1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12
13 #include "sb_regs.h"
14 #include "tb.h"
15
16 #define USB4_DATA_RETRIES 3
17
18 enum usb4_sb_target {
19 USB4_SB_TARGET_ROUTER,
20 USB4_SB_TARGET_PARTNER,
21 USB4_SB_TARGET_RETIMER,
22 };
23
24 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
25 #define USB4_NVM_READ_OFFSET_SHIFT 2
26 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
27 #define USB4_NVM_READ_LENGTH_SHIFT 24
28
29 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
30 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
31
32 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
33 #define USB4_DROM_ADDRESS_SHIFT 2
34 #define USB4_DROM_SIZE_MASK GENMASK(19, 15)
35 #define USB4_DROM_SIZE_SHIFT 15
36
37 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
38
39 #define USB4_BA_LENGTH_MASK GENMASK(7, 0)
40 #define USB4_BA_INDEX_MASK GENMASK(15, 0)
41
42 enum usb4_ba_index {
43 USB4_BA_MAX_USB3 = 0x1,
44 USB4_BA_MIN_DP_AUX = 0x2,
45 USB4_BA_MIN_DP_MAIN = 0x3,
46 USB4_BA_MAX_PCIE = 0x4,
47 USB4_BA_MAX_HI = 0x5,
48 };
49
50 #define USB4_BA_VALUE_MASK GENMASK(31, 16)
51 #define USB4_BA_VALUE_SHIFT 16
52
usb4_native_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)53 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
54 u32 *metadata, u8 *status,
55 const void *tx_data, size_t tx_dwords,
56 void *rx_data, size_t rx_dwords)
57 {
58 u32 val;
59 int ret;
60
61 if (metadata) {
62 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
63 if (ret)
64 return ret;
65 }
66 if (tx_dwords) {
67 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
68 tx_dwords);
69 if (ret)
70 return ret;
71 }
72
73 val = opcode | ROUTER_CS_26_OV;
74 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
75 if (ret)
76 return ret;
77
78 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
79 if (ret)
80 return ret;
81
82 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
83 if (ret)
84 return ret;
85
86 if (val & ROUTER_CS_26_ONS)
87 return -EOPNOTSUPP;
88
89 if (status)
90 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
91 ROUTER_CS_26_STATUS_SHIFT;
92
93 if (metadata) {
94 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
95 if (ret)
96 return ret;
97 }
98 if (rx_dwords) {
99 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
100 rx_dwords);
101 if (ret)
102 return ret;
103 }
104
105 return 0;
106 }
107
__usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)108 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
109 u8 *status, const void *tx_data, size_t tx_dwords,
110 void *rx_data, size_t rx_dwords)
111 {
112 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
113
114 if (tx_dwords > NVM_DATA_DWORDS || rx_dwords > NVM_DATA_DWORDS)
115 return -EINVAL;
116
117 /*
118 * If the connection manager implementation provides USB4 router
119 * operation proxy callback, call it here instead of running the
120 * operation natively.
121 */
122 if (cm_ops->usb4_switch_op) {
123 int ret;
124
125 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
126 tx_data, tx_dwords, rx_data,
127 rx_dwords);
128 if (ret != -EOPNOTSUPP)
129 return ret;
130
131 /*
132 * If the proxy was not supported then run the native
133 * router operation instead.
134 */
135 }
136
137 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
138 tx_dwords, rx_data, rx_dwords);
139 }
140
usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status)141 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
142 u32 *metadata, u8 *status)
143 {
144 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
145 }
146
usb4_switch_op_data(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)147 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
148 u32 *metadata, u8 *status,
149 const void *tx_data, size_t tx_dwords,
150 void *rx_data, size_t rx_dwords)
151 {
152 return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
153 tx_dwords, rx_data, rx_dwords);
154 }
155
usb4_switch_check_wakes(struct tb_switch * sw)156 static void usb4_switch_check_wakes(struct tb_switch *sw)
157 {
158 struct tb_port *port;
159 bool wakeup = false;
160 u32 val;
161
162 if (!device_may_wakeup(&sw->dev))
163 return;
164
165 if (tb_route(sw)) {
166 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
167 return;
168
169 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
170 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
171 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
172
173 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
174 }
175
176 /* Check for any connected downstream ports for USB4 wake */
177 tb_switch_for_each_port(sw, port) {
178 if (!tb_port_has_remote(port))
179 continue;
180
181 if (tb_port_read(port, &val, TB_CFG_PORT,
182 port->cap_usb4 + PORT_CS_18, 1))
183 break;
184
185 tb_port_dbg(port, "USB4 wake: %s\n",
186 (val & PORT_CS_18_WOU4S) ? "yes" : "no");
187
188 if (val & PORT_CS_18_WOU4S)
189 wakeup = true;
190 }
191
192 if (wakeup)
193 pm_wakeup_event(&sw->dev, 0);
194 }
195
link_is_usb4(struct tb_port * port)196 static bool link_is_usb4(struct tb_port *port)
197 {
198 u32 val;
199
200 if (!port->cap_usb4)
201 return false;
202
203 if (tb_port_read(port, &val, TB_CFG_PORT,
204 port->cap_usb4 + PORT_CS_18, 1))
205 return false;
206
207 return !(val & PORT_CS_18_TCM);
208 }
209
210 /**
211 * usb4_switch_setup() - Additional setup for USB4 device
212 * @sw: USB4 router to setup
213 *
214 * USB4 routers need additional settings in order to enable all the
215 * tunneling. This function enables USB and PCIe tunneling if it can be
216 * enabled (e.g the parent switch also supports them). If USB tunneling
217 * is not available for some reason (like that there is Thunderbolt 3
218 * switch upstream) then the internal xHCI controller is enabled
219 * instead.
220 */
usb4_switch_setup(struct tb_switch * sw)221 int usb4_switch_setup(struct tb_switch *sw)
222 {
223 struct tb_port *downstream_port;
224 struct tb_switch *parent;
225 bool tbt3, xhci;
226 u32 val = 0;
227 int ret;
228
229 usb4_switch_check_wakes(sw);
230
231 if (!tb_route(sw))
232 return 0;
233
234 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
235 if (ret)
236 return ret;
237
238 parent = tb_switch_parent(sw);
239 downstream_port = tb_port_at(tb_route(sw), parent);
240 sw->link_usb4 = link_is_usb4(downstream_port);
241 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
242
243 xhci = val & ROUTER_CS_6_HCI;
244 tbt3 = !(val & ROUTER_CS_6_TNS);
245
246 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
247 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
248
249 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
250 if (ret)
251 return ret;
252
253 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
254 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
255 val |= ROUTER_CS_5_UTO;
256 xhci = false;
257 }
258
259 /*
260 * Only enable PCIe tunneling if the parent router supports it
261 * and it is not disabled.
262 */
263 if (tb_acpi_may_tunnel_pcie() &&
264 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
265 val |= ROUTER_CS_5_PTO;
266 /*
267 * xHCI can be enabled if PCIe tunneling is supported
268 * and the parent does not have any USB3 dowstream
269 * adapters (so we cannot do USB 3.x tunneling).
270 */
271 if (xhci)
272 val |= ROUTER_CS_5_HCO;
273 }
274
275 /* TBT3 supported by the CM */
276 val |= ROUTER_CS_5_C3S;
277 /* Tunneling configuration is ready now */
278 val |= ROUTER_CS_5_CV;
279
280 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
281 if (ret)
282 return ret;
283
284 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
285 ROUTER_CS_6_CR, 50);
286 }
287
288 /**
289 * usb4_switch_read_uid() - Read UID from USB4 router
290 * @sw: USB4 router
291 * @uid: UID is stored here
292 *
293 * Reads 64-bit UID from USB4 router config space.
294 */
usb4_switch_read_uid(struct tb_switch * sw,u64 * uid)295 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
296 {
297 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
298 }
299
usb4_switch_drom_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)300 static int usb4_switch_drom_read_block(void *data,
301 unsigned int dwaddress, void *buf,
302 size_t dwords)
303 {
304 struct tb_switch *sw = data;
305 u8 status = 0;
306 u32 metadata;
307 int ret;
308
309 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
310 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
311 USB4_DROM_ADDRESS_MASK;
312
313 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
314 &status, NULL, 0, buf, dwords);
315 if (ret)
316 return ret;
317
318 return status ? -EIO : 0;
319 }
320
321 /**
322 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
323 * @sw: USB4 router
324 * @address: Byte address inside DROM to start reading
325 * @buf: Buffer where the DROM content is stored
326 * @size: Number of bytes to read from DROM
327 *
328 * Uses USB4 router operations to read router DROM. For devices this
329 * should always work but for hosts it may return %-EOPNOTSUPP in which
330 * case the host router does not have DROM.
331 */
usb4_switch_drom_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)332 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
333 size_t size)
334 {
335 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
336 usb4_switch_drom_read_block, sw);
337 }
338
339 /**
340 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
341 * @sw: USB4 router
342 *
343 * Checks whether conditions are met so that lane bonding can be
344 * established with the upstream router. Call only for device routers.
345 */
usb4_switch_lane_bonding_possible(struct tb_switch * sw)346 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
347 {
348 struct tb_port *up;
349 int ret;
350 u32 val;
351
352 up = tb_upstream_port(sw);
353 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
354 if (ret)
355 return false;
356
357 return !!(val & PORT_CS_18_BE);
358 }
359
360 /**
361 * usb4_switch_set_wake() - Enabled/disable wake
362 * @sw: USB4 router
363 * @flags: Wakeup flags (%0 to disable)
364 *
365 * Enables/disables router to wake up from sleep.
366 */
usb4_switch_set_wake(struct tb_switch * sw,unsigned int flags)367 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
368 {
369 struct tb_port *port;
370 u64 route = tb_route(sw);
371 u32 val;
372 int ret;
373
374 /*
375 * Enable wakes coming from all USB4 downstream ports (from
376 * child routers). For device routers do this also for the
377 * upstream USB4 port.
378 */
379 tb_switch_for_each_port(sw, port) {
380 if (!tb_port_is_null(port))
381 continue;
382 if (!route && tb_is_upstream_port(port))
383 continue;
384 if (!port->cap_usb4)
385 continue;
386
387 ret = tb_port_read(port, &val, TB_CFG_PORT,
388 port->cap_usb4 + PORT_CS_19, 1);
389 if (ret)
390 return ret;
391
392 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
393
394 if (tb_is_upstream_port(port)) {
395 val |= PORT_CS_19_WOU4;
396 } else {
397 bool configured = val & PORT_CS_19_PC;
398
399 if ((flags & TB_WAKE_ON_CONNECT) && !configured)
400 val |= PORT_CS_19_WOC;
401 if ((flags & TB_WAKE_ON_DISCONNECT) && configured)
402 val |= PORT_CS_19_WOD;
403 if ((flags & TB_WAKE_ON_USB4) && configured)
404 val |= PORT_CS_19_WOU4;
405 }
406
407 ret = tb_port_write(port, &val, TB_CFG_PORT,
408 port->cap_usb4 + PORT_CS_19, 1);
409 if (ret)
410 return ret;
411 }
412
413 /*
414 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
415 * needed for device routers.
416 */
417 if (route) {
418 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
419 if (ret)
420 return ret;
421
422 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
423 if (flags & TB_WAKE_ON_USB3)
424 val |= ROUTER_CS_5_WOU;
425 if (flags & TB_WAKE_ON_PCIE)
426 val |= ROUTER_CS_5_WOP;
427 if (flags & TB_WAKE_ON_DP)
428 val |= ROUTER_CS_5_WOD;
429
430 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
431 if (ret)
432 return ret;
433 }
434
435 return 0;
436 }
437
438 /**
439 * usb4_switch_set_sleep() - Prepare the router to enter sleep
440 * @sw: USB4 router
441 *
442 * Sets sleep bit for the router. Returns when the router sleep ready
443 * bit has been asserted.
444 */
usb4_switch_set_sleep(struct tb_switch * sw)445 int usb4_switch_set_sleep(struct tb_switch *sw)
446 {
447 int ret;
448 u32 val;
449
450 /* Set sleep bit and wait for sleep ready to be asserted */
451 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
452 if (ret)
453 return ret;
454
455 val |= ROUTER_CS_5_SLP;
456
457 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
458 if (ret)
459 return ret;
460
461 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
462 ROUTER_CS_6_SLPR, 500);
463 }
464
465 /**
466 * usb4_switch_nvm_sector_size() - Return router NVM sector size
467 * @sw: USB4 router
468 *
469 * If the router supports NVM operations this function returns the NVM
470 * sector size in bytes. If NVM operations are not supported returns
471 * %-EOPNOTSUPP.
472 */
usb4_switch_nvm_sector_size(struct tb_switch * sw)473 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
474 {
475 u32 metadata;
476 u8 status;
477 int ret;
478
479 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
480 &status);
481 if (ret)
482 return ret;
483
484 if (status)
485 return status == 0x2 ? -EOPNOTSUPP : -EIO;
486
487 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
488 }
489
usb4_switch_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)490 static int usb4_switch_nvm_read_block(void *data,
491 unsigned int dwaddress, void *buf, size_t dwords)
492 {
493 struct tb_switch *sw = data;
494 u8 status = 0;
495 u32 metadata;
496 int ret;
497
498 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
499 USB4_NVM_READ_LENGTH_MASK;
500 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
501 USB4_NVM_READ_OFFSET_MASK;
502
503 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
504 &status, NULL, 0, buf, dwords);
505 if (ret)
506 return ret;
507
508 return status ? -EIO : 0;
509 }
510
511 /**
512 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
513 * @sw: USB4 router
514 * @address: Starting address in bytes
515 * @buf: Read data is placed here
516 * @size: How many bytes to read
517 *
518 * Reads NVM contents of the router. If NVM is not supported returns
519 * %-EOPNOTSUPP.
520 */
usb4_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)521 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
522 size_t size)
523 {
524 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
525 usb4_switch_nvm_read_block, sw);
526 }
527
528 /**
529 * usb4_switch_nvm_set_offset() - Set NVM write offset
530 * @sw: USB4 router
531 * @address: Start offset
532 *
533 * Explicitly sets NVM write offset. Normally when writing to NVM this
534 * is done automatically by usb4_switch_nvm_write().
535 *
536 * Returns %0 in success and negative errno if there was a failure.
537 */
usb4_switch_nvm_set_offset(struct tb_switch * sw,unsigned int address)538 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
539 {
540 u32 metadata, dwaddress;
541 u8 status = 0;
542 int ret;
543
544 dwaddress = address / 4;
545 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
546 USB4_NVM_SET_OFFSET_MASK;
547
548 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
549 &status);
550 if (ret)
551 return ret;
552
553 return status ? -EIO : 0;
554 }
555
usb4_switch_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)556 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
557 const void *buf, size_t dwords)
558 {
559 struct tb_switch *sw = data;
560 u8 status;
561 int ret;
562
563 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
564 buf, dwords, NULL, 0);
565 if (ret)
566 return ret;
567
568 return status ? -EIO : 0;
569 }
570
571 /**
572 * usb4_switch_nvm_write() - Write to the router NVM
573 * @sw: USB4 router
574 * @address: Start address where to write in bytes
575 * @buf: Pointer to the data to write
576 * @size: Size of @buf in bytes
577 *
578 * Writes @buf to the router NVM using USB4 router operations. If NVM
579 * write is not supported returns %-EOPNOTSUPP.
580 */
usb4_switch_nvm_write(struct tb_switch * sw,unsigned int address,const void * buf,size_t size)581 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
582 const void *buf, size_t size)
583 {
584 int ret;
585
586 ret = usb4_switch_nvm_set_offset(sw, address);
587 if (ret)
588 return ret;
589
590 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
591 usb4_switch_nvm_write_next_block, sw);
592 }
593
594 /**
595 * usb4_switch_nvm_authenticate() - Authenticate new NVM
596 * @sw: USB4 router
597 *
598 * After the new NVM has been written via usb4_switch_nvm_write(), this
599 * function triggers NVM authentication process. The router gets power
600 * cycled and if the authentication is successful the new NVM starts
601 * running. In case of failure returns negative errno.
602 *
603 * The caller should call usb4_switch_nvm_authenticate_status() to read
604 * the status of the authentication after power cycle. It should be the
605 * first router operation to avoid the status being lost.
606 */
usb4_switch_nvm_authenticate(struct tb_switch * sw)607 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
608 {
609 int ret;
610
611 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
612 switch (ret) {
613 /*
614 * The router is power cycled once NVM_AUTH is started so it is
615 * expected to get any of the following errors back.
616 */
617 case -EACCES:
618 case -ENOTCONN:
619 case -ETIMEDOUT:
620 return 0;
621
622 default:
623 return ret;
624 }
625 }
626
627 /**
628 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
629 * @sw: USB4 router
630 * @status: Status code of the operation
631 *
632 * The function checks if there is status available from the last NVM
633 * authenticate router operation. If there is status then %0 is returned
634 * and the status code is placed in @status. Returns negative errno in case
635 * of failure.
636 *
637 * Must be called before any other router operation.
638 */
usb4_switch_nvm_authenticate_status(struct tb_switch * sw,u32 * status)639 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
640 {
641 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
642 u16 opcode;
643 u32 val;
644 int ret;
645
646 if (cm_ops->usb4_switch_nvm_authenticate_status) {
647 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
648 if (ret != -EOPNOTSUPP)
649 return ret;
650 }
651
652 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
653 if (ret)
654 return ret;
655
656 /* Check that the opcode is correct */
657 opcode = val & ROUTER_CS_26_OPCODE_MASK;
658 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
659 if (val & ROUTER_CS_26_OV)
660 return -EBUSY;
661 if (val & ROUTER_CS_26_ONS)
662 return -EOPNOTSUPP;
663
664 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
665 ROUTER_CS_26_STATUS_SHIFT;
666 } else {
667 *status = 0;
668 }
669
670 return 0;
671 }
672
673 /**
674 * usb4_switch_credits_init() - Read buffer allocation parameters
675 * @sw: USB4 router
676 *
677 * Reads @sw buffer allocation parameters and initializes @sw buffer
678 * allocation fields accordingly. Specifically @sw->credits_allocation
679 * is set to %true if these parameters can be used in tunneling.
680 *
681 * Returns %0 on success and negative errno otherwise.
682 */
usb4_switch_credits_init(struct tb_switch * sw)683 int usb4_switch_credits_init(struct tb_switch *sw)
684 {
685 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
686 int ret, length, i, nports;
687 const struct tb_port *port;
688 u32 data[NVM_DATA_DWORDS];
689 u32 metadata = 0;
690 u8 status = 0;
691
692 memset(data, 0, sizeof(data));
693 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
694 &status, NULL, 0, data, ARRAY_SIZE(data));
695 if (ret)
696 return ret;
697 if (status)
698 return -EIO;
699
700 length = metadata & USB4_BA_LENGTH_MASK;
701 if (WARN_ON(length > ARRAY_SIZE(data)))
702 return -EMSGSIZE;
703
704 max_usb3 = -1;
705 min_dp_aux = -1;
706 min_dp_main = -1;
707 max_pcie = -1;
708 max_dma = -1;
709
710 tb_sw_dbg(sw, "credit allocation parameters:\n");
711
712 for (i = 0; i < length; i++) {
713 u16 index, value;
714
715 index = data[i] & USB4_BA_INDEX_MASK;
716 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
717
718 switch (index) {
719 case USB4_BA_MAX_USB3:
720 tb_sw_dbg(sw, " USB3: %u\n", value);
721 max_usb3 = value;
722 break;
723 case USB4_BA_MIN_DP_AUX:
724 tb_sw_dbg(sw, " DP AUX: %u\n", value);
725 min_dp_aux = value;
726 break;
727 case USB4_BA_MIN_DP_MAIN:
728 tb_sw_dbg(sw, " DP main: %u\n", value);
729 min_dp_main = value;
730 break;
731 case USB4_BA_MAX_PCIE:
732 tb_sw_dbg(sw, " PCIe: %u\n", value);
733 max_pcie = value;
734 break;
735 case USB4_BA_MAX_HI:
736 tb_sw_dbg(sw, " DMA: %u\n", value);
737 max_dma = value;
738 break;
739 default:
740 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
741 index);
742 break;
743 }
744 }
745
746 /*
747 * Validate the buffer allocation preferences. If we find
748 * issues, log a warning and fall back using the hard-coded
749 * values.
750 */
751
752 /* Host router must report baMaxHI */
753 if (!tb_route(sw) && max_dma < 0) {
754 tb_sw_warn(sw, "host router is missing baMaxHI\n");
755 goto err_invalid;
756 }
757
758 nports = 0;
759 tb_switch_for_each_port(sw, port) {
760 if (tb_port_is_null(port))
761 nports++;
762 }
763
764 /* Must have DP buffer allocation (multiple USB4 ports) */
765 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
766 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
767 goto err_invalid;
768 }
769
770 tb_switch_for_each_port(sw, port) {
771 if (tb_port_is_dpout(port) && min_dp_main < 0) {
772 tb_sw_warn(sw, "missing baMinDPmain");
773 goto err_invalid;
774 }
775 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
776 min_dp_aux < 0) {
777 tb_sw_warn(sw, "missing baMinDPaux");
778 goto err_invalid;
779 }
780 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
781 max_usb3 < 0) {
782 tb_sw_warn(sw, "missing baMaxUSB3");
783 goto err_invalid;
784 }
785 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
786 max_pcie < 0) {
787 tb_sw_warn(sw, "missing baMaxPCIe");
788 goto err_invalid;
789 }
790 }
791
792 /*
793 * Buffer allocation passed the validation so we can use it in
794 * path creation.
795 */
796 sw->credit_allocation = true;
797 if (max_usb3 > 0)
798 sw->max_usb3_credits = max_usb3;
799 if (min_dp_aux > 0)
800 sw->min_dp_aux_credits = min_dp_aux;
801 if (min_dp_main > 0)
802 sw->min_dp_main_credits = min_dp_main;
803 if (max_pcie > 0)
804 sw->max_pcie_credits = max_pcie;
805 if (max_dma > 0)
806 sw->max_dma_credits = max_dma;
807
808 return 0;
809
810 err_invalid:
811 return -EINVAL;
812 }
813
814 /**
815 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
816 * @sw: USB4 router
817 * @in: DP IN adapter
818 *
819 * For DP tunneling this function can be used to query availability of
820 * DP IN resource. Returns true if the resource is available for DP
821 * tunneling, false otherwise.
822 */
usb4_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)823 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
824 {
825 u32 metadata = in->port;
826 u8 status;
827 int ret;
828
829 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
830 &status);
831 /*
832 * If DP resource allocation is not supported assume it is
833 * always available.
834 */
835 if (ret == -EOPNOTSUPP)
836 return true;
837 else if (ret)
838 return false;
839
840 return !status;
841 }
842
843 /**
844 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
845 * @sw: USB4 router
846 * @in: DP IN adapter
847 *
848 * Allocates DP IN resource for DP tunneling using USB4 router
849 * operations. If the resource was allocated returns %0. Otherwise
850 * returns negative errno, in particular %-EBUSY if the resource is
851 * already allocated.
852 */
usb4_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)853 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
854 {
855 u32 metadata = in->port;
856 u8 status;
857 int ret;
858
859 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
860 &status);
861 if (ret == -EOPNOTSUPP)
862 return 0;
863 else if (ret)
864 return ret;
865
866 return status ? -EBUSY : 0;
867 }
868
869 /**
870 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
871 * @sw: USB4 router
872 * @in: DP IN adapter
873 *
874 * Releases the previously allocated DP IN resource.
875 */
usb4_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)876 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
877 {
878 u32 metadata = in->port;
879 u8 status;
880 int ret;
881
882 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
883 &status);
884 if (ret == -EOPNOTSUPP)
885 return 0;
886 else if (ret)
887 return ret;
888
889 return status ? -EIO : 0;
890 }
891
usb4_port_idx(const struct tb_switch * sw,const struct tb_port * port)892 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
893 {
894 struct tb_port *p;
895 int usb4_idx = 0;
896
897 /* Assume port is primary */
898 tb_switch_for_each_port(sw, p) {
899 if (!tb_port_is_null(p))
900 continue;
901 if (tb_is_upstream_port(p))
902 continue;
903 if (!p->link_nr) {
904 if (p == port)
905 break;
906 usb4_idx++;
907 }
908 }
909
910 return usb4_idx;
911 }
912
913 /**
914 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
915 * @sw: USB4 router
916 * @port: USB4 port
917 *
918 * USB4 routers have direct mapping between USB4 ports and PCIe
919 * downstream adapters where the PCIe topology is extended. This
920 * function returns the corresponding downstream PCIe adapter or %NULL
921 * if no such mapping was possible.
922 */
usb4_switch_map_pcie_down(struct tb_switch * sw,const struct tb_port * port)923 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
924 const struct tb_port *port)
925 {
926 int usb4_idx = usb4_port_idx(sw, port);
927 struct tb_port *p;
928 int pcie_idx = 0;
929
930 /* Find PCIe down port matching usb4_port */
931 tb_switch_for_each_port(sw, p) {
932 if (!tb_port_is_pcie_down(p))
933 continue;
934
935 if (pcie_idx == usb4_idx)
936 return p;
937
938 pcie_idx++;
939 }
940
941 return NULL;
942 }
943
944 /**
945 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
946 * @sw: USB4 router
947 * @port: USB4 port
948 *
949 * USB4 routers have direct mapping between USB4 ports and USB 3.x
950 * downstream adapters where the USB 3.x topology is extended. This
951 * function returns the corresponding downstream USB 3.x adapter or
952 * %NULL if no such mapping was possible.
953 */
usb4_switch_map_usb3_down(struct tb_switch * sw,const struct tb_port * port)954 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
955 const struct tb_port *port)
956 {
957 int usb4_idx = usb4_port_idx(sw, port);
958 struct tb_port *p;
959 int usb_idx = 0;
960
961 /* Find USB3 down port matching usb4_port */
962 tb_switch_for_each_port(sw, p) {
963 if (!tb_port_is_usb3_down(p))
964 continue;
965
966 if (usb_idx == usb4_idx)
967 return p;
968
969 usb_idx++;
970 }
971
972 return NULL;
973 }
974
975 /**
976 * usb4_switch_add_ports() - Add USB4 ports for this router
977 * @sw: USB4 router
978 *
979 * For USB4 router finds all USB4 ports and registers devices for each.
980 * Can be called to any router.
981 *
982 * Return %0 in case of success and negative errno in case of failure.
983 */
usb4_switch_add_ports(struct tb_switch * sw)984 int usb4_switch_add_ports(struct tb_switch *sw)
985 {
986 struct tb_port *port;
987
988 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
989 return 0;
990
991 tb_switch_for_each_port(sw, port) {
992 struct usb4_port *usb4;
993
994 if (!tb_port_is_null(port))
995 continue;
996 if (!port->cap_usb4)
997 continue;
998
999 usb4 = usb4_port_device_add(port);
1000 if (IS_ERR(usb4)) {
1001 usb4_switch_remove_ports(sw);
1002 return PTR_ERR(usb4);
1003 }
1004
1005 port->usb4 = usb4;
1006 }
1007
1008 return 0;
1009 }
1010
1011 /**
1012 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1013 * @sw: USB4 router
1014 *
1015 * Unregisters previously registered USB4 ports.
1016 */
usb4_switch_remove_ports(struct tb_switch * sw)1017 void usb4_switch_remove_ports(struct tb_switch *sw)
1018 {
1019 struct tb_port *port;
1020
1021 tb_switch_for_each_port(sw, port) {
1022 if (port->usb4) {
1023 usb4_port_device_remove(port->usb4);
1024 port->usb4 = NULL;
1025 }
1026 }
1027 }
1028
1029 /**
1030 * usb4_port_unlock() - Unlock USB4 downstream port
1031 * @port: USB4 port to unlock
1032 *
1033 * Unlocks USB4 downstream port so that the connection manager can
1034 * access the router below this port.
1035 */
usb4_port_unlock(struct tb_port * port)1036 int usb4_port_unlock(struct tb_port *port)
1037 {
1038 int ret;
1039 u32 val;
1040
1041 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1042 if (ret)
1043 return ret;
1044
1045 val &= ~ADP_CS_4_LCK;
1046 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1047 }
1048
1049 /**
1050 * usb4_port_hotplug_enable() - Enables hotplug for a port
1051 * @port: USB4 port to operate on
1052 *
1053 * Enables hot plug events on a given port. This is only intended
1054 * to be used on lane, DP-IN, and DP-OUT adapters.
1055 */
usb4_port_hotplug_enable(struct tb_port * port)1056 int usb4_port_hotplug_enable(struct tb_port *port)
1057 {
1058 int ret;
1059 u32 val;
1060
1061 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1062 if (ret)
1063 return ret;
1064
1065 val &= ~ADP_CS_5_DHP;
1066 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1067 }
1068
usb4_port_set_configured(struct tb_port * port,bool configured)1069 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1070 {
1071 int ret;
1072 u32 val;
1073
1074 if (!port->cap_usb4)
1075 return -EINVAL;
1076
1077 ret = tb_port_read(port, &val, TB_CFG_PORT,
1078 port->cap_usb4 + PORT_CS_19, 1);
1079 if (ret)
1080 return ret;
1081
1082 if (configured)
1083 val |= PORT_CS_19_PC;
1084 else
1085 val &= ~PORT_CS_19_PC;
1086
1087 return tb_port_write(port, &val, TB_CFG_PORT,
1088 port->cap_usb4 + PORT_CS_19, 1);
1089 }
1090
1091 /**
1092 * usb4_port_configure() - Set USB4 port configured
1093 * @port: USB4 router
1094 *
1095 * Sets the USB4 link to be configured for power management purposes.
1096 */
usb4_port_configure(struct tb_port * port)1097 int usb4_port_configure(struct tb_port *port)
1098 {
1099 return usb4_port_set_configured(port, true);
1100 }
1101
1102 /**
1103 * usb4_port_unconfigure() - Set USB4 port unconfigured
1104 * @port: USB4 router
1105 *
1106 * Sets the USB4 link to be unconfigured for power management purposes.
1107 */
usb4_port_unconfigure(struct tb_port * port)1108 void usb4_port_unconfigure(struct tb_port *port)
1109 {
1110 usb4_port_set_configured(port, false);
1111 }
1112
usb4_set_xdomain_configured(struct tb_port * port,bool configured)1113 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1114 {
1115 int ret;
1116 u32 val;
1117
1118 if (!port->cap_usb4)
1119 return -EINVAL;
1120
1121 ret = tb_port_read(port, &val, TB_CFG_PORT,
1122 port->cap_usb4 + PORT_CS_19, 1);
1123 if (ret)
1124 return ret;
1125
1126 if (configured)
1127 val |= PORT_CS_19_PID;
1128 else
1129 val &= ~PORT_CS_19_PID;
1130
1131 return tb_port_write(port, &val, TB_CFG_PORT,
1132 port->cap_usb4 + PORT_CS_19, 1);
1133 }
1134
1135 /**
1136 * usb4_port_configure_xdomain() - Configure port for XDomain
1137 * @port: USB4 port connected to another host
1138 * @xd: XDomain that is connected to the port
1139 *
1140 * Marks the USB4 port as being connected to another host and updates
1141 * the link type. Returns %0 in success and negative errno in failure.
1142 */
usb4_port_configure_xdomain(struct tb_port * port,struct tb_xdomain * xd)1143 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1144 {
1145 xd->link_usb4 = link_is_usb4(port);
1146 return usb4_set_xdomain_configured(port, true);
1147 }
1148
1149 /**
1150 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1151 * @port: USB4 port that was connected to another host
1152 *
1153 * Clears USB4 port from being marked as XDomain.
1154 */
usb4_port_unconfigure_xdomain(struct tb_port * port)1155 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1156 {
1157 usb4_set_xdomain_configured(port, false);
1158 }
1159
usb4_port_wait_for_bit(struct tb_port * port,u32 offset,u32 bit,u32 value,int timeout_msec)1160 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1161 u32 value, int timeout_msec)
1162 {
1163 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1164
1165 do {
1166 u32 val;
1167 int ret;
1168
1169 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1170 if (ret)
1171 return ret;
1172
1173 if ((val & bit) == value)
1174 return 0;
1175
1176 usleep_range(50, 100);
1177 } while (ktime_before(ktime_get(), timeout));
1178
1179 return -ETIMEDOUT;
1180 }
1181
usb4_port_read_data(struct tb_port * port,void * data,size_t dwords)1182 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1183 {
1184 if (dwords > NVM_DATA_DWORDS)
1185 return -EINVAL;
1186
1187 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1188 dwords);
1189 }
1190
usb4_port_write_data(struct tb_port * port,const void * data,size_t dwords)1191 static int usb4_port_write_data(struct tb_port *port, const void *data,
1192 size_t dwords)
1193 {
1194 if (dwords > NVM_DATA_DWORDS)
1195 return -EINVAL;
1196
1197 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1198 dwords);
1199 }
1200
usb4_port_sb_read(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,void * buf,u8 size)1201 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1202 u8 index, u8 reg, void *buf, u8 size)
1203 {
1204 size_t dwords = DIV_ROUND_UP(size, 4);
1205 int ret;
1206 u32 val;
1207
1208 if (!port->cap_usb4)
1209 return -EINVAL;
1210
1211 val = reg;
1212 val |= size << PORT_CS_1_LENGTH_SHIFT;
1213 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1214 if (target == USB4_SB_TARGET_RETIMER)
1215 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1216 val |= PORT_CS_1_PND;
1217
1218 ret = tb_port_write(port, &val, TB_CFG_PORT,
1219 port->cap_usb4 + PORT_CS_1, 1);
1220 if (ret)
1221 return ret;
1222
1223 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1224 PORT_CS_1_PND, 0, 500);
1225 if (ret)
1226 return ret;
1227
1228 ret = tb_port_read(port, &val, TB_CFG_PORT,
1229 port->cap_usb4 + PORT_CS_1, 1);
1230 if (ret)
1231 return ret;
1232
1233 if (val & PORT_CS_1_NR)
1234 return -ENODEV;
1235 if (val & PORT_CS_1_RC)
1236 return -EIO;
1237
1238 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1239 }
1240
usb4_port_sb_write(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,const void * buf,u8 size)1241 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1242 u8 index, u8 reg, const void *buf, u8 size)
1243 {
1244 size_t dwords = DIV_ROUND_UP(size, 4);
1245 int ret;
1246 u32 val;
1247
1248 if (!port->cap_usb4)
1249 return -EINVAL;
1250
1251 if (buf) {
1252 ret = usb4_port_write_data(port, buf, dwords);
1253 if (ret)
1254 return ret;
1255 }
1256
1257 val = reg;
1258 val |= size << PORT_CS_1_LENGTH_SHIFT;
1259 val |= PORT_CS_1_WNR_WRITE;
1260 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1261 if (target == USB4_SB_TARGET_RETIMER)
1262 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1263 val |= PORT_CS_1_PND;
1264
1265 ret = tb_port_write(port, &val, TB_CFG_PORT,
1266 port->cap_usb4 + PORT_CS_1, 1);
1267 if (ret)
1268 return ret;
1269
1270 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1271 PORT_CS_1_PND, 0, 500);
1272 if (ret)
1273 return ret;
1274
1275 ret = tb_port_read(port, &val, TB_CFG_PORT,
1276 port->cap_usb4 + PORT_CS_1, 1);
1277 if (ret)
1278 return ret;
1279
1280 if (val & PORT_CS_1_NR)
1281 return -ENODEV;
1282 if (val & PORT_CS_1_RC)
1283 return -EIO;
1284
1285 return 0;
1286 }
1287
usb4_port_sb_op(struct tb_port * port,enum usb4_sb_target target,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1288 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1289 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1290 {
1291 ktime_t timeout;
1292 u32 val;
1293 int ret;
1294
1295 val = opcode;
1296 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1297 sizeof(val));
1298 if (ret)
1299 return ret;
1300
1301 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1302
1303 do {
1304 /* Check results */
1305 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1306 &val, sizeof(val));
1307 if (ret)
1308 return ret;
1309
1310 switch (val) {
1311 case 0:
1312 return 0;
1313
1314 case USB4_SB_OPCODE_ERR:
1315 return -EAGAIN;
1316
1317 case USB4_SB_OPCODE_ONS:
1318 return -EOPNOTSUPP;
1319
1320 default:
1321 if (val != opcode)
1322 return -EIO;
1323 break;
1324 }
1325 } while (ktime_before(ktime_get(), timeout));
1326
1327 return -ETIMEDOUT;
1328 }
1329
usb4_port_set_router_offline(struct tb_port * port,bool offline)1330 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1331 {
1332 u32 val = !offline;
1333 int ret;
1334
1335 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1336 USB4_SB_METADATA, &val, sizeof(val));
1337 if (ret)
1338 return ret;
1339
1340 val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1341 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1342 USB4_SB_OPCODE, &val, sizeof(val));
1343 }
1344
1345 /**
1346 * usb4_port_router_offline() - Put the USB4 port to offline mode
1347 * @port: USB4 port
1348 *
1349 * This function puts the USB4 port into offline mode. In this mode the
1350 * port does not react on hotplug events anymore. This needs to be
1351 * called before retimer access is done when the USB4 links is not up.
1352 *
1353 * Returns %0 in case of success and negative errno if there was an
1354 * error.
1355 */
usb4_port_router_offline(struct tb_port * port)1356 int usb4_port_router_offline(struct tb_port *port)
1357 {
1358 return usb4_port_set_router_offline(port, true);
1359 }
1360
1361 /**
1362 * usb4_port_router_online() - Put the USB4 port back to online
1363 * @port: USB4 port
1364 *
1365 * Makes the USB4 port functional again.
1366 */
usb4_port_router_online(struct tb_port * port)1367 int usb4_port_router_online(struct tb_port *port)
1368 {
1369 return usb4_port_set_router_offline(port, false);
1370 }
1371
1372 /**
1373 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1374 * @port: USB4 port
1375 *
1376 * This forces the USB4 port to send broadcast RT transaction which
1377 * makes the retimers on the link to assign index to themselves. Returns
1378 * %0 in case of success and negative errno if there was an error.
1379 */
usb4_port_enumerate_retimers(struct tb_port * port)1380 int usb4_port_enumerate_retimers(struct tb_port *port)
1381 {
1382 u32 val;
1383
1384 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1385 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1386 USB4_SB_OPCODE, &val, sizeof(val));
1387 }
1388
1389 /**
1390 * usb4_port_clx_supported() - Check if CLx is supported by the link
1391 * @port: Port to check for CLx support for
1392 *
1393 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1394 * active cables (if connected on the link).
1395 */
usb4_port_clx_supported(struct tb_port * port)1396 bool usb4_port_clx_supported(struct tb_port *port)
1397 {
1398 int ret;
1399 u32 val;
1400
1401 ret = tb_port_read(port, &val, TB_CFG_PORT,
1402 port->cap_usb4 + PORT_CS_18, 1);
1403 if (ret)
1404 return false;
1405
1406 return !!(val & PORT_CS_18_CPS);
1407 }
1408
1409 /**
1410 * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1411 * @port: USB4 port
1412 * @caps: Array with at least two elements to hold the results
1413 *
1414 * Reads the USB4 port lane margining capabilities into @caps.
1415 */
usb4_port_margining_caps(struct tb_port * port,u32 * caps)1416 int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1417 {
1418 int ret;
1419
1420 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1421 USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1422 if (ret)
1423 return ret;
1424
1425 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1426 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1427 }
1428
1429 /**
1430 * usb4_port_hw_margin() - Run hardware lane margining on port
1431 * @port: USB4 port
1432 * @lanes: Which lanes to run (must match the port capabilities). Can be
1433 * %0, %1 or %7.
1434 * @ber_level: BER level contour value
1435 * @timing: Perform timing margining instead of voltage
1436 * @right_high: Use Right/high margin instead of left/low
1437 * @results: Array with at least two elements to hold the results
1438 *
1439 * Runs hardware lane margining on USB4 port and returns the result in
1440 * @results.
1441 */
usb4_port_hw_margin(struct tb_port * port,unsigned int lanes,unsigned int ber_level,bool timing,bool right_high,u32 * results)1442 int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1443 unsigned int ber_level, bool timing, bool right_high,
1444 u32 *results)
1445 {
1446 u32 val;
1447 int ret;
1448
1449 val = lanes;
1450 if (timing)
1451 val |= USB4_MARGIN_HW_TIME;
1452 if (right_high)
1453 val |= USB4_MARGIN_HW_RH;
1454 if (ber_level)
1455 val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1456 USB4_MARGIN_HW_BER_MASK;
1457
1458 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1459 USB4_SB_METADATA, &val, sizeof(val));
1460 if (ret)
1461 return ret;
1462
1463 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1464 USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1465 if (ret)
1466 return ret;
1467
1468 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1469 USB4_SB_DATA, results, sizeof(*results) * 2);
1470 }
1471
1472 /**
1473 * usb4_port_sw_margin() - Run software lane margining on port
1474 * @port: USB4 port
1475 * @lanes: Which lanes to run (must match the port capabilities). Can be
1476 * %0, %1 or %7.
1477 * @timing: Perform timing margining instead of voltage
1478 * @right_high: Use Right/high margin instead of left/low
1479 * @counter: What to do with the error counter
1480 *
1481 * Runs software lane margining on USB4 port. Read back the error
1482 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1483 * success and negative errno otherwise.
1484 */
usb4_port_sw_margin(struct tb_port * port,unsigned int lanes,bool timing,bool right_high,u32 counter)1485 int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1486 bool right_high, u32 counter)
1487 {
1488 u32 val;
1489 int ret;
1490
1491 val = lanes;
1492 if (timing)
1493 val |= USB4_MARGIN_SW_TIME;
1494 if (right_high)
1495 val |= USB4_MARGIN_SW_RH;
1496 val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1497 USB4_MARGIN_SW_COUNTER_MASK;
1498
1499 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1500 USB4_SB_METADATA, &val, sizeof(val));
1501 if (ret)
1502 return ret;
1503
1504 return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1505 USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1506 }
1507
1508 /**
1509 * usb4_port_sw_margin_errors() - Read the software margining error counters
1510 * @port: USB4 port
1511 * @errors: Error metadata is copied here.
1512 *
1513 * This reads back the software margining error counters from the port.
1514 * Returns %0 in success and negative errno otherwise.
1515 */
usb4_port_sw_margin_errors(struct tb_port * port,u32 * errors)1516 int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1517 {
1518 int ret;
1519
1520 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1521 USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1522 if (ret)
1523 return ret;
1524
1525 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1526 USB4_SB_METADATA, errors, sizeof(*errors));
1527 }
1528
usb4_port_retimer_op(struct tb_port * port,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1529 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1530 enum usb4_sb_opcode opcode,
1531 int timeout_msec)
1532 {
1533 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1534 timeout_msec);
1535 }
1536
1537 /**
1538 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1539 * @port: USB4 port
1540 * @index: Retimer index
1541 *
1542 * Enables sideband channel transations on SBTX. Can be used when USB4
1543 * link does not go up, for example if there is no device connected.
1544 */
usb4_port_retimer_set_inbound_sbtx(struct tb_port * port,u8 index)1545 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1546 {
1547 int ret;
1548
1549 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1550 500);
1551
1552 if (ret != -ENODEV)
1553 return ret;
1554
1555 /*
1556 * Per the USB4 retimer spec, the retimer is not required to
1557 * send an RT (Retimer Transaction) response for the first
1558 * SET_INBOUND_SBTX command
1559 */
1560 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1561 500);
1562 }
1563
1564 /**
1565 * usb4_port_retimer_read() - Read from retimer sideband registers
1566 * @port: USB4 port
1567 * @index: Retimer index
1568 * @reg: Sideband register to read
1569 * @buf: Data from @reg is stored here
1570 * @size: Number of bytes to read
1571 *
1572 * Function reads retimer sideband registers starting from @reg. The
1573 * retimer is connected to @port at @index. Returns %0 in case of
1574 * success, and read data is copied to @buf. If there is no retimer
1575 * present at given @index returns %-ENODEV. In any other failure
1576 * returns negative errno.
1577 */
usb4_port_retimer_read(struct tb_port * port,u8 index,u8 reg,void * buf,u8 size)1578 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1579 u8 size)
1580 {
1581 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1582 size);
1583 }
1584
1585 /**
1586 * usb4_port_retimer_write() - Write to retimer sideband registers
1587 * @port: USB4 port
1588 * @index: Retimer index
1589 * @reg: Sideband register to write
1590 * @buf: Data that is written starting from @reg
1591 * @size: Number of bytes to write
1592 *
1593 * Writes retimer sideband registers starting from @reg. The retimer is
1594 * connected to @port at @index. Returns %0 in case of success. If there
1595 * is no retimer present at given @index returns %-ENODEV. In any other
1596 * failure returns negative errno.
1597 */
usb4_port_retimer_write(struct tb_port * port,u8 index,u8 reg,const void * buf,u8 size)1598 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1599 const void *buf, u8 size)
1600 {
1601 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1602 size);
1603 }
1604
1605 /**
1606 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1607 * @port: USB4 port
1608 * @index: Retimer index
1609 *
1610 * If the retimer at @index is last one (connected directly to the
1611 * Type-C port) this function returns %1. If it is not returns %0. If
1612 * the retimer is not present returns %-ENODEV. Otherwise returns
1613 * negative errno.
1614 */
usb4_port_retimer_is_last(struct tb_port * port,u8 index)1615 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1616 {
1617 u32 metadata;
1618 int ret;
1619
1620 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1621 500);
1622 if (ret)
1623 return ret;
1624
1625 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1626 sizeof(metadata));
1627 return ret ? ret : metadata & 1;
1628 }
1629
1630 /**
1631 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1632 * @port: USB4 port
1633 * @index: Retimer index
1634 *
1635 * Reads NVM sector size (in bytes) of a retimer at @index. This
1636 * operation can be used to determine whether the retimer supports NVM
1637 * upgrade for example. Returns sector size in bytes or negative errno
1638 * in case of error. Specifically returns %-ENODEV if there is no
1639 * retimer at @index.
1640 */
usb4_port_retimer_nvm_sector_size(struct tb_port * port,u8 index)1641 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1642 {
1643 u32 metadata;
1644 int ret;
1645
1646 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1647 500);
1648 if (ret)
1649 return ret;
1650
1651 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1652 sizeof(metadata));
1653 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1654 }
1655
1656 /**
1657 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1658 * @port: USB4 port
1659 * @index: Retimer index
1660 * @address: Start offset
1661 *
1662 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1663 * done automatically by usb4_port_retimer_nvm_write().
1664 *
1665 * Returns %0 in success and negative errno if there was a failure.
1666 */
usb4_port_retimer_nvm_set_offset(struct tb_port * port,u8 index,unsigned int address)1667 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1668 unsigned int address)
1669 {
1670 u32 metadata, dwaddress;
1671 int ret;
1672
1673 dwaddress = address / 4;
1674 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1675 USB4_NVM_SET_OFFSET_MASK;
1676
1677 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1678 sizeof(metadata));
1679 if (ret)
1680 return ret;
1681
1682 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1683 500);
1684 }
1685
1686 struct retimer_info {
1687 struct tb_port *port;
1688 u8 index;
1689 };
1690
usb4_port_retimer_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)1691 static int usb4_port_retimer_nvm_write_next_block(void *data,
1692 unsigned int dwaddress, const void *buf, size_t dwords)
1693
1694 {
1695 const struct retimer_info *info = data;
1696 struct tb_port *port = info->port;
1697 u8 index = info->index;
1698 int ret;
1699
1700 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1701 buf, dwords * 4);
1702 if (ret)
1703 return ret;
1704
1705 return usb4_port_retimer_op(port, index,
1706 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1707 }
1708
1709 /**
1710 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1711 * @port: USB4 port
1712 * @index: Retimer index
1713 * @address: Byte address where to start the write
1714 * @buf: Data to write
1715 * @size: Size in bytes how much to write
1716 *
1717 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1718 * upgrade. Returns %0 if the data was written successfully and negative
1719 * errno in case of failure. Specifically returns %-ENODEV if there is
1720 * no retimer at @index.
1721 */
usb4_port_retimer_nvm_write(struct tb_port * port,u8 index,unsigned int address,const void * buf,size_t size)1722 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1723 const void *buf, size_t size)
1724 {
1725 struct retimer_info info = { .port = port, .index = index };
1726 int ret;
1727
1728 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1729 if (ret)
1730 return ret;
1731
1732 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1733 usb4_port_retimer_nvm_write_next_block, &info);
1734 }
1735
1736 /**
1737 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1738 * @port: USB4 port
1739 * @index: Retimer index
1740 *
1741 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1742 * this function can be used to trigger the NVM upgrade process. If
1743 * successful the retimer restarts with the new NVM and may not have the
1744 * index set so one needs to call usb4_port_enumerate_retimers() to
1745 * force index to be assigned.
1746 */
usb4_port_retimer_nvm_authenticate(struct tb_port * port,u8 index)1747 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1748 {
1749 u32 val;
1750
1751 /*
1752 * We need to use the raw operation here because once the
1753 * authentication completes the retimer index is not set anymore
1754 * so we do not get back the status now.
1755 */
1756 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1757 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1758 USB4_SB_OPCODE, &val, sizeof(val));
1759 }
1760
1761 /**
1762 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1763 * @port: USB4 port
1764 * @index: Retimer index
1765 * @status: Raw status code read from metadata
1766 *
1767 * This can be called after usb4_port_retimer_nvm_authenticate() and
1768 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1769 *
1770 * Returns %0 if the authentication status was successfully read. The
1771 * completion metadata (the result) is then stored into @status. If
1772 * reading the status fails, returns negative errno.
1773 */
usb4_port_retimer_nvm_authenticate_status(struct tb_port * port,u8 index,u32 * status)1774 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1775 u32 *status)
1776 {
1777 u32 metadata, val;
1778 int ret;
1779
1780 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1781 sizeof(val));
1782 if (ret)
1783 return ret;
1784
1785 switch (val) {
1786 case 0:
1787 *status = 0;
1788 return 0;
1789
1790 case USB4_SB_OPCODE_ERR:
1791 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1792 &metadata, sizeof(metadata));
1793 if (ret)
1794 return ret;
1795
1796 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1797 return 0;
1798
1799 case USB4_SB_OPCODE_ONS:
1800 return -EOPNOTSUPP;
1801
1802 default:
1803 return -EIO;
1804 }
1805 }
1806
usb4_port_retimer_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)1807 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1808 void *buf, size_t dwords)
1809 {
1810 const struct retimer_info *info = data;
1811 struct tb_port *port = info->port;
1812 u8 index = info->index;
1813 u32 metadata;
1814 int ret;
1815
1816 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1817 if (dwords < NVM_DATA_DWORDS)
1818 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1819
1820 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1821 sizeof(metadata));
1822 if (ret)
1823 return ret;
1824
1825 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1826 if (ret)
1827 return ret;
1828
1829 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1830 dwords * 4);
1831 }
1832
1833 /**
1834 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1835 * @port: USB4 port
1836 * @index: Retimer index
1837 * @address: NVM address (in bytes) to start reading
1838 * @buf: Data read from NVM is stored here
1839 * @size: Number of bytes to read
1840 *
1841 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1842 * read was successful and negative errno in case of failure.
1843 * Specifically returns %-ENODEV if there is no retimer at @index.
1844 */
usb4_port_retimer_nvm_read(struct tb_port * port,u8 index,unsigned int address,void * buf,size_t size)1845 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1846 unsigned int address, void *buf, size_t size)
1847 {
1848 struct retimer_info info = { .port = port, .index = index };
1849
1850 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1851 usb4_port_retimer_nvm_read_block, &info);
1852 }
1853
1854 /**
1855 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1856 * @port: USB3 adapter port
1857 *
1858 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1859 * Negative errno in case of error.
1860 */
usb4_usb3_port_max_link_rate(struct tb_port * port)1861 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1862 {
1863 int ret, lr;
1864 u32 val;
1865
1866 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1867 return -EINVAL;
1868
1869 ret = tb_port_read(port, &val, TB_CFG_PORT,
1870 port->cap_adap + ADP_USB3_CS_4, 1);
1871 if (ret)
1872 return ret;
1873
1874 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1875 return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1876 }
1877
1878 /**
1879 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1880 * @port: USB3 adapter port
1881 *
1882 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1883 * link is not up returns %0 and negative errno in case of failure.
1884 */
usb4_usb3_port_actual_link_rate(struct tb_port * port)1885 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1886 {
1887 int ret, lr;
1888 u32 val;
1889
1890 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1891 return -EINVAL;
1892
1893 ret = tb_port_read(port, &val, TB_CFG_PORT,
1894 port->cap_adap + ADP_USB3_CS_4, 1);
1895 if (ret)
1896 return ret;
1897
1898 if (!(val & ADP_USB3_CS_4_ULV))
1899 return 0;
1900
1901 lr = val & ADP_USB3_CS_4_ALR_MASK;
1902 return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1903 }
1904
usb4_usb3_port_cm_request(struct tb_port * port,bool request)1905 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1906 {
1907 int ret;
1908 u32 val;
1909
1910 if (!tb_port_is_usb3_down(port))
1911 return -EINVAL;
1912 if (tb_route(port->sw))
1913 return -EINVAL;
1914
1915 ret = tb_port_read(port, &val, TB_CFG_PORT,
1916 port->cap_adap + ADP_USB3_CS_2, 1);
1917 if (ret)
1918 return ret;
1919
1920 if (request)
1921 val |= ADP_USB3_CS_2_CMR;
1922 else
1923 val &= ~ADP_USB3_CS_2_CMR;
1924
1925 ret = tb_port_write(port, &val, TB_CFG_PORT,
1926 port->cap_adap + ADP_USB3_CS_2, 1);
1927 if (ret)
1928 return ret;
1929
1930 /*
1931 * We can use val here directly as the CMR bit is in the same place
1932 * as HCA. Just mask out others.
1933 */
1934 val &= ADP_USB3_CS_2_CMR;
1935 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1936 ADP_USB3_CS_1_HCA, val, 1500);
1937 }
1938
usb4_usb3_port_set_cm_request(struct tb_port * port)1939 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1940 {
1941 return usb4_usb3_port_cm_request(port, true);
1942 }
1943
usb4_usb3_port_clear_cm_request(struct tb_port * port)1944 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1945 {
1946 return usb4_usb3_port_cm_request(port, false);
1947 }
1948
usb3_bw_to_mbps(u32 bw,u8 scale)1949 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1950 {
1951 unsigned long uframes;
1952
1953 uframes = bw * 512UL << scale;
1954 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1955 }
1956
mbps_to_usb3_bw(unsigned int mbps,u8 scale)1957 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1958 {
1959 unsigned long uframes;
1960
1961 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1962 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
1963 return DIV_ROUND_UP(uframes, 512UL << scale);
1964 }
1965
usb4_usb3_port_read_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1966 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1967 int *upstream_bw,
1968 int *downstream_bw)
1969 {
1970 u32 val, bw, scale;
1971 int ret;
1972
1973 ret = tb_port_read(port, &val, TB_CFG_PORT,
1974 port->cap_adap + ADP_USB3_CS_2, 1);
1975 if (ret)
1976 return ret;
1977
1978 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1979 port->cap_adap + ADP_USB3_CS_3, 1);
1980 if (ret)
1981 return ret;
1982
1983 scale &= ADP_USB3_CS_3_SCALE_MASK;
1984
1985 bw = val & ADP_USB3_CS_2_AUBW_MASK;
1986 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1987
1988 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1989 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1990
1991 return 0;
1992 }
1993
1994 /**
1995 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1996 * @port: USB3 adapter port
1997 * @upstream_bw: Allocated upstream bandwidth is stored here
1998 * @downstream_bw: Allocated downstream bandwidth is stored here
1999 *
2000 * Stores currently allocated USB3 bandwidth into @upstream_bw and
2001 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2002 * errno in failure.
2003 */
usb4_usb3_port_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2004 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2005 int *downstream_bw)
2006 {
2007 int ret;
2008
2009 ret = usb4_usb3_port_set_cm_request(port);
2010 if (ret)
2011 return ret;
2012
2013 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2014 downstream_bw);
2015 usb4_usb3_port_clear_cm_request(port);
2016
2017 return ret;
2018 }
2019
usb4_usb3_port_read_consumed_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2020 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2021 int *upstream_bw,
2022 int *downstream_bw)
2023 {
2024 u32 val, bw, scale;
2025 int ret;
2026
2027 ret = tb_port_read(port, &val, TB_CFG_PORT,
2028 port->cap_adap + ADP_USB3_CS_1, 1);
2029 if (ret)
2030 return ret;
2031
2032 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2033 port->cap_adap + ADP_USB3_CS_3, 1);
2034 if (ret)
2035 return ret;
2036
2037 scale &= ADP_USB3_CS_3_SCALE_MASK;
2038
2039 bw = val & ADP_USB3_CS_1_CUBW_MASK;
2040 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2041
2042 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2043 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2044
2045 return 0;
2046 }
2047
usb4_usb3_port_write_allocated_bandwidth(struct tb_port * port,int upstream_bw,int downstream_bw)2048 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2049 int upstream_bw,
2050 int downstream_bw)
2051 {
2052 u32 val, ubw, dbw, scale;
2053 int ret;
2054
2055 /* Read the used scale, hardware default is 0 */
2056 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2057 port->cap_adap + ADP_USB3_CS_3, 1);
2058 if (ret)
2059 return ret;
2060
2061 scale &= ADP_USB3_CS_3_SCALE_MASK;
2062 ubw = mbps_to_usb3_bw(upstream_bw, scale);
2063 dbw = mbps_to_usb3_bw(downstream_bw, scale);
2064
2065 ret = tb_port_read(port, &val, TB_CFG_PORT,
2066 port->cap_adap + ADP_USB3_CS_2, 1);
2067 if (ret)
2068 return ret;
2069
2070 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2071 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2072 val |= ubw;
2073
2074 return tb_port_write(port, &val, TB_CFG_PORT,
2075 port->cap_adap + ADP_USB3_CS_2, 1);
2076 }
2077
2078 /**
2079 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2080 * @port: USB3 adapter port
2081 * @upstream_bw: New upstream bandwidth
2082 * @downstream_bw: New downstream bandwidth
2083 *
2084 * This can be used to set how much bandwidth is allocated for the USB3
2085 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2086 * new values programmed to the USB3 adapter allocation registers. If
2087 * the values are lower than what is currently consumed the allocation
2088 * is set to what is currently consumed instead (consumed bandwidth
2089 * cannot be taken away by CM). The actual new values are returned in
2090 * @upstream_bw and @downstream_bw.
2091 *
2092 * Returns %0 in case of success and negative errno if there was a
2093 * failure.
2094 */
usb4_usb3_port_allocate_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2095 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2096 int *downstream_bw)
2097 {
2098 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2099
2100 ret = usb4_usb3_port_set_cm_request(port);
2101 if (ret)
2102 return ret;
2103
2104 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2105 &consumed_down);
2106 if (ret)
2107 goto err_request;
2108
2109 /* Don't allow it go lower than what is consumed */
2110 allocate_up = max(*upstream_bw, consumed_up);
2111 allocate_down = max(*downstream_bw, consumed_down);
2112
2113 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2114 allocate_down);
2115 if (ret)
2116 goto err_request;
2117
2118 *upstream_bw = allocate_up;
2119 *downstream_bw = allocate_down;
2120
2121 err_request:
2122 usb4_usb3_port_clear_cm_request(port);
2123 return ret;
2124 }
2125
2126 /**
2127 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2128 * @port: USB3 adapter port
2129 * @upstream_bw: New allocated upstream bandwidth
2130 * @downstream_bw: New allocated downstream bandwidth
2131 *
2132 * Releases USB3 allocated bandwidth down to what is actually consumed.
2133 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2134 *
2135 * Returns 0% in success and negative errno in case of failure.
2136 */
usb4_usb3_port_release_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2137 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2138 int *downstream_bw)
2139 {
2140 int ret, consumed_up, consumed_down;
2141
2142 ret = usb4_usb3_port_set_cm_request(port);
2143 if (ret)
2144 return ret;
2145
2146 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2147 &consumed_down);
2148 if (ret)
2149 goto err_request;
2150
2151 /*
2152 * Always keep 1000 Mb/s to make sure xHCI has at least some
2153 * bandwidth available for isochronous traffic.
2154 */
2155 if (consumed_up < 1000)
2156 consumed_up = 1000;
2157 if (consumed_down < 1000)
2158 consumed_down = 1000;
2159
2160 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2161 consumed_down);
2162 if (ret)
2163 goto err_request;
2164
2165 *upstream_bw = consumed_up;
2166 *downstream_bw = consumed_down;
2167
2168 err_request:
2169 usb4_usb3_port_clear_cm_request(port);
2170 return ret;
2171 }
2172