1 /*
2  * <linux/usb_gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  */
14 
15 #ifndef __LINUX_USB_GADGET_H
16 #define __LINUX_USB_GADGET_H
17 
18 #ifdef __KERNEL__
19 
20 struct usb_ep;
21 
22 /**
23  * struct usb_request - describes one i/o request
24  * @buf: Buffer used for data.  Always provide this; some controllers
25  * 	only use PIO, or don't use DMA for some endpoints.
26  * @dma: DMA address corresponding to 'buf'.  If you don't set this
27  * 	field, and the usb controller needs one, it is responsible
28  * 	for mapping and unmapping the buffer.
29  * @length: Length of that data
30  * @no_interrupt: If true, hints that no completion irq is needed.
31  *	Helpful sometimes with deep request queues that are handled
32  *	directly by DMA controllers.
33  * @zero: If true, when writing data, makes the last packet be "short"
34  *     by adding a zero length packet as needed;
35  * @short_not_ok: When reading data, makes short packets be
36  *     treated as errors (queue stops advancing till cleanup).
37  * @complete: Function called when request completes, so this request and
38  *	its buffer may be re-used.
39  *	Reads terminate with a short packet, or when the buffer fills,
40  *	whichever comes first.  When writes terminate, some data bytes
41  *	will usually still be in flight (often in a hardware fifo).
42  *	Errors (for reads or writes) stop the queue from advancing
43  *	until the completion function returns, so that any transfers
44  *	invalidated by the error may first be dequeued.
45  * @context: For use by the completion callback
46  * @list: For use by the gadget driver.
47  * @status: Reports completion code, zero or a negative errno.
48  * 	Normally, faults block the transfer queue from advancing until
49  * 	the completion callback returns.
50  * 	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
51  * 	or when the driver disabled the endpoint.
52  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
53  * 	transfers) this may be less than the requested length.  If the
54  * 	short_not_ok flag is set, short reads are treated as errors
55  * 	even when status otherwise indicates successful completion.
56  * 	Note that for writes (IN transfers) some data bytes may still
57  * 	reside in a device-side FIFO when the request is reported as
58  *	complete.
59  *
60  * These are allocated/freed through the endpoint they're used with.  The
61  * hardware's driver can add extra per-request data to the memory it returns,
62  * which often avoids separate memory allocations (potential failures),
63  * later when the request is queued.
64  *
65  * Request flags affect request handling, such as whether a zero length
66  * packet is written (the "zero" flag), whether a short read should be
67  * treated as an error (blocking request queue advance, the "short_not_ok"
68  * flag), or hinting that an interrupt is not required (the "no_interrupt"
69  * flag, for use with deep request queues).
70  *
71  * Bulk endpoints can use any size buffers, and can also be used for interrupt
72  * transfers. interrupt-only endpoints can be much less functional.
73  */
74 	// NOTE this is analagous to 'struct urb' on the host side,
75 	// except that it's thinner and promotes more pre-allocation.
76 
77 struct usb_request {
78 	void			*buf;
79 	unsigned		length;
80 	dma_addr_t		dma;
81 
82 	unsigned		no_interrupt:1;
83 	unsigned		zero:1;
84 	unsigned		short_not_ok:1;
85 
86 	void			(*complete)(struct usb_ep *ep,
87 					struct usb_request *req);
88 	void			*context;
89 	struct list_head	list;
90 
91 	int			status;
92 	unsigned		actual;
93 };
94 
95 /*-------------------------------------------------------------------------*/
96 
97 /* endpoint-specific parts of the api to the usb controller hardware.
98  * unlike the urb model, (de)multiplexing layers are not required.
99  * (so this api could slash overhead if used on the host side...)
100  *
101  * note that device side usb controllers commonly differ in how many
102  * endpoints they support, as well as their capabilities.
103  */
104 struct usb_ep_ops {
105 	int (*enable) (struct usb_ep *ep,
106 		const struct usb_endpoint_descriptor *desc);
107 	int (*disable) (struct usb_ep *ep);
108 
109 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
110 		int gfp_flags);
111 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
112 
113 	void *(*alloc_buffer) (struct usb_ep *ep, unsigned bytes,
114 		dma_addr_t *dma, int gfp_flags);
115 	void (*free_buffer) (struct usb_ep *ep, void *buf, dma_addr_t dma,
116 		unsigned bytes);
117 	// NOTE:  on 2.6, drivers may also use dma_map() and
118 	// dma_sync_single_*() to directly manage dma overhead.
119 
120 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
121 		int gfp_flags);
122 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
123 
124 	int (*set_halt) (struct usb_ep *ep, int value);
125 	int (*fifo_status) (struct usb_ep *ep);
126 	void (*fifo_flush) (struct usb_ep *ep);
127 };
128 
129 /**
130  * struct usb_ep - device side representation of USB endpoint
131  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
132  * @ops: Function pointers used to access hardware-specific operations.
133  * @ep_list:the gadget's ep_list holds all of its endpoints
134  * @maxpacket:The maximum packet size used on this endpoint.  The initial
135  *	value can sometimes be reduced (hardware allowing), according to
136  *      the endpoint descriptor used to configure the endpoint.
137  * @driver_data:for use by the gadget driver.  all other fields are
138  * 	read-only to gadget drivers.
139  *
140  * the bus controller driver lists all the general purpose endpoints in
141  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
142  * and is accessed only in response to a driver setup() callback.
143  */
144 struct usb_ep {
145 	void			*driver_data;
146 
147 	const char		*name;
148 	const struct usb_ep_ops	*ops;
149 	struct list_head	ep_list;
150 	unsigned		maxpacket:16;
151 };
152 
153 /*-------------------------------------------------------------------------*/
154 
155 /**
156  * usb_ep_enable - configure endpoint, making it usable
157  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
158  * 	drivers discover endpoints through the ep_list of a usb_gadget.
159  * @desc:descriptor for desired behavior.  caller guarantees this pointer
160  * 	remains valid until the endpoint is disabled; the data byte order
161  * 	is little-endian (usb-standard).
162  *
163  * when configurations are set, or when interface settings change, the driver
164  * will enable or disable the relevant endpoints.  while it is enabled, an
165  * endpoint may be used for i/o until the driver receives a disconnect() from
166  * the host or until the endpoint is disabled.
167  *
168  * the ep0 implementation (which calls this routine) must ensure that the
169  * hardware capabilities of each endpoint match the descriptor provided
170  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
171  * for interrupt transfers as well as bulk, but it likely couldn't be used
172  * for iso transfers or for endpoint 14.  some endpoints are fully
173  * configurable, with more generic names like "ep-a".  (remember that for
174  * USB, "in" means "towards the USB master".)
175  *
176  * returns zero, or a negative error code.
177  */
178 static inline int
usb_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)179 usb_ep_enable (struct usb_ep *ep, const struct usb_endpoint_descriptor *desc)
180 {
181 	return ep->ops->enable (ep, desc);
182 }
183 
184 /**
185  * usb_ep_disable - endpoint is no longer usable
186  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
187  *
188  * no other task may be using this endpoint when this is called.
189  * any pending and uncompleted requests will complete with status
190  * indicating disconnect (-ESHUTDOWN) before this call returns.
191  * gadget drivers must call usb_ep_enable() again before queueing
192  * requests to the endpoint.
193  *
194  * returns zero, or a negative error code.
195  */
196 static inline int
usb_ep_disable(struct usb_ep * ep)197 usb_ep_disable (struct usb_ep *ep)
198 {
199 	return ep->ops->disable (ep);
200 }
201 
202 /**
203  * usb_ep_alloc_request - allocate a request object to use with this endpoint
204  * @ep:the endpoint to be used with with the request
205  * @gfp_flags:GFP_* flags to use
206  *
207  * Request objects must be allocated with this call, since they normally
208  * need controller-specific setup and may even need endpoint-specific
209  * resources such as allocation of DMA descriptors.
210  * Requests may be submitted with usb_ep_queue(), and receive a single
211  * completion callback.  Free requests with usb_ep_free_request(), when
212  * they are no longer needed.
213  *
214  * Returns the request, or null if one could not be allocated.
215  */
216 static inline struct usb_request *
usb_ep_alloc_request(struct usb_ep * ep,int gfp_flags)217 usb_ep_alloc_request (struct usb_ep *ep, int gfp_flags)
218 {
219 	return ep->ops->alloc_request (ep, gfp_flags);
220 }
221 
222 /**
223  * usb_ep_free_request - frees a request object
224  * @ep:the endpoint associated with the request
225  * @req:the request being freed
226  *
227  * Reverses the effect of usb_ep_alloc_request().
228  * Caller guarantees the request is not queued, and that it will
229  * no longer be requeued (or otherwise used).
230  */
231 static inline void
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)232 usb_ep_free_request (struct usb_ep *ep, struct usb_request *req)
233 {
234 	ep->ops->free_request (ep, req);
235 }
236 
237 /**
238  * usb_ep_alloc_buffer - allocate an I/O buffer
239  * @ep:the endpoint associated with the buffer
240  * @len:length of the desired buffer
241  * @dma:pointer to the buffer's DMA address; must be valid
242  * @gfp_flags:GFP_* flags to use
243  *
244  * Returns a new buffer, or null if one could not be allocated.
245  * The buffer is suitably aligned for dma, if that endpoint uses DMA,
246  * and the caller won't have to care about dma-inconsistency
247  * or any hidden "bounce buffer" mechanism.  No additional per-request
248  * DMA mapping will be required for such buffers.
249  * Free it later with usb_ep_free_buffer().
250  *
251  * You don't need to use this call to allocate I/O buffers unless you
252  * want to make sure drivers don't incur costs for such "bounce buffer"
253  * copies or per-request DMA mappings.
254  */
255 static inline void *
usb_ep_alloc_buffer(struct usb_ep * ep,unsigned len,dma_addr_t * dma,int gfp_flags)256 usb_ep_alloc_buffer (struct usb_ep *ep, unsigned len, dma_addr_t *dma,
257 	int gfp_flags)
258 {
259 	return ep->ops->alloc_buffer (ep, len, dma, gfp_flags);
260 }
261 
262 /**
263  * usb_ep_free_buffer - frees an i/o buffer
264  * @ep:the endpoint associated with the buffer
265  * @buf:CPU view address of the buffer
266  * @dma:the buffer's DMA address
267  * @len:length of the buffer
268  *
269  * reverses the effect of usb_ep_alloc_buffer().
270  * caller guarantees the buffer will no longer be accessed
271  */
272 static inline void
usb_ep_free_buffer(struct usb_ep * ep,void * buf,dma_addr_t dma,unsigned len)273 usb_ep_free_buffer (struct usb_ep *ep, void *buf, dma_addr_t dma, unsigned len)
274 {
275 	ep->ops->free_buffer (ep, buf, dma, len);
276 }
277 
278 /**
279  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
280  * @ep:the endpoint associated with the request
281  * @req:the request being submitted
282  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
283  * 	pre-allocate all necessary memory with the request.
284  *
285  * This tells the device controller to perform the specified request through
286  * that endpoint (reading or writing a buffer).  When the request completes,
287  * including being canceled by usb_ep_dequeue(), the request's completion
288  * routine is called to return the request to the driver.  Any endpoint
289  * (except control endpoints like ep0) may have more than one transfer
290  * request queued; they complete in FIFO order.  Once a gadget driver
291  * submits a request, that request may not be examined or modified until it
292  * is given back to that driver through the completion callback.
293  *
294  * Each request is turned into one or more packets.  The controller driver
295  * never merges adjacent requests into the same packet.  OUT transfers
296  * will sometimes use data that's already buffered in the hardware.
297  * Drivers can rely on the fact that the first byte of the request's buffer
298  * always corresponds to the first byte of some USB packet, for both
299  * IN and OUT transfers.
300  *
301  * Bulk endpoints can queue any amount of data; the transfer is packetized
302  * automatically.  The last packet will be short if the request doesn't fill it
303  * out completely.  Zero length packets (ZLPs) should be avoided in portable
304  * protocols since not all usb hardware can successfully handle zero length
305  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
306  * the request 'zero' flag is set.)  Bulk endpoints may also be used
307  * for interrupt transfers; but the reverse is not true, and some endpoints
308  * won't support every interrupt transfer.  (Such as 768 byte packets.)
309  *
310  * Interrupt-only endpoints are less functional than bulk endpoints, for
311  * example by not supporting queueing or not handling buffers that are
312  * larger than the endpoint's maxpacket size.  They may also treat data
313  * toggle differently.
314  *
315  * Control endpoints ... after getting a setup() callback, the driver queues
316  * one response (even if it would be zero length).  That enables the
317  * status ack, after transfering data as specified in the response.  Setup
318  * functions may return negative error codes to generate protocol stalls.
319  * (Note that some USB device controllers disallow protocol stall responses
320  * in some cases.)  When control responses are deferred (the response is
321  * written after the setup callback returns), then usb_ep_set_halt() may be
322  * used on ep0 to trigger protocol stalls.
323  *
324  * For periodic endpoints, like interrupt or isochronous ones, the usb host
325  * arranges to poll once per interval, and the gadget driver usually will
326  * have queued some data to transfer at that time.
327  *
328  * Returns zero, or a negative error code.  Endpoints that are not enabled
329  * report errors; errors will also be
330  * reported when the usb peripheral is disconnected.
331  */
332 static inline int
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,int gfp_flags)333 usb_ep_queue (struct usb_ep *ep, struct usb_request *req, int gfp_flags)
334 {
335 	return ep->ops->queue (ep, req, gfp_flags);
336 }
337 
338 /**
339  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
340  * @ep:the endpoint associated with the request
341  * @req:the request being canceled
342  *
343  * if the request is still active on the endpoint, it is dequeued and its
344  * completion routine is called (with status -ECONNRESET); else a negative
345  * error code is returned.
346  *
347  * note that some hardware can't clear out write fifos (to unlink the request
348  * at the head of the queue) except as part of disconnecting from usb.  such
349  * restrictions prevent drivers from supporting configuration changes,
350  * even to configuration zero (a "chapter 9" requirement).
351  */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)352 static inline int usb_ep_dequeue (struct usb_ep *ep, struct usb_request *req)
353 {
354 	return ep->ops->dequeue (ep, req);
355 }
356 
357 /**
358  * usb_ep_set_halt - sets the endpoint halt feature.
359  * @ep: the non-isochronous endpoint being stalled
360  *
361  * Use this to stall an endpoint, perhaps as an error report.
362  * Except for control endpoints,
363  * the endpoint stays halted (will not stream any data) until the host
364  * clears this feature; drivers may need to empty the endpoint's request
365  * queue first, to make sure no inappropriate transfers happen.
366  *
367  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
368  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
369  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
370  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
371  *
372  * Returns zero, or a negative error code.  On success, this call sets
373  * underlying hardware state that blocks data transfers.
374  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
375  * transfer requests are still queued, or if the controller hardware
376  * (usually a FIFO) still holds bytes that the host hasn't collected.
377  */
378 static inline int
usb_ep_set_halt(struct usb_ep * ep)379 usb_ep_set_halt (struct usb_ep *ep)
380 {
381 	return ep->ops->set_halt (ep, 1);
382 }
383 
384 /**
385  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
386  * @ep:the bulk or interrupt endpoint being reset
387  *
388  * Use this when responding to the standard usb "set interface" request,
389  * for endpoints that aren't reconfigured, after clearing any other state
390  * in the endpoint's i/o queue.
391  *
392  * Returns zero, or a negative error code.  On success, this call clears
393  * the underlying hardware state reflecting endpoint halt and data toggle.
394  * Note that some hardware can't support this request (like pxa2xx_udc),
395  * and accordingly can't correctly implement interface altsettings.
396  */
397 static inline int
usb_ep_clear_halt(struct usb_ep * ep)398 usb_ep_clear_halt (struct usb_ep *ep)
399 {
400 	return ep->ops->set_halt (ep, 0);
401 }
402 
403 /**
404  * usb_ep_fifo_status - returns number of bytes in fifo, or error
405  * @ep: the endpoint whose fifo status is being checked.
406  *
407  * FIFO endpoints may have "unclaimed data" in them in certain cases,
408  * such as after aborted transfers.  Hosts may not have collected all
409  * the IN data written by the gadget driver (and reported by a request
410  * completion).  The gadget driver may not have collected all the data
411  * written OUT to it by the host.  Drivers that need precise handling for
412  * fault reporting or recovery may need to use this call.
413  *
414  * This returns the number of such bytes in the fifo, or a negative
415  * errno if the endpoint doesn't use a FIFO or doesn't support such
416  * precise handling.
417  */
418 static inline int
usb_ep_fifo_status(struct usb_ep * ep)419 usb_ep_fifo_status (struct usb_ep *ep)
420 {
421 	if (ep->ops->fifo_status)
422 		return ep->ops->fifo_status (ep);
423 	else
424 		return -EOPNOTSUPP;
425 }
426 
427 /**
428  * usb_ep_fifo_flush - flushes contents of a fifo
429  * @ep: the endpoint whose fifo is being flushed.
430  *
431  * This call may be used to flush the "unclaimed data" that may exist in
432  * an endpoint fifo after abnormal transaction terminations.  The call
433  * must never be used except when endpoint is not being used for any
434  * protocol translation.
435  */
436 static inline void
usb_ep_fifo_flush(struct usb_ep * ep)437 usb_ep_fifo_flush (struct usb_ep *ep)
438 {
439 	if (ep->ops->fifo_flush)
440 		ep->ops->fifo_flush (ep);
441 }
442 
443 
444 /*-------------------------------------------------------------------------*/
445 
446 struct usb_gadget;
447 
448 /* the rest of the api to the controller hardware: device operations,
449  * which don't involve endpoints (or i/o).
450  */
451 struct usb_gadget_ops {
452 	int	(*get_frame)(struct usb_gadget *);
453 	int	(*wakeup)(struct usb_gadget *);
454 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
455 	int	(*vbus_session) (struct usb_gadget *, int is_active);
456 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
457 	int	(*pullup) (struct usb_gadget *, int is_on);
458 	int	(*ioctl)(struct usb_gadget *,
459 				unsigned code, unsigned long param);
460 };
461 
462 /**
463  * struct usb_gadget - represents a usb slave device
464  * @ops: Function pointers used to access hardware-specific operations.
465  * @ep0: Endpoint zero, used when reading or writing responses to
466  * 	driver setup() requests
467  * @ep_list: List of other endpoints supported by the device.
468  * @speed: Speed of current connection to USB host.
469  * @is_dualspeed: True if the controller supports both high and full speed
470  *	operation.  If it does, the gadget driver must also support both.
471  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
472  *	gadget driver must provide a USB OTG descriptor.
473  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
474  *	is in the Mini-AB jack, and HNP has been used to switch roles
475  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
476  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
477  *	supports HNP at this port.
478  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
479  *	only supports HNP on a different root port.
480  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
481  *	enabled HNP support.
482  * @name: Identifies the controller hardware type.  Used in diagnostics
483  * 	and sometimes configuration.
484  * @dev: Driver model state for this abstract device.
485  *
486  * Gadgets have a mostly-portable "gadget driver" implementing device
487  * functions, handling all usb configurations and interfaces.  Gadget
488  * drivers talk to hardware-specific code indirectly, through ops vectors.
489  * That insulates the gadget driver from hardware details, and packages
490  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
491  * and "usb_ep" interfaces provide that insulation from the hardware.
492  *
493  * Except for the driver data, all fields in this structure are
494  * read-only to the gadget driver.  That driver data is part of the
495  * "driver model" infrastructure in 2.6 (and later) kernels, and for
496  * earlier systems is grouped in a similar structure that's not known
497  * to the rest of the kernel.
498  *
499  * Values of the three OTG device feature flags are updated before the
500  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
501  * driver suspend() calls.  They are valid only when is_otg, and when the
502  * device is acting as a B-Peripheral (so is_a_peripheral is false).
503  */
504 struct usb_gadget {
505 	/* readonly to gadget driver */
506 	const struct usb_gadget_ops	*ops;
507 	struct usb_ep			*ep0;
508 	struct list_head		ep_list;	/* of usb_ep */
509 	enum usb_device_speed		speed;
510 	unsigned			is_dualspeed:1;
511 	unsigned			is_otg:1;
512 	unsigned			is_a_peripheral:1;
513 	unsigned			b_hnp_enable:1;
514 	unsigned			a_hnp_support:1;
515 	unsigned			a_alt_hnp_support:1;
516 	const char			*name;
517 
518 	struct __gadget_device {
519 		const char		*bus_id;
520 		void			*driver_data;
521 	} dev;
522 };
523 
set_gadget_data(struct usb_gadget * gadget,void * data)524 static inline void set_gadget_data (struct usb_gadget *gadget, void *data)
525 	{ gadget->dev.driver_data = data; }
get_gadget_data(struct usb_gadget * gadget)526 static inline void *get_gadget_data (struct usb_gadget *gadget)
527 	{ return gadget->dev.driver_data; }
528 
529 
530 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
531 #define gadget_for_each_ep(tmp,gadget) \
532 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
533 
534 #ifndef list_for_each_entry
535 /* not available in 2.4.18 */
536 #define list_for_each_entry(pos, head, member)				\
537 	for (pos = list_entry((head)->next, typeof(*pos), member),	\
538 		     prefetch(pos->member.next);			\
539 	     &pos->member != (head); 					\
540 	     pos = list_entry(pos->member.next, typeof(*pos), member),	\
541 		     prefetch(pos->member.next))
542 #endif
543 
544 
545 /**
546  * usb_gadget_frame_number - returns the current frame number
547  * @gadget: controller that reports the frame number
548  *
549  * Returns the usb frame number, normally eleven bits from a SOF packet,
550  * or negative errno if this device doesn't support this capability.
551  */
usb_gadget_frame_number(struct usb_gadget * gadget)552 static inline int usb_gadget_frame_number (struct usb_gadget *gadget)
553 {
554 	return gadget->ops->get_frame (gadget);
555 }
556 
557 /**
558  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
559  * @gadget: controller used to wake up the host
560  *
561  * Returns zero on success, else negative error code if the hardware
562  * doesn't support such attempts, or its support has not been enabled
563  * by the usb host.  Drivers must return device descriptors that report
564  * their ability to support this, or hosts won't enable it.
565  *
566  * This may also try to use SRP to wake the host and start enumeration,
567  * even if OTG isn't otherwise in use.  OTG devices may also start
568  * remote wakeup even when hosts don't explicitly enable it.
569  */
usb_gadget_wakeup(struct usb_gadget * gadget)570 static inline int usb_gadget_wakeup (struct usb_gadget *gadget)
571 {
572 	if (!gadget->ops->wakeup)
573 		return -EOPNOTSUPP;
574 	return gadget->ops->wakeup (gadget);
575 }
576 
577 /**
578  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
579  * @gadget:the device being declared as self-powered
580  *
581  * this affects the device status reported by the hardware driver
582  * to reflect that it now has a local power supply.
583  *
584  * returns zero on success, else negative errno.
585  */
586 static inline int
usb_gadget_set_selfpowered(struct usb_gadget * gadget)587 usb_gadget_set_selfpowered (struct usb_gadget *gadget)
588 {
589 	if (!gadget->ops->set_selfpowered)
590 		return -EOPNOTSUPP;
591 	return gadget->ops->set_selfpowered (gadget, 1);
592 }
593 
594 /**
595  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
596  * @gadget:the device being declared as bus-powered
597  *
598  * this affects the device status reported by the hardware driver.
599  * some hardware may not support bus-powered operation, in which
600  * case this feature's value can never change.
601  *
602  * returns zero on success, else negative errno.
603  */
604 static inline int
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)605 usb_gadget_clear_selfpowered (struct usb_gadget *gadget)
606 {
607 	if (!gadget->ops->set_selfpowered)
608 		return -EOPNOTSUPP;
609 	return gadget->ops->set_selfpowered (gadget, 0);
610 }
611 
612 /**
613  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
614  * @gadget:The device which now has VBUS power.
615  *
616  * This call is used by a driver for an external transceiver (or GPIO)
617  * that detects a VBUS power session starting.  Common responses include
618  * resuming the controller, activating the D+ (or D-) pullup to let the
619  * host detect that a USB device is attached, and starting to draw power
620  * (8mA or possibly more, especially after SET_CONFIGURATION).
621  *
622  * Returns zero on success, else negative errno.
623  */
624 static inline int
usb_gadget_vbus_connect(struct usb_gadget * gadget)625 usb_gadget_vbus_connect(struct usb_gadget *gadget)
626 {
627 	if (!gadget->ops->vbus_session)
628 		return -EOPNOTSUPP;
629 	return gadget->ops->vbus_session (gadget, 1);
630 }
631 
632 /**
633  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
634  * @gadget:The device whose VBUS usage is being described
635  * @mA:How much current to draw, in milliAmperes.  This should be twice
636  *	the value listed in the configuration descriptor bMaxPower field.
637  *
638  * This call is used by gadget drivers during SET_CONFIGURATION calls,
639  * reporting how much power the device may consume.  For example, this
640  * could affect how quickly batteries are recharged.
641  *
642  * Returns zero on success, else negative errno.
643  */
644 static inline int
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)645 usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
646 {
647 	if (!gadget->ops->vbus_draw)
648 		return -EOPNOTSUPP;
649 	return gadget->ops->vbus_draw (gadget, mA);
650 }
651 
652 /**
653  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
654  * @gadget:the device whose VBUS supply is being described
655  *
656  * This call is used by a driver for an external transceiver (or GPIO)
657  * that detects a VBUS power session ending.  Common responses include
658  * reversing everything done in usb_gadget_vbus_connect().
659  *
660  * Returns zero on success, else negative errno.
661  */
662 static inline int
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)663 usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
664 {
665 	if (!gadget->ops->vbus_session)
666 		return -EOPNOTSUPP;
667 	return gadget->ops->vbus_session (gadget, 0);
668 }
669 
670 /**
671  * usb_gadget_connect - software-controlled connect to USB host
672  * @gadget:the peripheral being connected
673  *
674  * Enables the D+ (or potentially D-) pullup.  The host will start
675  * enumerating this gadget when the pullup is active and a VBUS session
676  * is active (the link is powered).  This pullup is always enabled unless
677  * usb_gadget_disconnect() has been used to disable it.
678  *
679  * Returns zero on success, else negative errno.
680  */
681 static inline int
usb_gadget_connect(struct usb_gadget * gadget)682 usb_gadget_connect (struct usb_gadget *gadget)
683 {
684 	if (!gadget->ops->pullup)
685 		return -EOPNOTSUPP;
686 	return gadget->ops->pullup (gadget, 1);
687 }
688 
689 /**
690  * usb_gadget_disconnect - software-controlled disconnect from USB host
691  * @gadget:the peripheral being disconnected
692  *
693  * Disables the D+ (or potentially D-) pullup, which the host may see
694  * as a disconnect (when a VBUS session is active).  Not all systems
695  * support software pullup controls.
696  *
697  * This routine may be used during the gadget driver bind() call to prevent
698  * the peripheral from ever being visible to the USB host, unless later
699  * usb_gadget_connect() is called.  For example, user mode components may
700  * need to be activated before the system can talk to hosts.
701  *
702  * Returns zero on success, else negative errno.
703  */
704 static inline int
usb_gadget_disconnect(struct usb_gadget * gadget)705 usb_gadget_disconnect (struct usb_gadget *gadget)
706 {
707 	if (!gadget->ops->pullup)
708 		return -EOPNOTSUPP;
709 	return gadget->ops->pullup (gadget, 0);
710 }
711 
712 
713 
714 /*-------------------------------------------------------------------------*/
715 
716 /**
717  * struct usb_gadget_driver - driver for usb 'slave' devices
718  * @function: String describing the gadget's function
719  * @speed: Highest speed the driver handles.
720  * @bind: Invoked when the driver is bound to a gadget, usually
721  * 	after registering the driver.
722  * 	At that point, ep0 is fully initialized, and ep_list holds
723  * 	the currently-available endpoints.
724  * 	Called in a context that permits sleeping.
725  * @setup: Invoked for ep0 control requests that aren't handled by
726  * 	the hardware level driver. Most calls must be handled by
727  * 	the gadget driver, including descriptor and configuration
728  * 	management.  The 16 bit members of the setup data are in
729  * 	cpu order. Called in_interrupt; this may not sleep.  Driver
730  *	queues a response to ep0, or returns negative to stall.
731  * @disconnect: Invoked after all transfers have been stopped,
732  * 	when the host is disconnected.  May be called in_interrupt; this
733  * 	may not sleep.  Some devices can't detect disconnect, so this might
734  *	not be called except as part of controller shutdown.
735  * @unbind: Invoked when the driver is unbound from a gadget,
736  * 	usually from rmmod (after a disconnect is reported).
737  * 	Called in a context that permits sleeping.
738  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
739  * @resume: Invoked on USB resume.  May be called in_interrupt.
740  * @driver: Driver model state for this driver.
741  *
742  * Devices are disabled till a gadget driver successfully bind()s, which
743  * means the driver will handle setup() requests needed to enumerate (and
744  * meet "chapter 9" requirements) then do some useful work.
745  *
746  * If gadget->is_otg is true, the gadget driver must provide an OTG
747  * descriptor during enumeration, or else fail the bind() call.  In such
748  * cases, no USB traffic may flow until both bind() returns without
749  * having called usb_gadget_disconnect(), and the USB host stack has
750  * initialized.
751  *
752  * Drivers use hardware-specific knowledge to configure the usb hardware.
753  * endpoint addressing is only one of several hardware characteristics that
754  * are in descriptors the ep0 implementation returns from setup() calls.
755  *
756  * Except for ep0 implementation, most driver code shouldn't need change to
757  * run on top of different usb controllers.  It'll use endpoints set up by
758  * that ep0 implementation.
759  *
760  * The usb controller driver handles a few standard usb requests.  Those
761  * include set_address, and feature flags for devices, interfaces, and
762  * endpoints (the get_status, set_feature, and clear_feature requests).
763  *
764  * Accordingly, the driver's setup() callback must always implement all
765  * get_descriptor requests, returning at least a device descriptor and
766  * a configuration descriptor.  Drivers must make sure the endpoint
767  * descriptors match any hardware constraints. Some hardware also constrains
768  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
769  *
770  * The driver's setup() callback must also implement set_configuration,
771  * and should also implement set_interface, get_configuration, and
772  * get_interface.  Setting a configuration (or interface) is where
773  * endpoints should be activated or (config 0) shut down.
774  *
775  * (Note that only the default control endpoint is supported.  Neither
776  * hosts nor devices generally support control traffic except to ep0.)
777  *
778  * Most devices will ignore USB suspend/resume operations, and so will
779  * not provide those callbacks.  However, some may need to change modes
780  * when the host is not longer directing those activities.  For example,
781  * local controls (buttons, dials, etc) may need to be re-enabled since
782  * the (remote) host can't do that any longer; or an error state might
783  * be cleared, to make the device behave identically whether or not
784  * power is maintained.
785  */
786 struct usb_gadget_driver {
787 	char			*function;
788 	enum usb_device_speed	speed;
789 	int			(*bind)(struct usb_gadget *);
790 	void			(*unbind)(struct usb_gadget *);
791 	int			(*setup)(struct usb_gadget *,
792 					const struct usb_ctrlrequest *);
793 	void			(*disconnect)(struct usb_gadget *);
794 	void			(*suspend)(struct usb_gadget *);
795 	void			(*resume)(struct usb_gadget *);
796 
797 	// FIXME support safe rmmod
798 	struct __gadget_driver {
799 		const char	*name;
800 		void		*driver_data;
801 	} driver;
802 };
803 
804 
805 
806 /*-------------------------------------------------------------------------*/
807 
808 /* driver modules register and unregister, as usual.
809  * these calls must be made in a context that can sleep.
810  *
811  * these will usually be implemented directly by the hardware-dependent
812  * usb bus interface driver, which will only support a single driver.
813  */
814 
815 /**
816  * usb_gadget_register_driver - register a gadget driver
817  * @driver:the driver being registered
818  *
819  * Call this in your gadget driver's module initialization function,
820  * to tell the underlying usb controller driver about your driver.
821  * The driver's bind() function will be called to bind it to a
822  * gadget.  This function must be called in a context that can sleep.
823  */
824 int usb_gadget_register_driver (struct usb_gadget_driver *driver);
825 
826 /**
827  * usb_gadget_unregister_driver - unregister a gadget driver
828  * @driver:the driver being unregistered
829  *
830  * Call this in your gadget driver's module cleanup function,
831  * to tell the underlying usb controller that your driver is
832  * going away.  If the controller is connected to a USB host,
833  * it will first disconnect().  The driver is also requested
834  * to unbind() and clean up any device state, before this procedure
835  * finally returns.
836  * This function must be called in a context that can sleep.
837  */
838 int usb_gadget_unregister_driver (struct usb_gadget_driver *driver);
839 
840 /*-------------------------------------------------------------------------*/
841 
842 /* utility to simplify dealing with string descriptors */
843 
844 /**
845  * struct usb_string - wraps a C string and its USB id
846  * @id:the (nonzero) ID for this string
847  * @s:the string, in UTF-8 encoding
848  *
849  * If you're using usb_gadget_get_string(), use this to wrap a string
850  * together with its ID.
851  */
852 struct usb_string {
853 	u8			id;
854 	const char		*s;
855 };
856 
857 /**
858  * struct usb_gadget_strings - a set of USB strings in a given language
859  * @language:identifies the strings' language (0x0409 for en-us)
860  * @strings:array of strings with their ids
861  *
862  * If you're using usb_gadget_get_string(), use this to wrap all the
863  * strings for a given language.
864  */
865 struct usb_gadget_strings {
866 	u16			language;	/* 0x0409 for en-us */
867 	struct usb_string	*strings;
868 };
869 
870 /* put descriptor for string with that id into buf (buflen >= 256) */
871 int usb_gadget_get_string (struct usb_gadget_strings *table, int id, u8 *buf);
872 
873 /*-------------------------------------------------------------------------*/
874 
875 /* utility to simplify managing config descriptors */
876 
877 /* write vector of descriptors into buffer */
878 int usb_descriptor_fillbuf(void *, unsigned,
879 		const struct usb_descriptor_header **);
880 
881 /* build config descriptor from single descriptor vector */
882 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
883 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
884 
885 /*-------------------------------------------------------------------------*/
886 
887 /* utility wrapping a simple endpoint selection policy */
888 
889 extern struct usb_ep *usb_ep_autoconfig (struct usb_gadget *,
890 			struct usb_endpoint_descriptor *) __init;
891 
892 extern void usb_ep_autoconfig_reset (struct usb_gadget *) __init;
893 
894 #endif  /* __KERNEL__ */
895 
896 #endif	/* __LINUX_USB_GADGET_H */
897