1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12
13 #include "sb_regs.h"
14 #include "tb.h"
15
16 #define USB4_DATA_RETRIES 3
17
18 enum usb4_sb_target {
19 USB4_SB_TARGET_ROUTER,
20 USB4_SB_TARGET_PARTNER,
21 USB4_SB_TARGET_RETIMER,
22 };
23
24 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
25 #define USB4_NVM_READ_OFFSET_SHIFT 2
26 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
27 #define USB4_NVM_READ_LENGTH_SHIFT 24
28
29 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
30 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
31
32 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
33 #define USB4_DROM_ADDRESS_SHIFT 2
34 #define USB4_DROM_SIZE_MASK GENMASK(19, 15)
35 #define USB4_DROM_SIZE_SHIFT 15
36
37 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
38
39 #define USB4_BA_LENGTH_MASK GENMASK(7, 0)
40 #define USB4_BA_INDEX_MASK GENMASK(15, 0)
41
42 enum usb4_ba_index {
43 USB4_BA_MAX_USB3 = 0x1,
44 USB4_BA_MIN_DP_AUX = 0x2,
45 USB4_BA_MIN_DP_MAIN = 0x3,
46 USB4_BA_MAX_PCIE = 0x4,
47 USB4_BA_MAX_HI = 0x5,
48 };
49
50 #define USB4_BA_VALUE_MASK GENMASK(31, 16)
51 #define USB4_BA_VALUE_SHIFT 16
52
usb4_native_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)53 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
54 u32 *metadata, u8 *status,
55 const void *tx_data, size_t tx_dwords,
56 void *rx_data, size_t rx_dwords)
57 {
58 u32 val;
59 int ret;
60
61 if (metadata) {
62 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
63 if (ret)
64 return ret;
65 }
66 if (tx_dwords) {
67 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
68 tx_dwords);
69 if (ret)
70 return ret;
71 }
72
73 val = opcode | ROUTER_CS_26_OV;
74 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
75 if (ret)
76 return ret;
77
78 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
79 if (ret)
80 return ret;
81
82 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
83 if (ret)
84 return ret;
85
86 if (val & ROUTER_CS_26_ONS)
87 return -EOPNOTSUPP;
88
89 if (status)
90 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
91 ROUTER_CS_26_STATUS_SHIFT;
92
93 if (metadata) {
94 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
95 if (ret)
96 return ret;
97 }
98 if (rx_dwords) {
99 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
100 rx_dwords);
101 if (ret)
102 return ret;
103 }
104
105 return 0;
106 }
107
__usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)108 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
109 u8 *status, const void *tx_data, size_t tx_dwords,
110 void *rx_data, size_t rx_dwords)
111 {
112 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
113
114 if (tx_dwords > NVM_DATA_DWORDS || rx_dwords > NVM_DATA_DWORDS)
115 return -EINVAL;
116
117 /*
118 * If the connection manager implementation provides USB4 router
119 * operation proxy callback, call it here instead of running the
120 * operation natively.
121 */
122 if (cm_ops->usb4_switch_op) {
123 int ret;
124
125 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
126 tx_data, tx_dwords, rx_data,
127 rx_dwords);
128 if (ret != -EOPNOTSUPP)
129 return ret;
130
131 /*
132 * If the proxy was not supported then run the native
133 * router operation instead.
134 */
135 }
136
137 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
138 tx_dwords, rx_data, rx_dwords);
139 }
140
usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status)141 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
142 u32 *metadata, u8 *status)
143 {
144 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
145 }
146
usb4_switch_op_data(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)147 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
148 u32 *metadata, u8 *status,
149 const void *tx_data, size_t tx_dwords,
150 void *rx_data, size_t rx_dwords)
151 {
152 return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
153 tx_dwords, rx_data, rx_dwords);
154 }
155
usb4_switch_check_wakes(struct tb_switch * sw)156 static void usb4_switch_check_wakes(struct tb_switch *sw)
157 {
158 struct tb_port *port;
159 bool wakeup = false;
160 u32 val;
161
162 if (!device_may_wakeup(&sw->dev))
163 return;
164
165 if (tb_route(sw)) {
166 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
167 return;
168
169 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
170 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
171 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
172
173 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
174 }
175
176 /* Check for any connected downstream ports for USB4 wake */
177 tb_switch_for_each_port(sw, port) {
178 if (!tb_port_has_remote(port))
179 continue;
180
181 if (tb_port_read(port, &val, TB_CFG_PORT,
182 port->cap_usb4 + PORT_CS_18, 1))
183 break;
184
185 tb_port_dbg(port, "USB4 wake: %s\n",
186 (val & PORT_CS_18_WOU4S) ? "yes" : "no");
187
188 if (val & PORT_CS_18_WOU4S)
189 wakeup = true;
190 }
191
192 if (wakeup)
193 pm_wakeup_event(&sw->dev, 0);
194 }
195
link_is_usb4(struct tb_port * port)196 static bool link_is_usb4(struct tb_port *port)
197 {
198 u32 val;
199
200 if (!port->cap_usb4)
201 return false;
202
203 if (tb_port_read(port, &val, TB_CFG_PORT,
204 port->cap_usb4 + PORT_CS_18, 1))
205 return false;
206
207 return !(val & PORT_CS_18_TCM);
208 }
209
210 /**
211 * usb4_switch_setup() - Additional setup for USB4 device
212 * @sw: USB4 router to setup
213 *
214 * USB4 routers need additional settings in order to enable all the
215 * tunneling. This function enables USB and PCIe tunneling if it can be
216 * enabled (e.g the parent switch also supports them). If USB tunneling
217 * is not available for some reason (like that there is Thunderbolt 3
218 * switch upstream) then the internal xHCI controller is enabled
219 * instead.
220 */
usb4_switch_setup(struct tb_switch * sw)221 int usb4_switch_setup(struct tb_switch *sw)
222 {
223 struct tb_port *downstream_port;
224 struct tb_switch *parent;
225 bool tbt3, xhci;
226 u32 val = 0;
227 int ret;
228
229 usb4_switch_check_wakes(sw);
230
231 if (!tb_route(sw))
232 return 0;
233
234 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
235 if (ret)
236 return ret;
237
238 parent = tb_switch_parent(sw);
239 downstream_port = tb_port_at(tb_route(sw), parent);
240 sw->link_usb4 = link_is_usb4(downstream_port);
241 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
242
243 xhci = val & ROUTER_CS_6_HCI;
244 tbt3 = !(val & ROUTER_CS_6_TNS);
245
246 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
247 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
248
249 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
250 if (ret)
251 return ret;
252
253 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
254 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
255 val |= ROUTER_CS_5_UTO;
256 xhci = false;
257 }
258
259 /*
260 * Only enable PCIe tunneling if the parent router supports it
261 * and it is not disabled.
262 */
263 if (tb_acpi_may_tunnel_pcie() &&
264 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
265 val |= ROUTER_CS_5_PTO;
266 /*
267 * xHCI can be enabled if PCIe tunneling is supported
268 * and the parent does not have any USB3 dowstream
269 * adapters (so we cannot do USB 3.x tunneling).
270 */
271 if (xhci)
272 val |= ROUTER_CS_5_HCO;
273 }
274
275 /* TBT3 supported by the CM */
276 val |= ROUTER_CS_5_C3S;
277 /* Tunneling configuration is ready now */
278 val |= ROUTER_CS_5_CV;
279
280 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
281 if (ret)
282 return ret;
283
284 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
285 ROUTER_CS_6_CR, 50);
286 }
287
288 /**
289 * usb4_switch_read_uid() - Read UID from USB4 router
290 * @sw: USB4 router
291 * @uid: UID is stored here
292 *
293 * Reads 64-bit UID from USB4 router config space.
294 */
usb4_switch_read_uid(struct tb_switch * sw,u64 * uid)295 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
296 {
297 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
298 }
299
usb4_switch_drom_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)300 static int usb4_switch_drom_read_block(void *data,
301 unsigned int dwaddress, void *buf,
302 size_t dwords)
303 {
304 struct tb_switch *sw = data;
305 u8 status = 0;
306 u32 metadata;
307 int ret;
308
309 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
310 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
311 USB4_DROM_ADDRESS_MASK;
312
313 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
314 &status, NULL, 0, buf, dwords);
315 if (ret)
316 return ret;
317
318 return status ? -EIO : 0;
319 }
320
321 /**
322 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
323 * @sw: USB4 router
324 * @address: Byte address inside DROM to start reading
325 * @buf: Buffer where the DROM content is stored
326 * @size: Number of bytes to read from DROM
327 *
328 * Uses USB4 router operations to read router DROM. For devices this
329 * should always work but for hosts it may return %-EOPNOTSUPP in which
330 * case the host router does not have DROM.
331 */
usb4_switch_drom_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)332 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
333 size_t size)
334 {
335 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
336 usb4_switch_drom_read_block, sw);
337 }
338
339 /**
340 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
341 * @sw: USB4 router
342 *
343 * Checks whether conditions are met so that lane bonding can be
344 * established with the upstream router. Call only for device routers.
345 */
usb4_switch_lane_bonding_possible(struct tb_switch * sw)346 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
347 {
348 struct tb_port *up;
349 int ret;
350 u32 val;
351
352 up = tb_upstream_port(sw);
353 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
354 if (ret)
355 return false;
356
357 return !!(val & PORT_CS_18_BE);
358 }
359
360 /**
361 * usb4_switch_set_wake() - Enabled/disable wake
362 * @sw: USB4 router
363 * @flags: Wakeup flags (%0 to disable)
364 *
365 * Enables/disables router to wake up from sleep.
366 */
usb4_switch_set_wake(struct tb_switch * sw,unsigned int flags)367 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
368 {
369 struct tb_port *port;
370 u64 route = tb_route(sw);
371 u32 val;
372 int ret;
373
374 /*
375 * Enable wakes coming from all USB4 downstream ports (from
376 * child routers). For device routers do this also for the
377 * upstream USB4 port.
378 */
379 tb_switch_for_each_port(sw, port) {
380 if (!tb_port_is_null(port))
381 continue;
382 if (!route && tb_is_upstream_port(port))
383 continue;
384 if (!port->cap_usb4)
385 continue;
386
387 ret = tb_port_read(port, &val, TB_CFG_PORT,
388 port->cap_usb4 + PORT_CS_19, 1);
389 if (ret)
390 return ret;
391
392 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
393
394 if (tb_is_upstream_port(port)) {
395 val |= PORT_CS_19_WOU4;
396 } else {
397 bool configured = val & PORT_CS_19_PC;
398
399 if ((flags & TB_WAKE_ON_CONNECT) && !configured)
400 val |= PORT_CS_19_WOC;
401 if ((flags & TB_WAKE_ON_DISCONNECT) && configured)
402 val |= PORT_CS_19_WOD;
403 if ((flags & TB_WAKE_ON_USB4) && configured)
404 val |= PORT_CS_19_WOU4;
405 }
406
407 ret = tb_port_write(port, &val, TB_CFG_PORT,
408 port->cap_usb4 + PORT_CS_19, 1);
409 if (ret)
410 return ret;
411 }
412
413 /*
414 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
415 * needed for device routers.
416 */
417 if (route) {
418 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
419 if (ret)
420 return ret;
421
422 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
423 if (flags & TB_WAKE_ON_USB3)
424 val |= ROUTER_CS_5_WOU;
425 if (flags & TB_WAKE_ON_PCIE)
426 val |= ROUTER_CS_5_WOP;
427 if (flags & TB_WAKE_ON_DP)
428 val |= ROUTER_CS_5_WOD;
429
430 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
431 if (ret)
432 return ret;
433 }
434
435 return 0;
436 }
437
438 /**
439 * usb4_switch_set_sleep() - Prepare the router to enter sleep
440 * @sw: USB4 router
441 *
442 * Sets sleep bit for the router. Returns when the router sleep ready
443 * bit has been asserted.
444 */
usb4_switch_set_sleep(struct tb_switch * sw)445 int usb4_switch_set_sleep(struct tb_switch *sw)
446 {
447 int ret;
448 u32 val;
449
450 /* Set sleep bit and wait for sleep ready to be asserted */
451 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
452 if (ret)
453 return ret;
454
455 val |= ROUTER_CS_5_SLP;
456
457 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
458 if (ret)
459 return ret;
460
461 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
462 ROUTER_CS_6_SLPR, 500);
463 }
464
465 /**
466 * usb4_switch_nvm_sector_size() - Return router NVM sector size
467 * @sw: USB4 router
468 *
469 * If the router supports NVM operations this function returns the NVM
470 * sector size in bytes. If NVM operations are not supported returns
471 * %-EOPNOTSUPP.
472 */
usb4_switch_nvm_sector_size(struct tb_switch * sw)473 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
474 {
475 u32 metadata;
476 u8 status;
477 int ret;
478
479 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
480 &status);
481 if (ret)
482 return ret;
483
484 if (status)
485 return status == 0x2 ? -EOPNOTSUPP : -EIO;
486
487 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
488 }
489
usb4_switch_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)490 static int usb4_switch_nvm_read_block(void *data,
491 unsigned int dwaddress, void *buf, size_t dwords)
492 {
493 struct tb_switch *sw = data;
494 u8 status = 0;
495 u32 metadata;
496 int ret;
497
498 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
499 USB4_NVM_READ_LENGTH_MASK;
500 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
501 USB4_NVM_READ_OFFSET_MASK;
502
503 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
504 &status, NULL, 0, buf, dwords);
505 if (ret)
506 return ret;
507
508 return status ? -EIO : 0;
509 }
510
511 /**
512 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
513 * @sw: USB4 router
514 * @address: Starting address in bytes
515 * @buf: Read data is placed here
516 * @size: How many bytes to read
517 *
518 * Reads NVM contents of the router. If NVM is not supported returns
519 * %-EOPNOTSUPP.
520 */
usb4_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)521 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
522 size_t size)
523 {
524 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
525 usb4_switch_nvm_read_block, sw);
526 }
527
528 /**
529 * usb4_switch_nvm_set_offset() - Set NVM write offset
530 * @sw: USB4 router
531 * @address: Start offset
532 *
533 * Explicitly sets NVM write offset. Normally when writing to NVM this
534 * is done automatically by usb4_switch_nvm_write().
535 *
536 * Returns %0 in success and negative errno if there was a failure.
537 */
usb4_switch_nvm_set_offset(struct tb_switch * sw,unsigned int address)538 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
539 {
540 u32 metadata, dwaddress;
541 u8 status = 0;
542 int ret;
543
544 dwaddress = address / 4;
545 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
546 USB4_NVM_SET_OFFSET_MASK;
547
548 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
549 &status);
550 if (ret)
551 return ret;
552
553 return status ? -EIO : 0;
554 }
555
usb4_switch_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)556 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
557 const void *buf, size_t dwords)
558 {
559 struct tb_switch *sw = data;
560 u8 status;
561 int ret;
562
563 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
564 buf, dwords, NULL, 0);
565 if (ret)
566 return ret;
567
568 return status ? -EIO : 0;
569 }
570
571 /**
572 * usb4_switch_nvm_write() - Write to the router NVM
573 * @sw: USB4 router
574 * @address: Start address where to write in bytes
575 * @buf: Pointer to the data to write
576 * @size: Size of @buf in bytes
577 *
578 * Writes @buf to the router NVM using USB4 router operations. If NVM
579 * write is not supported returns %-EOPNOTSUPP.
580 */
usb4_switch_nvm_write(struct tb_switch * sw,unsigned int address,const void * buf,size_t size)581 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
582 const void *buf, size_t size)
583 {
584 int ret;
585
586 ret = usb4_switch_nvm_set_offset(sw, address);
587 if (ret)
588 return ret;
589
590 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
591 usb4_switch_nvm_write_next_block, sw);
592 }
593
594 /**
595 * usb4_switch_nvm_authenticate() - Authenticate new NVM
596 * @sw: USB4 router
597 *
598 * After the new NVM has been written via usb4_switch_nvm_write(), this
599 * function triggers NVM authentication process. The router gets power
600 * cycled and if the authentication is successful the new NVM starts
601 * running. In case of failure returns negative errno.
602 *
603 * The caller should call usb4_switch_nvm_authenticate_status() to read
604 * the status of the authentication after power cycle. It should be the
605 * first router operation to avoid the status being lost.
606 */
usb4_switch_nvm_authenticate(struct tb_switch * sw)607 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
608 {
609 int ret;
610
611 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
612 switch (ret) {
613 /*
614 * The router is power cycled once NVM_AUTH is started so it is
615 * expected to get any of the following errors back.
616 */
617 case -EACCES:
618 case -ENOTCONN:
619 case -ETIMEDOUT:
620 return 0;
621
622 default:
623 return ret;
624 }
625 }
626
627 /**
628 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
629 * @sw: USB4 router
630 * @status: Status code of the operation
631 *
632 * The function checks if there is status available from the last NVM
633 * authenticate router operation. If there is status then %0 is returned
634 * and the status code is placed in @status. Returns negative errno in case
635 * of failure.
636 *
637 * Must be called before any other router operation.
638 */
usb4_switch_nvm_authenticate_status(struct tb_switch * sw,u32 * status)639 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
640 {
641 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
642 u16 opcode;
643 u32 val;
644 int ret;
645
646 if (cm_ops->usb4_switch_nvm_authenticate_status) {
647 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
648 if (ret != -EOPNOTSUPP)
649 return ret;
650 }
651
652 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
653 if (ret)
654 return ret;
655
656 /* Check that the opcode is correct */
657 opcode = val & ROUTER_CS_26_OPCODE_MASK;
658 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
659 if (val & ROUTER_CS_26_OV)
660 return -EBUSY;
661 if (val & ROUTER_CS_26_ONS)
662 return -EOPNOTSUPP;
663
664 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
665 ROUTER_CS_26_STATUS_SHIFT;
666 } else {
667 *status = 0;
668 }
669
670 return 0;
671 }
672
673 /**
674 * usb4_switch_credits_init() - Read buffer allocation parameters
675 * @sw: USB4 router
676 *
677 * Reads @sw buffer allocation parameters and initializes @sw buffer
678 * allocation fields accordingly. Specifically @sw->credits_allocation
679 * is set to %true if these parameters can be used in tunneling.
680 *
681 * Returns %0 on success and negative errno otherwise.
682 */
usb4_switch_credits_init(struct tb_switch * sw)683 int usb4_switch_credits_init(struct tb_switch *sw)
684 {
685 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
686 int ret, length, i, nports;
687 const struct tb_port *port;
688 u32 data[NVM_DATA_DWORDS];
689 u32 metadata = 0;
690 u8 status = 0;
691
692 memset(data, 0, sizeof(data));
693 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
694 &status, NULL, 0, data, ARRAY_SIZE(data));
695 if (ret)
696 return ret;
697 if (status)
698 return -EIO;
699
700 length = metadata & USB4_BA_LENGTH_MASK;
701 if (WARN_ON(length > ARRAY_SIZE(data)))
702 return -EMSGSIZE;
703
704 max_usb3 = -1;
705 min_dp_aux = -1;
706 min_dp_main = -1;
707 max_pcie = -1;
708 max_dma = -1;
709
710 tb_sw_dbg(sw, "credit allocation parameters:\n");
711
712 for (i = 0; i < length; i++) {
713 u16 index, value;
714
715 index = data[i] & USB4_BA_INDEX_MASK;
716 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
717
718 switch (index) {
719 case USB4_BA_MAX_USB3:
720 tb_sw_dbg(sw, " USB3: %u\n", value);
721 max_usb3 = value;
722 break;
723 case USB4_BA_MIN_DP_AUX:
724 tb_sw_dbg(sw, " DP AUX: %u\n", value);
725 min_dp_aux = value;
726 break;
727 case USB4_BA_MIN_DP_MAIN:
728 tb_sw_dbg(sw, " DP main: %u\n", value);
729 min_dp_main = value;
730 break;
731 case USB4_BA_MAX_PCIE:
732 tb_sw_dbg(sw, " PCIe: %u\n", value);
733 max_pcie = value;
734 break;
735 case USB4_BA_MAX_HI:
736 tb_sw_dbg(sw, " DMA: %u\n", value);
737 max_dma = value;
738 break;
739 default:
740 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
741 index);
742 break;
743 }
744 }
745
746 /*
747 * Validate the buffer allocation preferences. If we find
748 * issues, log a warning and fall back using the hard-coded
749 * values.
750 */
751
752 /* Host router must report baMaxHI */
753 if (!tb_route(sw) && max_dma < 0) {
754 tb_sw_warn(sw, "host router is missing baMaxHI\n");
755 goto err_invalid;
756 }
757
758 nports = 0;
759 tb_switch_for_each_port(sw, port) {
760 if (tb_port_is_null(port))
761 nports++;
762 }
763
764 /* Must have DP buffer allocation (multiple USB4 ports) */
765 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
766 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
767 goto err_invalid;
768 }
769
770 tb_switch_for_each_port(sw, port) {
771 if (tb_port_is_dpout(port) && min_dp_main < 0) {
772 tb_sw_warn(sw, "missing baMinDPmain");
773 goto err_invalid;
774 }
775 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
776 min_dp_aux < 0) {
777 tb_sw_warn(sw, "missing baMinDPaux");
778 goto err_invalid;
779 }
780 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
781 max_usb3 < 0) {
782 tb_sw_warn(sw, "missing baMaxUSB3");
783 goto err_invalid;
784 }
785 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
786 max_pcie < 0) {
787 tb_sw_warn(sw, "missing baMaxPCIe");
788 goto err_invalid;
789 }
790 }
791
792 /*
793 * Buffer allocation passed the validation so we can use it in
794 * path creation.
795 */
796 sw->credit_allocation = true;
797 if (max_usb3 > 0)
798 sw->max_usb3_credits = max_usb3;
799 if (min_dp_aux > 0)
800 sw->min_dp_aux_credits = min_dp_aux;
801 if (min_dp_main > 0)
802 sw->min_dp_main_credits = min_dp_main;
803 if (max_pcie > 0)
804 sw->max_pcie_credits = max_pcie;
805 if (max_dma > 0)
806 sw->max_dma_credits = max_dma;
807
808 return 0;
809
810 err_invalid:
811 return -EINVAL;
812 }
813
814 /**
815 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
816 * @sw: USB4 router
817 * @in: DP IN adapter
818 *
819 * For DP tunneling this function can be used to query availability of
820 * DP IN resource. Returns true if the resource is available for DP
821 * tunneling, false otherwise.
822 */
usb4_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)823 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
824 {
825 u32 metadata = in->port;
826 u8 status;
827 int ret;
828
829 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
830 &status);
831 /*
832 * If DP resource allocation is not supported assume it is
833 * always available.
834 */
835 if (ret == -EOPNOTSUPP)
836 return true;
837 else if (ret)
838 return false;
839
840 return !status;
841 }
842
843 /**
844 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
845 * @sw: USB4 router
846 * @in: DP IN adapter
847 *
848 * Allocates DP IN resource for DP tunneling using USB4 router
849 * operations. If the resource was allocated returns %0. Otherwise
850 * returns negative errno, in particular %-EBUSY if the resource is
851 * already allocated.
852 */
usb4_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)853 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
854 {
855 u32 metadata = in->port;
856 u8 status;
857 int ret;
858
859 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
860 &status);
861 if (ret == -EOPNOTSUPP)
862 return 0;
863 else if (ret)
864 return ret;
865
866 return status ? -EBUSY : 0;
867 }
868
869 /**
870 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
871 * @sw: USB4 router
872 * @in: DP IN adapter
873 *
874 * Releases the previously allocated DP IN resource.
875 */
usb4_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)876 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
877 {
878 u32 metadata = in->port;
879 u8 status;
880 int ret;
881
882 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
883 &status);
884 if (ret == -EOPNOTSUPP)
885 return 0;
886 else if (ret)
887 return ret;
888
889 return status ? -EIO : 0;
890 }
891
usb4_port_idx(const struct tb_switch * sw,const struct tb_port * port)892 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
893 {
894 struct tb_port *p;
895 int usb4_idx = 0;
896
897 /* Assume port is primary */
898 tb_switch_for_each_port(sw, p) {
899 if (!tb_port_is_null(p))
900 continue;
901 if (tb_is_upstream_port(p))
902 continue;
903 if (!p->link_nr) {
904 if (p == port)
905 break;
906 usb4_idx++;
907 }
908 }
909
910 return usb4_idx;
911 }
912
913 /**
914 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
915 * @sw: USB4 router
916 * @port: USB4 port
917 *
918 * USB4 routers have direct mapping between USB4 ports and PCIe
919 * downstream adapters where the PCIe topology is extended. This
920 * function returns the corresponding downstream PCIe adapter or %NULL
921 * if no such mapping was possible.
922 */
usb4_switch_map_pcie_down(struct tb_switch * sw,const struct tb_port * port)923 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
924 const struct tb_port *port)
925 {
926 int usb4_idx = usb4_port_idx(sw, port);
927 struct tb_port *p;
928 int pcie_idx = 0;
929
930 /* Find PCIe down port matching usb4_port */
931 tb_switch_for_each_port(sw, p) {
932 if (!tb_port_is_pcie_down(p))
933 continue;
934
935 if (pcie_idx == usb4_idx)
936 return p;
937
938 pcie_idx++;
939 }
940
941 return NULL;
942 }
943
944 /**
945 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
946 * @sw: USB4 router
947 * @port: USB4 port
948 *
949 * USB4 routers have direct mapping between USB4 ports and USB 3.x
950 * downstream adapters where the USB 3.x topology is extended. This
951 * function returns the corresponding downstream USB 3.x adapter or
952 * %NULL if no such mapping was possible.
953 */
usb4_switch_map_usb3_down(struct tb_switch * sw,const struct tb_port * port)954 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
955 const struct tb_port *port)
956 {
957 int usb4_idx = usb4_port_idx(sw, port);
958 struct tb_port *p;
959 int usb_idx = 0;
960
961 /* Find USB3 down port matching usb4_port */
962 tb_switch_for_each_port(sw, p) {
963 if (!tb_port_is_usb3_down(p))
964 continue;
965
966 if (usb_idx == usb4_idx)
967 return p;
968
969 usb_idx++;
970 }
971
972 return NULL;
973 }
974
975 /**
976 * usb4_switch_add_ports() - Add USB4 ports for this router
977 * @sw: USB4 router
978 *
979 * For USB4 router finds all USB4 ports and registers devices for each.
980 * Can be called to any router.
981 *
982 * Return %0 in case of success and negative errno in case of failure.
983 */
usb4_switch_add_ports(struct tb_switch * sw)984 int usb4_switch_add_ports(struct tb_switch *sw)
985 {
986 struct tb_port *port;
987
988 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
989 return 0;
990
991 tb_switch_for_each_port(sw, port) {
992 struct usb4_port *usb4;
993
994 if (!tb_port_is_null(port))
995 continue;
996 if (!port->cap_usb4)
997 continue;
998
999 usb4 = usb4_port_device_add(port);
1000 if (IS_ERR(usb4)) {
1001 usb4_switch_remove_ports(sw);
1002 return PTR_ERR(usb4);
1003 }
1004
1005 port->usb4 = usb4;
1006 }
1007
1008 return 0;
1009 }
1010
1011 /**
1012 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1013 * @sw: USB4 router
1014 *
1015 * Unregisters previously registered USB4 ports.
1016 */
usb4_switch_remove_ports(struct tb_switch * sw)1017 void usb4_switch_remove_ports(struct tb_switch *sw)
1018 {
1019 struct tb_port *port;
1020
1021 tb_switch_for_each_port(sw, port) {
1022 if (port->usb4) {
1023 usb4_port_device_remove(port->usb4);
1024 port->usb4 = NULL;
1025 }
1026 }
1027 }
1028
1029 /**
1030 * usb4_port_unlock() - Unlock USB4 downstream port
1031 * @port: USB4 port to unlock
1032 *
1033 * Unlocks USB4 downstream port so that the connection manager can
1034 * access the router below this port.
1035 */
usb4_port_unlock(struct tb_port * port)1036 int usb4_port_unlock(struct tb_port *port)
1037 {
1038 int ret;
1039 u32 val;
1040
1041 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1042 if (ret)
1043 return ret;
1044
1045 val &= ~ADP_CS_4_LCK;
1046 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1047 }
1048
usb4_port_set_configured(struct tb_port * port,bool configured)1049 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1050 {
1051 int ret;
1052 u32 val;
1053
1054 if (!port->cap_usb4)
1055 return -EINVAL;
1056
1057 ret = tb_port_read(port, &val, TB_CFG_PORT,
1058 port->cap_usb4 + PORT_CS_19, 1);
1059 if (ret)
1060 return ret;
1061
1062 if (configured)
1063 val |= PORT_CS_19_PC;
1064 else
1065 val &= ~PORT_CS_19_PC;
1066
1067 return tb_port_write(port, &val, TB_CFG_PORT,
1068 port->cap_usb4 + PORT_CS_19, 1);
1069 }
1070
1071 /**
1072 * usb4_port_configure() - Set USB4 port configured
1073 * @port: USB4 router
1074 *
1075 * Sets the USB4 link to be configured for power management purposes.
1076 */
usb4_port_configure(struct tb_port * port)1077 int usb4_port_configure(struct tb_port *port)
1078 {
1079 return usb4_port_set_configured(port, true);
1080 }
1081
1082 /**
1083 * usb4_port_unconfigure() - Set USB4 port unconfigured
1084 * @port: USB4 router
1085 *
1086 * Sets the USB4 link to be unconfigured for power management purposes.
1087 */
usb4_port_unconfigure(struct tb_port * port)1088 void usb4_port_unconfigure(struct tb_port *port)
1089 {
1090 usb4_port_set_configured(port, false);
1091 }
1092
usb4_set_xdomain_configured(struct tb_port * port,bool configured)1093 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1094 {
1095 int ret;
1096 u32 val;
1097
1098 if (!port->cap_usb4)
1099 return -EINVAL;
1100
1101 ret = tb_port_read(port, &val, TB_CFG_PORT,
1102 port->cap_usb4 + PORT_CS_19, 1);
1103 if (ret)
1104 return ret;
1105
1106 if (configured)
1107 val |= PORT_CS_19_PID;
1108 else
1109 val &= ~PORT_CS_19_PID;
1110
1111 return tb_port_write(port, &val, TB_CFG_PORT,
1112 port->cap_usb4 + PORT_CS_19, 1);
1113 }
1114
1115 /**
1116 * usb4_port_configure_xdomain() - Configure port for XDomain
1117 * @port: USB4 port connected to another host
1118 *
1119 * Marks the USB4 port as being connected to another host. Returns %0 in
1120 * success and negative errno in failure.
1121 */
usb4_port_configure_xdomain(struct tb_port * port)1122 int usb4_port_configure_xdomain(struct tb_port *port)
1123 {
1124 return usb4_set_xdomain_configured(port, true);
1125 }
1126
1127 /**
1128 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1129 * @port: USB4 port that was connected to another host
1130 *
1131 * Clears USB4 port from being marked as XDomain.
1132 */
usb4_port_unconfigure_xdomain(struct tb_port * port)1133 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1134 {
1135 usb4_set_xdomain_configured(port, false);
1136 }
1137
usb4_port_wait_for_bit(struct tb_port * port,u32 offset,u32 bit,u32 value,int timeout_msec)1138 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1139 u32 value, int timeout_msec)
1140 {
1141 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1142
1143 do {
1144 u32 val;
1145 int ret;
1146
1147 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1148 if (ret)
1149 return ret;
1150
1151 if ((val & bit) == value)
1152 return 0;
1153
1154 usleep_range(50, 100);
1155 } while (ktime_before(ktime_get(), timeout));
1156
1157 return -ETIMEDOUT;
1158 }
1159
usb4_port_read_data(struct tb_port * port,void * data,size_t dwords)1160 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1161 {
1162 if (dwords > NVM_DATA_DWORDS)
1163 return -EINVAL;
1164
1165 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1166 dwords);
1167 }
1168
usb4_port_write_data(struct tb_port * port,const void * data,size_t dwords)1169 static int usb4_port_write_data(struct tb_port *port, const void *data,
1170 size_t dwords)
1171 {
1172 if (dwords > NVM_DATA_DWORDS)
1173 return -EINVAL;
1174
1175 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1176 dwords);
1177 }
1178
usb4_port_sb_read(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,void * buf,u8 size)1179 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1180 u8 index, u8 reg, void *buf, u8 size)
1181 {
1182 size_t dwords = DIV_ROUND_UP(size, 4);
1183 int ret;
1184 u32 val;
1185
1186 if (!port->cap_usb4)
1187 return -EINVAL;
1188
1189 val = reg;
1190 val |= size << PORT_CS_1_LENGTH_SHIFT;
1191 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1192 if (target == USB4_SB_TARGET_RETIMER)
1193 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1194 val |= PORT_CS_1_PND;
1195
1196 ret = tb_port_write(port, &val, TB_CFG_PORT,
1197 port->cap_usb4 + PORT_CS_1, 1);
1198 if (ret)
1199 return ret;
1200
1201 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1202 PORT_CS_1_PND, 0, 500);
1203 if (ret)
1204 return ret;
1205
1206 ret = tb_port_read(port, &val, TB_CFG_PORT,
1207 port->cap_usb4 + PORT_CS_1, 1);
1208 if (ret)
1209 return ret;
1210
1211 if (val & PORT_CS_1_NR)
1212 return -ENODEV;
1213 if (val & PORT_CS_1_RC)
1214 return -EIO;
1215
1216 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1217 }
1218
usb4_port_sb_write(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,const void * buf,u8 size)1219 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1220 u8 index, u8 reg, const void *buf, u8 size)
1221 {
1222 size_t dwords = DIV_ROUND_UP(size, 4);
1223 int ret;
1224 u32 val;
1225
1226 if (!port->cap_usb4)
1227 return -EINVAL;
1228
1229 if (buf) {
1230 ret = usb4_port_write_data(port, buf, dwords);
1231 if (ret)
1232 return ret;
1233 }
1234
1235 val = reg;
1236 val |= size << PORT_CS_1_LENGTH_SHIFT;
1237 val |= PORT_CS_1_WNR_WRITE;
1238 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1239 if (target == USB4_SB_TARGET_RETIMER)
1240 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1241 val |= PORT_CS_1_PND;
1242
1243 ret = tb_port_write(port, &val, TB_CFG_PORT,
1244 port->cap_usb4 + PORT_CS_1, 1);
1245 if (ret)
1246 return ret;
1247
1248 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1249 PORT_CS_1_PND, 0, 500);
1250 if (ret)
1251 return ret;
1252
1253 ret = tb_port_read(port, &val, TB_CFG_PORT,
1254 port->cap_usb4 + PORT_CS_1, 1);
1255 if (ret)
1256 return ret;
1257
1258 if (val & PORT_CS_1_NR)
1259 return -ENODEV;
1260 if (val & PORT_CS_1_RC)
1261 return -EIO;
1262
1263 return 0;
1264 }
1265
usb4_port_sb_op(struct tb_port * port,enum usb4_sb_target target,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1266 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1267 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1268 {
1269 ktime_t timeout;
1270 u32 val;
1271 int ret;
1272
1273 val = opcode;
1274 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1275 sizeof(val));
1276 if (ret)
1277 return ret;
1278
1279 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1280
1281 do {
1282 /* Check results */
1283 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1284 &val, sizeof(val));
1285 if (ret)
1286 return ret;
1287
1288 switch (val) {
1289 case 0:
1290 return 0;
1291
1292 case USB4_SB_OPCODE_ERR:
1293 return -EAGAIN;
1294
1295 case USB4_SB_OPCODE_ONS:
1296 return -EOPNOTSUPP;
1297
1298 default:
1299 if (val != opcode)
1300 return -EIO;
1301 break;
1302 }
1303 } while (ktime_before(ktime_get(), timeout));
1304
1305 return -ETIMEDOUT;
1306 }
1307
usb4_port_set_router_offline(struct tb_port * port,bool offline)1308 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1309 {
1310 u32 val = !offline;
1311 int ret;
1312
1313 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1314 USB4_SB_METADATA, &val, sizeof(val));
1315 if (ret)
1316 return ret;
1317
1318 val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1319 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1320 USB4_SB_OPCODE, &val, sizeof(val));
1321 }
1322
1323 /**
1324 * usb4_port_router_offline() - Put the USB4 port to offline mode
1325 * @port: USB4 port
1326 *
1327 * This function puts the USB4 port into offline mode. In this mode the
1328 * port does not react on hotplug events anymore. This needs to be
1329 * called before retimer access is done when the USB4 links is not up.
1330 *
1331 * Returns %0 in case of success and negative errno if there was an
1332 * error.
1333 */
usb4_port_router_offline(struct tb_port * port)1334 int usb4_port_router_offline(struct tb_port *port)
1335 {
1336 return usb4_port_set_router_offline(port, true);
1337 }
1338
1339 /**
1340 * usb4_port_router_online() - Put the USB4 port back to online
1341 * @port: USB4 port
1342 *
1343 * Makes the USB4 port functional again.
1344 */
usb4_port_router_online(struct tb_port * port)1345 int usb4_port_router_online(struct tb_port *port)
1346 {
1347 return usb4_port_set_router_offline(port, false);
1348 }
1349
1350 /**
1351 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1352 * @port: USB4 port
1353 *
1354 * This forces the USB4 port to send broadcast RT transaction which
1355 * makes the retimers on the link to assign index to themselves. Returns
1356 * %0 in case of success and negative errno if there was an error.
1357 */
usb4_port_enumerate_retimers(struct tb_port * port)1358 int usb4_port_enumerate_retimers(struct tb_port *port)
1359 {
1360 u32 val;
1361
1362 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1363 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1364 USB4_SB_OPCODE, &val, sizeof(val));
1365 }
1366
1367 /**
1368 * usb4_port_clx_supported() - Check if CLx is supported by the link
1369 * @port: Port to check for CLx support for
1370 *
1371 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1372 * active cables (if connected on the link).
1373 */
usb4_port_clx_supported(struct tb_port * port)1374 bool usb4_port_clx_supported(struct tb_port *port)
1375 {
1376 int ret;
1377 u32 val;
1378
1379 ret = tb_port_read(port, &val, TB_CFG_PORT,
1380 port->cap_usb4 + PORT_CS_18, 1);
1381 if (ret)
1382 return false;
1383
1384 return !!(val & PORT_CS_18_CPS);
1385 }
1386
usb4_port_retimer_op(struct tb_port * port,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1387 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1388 enum usb4_sb_opcode opcode,
1389 int timeout_msec)
1390 {
1391 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1392 timeout_msec);
1393 }
1394
1395 /**
1396 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1397 * @port: USB4 port
1398 * @index: Retimer index
1399 *
1400 * Enables sideband channel transations on SBTX. Can be used when USB4
1401 * link does not go up, for example if there is no device connected.
1402 */
usb4_port_retimer_set_inbound_sbtx(struct tb_port * port,u8 index)1403 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1404 {
1405 int ret;
1406
1407 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1408 500);
1409
1410 if (ret != -ENODEV)
1411 return ret;
1412
1413 /*
1414 * Per the USB4 retimer spec, the retimer is not required to
1415 * send an RT (Retimer Transaction) response for the first
1416 * SET_INBOUND_SBTX command
1417 */
1418 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1419 500);
1420 }
1421
1422 /**
1423 * usb4_port_retimer_read() - Read from retimer sideband registers
1424 * @port: USB4 port
1425 * @index: Retimer index
1426 * @reg: Sideband register to read
1427 * @buf: Data from @reg is stored here
1428 * @size: Number of bytes to read
1429 *
1430 * Function reads retimer sideband registers starting from @reg. The
1431 * retimer is connected to @port at @index. Returns %0 in case of
1432 * success, and read data is copied to @buf. If there is no retimer
1433 * present at given @index returns %-ENODEV. In any other failure
1434 * returns negative errno.
1435 */
usb4_port_retimer_read(struct tb_port * port,u8 index,u8 reg,void * buf,u8 size)1436 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1437 u8 size)
1438 {
1439 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1440 size);
1441 }
1442
1443 /**
1444 * usb4_port_retimer_write() - Write to retimer sideband registers
1445 * @port: USB4 port
1446 * @index: Retimer index
1447 * @reg: Sideband register to write
1448 * @buf: Data that is written starting from @reg
1449 * @size: Number of bytes to write
1450 *
1451 * Writes retimer sideband registers starting from @reg. The retimer is
1452 * connected to @port at @index. Returns %0 in case of success. If there
1453 * is no retimer present at given @index returns %-ENODEV. In any other
1454 * failure returns negative errno.
1455 */
usb4_port_retimer_write(struct tb_port * port,u8 index,u8 reg,const void * buf,u8 size)1456 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1457 const void *buf, u8 size)
1458 {
1459 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1460 size);
1461 }
1462
1463 /**
1464 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1465 * @port: USB4 port
1466 * @index: Retimer index
1467 *
1468 * If the retimer at @index is last one (connected directly to the
1469 * Type-C port) this function returns %1. If it is not returns %0. If
1470 * the retimer is not present returns %-ENODEV. Otherwise returns
1471 * negative errno.
1472 */
usb4_port_retimer_is_last(struct tb_port * port,u8 index)1473 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1474 {
1475 u32 metadata;
1476 int ret;
1477
1478 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1479 500);
1480 if (ret)
1481 return ret;
1482
1483 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1484 sizeof(metadata));
1485 return ret ? ret : metadata & 1;
1486 }
1487
1488 /**
1489 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1490 * @port: USB4 port
1491 * @index: Retimer index
1492 *
1493 * Reads NVM sector size (in bytes) of a retimer at @index. This
1494 * operation can be used to determine whether the retimer supports NVM
1495 * upgrade for example. Returns sector size in bytes or negative errno
1496 * in case of error. Specifically returns %-ENODEV if there is no
1497 * retimer at @index.
1498 */
usb4_port_retimer_nvm_sector_size(struct tb_port * port,u8 index)1499 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1500 {
1501 u32 metadata;
1502 int ret;
1503
1504 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1505 500);
1506 if (ret)
1507 return ret;
1508
1509 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1510 sizeof(metadata));
1511 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1512 }
1513
1514 /**
1515 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1516 * @port: USB4 port
1517 * @index: Retimer index
1518 * @address: Start offset
1519 *
1520 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1521 * done automatically by usb4_port_retimer_nvm_write().
1522 *
1523 * Returns %0 in success and negative errno if there was a failure.
1524 */
usb4_port_retimer_nvm_set_offset(struct tb_port * port,u8 index,unsigned int address)1525 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1526 unsigned int address)
1527 {
1528 u32 metadata, dwaddress;
1529 int ret;
1530
1531 dwaddress = address / 4;
1532 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1533 USB4_NVM_SET_OFFSET_MASK;
1534
1535 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1536 sizeof(metadata));
1537 if (ret)
1538 return ret;
1539
1540 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1541 500);
1542 }
1543
1544 struct retimer_info {
1545 struct tb_port *port;
1546 u8 index;
1547 };
1548
usb4_port_retimer_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)1549 static int usb4_port_retimer_nvm_write_next_block(void *data,
1550 unsigned int dwaddress, const void *buf, size_t dwords)
1551
1552 {
1553 const struct retimer_info *info = data;
1554 struct tb_port *port = info->port;
1555 u8 index = info->index;
1556 int ret;
1557
1558 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1559 buf, dwords * 4);
1560 if (ret)
1561 return ret;
1562
1563 return usb4_port_retimer_op(port, index,
1564 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1565 }
1566
1567 /**
1568 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1569 * @port: USB4 port
1570 * @index: Retimer index
1571 * @address: Byte address where to start the write
1572 * @buf: Data to write
1573 * @size: Size in bytes how much to write
1574 *
1575 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1576 * upgrade. Returns %0 if the data was written successfully and negative
1577 * errno in case of failure. Specifically returns %-ENODEV if there is
1578 * no retimer at @index.
1579 */
usb4_port_retimer_nvm_write(struct tb_port * port,u8 index,unsigned int address,const void * buf,size_t size)1580 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1581 const void *buf, size_t size)
1582 {
1583 struct retimer_info info = { .port = port, .index = index };
1584 int ret;
1585
1586 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1587 if (ret)
1588 return ret;
1589
1590 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1591 usb4_port_retimer_nvm_write_next_block, &info);
1592 }
1593
1594 /**
1595 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1596 * @port: USB4 port
1597 * @index: Retimer index
1598 *
1599 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1600 * this function can be used to trigger the NVM upgrade process. If
1601 * successful the retimer restarts with the new NVM and may not have the
1602 * index set so one needs to call usb4_port_enumerate_retimers() to
1603 * force index to be assigned.
1604 */
usb4_port_retimer_nvm_authenticate(struct tb_port * port,u8 index)1605 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1606 {
1607 u32 val;
1608
1609 /*
1610 * We need to use the raw operation here because once the
1611 * authentication completes the retimer index is not set anymore
1612 * so we do not get back the status now.
1613 */
1614 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1615 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1616 USB4_SB_OPCODE, &val, sizeof(val));
1617 }
1618
1619 /**
1620 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1621 * @port: USB4 port
1622 * @index: Retimer index
1623 * @status: Raw status code read from metadata
1624 *
1625 * This can be called after usb4_port_retimer_nvm_authenticate() and
1626 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1627 *
1628 * Returns %0 if the authentication status was successfully read. The
1629 * completion metadata (the result) is then stored into @status. If
1630 * reading the status fails, returns negative errno.
1631 */
usb4_port_retimer_nvm_authenticate_status(struct tb_port * port,u8 index,u32 * status)1632 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1633 u32 *status)
1634 {
1635 u32 metadata, val;
1636 int ret;
1637
1638 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1639 sizeof(val));
1640 if (ret)
1641 return ret;
1642
1643 switch (val) {
1644 case 0:
1645 *status = 0;
1646 return 0;
1647
1648 case USB4_SB_OPCODE_ERR:
1649 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1650 &metadata, sizeof(metadata));
1651 if (ret)
1652 return ret;
1653
1654 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1655 return 0;
1656
1657 case USB4_SB_OPCODE_ONS:
1658 return -EOPNOTSUPP;
1659
1660 default:
1661 return -EIO;
1662 }
1663 }
1664
usb4_port_retimer_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)1665 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1666 void *buf, size_t dwords)
1667 {
1668 const struct retimer_info *info = data;
1669 struct tb_port *port = info->port;
1670 u8 index = info->index;
1671 u32 metadata;
1672 int ret;
1673
1674 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1675 if (dwords < NVM_DATA_DWORDS)
1676 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1677
1678 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1679 sizeof(metadata));
1680 if (ret)
1681 return ret;
1682
1683 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1684 if (ret)
1685 return ret;
1686
1687 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1688 dwords * 4);
1689 }
1690
1691 /**
1692 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1693 * @port: USB4 port
1694 * @index: Retimer index
1695 * @address: NVM address (in bytes) to start reading
1696 * @buf: Data read from NVM is stored here
1697 * @size: Number of bytes to read
1698 *
1699 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1700 * read was successful and negative errno in case of failure.
1701 * Specifically returns %-ENODEV if there is no retimer at @index.
1702 */
usb4_port_retimer_nvm_read(struct tb_port * port,u8 index,unsigned int address,void * buf,size_t size)1703 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1704 unsigned int address, void *buf, size_t size)
1705 {
1706 struct retimer_info info = { .port = port, .index = index };
1707
1708 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1709 usb4_port_retimer_nvm_read_block, &info);
1710 }
1711
1712 /**
1713 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1714 * @port: USB3 adapter port
1715 *
1716 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1717 * Negative errno in case of error.
1718 */
usb4_usb3_port_max_link_rate(struct tb_port * port)1719 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1720 {
1721 int ret, lr;
1722 u32 val;
1723
1724 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1725 return -EINVAL;
1726
1727 ret = tb_port_read(port, &val, TB_CFG_PORT,
1728 port->cap_adap + ADP_USB3_CS_4, 1);
1729 if (ret)
1730 return ret;
1731
1732 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1733 return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1734 }
1735
1736 /**
1737 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1738 * @port: USB3 adapter port
1739 *
1740 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1741 * link is not up returns %0 and negative errno in case of failure.
1742 */
usb4_usb3_port_actual_link_rate(struct tb_port * port)1743 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1744 {
1745 int ret, lr;
1746 u32 val;
1747
1748 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1749 return -EINVAL;
1750
1751 ret = tb_port_read(port, &val, TB_CFG_PORT,
1752 port->cap_adap + ADP_USB3_CS_4, 1);
1753 if (ret)
1754 return ret;
1755
1756 if (!(val & ADP_USB3_CS_4_ULV))
1757 return 0;
1758
1759 lr = val & ADP_USB3_CS_4_ALR_MASK;
1760 return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1761 }
1762
usb4_usb3_port_cm_request(struct tb_port * port,bool request)1763 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1764 {
1765 int ret;
1766 u32 val;
1767
1768 if (!tb_port_is_usb3_down(port))
1769 return -EINVAL;
1770 if (tb_route(port->sw))
1771 return -EINVAL;
1772
1773 ret = tb_port_read(port, &val, TB_CFG_PORT,
1774 port->cap_adap + ADP_USB3_CS_2, 1);
1775 if (ret)
1776 return ret;
1777
1778 if (request)
1779 val |= ADP_USB3_CS_2_CMR;
1780 else
1781 val &= ~ADP_USB3_CS_2_CMR;
1782
1783 ret = tb_port_write(port, &val, TB_CFG_PORT,
1784 port->cap_adap + ADP_USB3_CS_2, 1);
1785 if (ret)
1786 return ret;
1787
1788 /*
1789 * We can use val here directly as the CMR bit is in the same place
1790 * as HCA. Just mask out others.
1791 */
1792 val &= ADP_USB3_CS_2_CMR;
1793 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1794 ADP_USB3_CS_1_HCA, val, 1500);
1795 }
1796
usb4_usb3_port_set_cm_request(struct tb_port * port)1797 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1798 {
1799 return usb4_usb3_port_cm_request(port, true);
1800 }
1801
usb4_usb3_port_clear_cm_request(struct tb_port * port)1802 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1803 {
1804 return usb4_usb3_port_cm_request(port, false);
1805 }
1806
usb3_bw_to_mbps(u32 bw,u8 scale)1807 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1808 {
1809 unsigned long uframes;
1810
1811 uframes = bw * 512UL << scale;
1812 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1813 }
1814
mbps_to_usb3_bw(unsigned int mbps,u8 scale)1815 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1816 {
1817 unsigned long uframes;
1818
1819 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1820 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
1821 return DIV_ROUND_UP(uframes, 512UL << scale);
1822 }
1823
usb4_usb3_port_read_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1824 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1825 int *upstream_bw,
1826 int *downstream_bw)
1827 {
1828 u32 val, bw, scale;
1829 int ret;
1830
1831 ret = tb_port_read(port, &val, TB_CFG_PORT,
1832 port->cap_adap + ADP_USB3_CS_2, 1);
1833 if (ret)
1834 return ret;
1835
1836 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1837 port->cap_adap + ADP_USB3_CS_3, 1);
1838 if (ret)
1839 return ret;
1840
1841 scale &= ADP_USB3_CS_3_SCALE_MASK;
1842
1843 bw = val & ADP_USB3_CS_2_AUBW_MASK;
1844 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1845
1846 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1847 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1848
1849 return 0;
1850 }
1851
1852 /**
1853 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1854 * @port: USB3 adapter port
1855 * @upstream_bw: Allocated upstream bandwidth is stored here
1856 * @downstream_bw: Allocated downstream bandwidth is stored here
1857 *
1858 * Stores currently allocated USB3 bandwidth into @upstream_bw and
1859 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1860 * errno in failure.
1861 */
usb4_usb3_port_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1862 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1863 int *downstream_bw)
1864 {
1865 int ret;
1866
1867 ret = usb4_usb3_port_set_cm_request(port);
1868 if (ret)
1869 return ret;
1870
1871 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1872 downstream_bw);
1873 usb4_usb3_port_clear_cm_request(port);
1874
1875 return ret;
1876 }
1877
usb4_usb3_port_read_consumed_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1878 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1879 int *upstream_bw,
1880 int *downstream_bw)
1881 {
1882 u32 val, bw, scale;
1883 int ret;
1884
1885 ret = tb_port_read(port, &val, TB_CFG_PORT,
1886 port->cap_adap + ADP_USB3_CS_1, 1);
1887 if (ret)
1888 return ret;
1889
1890 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1891 port->cap_adap + ADP_USB3_CS_3, 1);
1892 if (ret)
1893 return ret;
1894
1895 scale &= ADP_USB3_CS_3_SCALE_MASK;
1896
1897 bw = val & ADP_USB3_CS_1_CUBW_MASK;
1898 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1899
1900 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1901 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1902
1903 return 0;
1904 }
1905
usb4_usb3_port_write_allocated_bandwidth(struct tb_port * port,int upstream_bw,int downstream_bw)1906 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1907 int upstream_bw,
1908 int downstream_bw)
1909 {
1910 u32 val, ubw, dbw, scale;
1911 int ret;
1912
1913 /* Read the used scale, hardware default is 0 */
1914 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1915 port->cap_adap + ADP_USB3_CS_3, 1);
1916 if (ret)
1917 return ret;
1918
1919 scale &= ADP_USB3_CS_3_SCALE_MASK;
1920 ubw = mbps_to_usb3_bw(upstream_bw, scale);
1921 dbw = mbps_to_usb3_bw(downstream_bw, scale);
1922
1923 ret = tb_port_read(port, &val, TB_CFG_PORT,
1924 port->cap_adap + ADP_USB3_CS_2, 1);
1925 if (ret)
1926 return ret;
1927
1928 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1929 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1930 val |= ubw;
1931
1932 return tb_port_write(port, &val, TB_CFG_PORT,
1933 port->cap_adap + ADP_USB3_CS_2, 1);
1934 }
1935
1936 /**
1937 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1938 * @port: USB3 adapter port
1939 * @upstream_bw: New upstream bandwidth
1940 * @downstream_bw: New downstream bandwidth
1941 *
1942 * This can be used to set how much bandwidth is allocated for the USB3
1943 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1944 * new values programmed to the USB3 adapter allocation registers. If
1945 * the values are lower than what is currently consumed the allocation
1946 * is set to what is currently consumed instead (consumed bandwidth
1947 * cannot be taken away by CM). The actual new values are returned in
1948 * @upstream_bw and @downstream_bw.
1949 *
1950 * Returns %0 in case of success and negative errno if there was a
1951 * failure.
1952 */
usb4_usb3_port_allocate_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1953 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1954 int *downstream_bw)
1955 {
1956 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1957
1958 ret = usb4_usb3_port_set_cm_request(port);
1959 if (ret)
1960 return ret;
1961
1962 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1963 &consumed_down);
1964 if (ret)
1965 goto err_request;
1966
1967 /* Don't allow it go lower than what is consumed */
1968 allocate_up = max(*upstream_bw, consumed_up);
1969 allocate_down = max(*downstream_bw, consumed_down);
1970
1971 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1972 allocate_down);
1973 if (ret)
1974 goto err_request;
1975
1976 *upstream_bw = allocate_up;
1977 *downstream_bw = allocate_down;
1978
1979 err_request:
1980 usb4_usb3_port_clear_cm_request(port);
1981 return ret;
1982 }
1983
1984 /**
1985 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1986 * @port: USB3 adapter port
1987 * @upstream_bw: New allocated upstream bandwidth
1988 * @downstream_bw: New allocated downstream bandwidth
1989 *
1990 * Releases USB3 allocated bandwidth down to what is actually consumed.
1991 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1992 *
1993 * Returns 0% in success and negative errno in case of failure.
1994 */
usb4_usb3_port_release_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1995 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1996 int *downstream_bw)
1997 {
1998 int ret, consumed_up, consumed_down;
1999
2000 ret = usb4_usb3_port_set_cm_request(port);
2001 if (ret)
2002 return ret;
2003
2004 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2005 &consumed_down);
2006 if (ret)
2007 goto err_request;
2008
2009 /*
2010 * Always keep 1000 Mb/s to make sure xHCI has at least some
2011 * bandwidth available for isochronous traffic.
2012 */
2013 if (consumed_up < 1000)
2014 consumed_up = 1000;
2015 if (consumed_down < 1000)
2016 consumed_down = 1000;
2017
2018 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2019 consumed_down);
2020 if (ret)
2021 goto err_request;
2022
2023 *upstream_bw = consumed_up;
2024 *downstream_bw = consumed_down;
2025
2026 err_request:
2027 usb4_usb3_port_clear_cm_request(port);
2028 return ret;
2029 }
2030