1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/pci.h> /* for scatterlist macros */
10 #include <linux/usb.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/timer.h>
15 #include <linux/ctype.h>
16 #include <linux/nls.h>
17 #include <linux/device.h>
18 #include <linux/scatterlist.h>
19 #include <linux/usb/cdc.h>
20 #include <linux/usb/quirks.h>
21 #include <linux/usb/hcd.h> /* for usbcore internals */
22 #include <linux/usb/of.h>
23 #include <asm/byteorder.h>
24
25 #include "usb.h"
26
27 static void cancel_async_set_config(struct usb_device *udev);
28
29 struct api_context {
30 struct completion done;
31 int status;
32 };
33
usb_api_blocking_completion(struct urb * urb)34 static void usb_api_blocking_completion(struct urb *urb)
35 {
36 struct api_context *ctx = urb->context;
37
38 ctx->status = urb->status;
39 complete(&ctx->done);
40 }
41
42
43 /*
44 * Starts urb and waits for completion or timeout. Note that this call
45 * is NOT interruptible. Many device driver i/o requests should be
46 * interruptible and therefore these drivers should implement their
47 * own interruptible routines.
48 */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
50 {
51 struct api_context ctx;
52 unsigned long expire;
53 int retval;
54
55 init_completion(&ctx.done);
56 urb->context = &ctx;
57 urb->actual_length = 0;
58 retval = usb_submit_urb(urb, GFP_NOIO);
59 if (unlikely(retval))
60 goto out;
61
62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 usb_kill_urb(urb);
65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
66
67 dev_dbg(&urb->dev->dev,
68 "%s timed out on ep%d%s len=%u/%u\n",
69 current->comm,
70 usb_endpoint_num(&urb->ep->desc),
71 usb_urb_dir_in(urb) ? "in" : "out",
72 urb->actual_length,
73 urb->transfer_buffer_length);
74 } else
75 retval = ctx.status;
76 out:
77 if (actual_length)
78 *actual_length = urb->actual_length;
79
80 usb_free_urb(urb);
81 return retval;
82 }
83
84 /*-------------------------------------------------------------------*/
85 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)86 static int usb_internal_control_msg(struct usb_device *usb_dev,
87 unsigned int pipe,
88 struct usb_ctrlrequest *cmd,
89 void *data, int len, int timeout)
90 {
91 struct urb *urb;
92 int retv;
93 int length;
94
95 urb = usb_alloc_urb(0, GFP_NOIO);
96 if (!urb)
97 return -ENOMEM;
98
99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 len, usb_api_blocking_completion, NULL);
101
102 retv = usb_start_wait_urb(urb, timeout, &length);
103 if (retv < 0)
104 return retv;
105 else
106 return length;
107 }
108
109 /**
110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
111 * @dev: pointer to the usb device to send the message to
112 * @pipe: endpoint "pipe" to send the message to
113 * @request: USB message request value
114 * @requesttype: USB message request type value
115 * @value: USB message value
116 * @index: USB message index value
117 * @data: pointer to the data to send
118 * @size: length in bytes of the data to send
119 * @timeout: time in msecs to wait for the message to complete before timing
120 * out (if 0 the wait is forever)
121 *
122 * Context: task context, might sleep.
123 *
124 * This function sends a simple control message to a specified endpoint and
125 * waits for the message to complete, or timeout.
126 *
127 * Don't use this function from within an interrupt context. If you need
128 * an asynchronous message, or need to send a message from within interrupt
129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
130 * make sure your disconnect() method can wait for it to complete. Since you
131 * don't have a handle on the URB used, you can't cancel the request.
132 *
133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
134 * error number.
135 */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 __u8 requesttype, __u16 value, __u16 index, void *data,
138 __u16 size, int timeout)
139 {
140 struct usb_ctrlrequest *dr;
141 int ret;
142
143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 if (!dr)
145 return -ENOMEM;
146
147 dr->bRequestType = requesttype;
148 dr->bRequest = request;
149 dr->wValue = cpu_to_le16(value);
150 dr->wIndex = cpu_to_le16(index);
151 dr->wLength = cpu_to_le16(size);
152
153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
154
155 /* Linger a bit, prior to the next control message. */
156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 msleep(200);
158
159 kfree(dr);
160
161 return ret;
162 }
163 EXPORT_SYMBOL_GPL(usb_control_msg);
164
165 /**
166 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
167 * @dev: pointer to the usb device to send the message to
168 * @endpoint: endpoint to send the message to
169 * @request: USB message request value
170 * @requesttype: USB message request type value
171 * @value: USB message value
172 * @index: USB message index value
173 * @driver_data: pointer to the data to send
174 * @size: length in bytes of the data to send
175 * @timeout: time in msecs to wait for the message to complete before timing
176 * out (if 0 the wait is forever)
177 * @memflags: the flags for memory allocation for buffers
178 *
179 * Context: !in_interrupt ()
180 *
181 * This function sends a control message to a specified endpoint that is not
182 * expected to fill in a response (i.e. a "send message") and waits for the
183 * message to complete, or timeout.
184 *
185 * Do not use this function from within an interrupt context. If you need
186 * an asynchronous message, or need to send a message from within interrupt
187 * context, use usb_submit_urb(). If a thread in your driver uses this call,
188 * make sure your disconnect() method can wait for it to complete. Since you
189 * don't have a handle on the URB used, you can't cancel the request.
190 *
191 * The data pointer can be made to a reference on the stack, or anywhere else,
192 * as it will not be modified at all. This does not have the restriction that
193 * usb_control_msg() has where the data pointer must be to dynamically allocated
194 * memory (i.e. memory that can be successfully DMAed to a device).
195 *
196 * Return: If successful, 0 is returned, Otherwise, a negative error number.
197 */
usb_control_msg_send(struct usb_device * dev,__u8 endpoint,__u8 request,__u8 requesttype,__u16 value,__u16 index,const void * driver_data,__u16 size,int timeout,gfp_t memflags)198 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
199 __u8 requesttype, __u16 value, __u16 index,
200 const void *driver_data, __u16 size, int timeout,
201 gfp_t memflags)
202 {
203 unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
204 int ret;
205 u8 *data = NULL;
206
207 if (size) {
208 data = kmemdup(driver_data, size, memflags);
209 if (!data)
210 return -ENOMEM;
211 }
212
213 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
214 data, size, timeout);
215 kfree(data);
216
217 if (ret < 0)
218 return ret;
219
220 return 0;
221 }
222 EXPORT_SYMBOL_GPL(usb_control_msg_send);
223
224 /**
225 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
226 * @dev: pointer to the usb device to send the message to
227 * @endpoint: endpoint to send the message to
228 * @request: USB message request value
229 * @requesttype: USB message request type value
230 * @value: USB message value
231 * @index: USB message index value
232 * @driver_data: pointer to the data to be filled in by the message
233 * @size: length in bytes of the data to be received
234 * @timeout: time in msecs to wait for the message to complete before timing
235 * out (if 0 the wait is forever)
236 * @memflags: the flags for memory allocation for buffers
237 *
238 * Context: !in_interrupt ()
239 *
240 * This function sends a control message to a specified endpoint that is
241 * expected to fill in a response (i.e. a "receive message") and waits for the
242 * message to complete, or timeout.
243 *
244 * Do not use this function from within an interrupt context. If you need
245 * an asynchronous message, or need to send a message from within interrupt
246 * context, use usb_submit_urb(). If a thread in your driver uses this call,
247 * make sure your disconnect() method can wait for it to complete. Since you
248 * don't have a handle on the URB used, you can't cancel the request.
249 *
250 * The data pointer can be made to a reference on the stack, or anywhere else
251 * that can be successfully written to. This function does not have the
252 * restriction that usb_control_msg() has where the data pointer must be to
253 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
254 * device).
255 *
256 * The "whole" message must be properly received from the device in order for
257 * this function to be successful. If a device returns less than the expected
258 * amount of data, then the function will fail. Do not use this for messages
259 * where a variable amount of data might be returned.
260 *
261 * Return: If successful, 0 is returned, Otherwise, a negative error number.
262 */
usb_control_msg_recv(struct usb_device * dev,__u8 endpoint,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * driver_data,__u16 size,int timeout,gfp_t memflags)263 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
264 __u8 requesttype, __u16 value, __u16 index,
265 void *driver_data, __u16 size, int timeout,
266 gfp_t memflags)
267 {
268 unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
269 int ret;
270 u8 *data;
271
272 if (!size || !driver_data)
273 return -EINVAL;
274
275 data = kmalloc(size, memflags);
276 if (!data)
277 return -ENOMEM;
278
279 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
280 data, size, timeout);
281
282 if (ret < 0)
283 goto exit;
284
285 if (ret == size) {
286 memcpy(driver_data, data, size);
287 ret = 0;
288 } else {
289 ret = -EREMOTEIO;
290 }
291
292 exit:
293 kfree(data);
294 return ret;
295 }
296 EXPORT_SYMBOL_GPL(usb_control_msg_recv);
297
298 /**
299 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
300 * @usb_dev: pointer to the usb device to send the message to
301 * @pipe: endpoint "pipe" to send the message to
302 * @data: pointer to the data to send
303 * @len: length in bytes of the data to send
304 * @actual_length: pointer to a location to put the actual length transferred
305 * in bytes
306 * @timeout: time in msecs to wait for the message to complete before
307 * timing out (if 0 the wait is forever)
308 *
309 * Context: task context, might sleep.
310 *
311 * This function sends a simple interrupt message to a specified endpoint and
312 * waits for the message to complete, or timeout.
313 *
314 * Don't use this function from within an interrupt context. If you need
315 * an asynchronous message, or need to send a message from within interrupt
316 * context, use usb_submit_urb() If a thread in your driver uses this call,
317 * make sure your disconnect() method can wait for it to complete. Since you
318 * don't have a handle on the URB used, you can't cancel the request.
319 *
320 * Return:
321 * If successful, 0. Otherwise a negative error number. The number of actual
322 * bytes transferred will be stored in the @actual_length parameter.
323 */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)324 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
325 void *data, int len, int *actual_length, int timeout)
326 {
327 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
328 }
329 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
330
331 /**
332 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
333 * @usb_dev: pointer to the usb device to send the message to
334 * @pipe: endpoint "pipe" to send the message to
335 * @data: pointer to the data to send
336 * @len: length in bytes of the data to send
337 * @actual_length: pointer to a location to put the actual length transferred
338 * in bytes
339 * @timeout: time in msecs to wait for the message to complete before
340 * timing out (if 0 the wait is forever)
341 *
342 * Context: task context, might sleep.
343 *
344 * This function sends a simple bulk message to a specified endpoint
345 * and waits for the message to complete, or timeout.
346 *
347 * Don't use this function from within an interrupt context. If you need
348 * an asynchronous message, or need to send a message from within interrupt
349 * context, use usb_submit_urb() If a thread in your driver uses this call,
350 * make sure your disconnect() method can wait for it to complete. Since you
351 * don't have a handle on the URB used, you can't cancel the request.
352 *
353 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
354 * users are forced to abuse this routine by using it to submit URBs for
355 * interrupt endpoints. We will take the liberty of creating an interrupt URB
356 * (with the default interval) if the target is an interrupt endpoint.
357 *
358 * Return:
359 * If successful, 0. Otherwise a negative error number. The number of actual
360 * bytes transferred will be stored in the @actual_length parameter.
361 *
362 */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)363 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
364 void *data, int len, int *actual_length, int timeout)
365 {
366 struct urb *urb;
367 struct usb_host_endpoint *ep;
368
369 ep = usb_pipe_endpoint(usb_dev, pipe);
370 if (!ep || len < 0)
371 return -EINVAL;
372
373 urb = usb_alloc_urb(0, GFP_KERNEL);
374 if (!urb)
375 return -ENOMEM;
376
377 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
378 USB_ENDPOINT_XFER_INT) {
379 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
380 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
381 usb_api_blocking_completion, NULL,
382 ep->desc.bInterval);
383 } else
384 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
385 usb_api_blocking_completion, NULL);
386
387 return usb_start_wait_urb(urb, timeout, actual_length);
388 }
389 EXPORT_SYMBOL_GPL(usb_bulk_msg);
390
391 /*-------------------------------------------------------------------*/
392
sg_clean(struct usb_sg_request * io)393 static void sg_clean(struct usb_sg_request *io)
394 {
395 if (io->urbs) {
396 while (io->entries--)
397 usb_free_urb(io->urbs[io->entries]);
398 kfree(io->urbs);
399 io->urbs = NULL;
400 }
401 io->dev = NULL;
402 }
403
sg_complete(struct urb * urb)404 static void sg_complete(struct urb *urb)
405 {
406 unsigned long flags;
407 struct usb_sg_request *io = urb->context;
408 int status = urb->status;
409
410 spin_lock_irqsave(&io->lock, flags);
411
412 /* In 2.5 we require hcds' endpoint queues not to progress after fault
413 * reports, until the completion callback (this!) returns. That lets
414 * device driver code (like this routine) unlink queued urbs first,
415 * if it needs to, since the HC won't work on them at all. So it's
416 * not possible for page N+1 to overwrite page N, and so on.
417 *
418 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
419 * complete before the HCD can get requests away from hardware,
420 * though never during cleanup after a hard fault.
421 */
422 if (io->status
423 && (io->status != -ECONNRESET
424 || status != -ECONNRESET)
425 && urb->actual_length) {
426 dev_err(io->dev->bus->controller,
427 "dev %s ep%d%s scatterlist error %d/%d\n",
428 io->dev->devpath,
429 usb_endpoint_num(&urb->ep->desc),
430 usb_urb_dir_in(urb) ? "in" : "out",
431 status, io->status);
432 /* BUG (); */
433 }
434
435 if (io->status == 0 && status && status != -ECONNRESET) {
436 int i, found, retval;
437
438 io->status = status;
439
440 /* the previous urbs, and this one, completed already.
441 * unlink pending urbs so they won't rx/tx bad data.
442 * careful: unlink can sometimes be synchronous...
443 */
444 spin_unlock_irqrestore(&io->lock, flags);
445 for (i = 0, found = 0; i < io->entries; i++) {
446 if (!io->urbs[i])
447 continue;
448 if (found) {
449 usb_block_urb(io->urbs[i]);
450 retval = usb_unlink_urb(io->urbs[i]);
451 if (retval != -EINPROGRESS &&
452 retval != -ENODEV &&
453 retval != -EBUSY &&
454 retval != -EIDRM)
455 dev_err(&io->dev->dev,
456 "%s, unlink --> %d\n",
457 __func__, retval);
458 } else if (urb == io->urbs[i])
459 found = 1;
460 }
461 spin_lock_irqsave(&io->lock, flags);
462 }
463
464 /* on the last completion, signal usb_sg_wait() */
465 io->bytes += urb->actual_length;
466 io->count--;
467 if (!io->count)
468 complete(&io->complete);
469
470 spin_unlock_irqrestore(&io->lock, flags);
471 }
472
473
474 /**
475 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
476 * @io: request block being initialized. until usb_sg_wait() returns,
477 * treat this as a pointer to an opaque block of memory,
478 * @dev: the usb device that will send or receive the data
479 * @pipe: endpoint "pipe" used to transfer the data
480 * @period: polling rate for interrupt endpoints, in frames or
481 * (for high speed endpoints) microframes; ignored for bulk
482 * @sg: scatterlist entries
483 * @nents: how many entries in the scatterlist
484 * @length: how many bytes to send from the scatterlist, or zero to
485 * send every byte identified in the list.
486 * @mem_flags: SLAB_* flags affecting memory allocations in this call
487 *
488 * This initializes a scatter/gather request, allocating resources such as
489 * I/O mappings and urb memory (except maybe memory used by USB controller
490 * drivers).
491 *
492 * The request must be issued using usb_sg_wait(), which waits for the I/O to
493 * complete (or to be canceled) and then cleans up all resources allocated by
494 * usb_sg_init().
495 *
496 * The request may be canceled with usb_sg_cancel(), either before or after
497 * usb_sg_wait() is called.
498 *
499 * Return: Zero for success, else a negative errno value.
500 */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)501 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
502 unsigned pipe, unsigned period, struct scatterlist *sg,
503 int nents, size_t length, gfp_t mem_flags)
504 {
505 int i;
506 int urb_flags;
507 int use_sg;
508
509 if (!io || !dev || !sg
510 || usb_pipecontrol(pipe)
511 || usb_pipeisoc(pipe)
512 || nents <= 0)
513 return -EINVAL;
514
515 spin_lock_init(&io->lock);
516 io->dev = dev;
517 io->pipe = pipe;
518
519 if (dev->bus->sg_tablesize > 0) {
520 use_sg = true;
521 io->entries = 1;
522 } else {
523 use_sg = false;
524 io->entries = nents;
525 }
526
527 /* initialize all the urbs we'll use */
528 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
529 if (!io->urbs)
530 goto nomem;
531
532 urb_flags = URB_NO_INTERRUPT;
533 if (usb_pipein(pipe))
534 urb_flags |= URB_SHORT_NOT_OK;
535
536 for_each_sg(sg, sg, io->entries, i) {
537 struct urb *urb;
538 unsigned len;
539
540 urb = usb_alloc_urb(0, mem_flags);
541 if (!urb) {
542 io->entries = i;
543 goto nomem;
544 }
545 io->urbs[i] = urb;
546
547 urb->dev = NULL;
548 urb->pipe = pipe;
549 urb->interval = period;
550 urb->transfer_flags = urb_flags;
551 urb->complete = sg_complete;
552 urb->context = io;
553 urb->sg = sg;
554
555 if (use_sg) {
556 /* There is no single transfer buffer */
557 urb->transfer_buffer = NULL;
558 urb->num_sgs = nents;
559
560 /* A length of zero means transfer the whole sg list */
561 len = length;
562 if (len == 0) {
563 struct scatterlist *sg2;
564 int j;
565
566 for_each_sg(sg, sg2, nents, j)
567 len += sg2->length;
568 }
569 } else {
570 /*
571 * Some systems can't use DMA; they use PIO instead.
572 * For their sakes, transfer_buffer is set whenever
573 * possible.
574 */
575 if (!PageHighMem(sg_page(sg)))
576 urb->transfer_buffer = sg_virt(sg);
577 else
578 urb->transfer_buffer = NULL;
579
580 len = sg->length;
581 if (length) {
582 len = min_t(size_t, len, length);
583 length -= len;
584 if (length == 0)
585 io->entries = i + 1;
586 }
587 }
588 urb->transfer_buffer_length = len;
589 }
590 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
591
592 /* transaction state */
593 io->count = io->entries;
594 io->status = 0;
595 io->bytes = 0;
596 init_completion(&io->complete);
597 return 0;
598
599 nomem:
600 sg_clean(io);
601 return -ENOMEM;
602 }
603 EXPORT_SYMBOL_GPL(usb_sg_init);
604
605 /**
606 * usb_sg_wait - synchronously execute scatter/gather request
607 * @io: request block handle, as initialized with usb_sg_init().
608 * some fields become accessible when this call returns.
609 *
610 * Context: task context, might sleep.
611 *
612 * This function blocks until the specified I/O operation completes. It
613 * leverages the grouping of the related I/O requests to get good transfer
614 * rates, by queueing the requests. At higher speeds, such queuing can
615 * significantly improve USB throughput.
616 *
617 * There are three kinds of completion for this function.
618 *
619 * (1) success, where io->status is zero. The number of io->bytes
620 * transferred is as requested.
621 * (2) error, where io->status is a negative errno value. The number
622 * of io->bytes transferred before the error is usually less
623 * than requested, and can be nonzero.
624 * (3) cancellation, a type of error with status -ECONNRESET that
625 * is initiated by usb_sg_cancel().
626 *
627 * When this function returns, all memory allocated through usb_sg_init() or
628 * this call will have been freed. The request block parameter may still be
629 * passed to usb_sg_cancel(), or it may be freed. It could also be
630 * reinitialized and then reused.
631 *
632 * Data Transfer Rates:
633 *
634 * Bulk transfers are valid for full or high speed endpoints.
635 * The best full speed data rate is 19 packets of 64 bytes each
636 * per frame, or 1216 bytes per millisecond.
637 * The best high speed data rate is 13 packets of 512 bytes each
638 * per microframe, or 52 KBytes per millisecond.
639 *
640 * The reason to use interrupt transfers through this API would most likely
641 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
642 * could be transferred. That capability is less useful for low or full
643 * speed interrupt endpoints, which allow at most one packet per millisecond,
644 * of at most 8 or 64 bytes (respectively).
645 *
646 * It is not necessary to call this function to reserve bandwidth for devices
647 * under an xHCI host controller, as the bandwidth is reserved when the
648 * configuration or interface alt setting is selected.
649 */
usb_sg_wait(struct usb_sg_request * io)650 void usb_sg_wait(struct usb_sg_request *io)
651 {
652 int i;
653 int entries = io->entries;
654
655 /* queue the urbs. */
656 spin_lock_irq(&io->lock);
657 i = 0;
658 while (i < entries && !io->status) {
659 int retval;
660
661 io->urbs[i]->dev = io->dev;
662 spin_unlock_irq(&io->lock);
663
664 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
665
666 switch (retval) {
667 /* maybe we retrying will recover */
668 case -ENXIO: /* hc didn't queue this one */
669 case -EAGAIN:
670 case -ENOMEM:
671 retval = 0;
672 yield();
673 break;
674
675 /* no error? continue immediately.
676 *
677 * NOTE: to work better with UHCI (4K I/O buffer may
678 * need 3K of TDs) it may be good to limit how many
679 * URBs are queued at once; N milliseconds?
680 */
681 case 0:
682 ++i;
683 cpu_relax();
684 break;
685
686 /* fail any uncompleted urbs */
687 default:
688 io->urbs[i]->status = retval;
689 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
690 __func__, retval);
691 usb_sg_cancel(io);
692 }
693 spin_lock_irq(&io->lock);
694 if (retval && (io->status == 0 || io->status == -ECONNRESET))
695 io->status = retval;
696 }
697 io->count -= entries - i;
698 if (io->count == 0)
699 complete(&io->complete);
700 spin_unlock_irq(&io->lock);
701
702 /* OK, yes, this could be packaged as non-blocking.
703 * So could the submit loop above ... but it's easier to
704 * solve neither problem than to solve both!
705 */
706 wait_for_completion(&io->complete);
707
708 sg_clean(io);
709 }
710 EXPORT_SYMBOL_GPL(usb_sg_wait);
711
712 /**
713 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
714 * @io: request block, initialized with usb_sg_init()
715 *
716 * This stops a request after it has been started by usb_sg_wait().
717 * It can also prevents one initialized by usb_sg_init() from starting,
718 * so that call just frees resources allocated to the request.
719 */
usb_sg_cancel(struct usb_sg_request * io)720 void usb_sg_cancel(struct usb_sg_request *io)
721 {
722 unsigned long flags;
723 int i, retval;
724
725 spin_lock_irqsave(&io->lock, flags);
726 if (io->status || io->count == 0) {
727 spin_unlock_irqrestore(&io->lock, flags);
728 return;
729 }
730 /* shut everything down */
731 io->status = -ECONNRESET;
732 io->count++; /* Keep the request alive until we're done */
733 spin_unlock_irqrestore(&io->lock, flags);
734
735 for (i = io->entries - 1; i >= 0; --i) {
736 usb_block_urb(io->urbs[i]);
737
738 retval = usb_unlink_urb(io->urbs[i]);
739 if (retval != -EINPROGRESS
740 && retval != -ENODEV
741 && retval != -EBUSY
742 && retval != -EIDRM)
743 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
744 __func__, retval);
745 }
746
747 spin_lock_irqsave(&io->lock, flags);
748 io->count--;
749 if (!io->count)
750 complete(&io->complete);
751 spin_unlock_irqrestore(&io->lock, flags);
752 }
753 EXPORT_SYMBOL_GPL(usb_sg_cancel);
754
755 /*-------------------------------------------------------------------*/
756
757 /**
758 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
759 * @dev: the device whose descriptor is being retrieved
760 * @type: the descriptor type (USB_DT_*)
761 * @index: the number of the descriptor
762 * @buf: where to put the descriptor
763 * @size: how big is "buf"?
764 *
765 * Context: task context, might sleep.
766 *
767 * Gets a USB descriptor. Convenience functions exist to simplify
768 * getting some types of descriptors. Use
769 * usb_get_string() or usb_string() for USB_DT_STRING.
770 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
771 * are part of the device structure.
772 * In addition to a number of USB-standard descriptors, some
773 * devices also use class-specific or vendor-specific descriptors.
774 *
775 * This call is synchronous, and may not be used in an interrupt context.
776 *
777 * Return: The number of bytes received on success, or else the status code
778 * returned by the underlying usb_control_msg() call.
779 */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)780 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
781 unsigned char index, void *buf, int size)
782 {
783 int i;
784 int result;
785
786 if (size <= 0) /* No point in asking for no data */
787 return -EINVAL;
788
789 memset(buf, 0, size); /* Make sure we parse really received data */
790
791 for (i = 0; i < 3; ++i) {
792 /* retry on length 0 or error; some devices are flakey */
793 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
794 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
795 (type << 8) + index, 0, buf, size,
796 USB_CTRL_GET_TIMEOUT);
797 if (result <= 0 && result != -ETIMEDOUT)
798 continue;
799 if (result > 1 && ((u8 *)buf)[1] != type) {
800 result = -ENODATA;
801 continue;
802 }
803 break;
804 }
805 return result;
806 }
807 EXPORT_SYMBOL_GPL(usb_get_descriptor);
808
809 /**
810 * usb_get_string - gets a string descriptor
811 * @dev: the device whose string descriptor is being retrieved
812 * @langid: code for language chosen (from string descriptor zero)
813 * @index: the number of the descriptor
814 * @buf: where to put the string
815 * @size: how big is "buf"?
816 *
817 * Context: task context, might sleep.
818 *
819 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
820 * in little-endian byte order).
821 * The usb_string() function will often be a convenient way to turn
822 * these strings into kernel-printable form.
823 *
824 * Strings may be referenced in device, configuration, interface, or other
825 * descriptors, and could also be used in vendor-specific ways.
826 *
827 * This call is synchronous, and may not be used in an interrupt context.
828 *
829 * Return: The number of bytes received on success, or else the status code
830 * returned by the underlying usb_control_msg() call.
831 */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)832 static int usb_get_string(struct usb_device *dev, unsigned short langid,
833 unsigned char index, void *buf, int size)
834 {
835 int i;
836 int result;
837
838 if (size <= 0) /* No point in asking for no data */
839 return -EINVAL;
840
841 for (i = 0; i < 3; ++i) {
842 /* retry on length 0 or stall; some devices are flakey */
843 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
844 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
845 (USB_DT_STRING << 8) + index, langid, buf, size,
846 USB_CTRL_GET_TIMEOUT);
847 if (result == 0 || result == -EPIPE)
848 continue;
849 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
850 result = -ENODATA;
851 continue;
852 }
853 break;
854 }
855 return result;
856 }
857
usb_try_string_workarounds(unsigned char * buf,int * length)858 static void usb_try_string_workarounds(unsigned char *buf, int *length)
859 {
860 int newlength, oldlength = *length;
861
862 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
863 if (!isprint(buf[newlength]) || buf[newlength + 1])
864 break;
865
866 if (newlength > 2) {
867 buf[0] = newlength;
868 *length = newlength;
869 }
870 }
871
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)872 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
873 unsigned int index, unsigned char *buf)
874 {
875 int rc;
876
877 /* Try to read the string descriptor by asking for the maximum
878 * possible number of bytes */
879 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
880 rc = -EIO;
881 else
882 rc = usb_get_string(dev, langid, index, buf, 255);
883
884 /* If that failed try to read the descriptor length, then
885 * ask for just that many bytes */
886 if (rc < 2) {
887 rc = usb_get_string(dev, langid, index, buf, 2);
888 if (rc == 2)
889 rc = usb_get_string(dev, langid, index, buf, buf[0]);
890 }
891
892 if (rc >= 2) {
893 if (!buf[0] && !buf[1])
894 usb_try_string_workarounds(buf, &rc);
895
896 /* There might be extra junk at the end of the descriptor */
897 if (buf[0] < rc)
898 rc = buf[0];
899
900 rc = rc - (rc & 1); /* force a multiple of two */
901 }
902
903 if (rc < 2)
904 rc = (rc < 0 ? rc : -EINVAL);
905
906 return rc;
907 }
908
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)909 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
910 {
911 int err;
912
913 if (dev->have_langid)
914 return 0;
915
916 if (dev->string_langid < 0)
917 return -EPIPE;
918
919 err = usb_string_sub(dev, 0, 0, tbuf);
920
921 /* If the string was reported but is malformed, default to english
922 * (0x0409) */
923 if (err == -ENODATA || (err > 0 && err < 4)) {
924 dev->string_langid = 0x0409;
925 dev->have_langid = 1;
926 dev_err(&dev->dev,
927 "language id specifier not provided by device, defaulting to English\n");
928 return 0;
929 }
930
931 /* In case of all other errors, we assume the device is not able to
932 * deal with strings at all. Set string_langid to -1 in order to
933 * prevent any string to be retrieved from the device */
934 if (err < 0) {
935 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
936 err);
937 dev->string_langid = -1;
938 return -EPIPE;
939 }
940
941 /* always use the first langid listed */
942 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
943 dev->have_langid = 1;
944 dev_dbg(&dev->dev, "default language 0x%04x\n",
945 dev->string_langid);
946 return 0;
947 }
948
949 /**
950 * usb_string - returns UTF-8 version of a string descriptor
951 * @dev: the device whose string descriptor is being retrieved
952 * @index: the number of the descriptor
953 * @buf: where to put the string
954 * @size: how big is "buf"?
955 *
956 * Context: task context, might sleep.
957 *
958 * This converts the UTF-16LE encoded strings returned by devices, from
959 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
960 * that are more usable in most kernel contexts. Note that this function
961 * chooses strings in the first language supported by the device.
962 *
963 * This call is synchronous, and may not be used in an interrupt context.
964 *
965 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
966 */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)967 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
968 {
969 unsigned char *tbuf;
970 int err;
971
972 if (dev->state == USB_STATE_SUSPENDED)
973 return -EHOSTUNREACH;
974 if (size <= 0 || !buf)
975 return -EINVAL;
976 buf[0] = 0;
977 if (index <= 0 || index >= 256)
978 return -EINVAL;
979 tbuf = kmalloc(256, GFP_NOIO);
980 if (!tbuf)
981 return -ENOMEM;
982
983 err = usb_get_langid(dev, tbuf);
984 if (err < 0)
985 goto errout;
986
987 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
988 if (err < 0)
989 goto errout;
990
991 size--; /* leave room for trailing NULL char in output buffer */
992 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
993 UTF16_LITTLE_ENDIAN, buf, size);
994 buf[err] = 0;
995
996 if (tbuf[1] != USB_DT_STRING)
997 dev_dbg(&dev->dev,
998 "wrong descriptor type %02x for string %d (\"%s\")\n",
999 tbuf[1], index, buf);
1000
1001 errout:
1002 kfree(tbuf);
1003 return err;
1004 }
1005 EXPORT_SYMBOL_GPL(usb_string);
1006
1007 /* one UTF-8-encoded 16-bit character has at most three bytes */
1008 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
1009
1010 /**
1011 * usb_cache_string - read a string descriptor and cache it for later use
1012 * @udev: the device whose string descriptor is being read
1013 * @index: the descriptor index
1014 *
1015 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1016 * or %NULL if the index is 0 or the string could not be read.
1017 */
usb_cache_string(struct usb_device * udev,int index)1018 char *usb_cache_string(struct usb_device *udev, int index)
1019 {
1020 char *buf;
1021 char *smallbuf = NULL;
1022 int len;
1023
1024 if (index <= 0)
1025 return NULL;
1026
1027 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1028 if (buf) {
1029 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1030 if (len > 0) {
1031 smallbuf = kmalloc(++len, GFP_NOIO);
1032 if (!smallbuf)
1033 return buf;
1034 memcpy(smallbuf, buf, len);
1035 }
1036 kfree(buf);
1037 }
1038 return smallbuf;
1039 }
1040
1041 /*
1042 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
1043 * @dev: the device whose device descriptor is being updated
1044 * @size: how much of the descriptor to read
1045 *
1046 * Context: task context, might sleep.
1047 *
1048 * Updates the copy of the device descriptor stored in the device structure,
1049 * which dedicates space for this purpose.
1050 *
1051 * Not exported, only for use by the core. If drivers really want to read
1052 * the device descriptor directly, they can call usb_get_descriptor() with
1053 * type = USB_DT_DEVICE and index = 0.
1054 *
1055 * This call is synchronous, and may not be used in an interrupt context.
1056 *
1057 * Return: The number of bytes received on success, or else the status code
1058 * returned by the underlying usb_control_msg() call.
1059 */
usb_get_device_descriptor(struct usb_device * dev,unsigned int size)1060 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
1061 {
1062 struct usb_device_descriptor *desc;
1063 int ret;
1064
1065 if (size > sizeof(*desc))
1066 return -EINVAL;
1067 desc = kmalloc(sizeof(*desc), GFP_NOIO);
1068 if (!desc)
1069 return -ENOMEM;
1070
1071 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
1072 if (ret >= 0)
1073 memcpy(&dev->descriptor, desc, size);
1074 kfree(desc);
1075 return ret;
1076 }
1077
1078 /*
1079 * usb_set_isoch_delay - informs the device of the packet transmit delay
1080 * @dev: the device whose delay is to be informed
1081 * Context: task context, might sleep
1082 *
1083 * Since this is an optional request, we don't bother if it fails.
1084 */
usb_set_isoch_delay(struct usb_device * dev)1085 int usb_set_isoch_delay(struct usb_device *dev)
1086 {
1087 /* skip hub devices */
1088 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1089 return 0;
1090
1091 /* skip non-SS/non-SSP devices */
1092 if (dev->speed < USB_SPEED_SUPER)
1093 return 0;
1094
1095 return usb_control_msg_send(dev, 0,
1096 USB_REQ_SET_ISOCH_DELAY,
1097 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1098 dev->hub_delay, 0, NULL, 0,
1099 USB_CTRL_SET_TIMEOUT,
1100 GFP_NOIO);
1101 }
1102
1103 /**
1104 * usb_get_status - issues a GET_STATUS call
1105 * @dev: the device whose status is being checked
1106 * @recip: USB_RECIP_*; for device, interface, or endpoint
1107 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1108 * @target: zero (for device), else interface or endpoint number
1109 * @data: pointer to two bytes of bitmap data
1110 *
1111 * Context: task context, might sleep.
1112 *
1113 * Returns device, interface, or endpoint status. Normally only of
1114 * interest to see if the device is self powered, or has enabled the
1115 * remote wakeup facility; or whether a bulk or interrupt endpoint
1116 * is halted ("stalled").
1117 *
1118 * Bits in these status bitmaps are set using the SET_FEATURE request,
1119 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
1120 * function should be used to clear halt ("stall") status.
1121 *
1122 * This call is synchronous, and may not be used in an interrupt context.
1123 *
1124 * Returns 0 and the status value in *@data (in host byte order) on success,
1125 * or else the status code from the underlying usb_control_msg() call.
1126 */
usb_get_status(struct usb_device * dev,int recip,int type,int target,void * data)1127 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1128 void *data)
1129 {
1130 int ret;
1131 void *status;
1132 int length;
1133
1134 switch (type) {
1135 case USB_STATUS_TYPE_STANDARD:
1136 length = 2;
1137 break;
1138 case USB_STATUS_TYPE_PTM:
1139 if (recip != USB_RECIP_DEVICE)
1140 return -EINVAL;
1141
1142 length = 4;
1143 break;
1144 default:
1145 return -EINVAL;
1146 }
1147
1148 status = kmalloc(length, GFP_KERNEL);
1149 if (!status)
1150 return -ENOMEM;
1151
1152 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1153 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1154 target, status, length, USB_CTRL_GET_TIMEOUT);
1155
1156 switch (ret) {
1157 case 4:
1158 if (type != USB_STATUS_TYPE_PTM) {
1159 ret = -EIO;
1160 break;
1161 }
1162
1163 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1164 ret = 0;
1165 break;
1166 case 2:
1167 if (type != USB_STATUS_TYPE_STANDARD) {
1168 ret = -EIO;
1169 break;
1170 }
1171
1172 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1173 ret = 0;
1174 break;
1175 default:
1176 ret = -EIO;
1177 }
1178
1179 kfree(status);
1180 return ret;
1181 }
1182 EXPORT_SYMBOL_GPL(usb_get_status);
1183
1184 /**
1185 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1186 * @dev: device whose endpoint is halted
1187 * @pipe: endpoint "pipe" being cleared
1188 *
1189 * Context: task context, might sleep.
1190 *
1191 * This is used to clear halt conditions for bulk and interrupt endpoints,
1192 * as reported by URB completion status. Endpoints that are halted are
1193 * sometimes referred to as being "stalled". Such endpoints are unable
1194 * to transmit or receive data until the halt status is cleared. Any URBs
1195 * queued for such an endpoint should normally be unlinked by the driver
1196 * before clearing the halt condition, as described in sections 5.7.5
1197 * and 5.8.5 of the USB 2.0 spec.
1198 *
1199 * Note that control and isochronous endpoints don't halt, although control
1200 * endpoints report "protocol stall" (for unsupported requests) using the
1201 * same status code used to report a true stall.
1202 *
1203 * This call is synchronous, and may not be used in an interrupt context.
1204 *
1205 * Return: Zero on success, or else the status code returned by the
1206 * underlying usb_control_msg() call.
1207 */
usb_clear_halt(struct usb_device * dev,int pipe)1208 int usb_clear_halt(struct usb_device *dev, int pipe)
1209 {
1210 int result;
1211 int endp = usb_pipeendpoint(pipe);
1212
1213 if (usb_pipein(pipe))
1214 endp |= USB_DIR_IN;
1215
1216 /* we don't care if it wasn't halted first. in fact some devices
1217 * (like some ibmcam model 1 units) seem to expect hosts to make
1218 * this request for iso endpoints, which can't halt!
1219 */
1220 result = usb_control_msg_send(dev, 0,
1221 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1222 USB_ENDPOINT_HALT, endp, NULL, 0,
1223 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1224
1225 /* don't un-halt or force to DATA0 except on success */
1226 if (result)
1227 return result;
1228
1229 /* NOTE: seems like Microsoft and Apple don't bother verifying
1230 * the clear "took", so some devices could lock up if you check...
1231 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1232 *
1233 * NOTE: make sure the logic here doesn't diverge much from
1234 * the copy in usb-storage, for as long as we need two copies.
1235 */
1236
1237 usb_reset_endpoint(dev, endp);
1238
1239 return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(usb_clear_halt);
1242
create_intf_ep_devs(struct usb_interface * intf)1243 static int create_intf_ep_devs(struct usb_interface *intf)
1244 {
1245 struct usb_device *udev = interface_to_usbdev(intf);
1246 struct usb_host_interface *alt = intf->cur_altsetting;
1247 int i;
1248
1249 if (intf->ep_devs_created || intf->unregistering)
1250 return 0;
1251
1252 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1254 intf->ep_devs_created = 1;
1255 return 0;
1256 }
1257
remove_intf_ep_devs(struct usb_interface * intf)1258 static void remove_intf_ep_devs(struct usb_interface *intf)
1259 {
1260 struct usb_host_interface *alt = intf->cur_altsetting;
1261 int i;
1262
1263 if (!intf->ep_devs_created)
1264 return;
1265
1266 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1267 usb_remove_ep_devs(&alt->endpoint[i]);
1268 intf->ep_devs_created = 0;
1269 }
1270
1271 /**
1272 * usb_disable_endpoint -- Disable an endpoint by address
1273 * @dev: the device whose endpoint is being disabled
1274 * @epaddr: the endpoint's address. Endpoint number for output,
1275 * endpoint number + USB_DIR_IN for input
1276 * @reset_hardware: flag to erase any endpoint state stored in the
1277 * controller hardware
1278 *
1279 * Disables the endpoint for URB submission and nukes all pending URBs.
1280 * If @reset_hardware is set then also deallocates hcd/hardware state
1281 * for the endpoint.
1282 */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1283 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1284 bool reset_hardware)
1285 {
1286 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1287 struct usb_host_endpoint *ep;
1288
1289 if (!dev)
1290 return;
1291
1292 if (usb_endpoint_out(epaddr)) {
1293 ep = dev->ep_out[epnum];
1294 if (reset_hardware && epnum != 0)
1295 dev->ep_out[epnum] = NULL;
1296 } else {
1297 ep = dev->ep_in[epnum];
1298 if (reset_hardware && epnum != 0)
1299 dev->ep_in[epnum] = NULL;
1300 }
1301 if (ep) {
1302 ep->enabled = 0;
1303 usb_hcd_flush_endpoint(dev, ep);
1304 if (reset_hardware)
1305 usb_hcd_disable_endpoint(dev, ep);
1306 }
1307 }
1308
1309 /**
1310 * usb_reset_endpoint - Reset an endpoint's state.
1311 * @dev: the device whose endpoint is to be reset
1312 * @epaddr: the endpoint's address. Endpoint number for output,
1313 * endpoint number + USB_DIR_IN for input
1314 *
1315 * Resets any host-side endpoint state such as the toggle bit,
1316 * sequence number or current window.
1317 */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1318 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1319 {
1320 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1321 struct usb_host_endpoint *ep;
1322
1323 if (usb_endpoint_out(epaddr))
1324 ep = dev->ep_out[epnum];
1325 else
1326 ep = dev->ep_in[epnum];
1327 if (ep)
1328 usb_hcd_reset_endpoint(dev, ep);
1329 }
1330 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1331
1332
1333 /**
1334 * usb_disable_interface -- Disable all endpoints for an interface
1335 * @dev: the device whose interface is being disabled
1336 * @intf: pointer to the interface descriptor
1337 * @reset_hardware: flag to erase any endpoint state stored in the
1338 * controller hardware
1339 *
1340 * Disables all the endpoints for the interface's current altsetting.
1341 */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1342 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1343 bool reset_hardware)
1344 {
1345 struct usb_host_interface *alt = intf->cur_altsetting;
1346 int i;
1347
1348 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1349 usb_disable_endpoint(dev,
1350 alt->endpoint[i].desc.bEndpointAddress,
1351 reset_hardware);
1352 }
1353 }
1354
1355 /*
1356 * usb_disable_device_endpoints -- Disable all endpoints for a device
1357 * @dev: the device whose endpoints are being disabled
1358 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1359 */
usb_disable_device_endpoints(struct usb_device * dev,int skip_ep0)1360 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1361 {
1362 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1363 int i;
1364
1365 if (hcd->driver->check_bandwidth) {
1366 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1367 for (i = skip_ep0; i < 16; ++i) {
1368 usb_disable_endpoint(dev, i, false);
1369 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1370 }
1371 /* Remove endpoints from the host controller internal state */
1372 mutex_lock(hcd->bandwidth_mutex);
1373 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1374 mutex_unlock(hcd->bandwidth_mutex);
1375 }
1376 /* Second pass: remove endpoint pointers */
1377 for (i = skip_ep0; i < 16; ++i) {
1378 usb_disable_endpoint(dev, i, true);
1379 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1380 }
1381 }
1382
1383 /**
1384 * usb_disable_device - Disable all the endpoints for a USB device
1385 * @dev: the device whose endpoints are being disabled
1386 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1387 *
1388 * Disables all the device's endpoints, potentially including endpoint 0.
1389 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1390 * pending urbs) and usbcore state for the interfaces, so that usbcore
1391 * must usb_set_configuration() before any interfaces could be used.
1392 */
usb_disable_device(struct usb_device * dev,int skip_ep0)1393 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1394 {
1395 int i;
1396
1397 /* getting rid of interfaces will disconnect
1398 * any drivers bound to them (a key side effect)
1399 */
1400 if (dev->actconfig) {
1401 /*
1402 * FIXME: In order to avoid self-deadlock involving the
1403 * bandwidth_mutex, we have to mark all the interfaces
1404 * before unregistering any of them.
1405 */
1406 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1407 dev->actconfig->interface[i]->unregistering = 1;
1408
1409 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1410 struct usb_interface *interface;
1411
1412 /* remove this interface if it has been registered */
1413 interface = dev->actconfig->interface[i];
1414 if (!device_is_registered(&interface->dev))
1415 continue;
1416 dev_dbg(&dev->dev, "unregistering interface %s\n",
1417 dev_name(&interface->dev));
1418 remove_intf_ep_devs(interface);
1419 device_del(&interface->dev);
1420 }
1421
1422 /* Now that the interfaces are unbound, nobody should
1423 * try to access them.
1424 */
1425 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1426 put_device(&dev->actconfig->interface[i]->dev);
1427 dev->actconfig->interface[i] = NULL;
1428 }
1429
1430 usb_disable_usb2_hardware_lpm(dev);
1431 usb_unlocked_disable_lpm(dev);
1432 usb_disable_ltm(dev);
1433
1434 dev->actconfig = NULL;
1435 if (dev->state == USB_STATE_CONFIGURED)
1436 usb_set_device_state(dev, USB_STATE_ADDRESS);
1437 }
1438
1439 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1440 skip_ep0 ? "non-ep0" : "all");
1441
1442 usb_disable_device_endpoints(dev, skip_ep0);
1443 }
1444
1445 /**
1446 * usb_enable_endpoint - Enable an endpoint for USB communications
1447 * @dev: the device whose interface is being enabled
1448 * @ep: the endpoint
1449 * @reset_ep: flag to reset the endpoint state
1450 *
1451 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1452 * For control endpoints, both the input and output sides are handled.
1453 */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1454 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1455 bool reset_ep)
1456 {
1457 int epnum = usb_endpoint_num(&ep->desc);
1458 int is_out = usb_endpoint_dir_out(&ep->desc);
1459 int is_control = usb_endpoint_xfer_control(&ep->desc);
1460
1461 if (reset_ep)
1462 usb_hcd_reset_endpoint(dev, ep);
1463 if (is_out || is_control)
1464 dev->ep_out[epnum] = ep;
1465 if (!is_out || is_control)
1466 dev->ep_in[epnum] = ep;
1467 ep->enabled = 1;
1468 }
1469
1470 /**
1471 * usb_enable_interface - Enable all the endpoints for an interface
1472 * @dev: the device whose interface is being enabled
1473 * @intf: pointer to the interface descriptor
1474 * @reset_eps: flag to reset the endpoints' state
1475 *
1476 * Enables all the endpoints for the interface's current altsetting.
1477 */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1478 void usb_enable_interface(struct usb_device *dev,
1479 struct usb_interface *intf, bool reset_eps)
1480 {
1481 struct usb_host_interface *alt = intf->cur_altsetting;
1482 int i;
1483
1484 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1485 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1486 }
1487
1488 /**
1489 * usb_set_interface - Makes a particular alternate setting be current
1490 * @dev: the device whose interface is being updated
1491 * @interface: the interface being updated
1492 * @alternate: the setting being chosen.
1493 *
1494 * Context: task context, might sleep.
1495 *
1496 * This is used to enable data transfers on interfaces that may not
1497 * be enabled by default. Not all devices support such configurability.
1498 * Only the driver bound to an interface may change its setting.
1499 *
1500 * Within any given configuration, each interface may have several
1501 * alternative settings. These are often used to control levels of
1502 * bandwidth consumption. For example, the default setting for a high
1503 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1504 * while interrupt transfers of up to 3KBytes per microframe are legal.
1505 * Also, isochronous endpoints may never be part of an
1506 * interface's default setting. To access such bandwidth, alternate
1507 * interface settings must be made current.
1508 *
1509 * Note that in the Linux USB subsystem, bandwidth associated with
1510 * an endpoint in a given alternate setting is not reserved until an URB
1511 * is submitted that needs that bandwidth. Some other operating systems
1512 * allocate bandwidth early, when a configuration is chosen.
1513 *
1514 * xHCI reserves bandwidth and configures the alternate setting in
1515 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1516 * may be disabled. Drivers cannot rely on any particular alternate
1517 * setting being in effect after a failure.
1518 *
1519 * This call is synchronous, and may not be used in an interrupt context.
1520 * Also, drivers must not change altsettings while urbs are scheduled for
1521 * endpoints in that interface; all such urbs must first be completed
1522 * (perhaps forced by unlinking).
1523 *
1524 * Return: Zero on success, or else the status code returned by the
1525 * underlying usb_control_msg() call.
1526 */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1527 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1528 {
1529 struct usb_interface *iface;
1530 struct usb_host_interface *alt;
1531 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1532 int i, ret, manual = 0;
1533 unsigned int epaddr;
1534 unsigned int pipe;
1535
1536 if (dev->state == USB_STATE_SUSPENDED)
1537 return -EHOSTUNREACH;
1538
1539 iface = usb_ifnum_to_if(dev, interface);
1540 if (!iface) {
1541 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1542 interface);
1543 return -EINVAL;
1544 }
1545 if (iface->unregistering)
1546 return -ENODEV;
1547
1548 alt = usb_altnum_to_altsetting(iface, alternate);
1549 if (!alt) {
1550 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1551 alternate);
1552 return -EINVAL;
1553 }
1554 /*
1555 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1556 * including freeing dropped endpoint ring buffers.
1557 * Make sure the interface endpoints are flushed before that
1558 */
1559 usb_disable_interface(dev, iface, false);
1560
1561 /* Make sure we have enough bandwidth for this alternate interface.
1562 * Remove the current alt setting and add the new alt setting.
1563 */
1564 mutex_lock(hcd->bandwidth_mutex);
1565 /* Disable LPM, and re-enable it once the new alt setting is installed,
1566 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1567 */
1568 if (usb_disable_lpm(dev)) {
1569 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1570 mutex_unlock(hcd->bandwidth_mutex);
1571 return -ENOMEM;
1572 }
1573 /* Changing alt-setting also frees any allocated streams */
1574 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1575 iface->cur_altsetting->endpoint[i].streams = 0;
1576
1577 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1578 if (ret < 0) {
1579 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1580 alternate);
1581 usb_enable_lpm(dev);
1582 mutex_unlock(hcd->bandwidth_mutex);
1583 return ret;
1584 }
1585
1586 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1587 ret = -EPIPE;
1588 else
1589 ret = usb_control_msg_send(dev, 0,
1590 USB_REQ_SET_INTERFACE,
1591 USB_RECIP_INTERFACE, alternate,
1592 interface, NULL, 0, 5000,
1593 GFP_NOIO);
1594
1595 /* 9.4.10 says devices don't need this and are free to STALL the
1596 * request if the interface only has one alternate setting.
1597 */
1598 if (ret == -EPIPE && iface->num_altsetting == 1) {
1599 dev_dbg(&dev->dev,
1600 "manual set_interface for iface %d, alt %d\n",
1601 interface, alternate);
1602 manual = 1;
1603 } else if (ret) {
1604 /* Re-instate the old alt setting */
1605 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1606 usb_enable_lpm(dev);
1607 mutex_unlock(hcd->bandwidth_mutex);
1608 return ret;
1609 }
1610 mutex_unlock(hcd->bandwidth_mutex);
1611
1612 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1613 * when they implement async or easily-killable versions of this or
1614 * other "should-be-internal" functions (like clear_halt).
1615 * should hcd+usbcore postprocess control requests?
1616 */
1617
1618 /* prevent submissions using previous endpoint settings */
1619 if (iface->cur_altsetting != alt) {
1620 remove_intf_ep_devs(iface);
1621 usb_remove_sysfs_intf_files(iface);
1622 }
1623 usb_disable_interface(dev, iface, true);
1624
1625 iface->cur_altsetting = alt;
1626
1627 /* Now that the interface is installed, re-enable LPM. */
1628 usb_unlocked_enable_lpm(dev);
1629
1630 /* If the interface only has one altsetting and the device didn't
1631 * accept the request, we attempt to carry out the equivalent action
1632 * by manually clearing the HALT feature for each endpoint in the
1633 * new altsetting.
1634 */
1635 if (manual) {
1636 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1637 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1638 pipe = __create_pipe(dev,
1639 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1640 (usb_endpoint_out(epaddr) ?
1641 USB_DIR_OUT : USB_DIR_IN);
1642
1643 usb_clear_halt(dev, pipe);
1644 }
1645 }
1646
1647 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1648 *
1649 * Note:
1650 * Despite EP0 is always present in all interfaces/AS, the list of
1651 * endpoints from the descriptor does not contain EP0. Due to its
1652 * omnipresence one might expect EP0 being considered "affected" by
1653 * any SetInterface request and hence assume toggles need to be reset.
1654 * However, EP0 toggles are re-synced for every individual transfer
1655 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1656 * (Likewise, EP0 never "halts" on well designed devices.)
1657 */
1658 usb_enable_interface(dev, iface, true);
1659 if (device_is_registered(&iface->dev)) {
1660 usb_create_sysfs_intf_files(iface);
1661 create_intf_ep_devs(iface);
1662 }
1663 return 0;
1664 }
1665 EXPORT_SYMBOL_GPL(usb_set_interface);
1666
1667 /**
1668 * usb_reset_configuration - lightweight device reset
1669 * @dev: the device whose configuration is being reset
1670 *
1671 * This issues a standard SET_CONFIGURATION request to the device using
1672 * the current configuration. The effect is to reset most USB-related
1673 * state in the device, including interface altsettings (reset to zero),
1674 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1675 * endpoints). Other usbcore state is unchanged, including bindings of
1676 * usb device drivers to interfaces.
1677 *
1678 * Because this affects multiple interfaces, avoid using this with composite
1679 * (multi-interface) devices. Instead, the driver for each interface may
1680 * use usb_set_interface() on the interfaces it claims. Be careful though;
1681 * some devices don't support the SET_INTERFACE request, and others won't
1682 * reset all the interface state (notably endpoint state). Resetting the whole
1683 * configuration would affect other drivers' interfaces.
1684 *
1685 * The caller must own the device lock.
1686 *
1687 * Return: Zero on success, else a negative error code.
1688 *
1689 * If this routine fails the device will probably be in an unusable state
1690 * with endpoints disabled, and interfaces only partially enabled.
1691 */
usb_reset_configuration(struct usb_device * dev)1692 int usb_reset_configuration(struct usb_device *dev)
1693 {
1694 int i, retval;
1695 struct usb_host_config *config;
1696 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1697
1698 if (dev->state == USB_STATE_SUSPENDED)
1699 return -EHOSTUNREACH;
1700
1701 /* caller must have locked the device and must own
1702 * the usb bus readlock (so driver bindings are stable);
1703 * calls during probe() are fine
1704 */
1705
1706 usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1707
1708 config = dev->actconfig;
1709 retval = 0;
1710 mutex_lock(hcd->bandwidth_mutex);
1711 /* Disable LPM, and re-enable it once the configuration is reset, so
1712 * that the xHCI driver can recalculate the U1/U2 timeouts.
1713 */
1714 if (usb_disable_lpm(dev)) {
1715 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1716 mutex_unlock(hcd->bandwidth_mutex);
1717 return -ENOMEM;
1718 }
1719
1720 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1721 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1722 if (retval < 0) {
1723 usb_enable_lpm(dev);
1724 mutex_unlock(hcd->bandwidth_mutex);
1725 return retval;
1726 }
1727 retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1728 config->desc.bConfigurationValue, 0,
1729 NULL, 0, USB_CTRL_SET_TIMEOUT,
1730 GFP_NOIO);
1731 if (retval) {
1732 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1733 usb_enable_lpm(dev);
1734 mutex_unlock(hcd->bandwidth_mutex);
1735 return retval;
1736 }
1737 mutex_unlock(hcd->bandwidth_mutex);
1738
1739 /* re-init hc/hcd interface/endpoint state */
1740 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1741 struct usb_interface *intf = config->interface[i];
1742 struct usb_host_interface *alt;
1743
1744 alt = usb_altnum_to_altsetting(intf, 0);
1745
1746 /* No altsetting 0? We'll assume the first altsetting.
1747 * We could use a GetInterface call, but if a device is
1748 * so non-compliant that it doesn't have altsetting 0
1749 * then I wouldn't trust its reply anyway.
1750 */
1751 if (!alt)
1752 alt = &intf->altsetting[0];
1753
1754 if (alt != intf->cur_altsetting) {
1755 remove_intf_ep_devs(intf);
1756 usb_remove_sysfs_intf_files(intf);
1757 }
1758 intf->cur_altsetting = alt;
1759 usb_enable_interface(dev, intf, true);
1760 if (device_is_registered(&intf->dev)) {
1761 usb_create_sysfs_intf_files(intf);
1762 create_intf_ep_devs(intf);
1763 }
1764 }
1765 /* Now that the interfaces are installed, re-enable LPM. */
1766 usb_unlocked_enable_lpm(dev);
1767 return 0;
1768 }
1769 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1770
usb_release_interface(struct device * dev)1771 static void usb_release_interface(struct device *dev)
1772 {
1773 struct usb_interface *intf = to_usb_interface(dev);
1774 struct usb_interface_cache *intfc =
1775 altsetting_to_usb_interface_cache(intf->altsetting);
1776
1777 kref_put(&intfc->ref, usb_release_interface_cache);
1778 usb_put_dev(interface_to_usbdev(intf));
1779 of_node_put(dev->of_node);
1780 kfree(intf);
1781 }
1782
1783 /*
1784 * usb_deauthorize_interface - deauthorize an USB interface
1785 *
1786 * @intf: USB interface structure
1787 */
usb_deauthorize_interface(struct usb_interface * intf)1788 void usb_deauthorize_interface(struct usb_interface *intf)
1789 {
1790 struct device *dev = &intf->dev;
1791
1792 device_lock(dev->parent);
1793
1794 if (intf->authorized) {
1795 device_lock(dev);
1796 intf->authorized = 0;
1797 device_unlock(dev);
1798
1799 usb_forced_unbind_intf(intf);
1800 }
1801
1802 device_unlock(dev->parent);
1803 }
1804
1805 /*
1806 * usb_authorize_interface - authorize an USB interface
1807 *
1808 * @intf: USB interface structure
1809 */
usb_authorize_interface(struct usb_interface * intf)1810 void usb_authorize_interface(struct usb_interface *intf)
1811 {
1812 struct device *dev = &intf->dev;
1813
1814 if (!intf->authorized) {
1815 device_lock(dev);
1816 intf->authorized = 1; /* authorize interface */
1817 device_unlock(dev);
1818 }
1819 }
1820
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1821 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1822 {
1823 struct usb_device *usb_dev;
1824 struct usb_interface *intf;
1825 struct usb_host_interface *alt;
1826
1827 intf = to_usb_interface(dev);
1828 usb_dev = interface_to_usbdev(intf);
1829 alt = intf->cur_altsetting;
1830
1831 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1832 alt->desc.bInterfaceClass,
1833 alt->desc.bInterfaceSubClass,
1834 alt->desc.bInterfaceProtocol))
1835 return -ENOMEM;
1836
1837 if (add_uevent_var(env,
1838 "MODALIAS=usb:"
1839 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1840 le16_to_cpu(usb_dev->descriptor.idVendor),
1841 le16_to_cpu(usb_dev->descriptor.idProduct),
1842 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1843 usb_dev->descriptor.bDeviceClass,
1844 usb_dev->descriptor.bDeviceSubClass,
1845 usb_dev->descriptor.bDeviceProtocol,
1846 alt->desc.bInterfaceClass,
1847 alt->desc.bInterfaceSubClass,
1848 alt->desc.bInterfaceProtocol,
1849 alt->desc.bInterfaceNumber))
1850 return -ENOMEM;
1851
1852 return 0;
1853 }
1854
1855 struct device_type usb_if_device_type = {
1856 .name = "usb_interface",
1857 .release = usb_release_interface,
1858 .uevent = usb_if_uevent,
1859 };
1860
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1861 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1862 struct usb_host_config *config,
1863 u8 inum)
1864 {
1865 struct usb_interface_assoc_descriptor *retval = NULL;
1866 struct usb_interface_assoc_descriptor *intf_assoc;
1867 int first_intf;
1868 int last_intf;
1869 int i;
1870
1871 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1872 intf_assoc = config->intf_assoc[i];
1873 if (intf_assoc->bInterfaceCount == 0)
1874 continue;
1875
1876 first_intf = intf_assoc->bFirstInterface;
1877 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1878 if (inum >= first_intf && inum <= last_intf) {
1879 if (!retval)
1880 retval = intf_assoc;
1881 else
1882 dev_err(&dev->dev, "Interface #%d referenced"
1883 " by multiple IADs\n", inum);
1884 }
1885 }
1886
1887 return retval;
1888 }
1889
1890
1891 /*
1892 * Internal function to queue a device reset
1893 * See usb_queue_reset_device() for more details
1894 */
__usb_queue_reset_device(struct work_struct * ws)1895 static void __usb_queue_reset_device(struct work_struct *ws)
1896 {
1897 int rc;
1898 struct usb_interface *iface =
1899 container_of(ws, struct usb_interface, reset_ws);
1900 struct usb_device *udev = interface_to_usbdev(iface);
1901
1902 rc = usb_lock_device_for_reset(udev, iface);
1903 if (rc >= 0) {
1904 usb_reset_device(udev);
1905 usb_unlock_device(udev);
1906 }
1907 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1908 }
1909
1910
1911 /*
1912 * usb_set_configuration - Makes a particular device setting be current
1913 * @dev: the device whose configuration is being updated
1914 * @configuration: the configuration being chosen.
1915 *
1916 * Context: task context, might sleep. Caller holds device lock.
1917 *
1918 * This is used to enable non-default device modes. Not all devices
1919 * use this kind of configurability; many devices only have one
1920 * configuration.
1921 *
1922 * @configuration is the value of the configuration to be installed.
1923 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1924 * must be non-zero; a value of zero indicates that the device in
1925 * unconfigured. However some devices erroneously use 0 as one of their
1926 * configuration values. To help manage such devices, this routine will
1927 * accept @configuration = -1 as indicating the device should be put in
1928 * an unconfigured state.
1929 *
1930 * USB device configurations may affect Linux interoperability,
1931 * power consumption and the functionality available. For example,
1932 * the default configuration is limited to using 100mA of bus power,
1933 * so that when certain device functionality requires more power,
1934 * and the device is bus powered, that functionality should be in some
1935 * non-default device configuration. Other device modes may also be
1936 * reflected as configuration options, such as whether two ISDN
1937 * channels are available independently; and choosing between open
1938 * standard device protocols (like CDC) or proprietary ones.
1939 *
1940 * Note that a non-authorized device (dev->authorized == 0) will only
1941 * be put in unconfigured mode.
1942 *
1943 * Note that USB has an additional level of device configurability,
1944 * associated with interfaces. That configurability is accessed using
1945 * usb_set_interface().
1946 *
1947 * This call is synchronous. The calling context must be able to sleep,
1948 * must own the device lock, and must not hold the driver model's USB
1949 * bus mutex; usb interface driver probe() methods cannot use this routine.
1950 *
1951 * Returns zero on success, or else the status code returned by the
1952 * underlying call that failed. On successful completion, each interface
1953 * in the original device configuration has been destroyed, and each one
1954 * in the new configuration has been probed by all relevant usb device
1955 * drivers currently known to the kernel.
1956 */
usb_set_configuration(struct usb_device * dev,int configuration)1957 int usb_set_configuration(struct usb_device *dev, int configuration)
1958 {
1959 int i, ret;
1960 struct usb_host_config *cp = NULL;
1961 struct usb_interface **new_interfaces = NULL;
1962 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1963 int n, nintf;
1964
1965 if (dev->authorized == 0 || configuration == -1)
1966 configuration = 0;
1967 else {
1968 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1969 if (dev->config[i].desc.bConfigurationValue ==
1970 configuration) {
1971 cp = &dev->config[i];
1972 break;
1973 }
1974 }
1975 }
1976 if ((!cp && configuration != 0))
1977 return -EINVAL;
1978
1979 /* The USB spec says configuration 0 means unconfigured.
1980 * But if a device includes a configuration numbered 0,
1981 * we will accept it as a correctly configured state.
1982 * Use -1 if you really want to unconfigure the device.
1983 */
1984 if (cp && configuration == 0)
1985 dev_warn(&dev->dev, "config 0 descriptor??\n");
1986
1987 /* Allocate memory for new interfaces before doing anything else,
1988 * so that if we run out then nothing will have changed. */
1989 n = nintf = 0;
1990 if (cp) {
1991 nintf = cp->desc.bNumInterfaces;
1992 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1993 GFP_NOIO);
1994 if (!new_interfaces)
1995 return -ENOMEM;
1996
1997 for (; n < nintf; ++n) {
1998 new_interfaces[n] = kzalloc(
1999 sizeof(struct usb_interface),
2000 GFP_NOIO);
2001 if (!new_interfaces[n]) {
2002 ret = -ENOMEM;
2003 free_interfaces:
2004 while (--n >= 0)
2005 kfree(new_interfaces[n]);
2006 kfree(new_interfaces);
2007 return ret;
2008 }
2009 }
2010
2011 i = dev->bus_mA - usb_get_max_power(dev, cp);
2012 if (i < 0)
2013 dev_warn(&dev->dev, "new config #%d exceeds power "
2014 "limit by %dmA\n",
2015 configuration, -i);
2016 }
2017
2018 /* Wake up the device so we can send it the Set-Config request */
2019 ret = usb_autoresume_device(dev);
2020 if (ret)
2021 goto free_interfaces;
2022
2023 /* if it's already configured, clear out old state first.
2024 * getting rid of old interfaces means unbinding their drivers.
2025 */
2026 if (dev->state != USB_STATE_ADDRESS)
2027 usb_disable_device(dev, 1); /* Skip ep0 */
2028
2029 /* Get rid of pending async Set-Config requests for this device */
2030 cancel_async_set_config(dev);
2031
2032 /* Make sure we have bandwidth (and available HCD resources) for this
2033 * configuration. Remove endpoints from the schedule if we're dropping
2034 * this configuration to set configuration 0. After this point, the
2035 * host controller will not allow submissions to dropped endpoints. If
2036 * this call fails, the device state is unchanged.
2037 */
2038 mutex_lock(hcd->bandwidth_mutex);
2039 /* Disable LPM, and re-enable it once the new configuration is
2040 * installed, so that the xHCI driver can recalculate the U1/U2
2041 * timeouts.
2042 */
2043 if (dev->actconfig && usb_disable_lpm(dev)) {
2044 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2045 mutex_unlock(hcd->bandwidth_mutex);
2046 ret = -ENOMEM;
2047 goto free_interfaces;
2048 }
2049 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2050 if (ret < 0) {
2051 if (dev->actconfig)
2052 usb_enable_lpm(dev);
2053 mutex_unlock(hcd->bandwidth_mutex);
2054 usb_autosuspend_device(dev);
2055 goto free_interfaces;
2056 }
2057
2058 /*
2059 * Initialize the new interface structures and the
2060 * hc/hcd/usbcore interface/endpoint state.
2061 */
2062 for (i = 0; i < nintf; ++i) {
2063 struct usb_interface_cache *intfc;
2064 struct usb_interface *intf;
2065 struct usb_host_interface *alt;
2066 u8 ifnum;
2067
2068 cp->interface[i] = intf = new_interfaces[i];
2069 intfc = cp->intf_cache[i];
2070 intf->altsetting = intfc->altsetting;
2071 intf->num_altsetting = intfc->num_altsetting;
2072 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2073 kref_get(&intfc->ref);
2074
2075 alt = usb_altnum_to_altsetting(intf, 0);
2076
2077 /* No altsetting 0? We'll assume the first altsetting.
2078 * We could use a GetInterface call, but if a device is
2079 * so non-compliant that it doesn't have altsetting 0
2080 * then I wouldn't trust its reply anyway.
2081 */
2082 if (!alt)
2083 alt = &intf->altsetting[0];
2084
2085 ifnum = alt->desc.bInterfaceNumber;
2086 intf->intf_assoc = find_iad(dev, cp, ifnum);
2087 intf->cur_altsetting = alt;
2088 usb_enable_interface(dev, intf, true);
2089 intf->dev.parent = &dev->dev;
2090 if (usb_of_has_combined_node(dev)) {
2091 device_set_of_node_from_dev(&intf->dev, &dev->dev);
2092 } else {
2093 intf->dev.of_node = usb_of_get_interface_node(dev,
2094 configuration, ifnum);
2095 }
2096 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2097 intf->dev.driver = NULL;
2098 intf->dev.bus = &usb_bus_type;
2099 intf->dev.type = &usb_if_device_type;
2100 intf->dev.groups = usb_interface_groups;
2101 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2102 intf->minor = -1;
2103 device_initialize(&intf->dev);
2104 pm_runtime_no_callbacks(&intf->dev);
2105 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2106 dev->devpath, configuration, ifnum);
2107 usb_get_dev(dev);
2108 }
2109 kfree(new_interfaces);
2110
2111 ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2112 configuration, 0, NULL, 0,
2113 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2114 if (ret && cp) {
2115 /*
2116 * All the old state is gone, so what else can we do?
2117 * The device is probably useless now anyway.
2118 */
2119 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2120 for (i = 0; i < nintf; ++i) {
2121 usb_disable_interface(dev, cp->interface[i], true);
2122 put_device(&cp->interface[i]->dev);
2123 cp->interface[i] = NULL;
2124 }
2125 cp = NULL;
2126 }
2127
2128 dev->actconfig = cp;
2129 mutex_unlock(hcd->bandwidth_mutex);
2130
2131 if (!cp) {
2132 usb_set_device_state(dev, USB_STATE_ADDRESS);
2133
2134 /* Leave LPM disabled while the device is unconfigured. */
2135 usb_autosuspend_device(dev);
2136 return ret;
2137 }
2138 usb_set_device_state(dev, USB_STATE_CONFIGURED);
2139
2140 if (cp->string == NULL &&
2141 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2142 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2143
2144 /* Now that the interfaces are installed, re-enable LPM. */
2145 usb_unlocked_enable_lpm(dev);
2146 /* Enable LTM if it was turned off by usb_disable_device. */
2147 usb_enable_ltm(dev);
2148
2149 /* Now that all the interfaces are set up, register them
2150 * to trigger binding of drivers to interfaces. probe()
2151 * routines may install different altsettings and may
2152 * claim() any interfaces not yet bound. Many class drivers
2153 * need that: CDC, audio, video, etc.
2154 */
2155 for (i = 0; i < nintf; ++i) {
2156 struct usb_interface *intf = cp->interface[i];
2157
2158 if (intf->dev.of_node &&
2159 !of_device_is_available(intf->dev.of_node)) {
2160 dev_info(&dev->dev, "skipping disabled interface %d\n",
2161 intf->cur_altsetting->desc.bInterfaceNumber);
2162 continue;
2163 }
2164
2165 dev_dbg(&dev->dev,
2166 "adding %s (config #%d, interface %d)\n",
2167 dev_name(&intf->dev), configuration,
2168 intf->cur_altsetting->desc.bInterfaceNumber);
2169 device_enable_async_suspend(&intf->dev);
2170 ret = device_add(&intf->dev);
2171 if (ret != 0) {
2172 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2173 dev_name(&intf->dev), ret);
2174 continue;
2175 }
2176 create_intf_ep_devs(intf);
2177 }
2178
2179 usb_autosuspend_device(dev);
2180 return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(usb_set_configuration);
2183
2184 static LIST_HEAD(set_config_list);
2185 static DEFINE_SPINLOCK(set_config_lock);
2186
2187 struct set_config_request {
2188 struct usb_device *udev;
2189 int config;
2190 struct work_struct work;
2191 struct list_head node;
2192 };
2193
2194 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)2195 static void driver_set_config_work(struct work_struct *work)
2196 {
2197 struct set_config_request *req =
2198 container_of(work, struct set_config_request, work);
2199 struct usb_device *udev = req->udev;
2200
2201 usb_lock_device(udev);
2202 spin_lock(&set_config_lock);
2203 list_del(&req->node);
2204 spin_unlock(&set_config_lock);
2205
2206 if (req->config >= -1) /* Is req still valid? */
2207 usb_set_configuration(udev, req->config);
2208 usb_unlock_device(udev);
2209 usb_put_dev(udev);
2210 kfree(req);
2211 }
2212
2213 /* Cancel pending Set-Config requests for a device whose configuration
2214 * was just changed
2215 */
cancel_async_set_config(struct usb_device * udev)2216 static void cancel_async_set_config(struct usb_device *udev)
2217 {
2218 struct set_config_request *req;
2219
2220 spin_lock(&set_config_lock);
2221 list_for_each_entry(req, &set_config_list, node) {
2222 if (req->udev == udev)
2223 req->config = -999; /* Mark as cancelled */
2224 }
2225 spin_unlock(&set_config_lock);
2226 }
2227
2228 /**
2229 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2230 * @udev: the device whose configuration is being updated
2231 * @config: the configuration being chosen.
2232 * Context: In process context, must be able to sleep
2233 *
2234 * Device interface drivers are not allowed to change device configurations.
2235 * This is because changing configurations will destroy the interface the
2236 * driver is bound to and create new ones; it would be like a floppy-disk
2237 * driver telling the computer to replace the floppy-disk drive with a
2238 * tape drive!
2239 *
2240 * Still, in certain specialized circumstances the need may arise. This
2241 * routine gets around the normal restrictions by using a work thread to
2242 * submit the change-config request.
2243 *
2244 * Return: 0 if the request was successfully queued, error code otherwise.
2245 * The caller has no way to know whether the queued request will eventually
2246 * succeed.
2247 */
usb_driver_set_configuration(struct usb_device * udev,int config)2248 int usb_driver_set_configuration(struct usb_device *udev, int config)
2249 {
2250 struct set_config_request *req;
2251
2252 req = kmalloc(sizeof(*req), GFP_KERNEL);
2253 if (!req)
2254 return -ENOMEM;
2255 req->udev = udev;
2256 req->config = config;
2257 INIT_WORK(&req->work, driver_set_config_work);
2258
2259 spin_lock(&set_config_lock);
2260 list_add(&req->node, &set_config_list);
2261 spin_unlock(&set_config_lock);
2262
2263 usb_get_dev(udev);
2264 schedule_work(&req->work);
2265 return 0;
2266 }
2267 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2268
2269 /**
2270 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2271 * @hdr: the place to put the results of the parsing
2272 * @intf: the interface for which parsing is requested
2273 * @buffer: pointer to the extra headers to be parsed
2274 * @buflen: length of the extra headers
2275 *
2276 * This evaluates the extra headers present in CDC devices which
2277 * bind the interfaces for data and control and provide details
2278 * about the capabilities of the device.
2279 *
2280 * Return: number of descriptors parsed or -EINVAL
2281 * if the header is contradictory beyond salvage
2282 */
2283
cdc_parse_cdc_header(struct usb_cdc_parsed_header * hdr,struct usb_interface * intf,u8 * buffer,int buflen)2284 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2285 struct usb_interface *intf,
2286 u8 *buffer,
2287 int buflen)
2288 {
2289 /* duplicates are ignored */
2290 struct usb_cdc_union_desc *union_header = NULL;
2291
2292 /* duplicates are not tolerated */
2293 struct usb_cdc_header_desc *header = NULL;
2294 struct usb_cdc_ether_desc *ether = NULL;
2295 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2296 struct usb_cdc_mdlm_desc *desc = NULL;
2297
2298 unsigned int elength;
2299 int cnt = 0;
2300
2301 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2302 hdr->phonet_magic_present = false;
2303 while (buflen > 0) {
2304 elength = buffer[0];
2305 if (!elength) {
2306 dev_err(&intf->dev, "skipping garbage byte\n");
2307 elength = 1;
2308 goto next_desc;
2309 }
2310 if ((buflen < elength) || (elength < 3)) {
2311 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2312 break;
2313 }
2314 if (buffer[1] != USB_DT_CS_INTERFACE) {
2315 dev_err(&intf->dev, "skipping garbage\n");
2316 goto next_desc;
2317 }
2318
2319 switch (buffer[2]) {
2320 case USB_CDC_UNION_TYPE: /* we've found it */
2321 if (elength < sizeof(struct usb_cdc_union_desc))
2322 goto next_desc;
2323 if (union_header) {
2324 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2325 goto next_desc;
2326 }
2327 union_header = (struct usb_cdc_union_desc *)buffer;
2328 break;
2329 case USB_CDC_COUNTRY_TYPE:
2330 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2331 goto next_desc;
2332 hdr->usb_cdc_country_functional_desc =
2333 (struct usb_cdc_country_functional_desc *)buffer;
2334 break;
2335 case USB_CDC_HEADER_TYPE:
2336 if (elength != sizeof(struct usb_cdc_header_desc))
2337 goto next_desc;
2338 if (header)
2339 return -EINVAL;
2340 header = (struct usb_cdc_header_desc *)buffer;
2341 break;
2342 case USB_CDC_ACM_TYPE:
2343 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2344 goto next_desc;
2345 hdr->usb_cdc_acm_descriptor =
2346 (struct usb_cdc_acm_descriptor *)buffer;
2347 break;
2348 case USB_CDC_ETHERNET_TYPE:
2349 if (elength != sizeof(struct usb_cdc_ether_desc))
2350 goto next_desc;
2351 if (ether)
2352 return -EINVAL;
2353 ether = (struct usb_cdc_ether_desc *)buffer;
2354 break;
2355 case USB_CDC_CALL_MANAGEMENT_TYPE:
2356 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2357 goto next_desc;
2358 hdr->usb_cdc_call_mgmt_descriptor =
2359 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2360 break;
2361 case USB_CDC_DMM_TYPE:
2362 if (elength < sizeof(struct usb_cdc_dmm_desc))
2363 goto next_desc;
2364 hdr->usb_cdc_dmm_desc =
2365 (struct usb_cdc_dmm_desc *)buffer;
2366 break;
2367 case USB_CDC_MDLM_TYPE:
2368 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2369 goto next_desc;
2370 if (desc)
2371 return -EINVAL;
2372 desc = (struct usb_cdc_mdlm_desc *)buffer;
2373 break;
2374 case USB_CDC_MDLM_DETAIL_TYPE:
2375 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2376 goto next_desc;
2377 if (detail)
2378 return -EINVAL;
2379 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2380 break;
2381 case USB_CDC_NCM_TYPE:
2382 if (elength < sizeof(struct usb_cdc_ncm_desc))
2383 goto next_desc;
2384 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2385 break;
2386 case USB_CDC_MBIM_TYPE:
2387 if (elength < sizeof(struct usb_cdc_mbim_desc))
2388 goto next_desc;
2389
2390 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2391 break;
2392 case USB_CDC_MBIM_EXTENDED_TYPE:
2393 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2394 break;
2395 hdr->usb_cdc_mbim_extended_desc =
2396 (struct usb_cdc_mbim_extended_desc *)buffer;
2397 break;
2398 case CDC_PHONET_MAGIC_NUMBER:
2399 hdr->phonet_magic_present = true;
2400 break;
2401 default:
2402 /*
2403 * there are LOTS more CDC descriptors that
2404 * could legitimately be found here.
2405 */
2406 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2407 buffer[2], elength);
2408 goto next_desc;
2409 }
2410 cnt++;
2411 next_desc:
2412 buflen -= elength;
2413 buffer += elength;
2414 }
2415 hdr->usb_cdc_union_desc = union_header;
2416 hdr->usb_cdc_header_desc = header;
2417 hdr->usb_cdc_mdlm_detail_desc = detail;
2418 hdr->usb_cdc_mdlm_desc = desc;
2419 hdr->usb_cdc_ether_desc = ether;
2420 return cnt;
2421 }
2422
2423 EXPORT_SYMBOL(cdc_parse_cdc_header);
2424