
1069 dev->ep_out[epnum] = NULL;
1070 } else {
1071 ep = dev->ep_in[epnum];
1072 if (reset_hardware)
1073 dev->ep_in[epnum] = NULL;
1074 }
1075 if (ep) {
1076 ep->enabled = 0;
1077 usb_hcd_flush_endpoint(dev, ep);
1078 if (reset_hardware)
1079 usb_hcd_disable_endpoint(dev, ep);
1080 }
1081 }
1082
1083 /**
1084 * usb_reset_endpoint - Reset an endpoint's state.
1085 * @dev: the device whose endpoint is to be reset
1086 * @epaddr: the endpoint's address. Endpoint number for output,
1087 * endpoint number + USB_DIR_IN for input
1088 *
1089 * Resets any host-side endpoint state such as the toggle bit,
1090 * sequence number or current window.
1091 */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1092 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1093 {
1094 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1095 struct usb_host_endpoint *ep;
1096
1097 if (usb_endpoint_out(epaddr))
1098 ep = dev->ep_out[epnum];
1099 else
1100 ep = dev->ep_in[epnum];
1101 if (ep)
1102 usb_hcd_reset_endpoint(dev, ep);
1103 }
1104 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1105
1106
1107 /**
1108 * usb_disable_interface -- Disable all endpoints for an interface
1109 * @dev: the device whose interface is being disabled
1110 * @intf: pointer to the interface descriptor
1111 * @reset_hardware: flag to erase any endpoint state stored in the
1112 * controller hardware
1113 *
1114 * Disables all the endpoints for the interface's current altsetting.
1115 */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1116 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1117 bool reset_hardware)
1118 {
1119 struct usb_host_interface *alt = intf->cur_altsetting;
1120 int i;
1121
1122 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1123 usb_disable_endpoint(dev,
1124 alt->endpoint[i].desc.bEndpointAddress,
1125 reset_hardware);
1126 }
1127 }
1128
1129 /**
1130 * usb_disable_device - Disable all the endpoints for a USB device
1131 * @dev: the device whose endpoints are being disabled
1132 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1133 *
1134 * Disables all the device's endpoints, potentially including endpoint 0.
1135 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1136 * pending urbs) and usbcore state for the interfaces, so that usbcore
1137 * must usb_set_configuration() before any interfaces could be used.
1138 */
usb_disable_device(struct usb_device * dev,int skip_ep0)1139 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1140 {
1141 int i;
1142
1143 /* getting rid of interfaces will disconnect
1144 * any drivers bound to them (a key side effect)
1145 */
1146 if (dev->actconfig) {
1147 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1148 struct usb_interface *interface;
1149
1150 /* remove this interface if it has been registered */
1151 interface = dev->actconfig->interface[i];
1152 if (!device_is_registered(&interface->dev))
1153 continue;
1154 dev_dbg(&dev->dev, "unregistering interface %s\n",
1155 dev_name(&interface->dev));
1156 interface->unregistering = 1;
1157 remove_intf_ep_devs(interface);
1158 device_del(&interface->dev);
1159 }
1160
1161 /* Now that the interfaces are unbound, nobody should
1162 * try to access them.
1163 */
1164 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1165 put_device(&dev->actconfig->interface[i]->dev);
1166 dev->actconfig->interface[i] = NULL;
1167 }
1168 dev->actconfig = NULL;
1169 if (dev->state == USB_STATE_CONFIGURED)
1170 usb_set_device_state(dev, USB_STATE_ADDRESS);
1171 }
1172
1173 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1174 skip_ep0 ? "non-ep0" : "all");
1175 for (i = skip_ep0; i < 16; ++i) {
1176 usb_disable_endpoint(dev, i, true);
1177 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1178 }
1179 }
1180
1181 /**
1182 * usb_enable_endpoint - Enable an endpoint for USB communications
1183 * @dev: the device whose interface is being enabled
1184 * @ep: the endpoint
1185 * @reset_ep: flag to reset the endpoint state
1186 *
1187 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1188 * For control endpoints, both the input and output sides are handled.
1189 */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1190 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1191 bool reset_ep)
1192 {
1193 int epnum = usb_endpoint_num(&ep->desc);
1194 int is_out = usb_endpoint_dir_out(&ep->desc);
1195 int is_control = usb_endpoint_xfer_control(&ep->desc);
1196
1197 if (reset_ep)
1198 usb_hcd_reset_endpoint(dev, ep);
1199 if (is_out || is_control)
1200 dev->ep_out[epnum] = ep;
1201 if (!is_out || is_control)
1202 dev->ep_in[epnum] = ep;
1203 ep->enabled = 1;
1204 }
1205
1206 /**
1207 * usb_enable_interface - Enable all the endpoints for an interface
1208 * @dev: the device whose interface is being enabled
1209 * @intf: pointer to the interface descriptor
1210 * @reset_eps: flag to reset the endpoints' state
1211 *
1212 * Enables all the endpoints for the interface's current altsetting.
1213 */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1214 void usb_enable_interface(struct usb_device *dev,
1215 struct usb_interface *intf, bool reset_eps)
1216 {
1217 struct usb_host_interface *alt = intf->cur_altsetting;
1218 int i;
1219
1220 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1221 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1222 }
1223
1224 /**
1225 * usb_set_interface - Makes a particular alternate setting be current
1226 * @dev: the device whose interface is being updated
1227 * @interface: the interface being updated
1228 * @alternate: the setting being chosen.
1229 * Context: !in_interrupt ()
1230 *
1231 * This is used to enable data transfers on interfaces that may not
1232 * be enabled by default. Not all devices support such configurability.
1233 * Only the driver bound to an interface may change its setting.
1234 *
1235 * Within any given configuration, each interface may have several
1236 * alternative settings. These are often used to control levels of
1237 * bandwidth consumption. For example, the default setting for a high
1238 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1239 * while interrupt transfers of up to 3KBytes per microframe are legal.
1240 * Also, isochronous endpoints may never be part of an
1241 * interface's default setting. To access such bandwidth, alternate
1242 * interface settings must be made current.
1243 *
1244 * Note that in the Linux USB subsystem, bandwidth associated with
1245 * an endpoint in a given alternate setting is not reserved until an URB
1246 * is submitted that needs that bandwidth. Some other operating systems
1247 * allocate bandwidth early, when a configuration is chosen.
1248 *
1249 * This call is synchronous, and may not be used in an interrupt context.
1250 * Also, drivers must not change altsettings while urbs are scheduled for
1251 * endpoints in that interface; all such urbs must first be completed
1252 * (perhaps forced by unlinking).
1253 *
1254 * Returns zero on success, or else the status code returned by the
1255 * underlying usb_control_msg() call.
1256 */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1257 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1258 {
1259 struct usb_interface *iface;
1260 struct usb_host_interface *alt;
1261 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1262 int ret;
1263 int manual = 0;
1264 unsigned int epaddr;
1265 unsigned int pipe;
1266
1267 if (dev->state == USB_STATE_SUSPENDED)
1268 return -EHOSTUNREACH;
1269
1270 iface = usb_ifnum_to_if(dev, interface);
1271 if (!iface) {
1272 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1273 interface);
1274 return -EINVAL;
1275 }
1276
1277 alt = usb_altnum_to_altsetting(iface, alternate);
1278 if (!alt) {
1279 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1280 alternate);
1281 return -EINVAL;
1282 }
1283
1284 /* Make sure we have enough bandwidth for this alternate interface.
1285 * Remove the current alt setting and add the new alt setting.
1286 */
1287 mutex_lock(hcd->bandwidth_mutex);
1288 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1289 if (ret < 0) {
1290 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1291 alternate);
1292 mutex_unlock(hcd->bandwidth_mutex);
1293 return ret;
1294 }
1295
1296 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1297 ret = -EPIPE;
1298 else
1299 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1300 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1301 alternate, interface, NULL, 0, 5000);
1302
1303 /* 9.4.10 says devices don't need this and are free to STALL the
1304 * request if the interface only has one alternate setting.
1305 */
1306 if (ret == -EPIPE && iface->num_altsetting == 1) {
1307 dev_dbg(&dev->dev,
1308 "manual set_interface for iface %d, alt %d\n",
1309 interface, alternate);
1310 manual = 1;
1311 } else if (ret < 0) {
1312 /* Re-instate the old alt setting */
1313 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1314 mutex_unlock(hcd->bandwidth_mutex);
1315 return ret;
1316 }
1317 mutex_unlock(hcd->bandwidth_mutex);
1318
1319 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1320 * when they implement async or easily-killable versions of this or
1321 * other "should-be-internal" functions (like clear_halt).
1322 * should hcd+usbcore postprocess control requests?
1323 */
1324
1325 /* prevent submissions using previous endpoint settings */
1326 if (iface->cur_altsetting != alt) {
1327 remove_intf_ep_devs(iface);
1328 usb_remove_sysfs_intf_files(iface);
1329 }
1330 usb_disable_interface(dev, iface, true);
1331
1332 iface->cur_altsetting = alt;
1333
1334 /* If the interface only has one altsetting and the device didn't
1335 * accept the request, we attempt to carry out the equivalent action
1336 * by manually clearing the HALT feature for each endpoint in the
1337 * new altsetting.
1338 */
1339 if (manual) {
1340 int i;
1341
1342 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1343 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1344 pipe = __create_pipe(dev,
1345 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1346 (usb_endpoint_out(epaddr) ?
1347 USB_DIR_OUT : USB_DIR_IN);
1348
1349 usb_clear_halt(dev, pipe);
1350 }
1351 }
1352
1353 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1354 *
1355 * Note:
1356 * Despite EP0 is always present in all interfaces/AS, the list of
1357 * endpoints from the descriptor does not contain EP0. Due to its
1358 * omnipresence one might expect EP0 being considered "affected" by
1359 * any SetInterface request and hence assume toggles need to be reset.
1360 * However, EP0 toggles are re-synced for every individual transfer
1361 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1362 * (Likewise, EP0 never "halts" on well designed devices.)
1363 */
1364 usb_enable_interface(dev, iface, true);
1365 if (device_is_registered(&iface->dev)) {
1366 usb_create_sysfs_intf_files(iface);
1367 create_intf_ep_devs(iface);
1368 }
1369 return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(usb_set_interface);
1372
1373 /**
1374 * usb_reset_configuration - lightweight device reset
1375 * @dev: the device whose configuration is being reset
1376 *
1377 * This issues a standard SET_CONFIGURATION request to the device using
1378 * the current configuration. The effect is to reset most USB-related
1379 * state in the device, including interface altsettings (reset to zero),
1380 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1381 * endpoints). Other usbcore state is unchanged, including bindings of
1382 * usb device drivers to interfaces.
1383 *
1384 * Because this affects multiple interfaces, avoid using this with composite
1385 * (multi-interface) devices. Instead, the driver for each interface may
1386 * use usb_set_interface() on the interfaces it claims. Be careful though;
1387 * some devices don't support the SET_INTERFACE request, and others won't
1388 * reset all the interface state (notably endpoint state). Resetting the whole
1389 * configuration would affect other drivers' interfaces.
1390 *
1391 * The caller must own the device lock.
1392 *
1393 * Returns zero on success, else a negative error code.
1394 */
usb_reset_configuration(struct usb_device * dev)1395 int usb_reset_configuration(struct usb_device *dev)
1396 {
1397 int i, retval;
1398 struct usb_host_config *config;
1399 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1400
1401 if (dev->state == USB_STATE_SUSPENDED)
1402 return -EHOSTUNREACH;
1403
1404 /* caller must have locked the device and must own
1405 * the usb bus readlock (so driver bindings are stable);
1406 * calls during probe() are fine
1407 */
1408
1409 for (i = 1; i < 16; ++i) {
1410 usb_disable_endpoint(dev, i, true);
1411 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1412 }
1413
1414 config = dev->actconfig;
1415 retval = 0;
1416 mutex_lock(hcd->bandwidth_mutex);
1417 /* Make sure we have enough bandwidth for each alternate setting 0 */
1418 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1419 struct usb_interface *intf = config->interface[i];
1420 struct usb_host_interface *alt;
1421
1422 alt = usb_altnum_to_altsetting(intf, 0);
1423 if (!alt)
1424 alt = &intf->altsetting[0];
1425 if (alt != intf->cur_altsetting)
1426 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1427 intf->cur_altsetting, alt);
1428 if (retval < 0)
1429 break;
1430 }
1431 /* If not, reinstate the old alternate settings */
1432 if (retval < 0) {
1433 reset_old_alts:
1434 for (i--; i >= 0; i--) {
1435 struct usb_interface *intf = config->interface[i];
1436 struct usb_host_interface *alt;
1437
1438 alt = usb_altnum_to_altsetting(intf, 0);
1439 if (!alt)
1440 alt = &intf->altsetting[0];
1441 if (alt != intf->cur_altsetting)
1442 usb_hcd_alloc_bandwidth(dev, NULL,
1443 alt, intf->cur_altsetting);
1444 }
1445 mutex_unlock(hcd->bandwidth_mutex);
1446 return retval;
1447 }
1448 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1449 USB_REQ_SET_CONFIGURATION, 0,
1450 config->desc.bConfigurationValue, 0,
1451 NULL, 0, USB_CTRL_SET_TIMEOUT);
1452 if (retval < 0)
1453 goto reset_old_alts;
1454 mutex_unlock(hcd->bandwidth_mutex);
1455
1456 /* re-init hc/hcd interface/endpoint state */
1457 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1458 struct usb_interface *intf = config->interface[i];
1459 struct usb_host_interface *alt;
1460
1461 alt = usb_altnum_to_altsetting(intf, 0);
1462
1463 /* No altsetting 0? We'll assume the first altsetting.
1464 * We could use a GetInterface call, but if a device is
1465 * so non-compliant that it doesn't have altsetting 0
1466 * then I wouldn't trust its reply anyway.
1467 */
1468 if (!alt)
1469 alt = &intf->altsetting[0];
1470
1471 if (alt != intf->cur_altsetting) {
1472 remove_intf_ep_devs(intf);
1473 usb_remove_sysfs_intf_files(intf);
1474 }
1475 intf->cur_altsetting = alt;
1476 usb_enable_interface(dev, intf, true);
1477 if (device_is_registered(&intf->dev)) {
1478 usb_create_sysfs_intf_files(intf);
1479 create_intf_ep_devs(intf);
1480 }
1481 }
1482 return 0;
1483 }
1484 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1485
usb_release_interface(struct device * dev)1486 static void usb_release_interface(struct device *dev)
1487 {
1488 struct usb_interface *intf = to_usb_interface(dev);
1489 struct usb_interface_cache *intfc =
1490 altsetting_to_usb_interface_cache(intf->altsetting);
1491
1492 kref_put(&intfc->ref, usb_release_interface_cache);
1493 kfree(intf);
1494 }
1495
1496 #ifdef CONFIG_HOTPLUG
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1497 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1498 {
1499 struct usb_device *usb_dev;
1500 struct usb_interface *intf;
1501 struct usb_host_interface *alt;
1502
1503 intf = to_usb_interface(dev);
1504 usb_dev = interface_to_usbdev(intf);
1505 alt = intf->cur_altsetting;
1506
1507 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1508 alt->desc.bInterfaceClass,
1509 alt->desc.bInterfaceSubClass,
1510 alt->desc.bInterfaceProtocol))
1511 return -ENOMEM;
1512
1513 if (add_uevent_var(env,
1514 "MODALIAS=usb:"
1515 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1516 le16_to_cpu(usb_dev->descriptor.idVendor),
1517 le16_to_cpu(usb_dev->descriptor.idProduct),
1518 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1519 usb_dev->descriptor.bDeviceClass,
1520 usb_dev->descriptor.bDeviceSubClass,
1521 usb_dev->descriptor.bDeviceProtocol,
1522 alt->desc.bInterfaceClass,
1523 alt->desc.bInterfaceSubClass,
1524 alt->desc.bInterfaceProtocol))
1525 return -ENOMEM;
1526
1527 return 0;
1528 }
1529
1530 #else
1531
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1532 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1533 {
1534 return -ENODEV;
1535 }
1536 #endif /* CONFIG_HOTPLUG */
1537
1538 struct device_type usb_if_device_type = {
1539 .name = "usb_interface",
1540 .release = usb_release_interface,
1541 .uevent = usb_if_uevent,
1542 };
1543
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1544 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1545 struct usb_host_config *config,
1546 u8 inum)
1547 {
1548 struct usb_interface_assoc_descriptor *retval = NULL;
1549 struct usb_interface_assoc_descriptor *intf_assoc;
1550 int first_intf;
1551 int last_intf;
1552 int i;
1553
1554 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1555 intf_assoc = config->intf_assoc[i];
1556 if (intf_assoc->bInterfaceCount == 0)
1557 continue;
1558
1559 first_intf = intf_assoc->bFirstInterface;
1560 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1561 if (inum >= first_intf && inum <= last_intf) {
1562 if (!retval)
1563 retval = intf_assoc;
1564 else
1565 dev_err(&dev->dev, "Interface #%d referenced"
1566 " by multiple IADs\n", inum);
1567 }
1568 }
1569
1570 return retval;
1571 }
1572
1573
1574 /*
1575 * Internal function to queue a device reset
1576 *
1577 * This is initialized into the workstruct in 'struct
1578 * usb_device->reset_ws' that is launched by
1579 * message.c:usb_set_configuration() when initializing each 'struct
1580 * usb_interface'.
1581 *
1582 * It is safe to get the USB device without reference counts because
1583 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1584 * this function will be ran only if @iface is alive (and before
1585 * freeing it any scheduled instances of it will have been cancelled).
1586 *
1587 * We need to set a flag (usb_dev->reset_running) because when we call
1588 * the reset, the interfaces might be unbound. The current interface
1589 * cannot try to remove the queued work as it would cause a deadlock
1590 * (you cannot remove your work from within your executing
1591 * workqueue). This flag lets it know, so that
1592 * usb_cancel_queued_reset() doesn't try to do it.
1593 *
1594 * See usb_queue_reset_device() for more details
1595 */
__usb_queue_reset_device(struct work_struct * ws)1596 static void __usb_queue_reset_device(struct work_struct *ws)
1597 {
1598 int rc;
1599 struct usb_interface *iface =
1600 container_of(ws, struct usb_interface, reset_ws);
1601 struct usb_device *udev = interface_to_usbdev(iface);
1602
1603 rc = usb_lock_device_for_reset(udev, iface);
1604 if (rc >= 0) {
1605 iface->reset_running = 1;
1606 usb_reset_device(udev);
1607 iface->reset_running = 0;
1608 usb_unlock_device(udev);
1609 }
1610 }
1611
1612
1613 /*
1614 * usb_set_configuration - Makes a particular device setting be current
1615 * @dev: the device whose configuration is being updated
1616 * @configuration: the configuration being chosen.
1617 * Context: !in_interrupt(), caller owns the device lock
1618 *
1619 * This is used to enable non-default device modes. Not all devices
1620 * use this kind of configurability; many devices only have one
1621 * configuration.
1622 *
1623 * @configuration is the value of the configuration to be installed.
1624 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1625 * must be non-zero; a value of zero indicates that the device in
1626 * unconfigured. However some devices erroneously use 0 as one of their
1627 * configuration values. To help manage such devices, this routine will
1628 * accept @configuration = -1 as indicating the device should be put in
1629 * an unconfigured state.
1630 *
1631 * USB device configurations may affect Linux interoperability,
1632 * power consumption and the functionality available. For example,
1633 * the default configuration is limited to using 100mA of bus power,
1634 * so that when certain device functionality requires more power,
1635 * and the device is bus powered, that functionality should be in some
1636 * non-default device configuration. Other device modes may also be
1637 * reflected as configuration options, such as whether two ISDN
1638 * channels are available independently; and choosing between open
1639 * standard device protocols (like CDC) or proprietary ones.
1640 *
1641 * Note that a non-authorized device (dev->authorized == 0) will only
1642 * be put in unconfigured mode.
1643 *
1644 * Note that USB has an additional level of device configurability,
1645 * associated with interfaces. That configurability is accessed using
1646 * usb_set_interface().
1647 *
1648 * This call is synchronous. The calling context must be able to sleep,
1649 * must own the device lock, and must not hold the driver model's USB
1650 * bus mutex; usb interface driver probe() methods cannot use this routine.
1651 *
1652 * Returns zero on success, or else the status code returned by the
1653 * underlying call that failed. On successful completion, each interface
1654 * in the original device configuration has been destroyed, and each one
1655 * in the new configuration has been probed by all relevant usb device
1656 * drivers currently known to the kernel.
1657 */
usb_set_configuration(struct usb_device * dev,int configuration)1658 int usb_set_configuration(struct usb_device *dev, int configuration)
1659 {
1660 int i, ret;
1661 struct usb_host_config *cp = NULL;
1662 struct usb_interface **new_interfaces = NULL;
1663 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1664 int n, nintf;
1665
1666 if (dev->authorized == 0 || configuration == -1)
1667 configuration = 0;
1668 else {
1669 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1670 if (dev->config[i].desc.bConfigurationValue ==
1671 configuration) {
1672 cp = &dev->config[i];
1673 break;
1674 }
1675 }
1676 }
1677 if ((!cp && configuration != 0))
1678 return -EINVAL;
1679
1680 /* The USB spec says configuration 0 means unconfigured.
1681 * But if a device includes a configuration numbered 0,
1682 * we will accept it as a correctly configured state.
1683 * Use -1 if you really want to unconfigure the device.
1684 */
1685 if (cp && configuration == 0)
1686 dev_warn(&dev->dev, "config 0 descriptor??\n");
1687
1688 /* Allocate memory for new interfaces before doing anything else,
1689 * so that if we run out then nothing will have changed. */
1690 n = nintf = 0;
1691 if (cp) {
1692 nintf = cp->desc.bNumInterfaces;
1693 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1694 GFP_NOIO);
1695 if (!new_interfaces) {
1696 dev_err(&dev->dev, "Out of memory\n");
1697 return -ENOMEM;
1698 }
1699
1700 for (; n < nintf; ++n) {
1701 new_interfaces[n] = kzalloc(
1702 sizeof(struct usb_interface),
1703 GFP_NOIO);
1704 if (!new_interfaces[n]) {
1705 dev_err(&dev->dev, "Out of memory\n");
1706 ret = -ENOMEM;
1707 free_interfaces:
1708 while (--n >= 0)
1709 kfree(new_interfaces[n]);
1710 kfree(new_interfaces);
1711 return ret;
1712 }
1713 }
1714
1715 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1716 if (i < 0)
1717 dev_warn(&dev->dev, "new config #%d exceeds power "
1718 "limit by %dmA\n",
1719 configuration, -i);
1720 }
1721
1722 /* Wake up the device so we can send it the Set-Config request */
1723 ret = usb_autoresume_device(dev);
1724 if (ret)
1725 goto free_interfaces;
1726
1727 /* if it's already configured, clear out old state first.
1728 * getting rid of old interfaces means unbinding their drivers.
1729 */
1730 if (dev->state != USB_STATE_ADDRESS)
1731 usb_disable_device(dev, 1); /* Skip ep0 */
1732
1733 /* Get rid of pending async Set-Config requests for this device */
1734 cancel_async_set_config(dev);
1735
1736 /* Make sure we have bandwidth (and available HCD resources) for this
1737 * configuration. Remove endpoints from the schedule if we're dropping
1738 * this configuration to set configuration 0. After this point, the
1739 * host controller will not allow submissions to dropped endpoints. If
1740 * this call fails, the device state is unchanged.
1741 */
1742 mutex_lock(hcd->bandwidth_mutex);
1743 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1744 if (ret < 0) {
1745 mutex_unlock(hcd->bandwidth_mutex);
1746 usb_autosuspend_device(dev);
1747 goto free_interfaces;
1748 }
1749
1750 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1751 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1752 NULL, 0, USB_CTRL_SET_TIMEOUT);
1753 if (ret < 0) {
1754 /* All the old state is gone, so what else can we do?
1755 * The device is probably useless now anyway.
1756 */
1757 cp = NULL;
1758 }
1759
1760 dev->actconfig = cp;
1761 if (!cp) {
1762 usb_set_device_state(dev, USB_STATE_ADDRESS);
1763 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1764 mutex_unlock(hcd->bandwidth_mutex);
1765 usb_autosuspend_device(dev);
1766 goto free_interfaces;
1767 }
1768 mutex_unlock(hcd->bandwidth_mutex);
1769 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1770
1771 /* Initialize the new interface structures and the
1772 * hc/hcd/usbcore interface/endpoint state.
1773 */
1774 for (i = 0; i < nintf; ++i) {
1775 struct usb_interface_cache *intfc;
1776 struct usb_interface *intf;
1777 struct usb_host_interface *alt;
1778
1779 cp->interface[i] = intf = new_interfaces[i];
1780 intfc = cp->intf_cache[i];
1781 intf->altsetting = intfc->altsetting;
1782 intf->num_altsetting = intfc->num_altsetting;
1783 intf->intf_assoc = find_iad(dev, cp, i);
1784 kref_get(&intfc->ref);
1785
1786 alt = usb_altnum_to_altsetting(intf, 0);
1787
1788 /* No altsetting 0? We'll assume the first altsetting.
1789 * We could use a GetInterface call, but if a device is
1790 * so non-compliant that it doesn't have altsetting 0
1791 * then I wouldn't trust its reply anyway.
1792 */
1793 if (!alt)
1794 alt = &intf->altsetting[0];
1795
1796 intf->cur_altsetting = alt;
1797 usb_enable_interface(dev, intf, true);
1798 intf->dev.parent = &dev->dev;
1799 intf->dev.driver = NULL;
1800 intf->dev.bus = &usb_bus_type;
1801 intf->dev.type = &usb_if_device_type;
1802 intf->dev.groups = usb_interface_groups;
1803 intf->dev.dma_mask = dev->dev.dma_mask;
1804 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1805 intf->minor = -1;
1806 device_initialize(&intf->dev);
1807 pm_runtime_no_callbacks(&intf->dev);
1808 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1809 dev->bus->busnum, dev->devpath,
1810 configuration, alt->desc.bInterfaceNumber);
1811 }
1812 kfree(new_interfaces);
1813
1814 if (cp->string == NULL &&
1815 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1816 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1817
1818 /* Now that all the interfaces are set up, register them
1819 * to trigger binding of drivers to interfaces. probe()
1820 * routines may install different altsettings and may
1821 * claim() any interfaces not yet bound. Many class drivers
1822 * need that: CDC, audio, video, etc.
1823 */
1824 for (i = 0; i < nintf; ++i) {
1825 struct usb_interface *intf = cp->interface[i];
1826
1827 dev_dbg(&dev->dev,
1828 "adding %s (config #%d, interface %d)\n",
1829 dev_name(&intf->dev), configuration,
1830 intf->cur_altsetting->desc.bInterfaceNumber);
1831 device_enable_async_suspend(&intf->dev);
1832 ret = device_add(&intf->dev);
1833 if (ret != 0) {
1834 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1835 dev_name(&intf->dev), ret);
1836 continue;
1837 }
1838 create_intf_ep_devs(intf);
1839 }
1840
1841 usb_autosuspend_device(dev);
1842 return 0;
1843 }
1844
1845 static LIST_HEAD(set_config_list);
1846 static DEFINE_SPINLOCK(set_config_lock);
1847
1848 struct set_config_request {
1849 struct usb_device *udev;
1850 int config;
1851 struct work_struct work;
1852 struct list_head node;
1853 };
1854
1855 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)1856 static void driver_set_config_work(struct work_struct *work)
1857 {
1858 struct set_config_request *req =
1859 container_of(work, struct set_config_request, work);
1860 struct usb_device *udev = req->udev;
1861
1862 usb_lock_device(udev);
1863 spin_lock(&set_config_lock);
1864 list_del(&req->node);
1865 spin_unlock(&set_config_lock);
1866
1867 if (req->config >= -1) /* Is req still valid? */
1868 usb_set_configuration(udev, req->config);
1869 usb_unlock_device(udev);
1870 usb_put_dev(udev);
1871 kfree(req);
1872 }
1873
1874 /* Cancel pending Set-Config requests for a device whose configuration
1875 * was just changed
1876 */
cancel_async_set_config(struct usb_device * udev)1877 static void cancel_async_set_config(struct usb_device *udev)
1878 {
1879 struct set_config_request *req;
1880
1881 spin_lock(&set_config_lock);
1882 list_for_each_entry(req, &set_config_list, node) {
1883 if (req->udev == udev)
1884 req->config = -999; /* Mark as cancelled */
1885 }
1886 spin_unlock(&set_config_lock);
1887 }
1888
1889 /**
1890 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1891 * @udev: the device whose configuration is being updated
1892 * @config: the configuration being chosen.
1893 * Context: In process context, must be able to sleep
1894 *
1895 * Device interface drivers are not allowed to change device configurations.
1896 * This is because changing configurations will destroy the interface the
1897 * driver is bound to and create new ones; it would be like a floppy-disk
1898 * driver telling the computer to replace the floppy-disk drive with a
1899 * tape drive!
1900 *
1901 * Still, in certain specialized circumstances the need may arise. This
1902 * routine gets around the normal restrictions by using a work thread to
1903 * submit the change-config request.
1904 *
1905 * Returns 0 if the request was successfully queued, error code otherwise.
1906 * The caller has no way to know whether the queued request will eventually
1907 * succeed.
1908 */
usb_driver_set_configuration(struct usb_device * udev,int config)1909 int usb_driver_set_configuration(struct usb_device *udev, int config)
1910 {
1911 struct set_config_request *req;
1912
1913 req = kmalloc(sizeof(*req), GFP_KERNEL);
1914 if (!req)
1915 return -ENOMEM;
1916 req->udev = udev;
1917 req->config = config;
1918 INIT_WORK(&req->work, driver_set_config_work);
1919
1920 spin_lock(&set_config_lock);
1921 list_add(&req->node, &set_config_list);
1922 spin_unlock(&set_config_lock);
1923
1924 usb_get_dev(udev);
1925 schedule_work(&req->work);
1926 return 0;
1927 }
1928 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1929