1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  *	void add_device_randomness(const void *buf, unsigned int size);
129  * 	void add_input_randomness(unsigned int type, unsigned int code,
130  *                                unsigned int value);
131  *	void add_interrupt_randomness(int irq, int irq_flags);
132  * 	void add_disk_randomness(struct gendisk *disk);
133  *
134  * add_device_randomness() is for adding data to the random pool that
135  * is likely to differ between two devices (or possibly even per boot).
136  * This would be things like MAC addresses or serial numbers, or the
137  * read-out of the RTC. This does *not* add any actual entropy to the
138  * pool, but it initializes the pool to different values for devices
139  * that might otherwise be identical and have very little entropy
140  * available to them (particularly common in the embedded world).
141  *
142  * add_input_randomness() uses the input layer interrupt timing, as well as
143  * the event type information from the hardware.
144  *
145  * add_interrupt_randomness() uses the interrupt timing as random
146  * inputs to the entropy pool. Using the cycle counters and the irq source
147  * as inputs, it feeds the randomness roughly once a second.
148  *
149  * add_disk_randomness() uses what amounts to the seek time of block
150  * layer request events, on a per-disk_devt basis, as input to the
151  * entropy pool. Note that high-speed solid state drives with very low
152  * seek times do not make for good sources of entropy, as their seek
153  * times are usually fairly consistent.
154  *
155  * All of these routines try to estimate how many bits of randomness a
156  * particular randomness source.  They do this by keeping track of the
157  * first and second order deltas of the event timings.
158  *
159  * Ensuring unpredictability at system startup
160  * ============================================
161  *
162  * When any operating system starts up, it will go through a sequence
163  * of actions that are fairly predictable by an adversary, especially
164  * if the start-up does not involve interaction with a human operator.
165  * This reduces the actual number of bits of unpredictability in the
166  * entropy pool below the value in entropy_count.  In order to
167  * counteract this effect, it helps to carry information in the
168  * entropy pool across shut-downs and start-ups.  To do this, put the
169  * following lines an appropriate script which is run during the boot
170  * sequence:
171  *
172  *	echo "Initializing random number generator..."
173  *	random_seed=/var/run/random-seed
174  *	# Carry a random seed from start-up to start-up
175  *	# Load and then save the whole entropy pool
176  *	if [ -f $random_seed ]; then
177  *		cat $random_seed >/dev/urandom
178  *	else
179  *		touch $random_seed
180  *	fi
181  *	chmod 600 $random_seed
182  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
183  *
184  * and the following lines in an appropriate script which is run as
185  * the system is shutdown:
186  *
187  *	# Carry a random seed from shut-down to start-up
188  *	# Save the whole entropy pool
189  *	echo "Saving random seed..."
190  *	random_seed=/var/run/random-seed
191  *	touch $random_seed
192  *	chmod 600 $random_seed
193  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
194  *
195  * For example, on most modern systems using the System V init
196  * scripts, such code fragments would be found in
197  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
198  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199  *
200  * Effectively, these commands cause the contents of the entropy pool
201  * to be saved at shut-down time and reloaded into the entropy pool at
202  * start-up.  (The 'dd' in the addition to the bootup script is to
203  * make sure that /etc/random-seed is different for every start-up,
204  * even if the system crashes without executing rc.0.)  Even with
205  * complete knowledge of the start-up activities, predicting the state
206  * of the entropy pool requires knowledge of the previous history of
207  * the system.
208  *
209  * Configuring the /dev/random driver under Linux
210  * ==============================================
211  *
212  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213  * the /dev/mem major number (#1).  So if your system does not have
214  * /dev/random and /dev/urandom created already, they can be created
215  * by using the commands:
216  *
217  * 	mknod /dev/random c 1 8
218  * 	mknod /dev/urandom c 1 9
219  *
220  * Acknowledgements:
221  * =================
222  *
223  * Ideas for constructing this random number generator were derived
224  * from Pretty Good Privacy's random number generator, and from private
225  * discussions with Phil Karn.  Colin Plumb provided a faster random
226  * number generator, which speed up the mixing function of the entropy
227  * pool, taken from PGPfone.  Dale Worley has also contributed many
228  * useful ideas and suggestions to improve this driver.
229  *
230  * Any flaws in the design are solely my responsibility, and should
231  * not be attributed to the Phil, Colin, or any of authors of PGP.
232  *
233  * Further background information on this topic may be obtained from
234  * RFC 1750, "Randomness Recommendations for Security", by Donald
235  * Eastlake, Steve Crocker, and Jeff Schiller.
236  */
237 
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/percpu.h>
254 #include <linux/cryptohash.h>
255 #include <linux/fips.h>
256 #include <linux/ptrace.h>
257 #include <linux/kmemcheck.h>
258 
259 #ifdef CONFIG_GENERIC_HARDIRQS
260 # include <linux/irq.h>
261 #endif
262 
263 #include <asm/processor.h>
264 #include <asm/uaccess.h>
265 #include <asm/irq.h>
266 #include <asm/irq_regs.h>
267 #include <asm/io.h>
268 
269 #define CREATE_TRACE_POINTS
270 #include <trace/events/random.h>
271 
272 /*
273  * Configuration information
274  */
275 #define INPUT_POOL_WORDS 128
276 #define OUTPUT_POOL_WORDS 32
277 #define SEC_XFER_SIZE 512
278 #define EXTRACT_SIZE 10
279 
280 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
281 
282 /*
283  * The minimum number of bits of entropy before we wake up a read on
284  * /dev/random.  Should be enough to do a significant reseed.
285  */
286 static int random_read_wakeup_thresh = 64;
287 
288 /*
289  * If the entropy count falls under this number of bits, then we
290  * should wake up processes which are selecting or polling on write
291  * access to /dev/random.
292  */
293 static int random_write_wakeup_thresh = 128;
294 
295 /*
296  * When the input pool goes over trickle_thresh, start dropping most
297  * samples to avoid wasting CPU time and reduce lock contention.
298  */
299 
300 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
301 
302 static DEFINE_PER_CPU(int, trickle_count);
303 
304 /*
305  * A pool of size .poolwords is stirred with a primitive polynomial
306  * of degree .poolwords over GF(2).  The taps for various sizes are
307  * defined below.  They are chosen to be evenly spaced (minimum RMS
308  * distance from evenly spaced; the numbers in the comments are a
309  * scaled squared error sum) except for the last tap, which is 1 to
310  * get the twisting happening as fast as possible.
311  */
312 static struct poolinfo {
313 	int poolwords;
314 	int tap1, tap2, tap3, tap4, tap5;
315 } poolinfo_table[] = {
316 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
317 	{ 128,	103,	76,	51,	25,	1 },
318 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
319 	{ 32,	26,	20,	14,	7,	1 },
320 #if 0
321 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
322 	{ 2048,	1638,	1231,	819,	411,	1 },
323 
324 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
325 	{ 1024,	817,	615,	412,	204,	1 },
326 
327 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
328 	{ 1024,	819,	616,	410,	207,	2 },
329 
330 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
331 	{ 512,	411,	308,	208,	104,	1 },
332 
333 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
334 	{ 512,	409,	307,	206,	102,	2 },
335 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
336 	{ 512,	409,	309,	205,	103,	2 },
337 
338 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
339 	{ 256,	205,	155,	101,	52,	1 },
340 
341 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
342 	{ 128,	103,	78,	51,	27,	2 },
343 
344 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
345 	{ 64,	52,	39,	26,	14,	1 },
346 #endif
347 };
348 
349 #define POOLBITS	poolwords*32
350 #define POOLBYTES	poolwords*4
351 
352 /*
353  * For the purposes of better mixing, we use the CRC-32 polynomial as
354  * well to make a twisted Generalized Feedback Shift Reigster
355  *
356  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
357  * Transactions on Modeling and Computer Simulation 2(3):179-194.
358  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
359  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
360  *
361  * Thanks to Colin Plumb for suggesting this.
362  *
363  * We have not analyzed the resultant polynomial to prove it primitive;
364  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
365  * of a random large-degree polynomial over GF(2) are more than large enough
366  * that periodicity is not a concern.
367  *
368  * The input hash is much less sensitive than the output hash.  All
369  * that we want of it is that it be a good non-cryptographic hash;
370  * i.e. it not produce collisions when fed "random" data of the sort
371  * we expect to see.  As long as the pool state differs for different
372  * inputs, we have preserved the input entropy and done a good job.
373  * The fact that an intelligent attacker can construct inputs that
374  * will produce controlled alterations to the pool's state is not
375  * important because we don't consider such inputs to contribute any
376  * randomness.  The only property we need with respect to them is that
377  * the attacker can't increase his/her knowledge of the pool's state.
378  * Since all additions are reversible (knowing the final state and the
379  * input, you can reconstruct the initial state), if an attacker has
380  * any uncertainty about the initial state, he/she can only shuffle
381  * that uncertainty about, but never cause any collisions (which would
382  * decrease the uncertainty).
383  *
384  * The chosen system lets the state of the pool be (essentially) the input
385  * modulo the generator polymnomial.  Now, for random primitive polynomials,
386  * this is a universal class of hash functions, meaning that the chance
387  * of a collision is limited by the attacker's knowledge of the generator
388  * polynomail, so if it is chosen at random, an attacker can never force
389  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
390  * ###--> it is unknown to the processes generating the input entropy. <-###
391  * Because of this important property, this is a good, collision-resistant
392  * hash; hash collisions will occur no more often than chance.
393  */
394 
395 /*
396  * Static global variables
397  */
398 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
399 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
400 static struct fasync_struct *fasync;
401 
402 #if 0
403 static bool debug;
404 module_param(debug, bool, 0644);
405 #define DEBUG_ENT(fmt, arg...) do { \
406 	if (debug) \
407 		printk(KERN_DEBUG "random %04d %04d %04d: " \
408 		fmt,\
409 		input_pool.entropy_count,\
410 		blocking_pool.entropy_count,\
411 		nonblocking_pool.entropy_count,\
412 		## arg); } while (0)
413 #else
414 #define DEBUG_ENT(fmt, arg...) do {} while (0)
415 #endif
416 
417 /**********************************************************************
418  *
419  * OS independent entropy store.   Here are the functions which handle
420  * storing entropy in an entropy pool.
421  *
422  **********************************************************************/
423 
424 struct entropy_store;
425 struct entropy_store {
426 	/* read-only data: */
427 	struct poolinfo *poolinfo;
428 	__u32 *pool;
429 	const char *name;
430 	struct entropy_store *pull;
431 	int limit;
432 
433 	/* read-write data: */
434 	spinlock_t lock;
435 	unsigned add_ptr;
436 	unsigned input_rotate;
437 	int entropy_count;
438 	int entropy_total;
439 	unsigned int initialized:1;
440 	__u8 last_data[EXTRACT_SIZE];
441 };
442 
443 static __u32 input_pool_data[INPUT_POOL_WORDS];
444 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
445 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
446 
447 static struct entropy_store input_pool = {
448 	.poolinfo = &poolinfo_table[0],
449 	.name = "input",
450 	.limit = 1,
451 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
452 	.pool = input_pool_data
453 };
454 
455 static struct entropy_store blocking_pool = {
456 	.poolinfo = &poolinfo_table[1],
457 	.name = "blocking",
458 	.limit = 1,
459 	.pull = &input_pool,
460 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
461 	.pool = blocking_pool_data
462 };
463 
464 static struct entropy_store nonblocking_pool = {
465 	.poolinfo = &poolinfo_table[1],
466 	.name = "nonblocking",
467 	.pull = &input_pool,
468 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
469 	.pool = nonblocking_pool_data
470 };
471 
472 static __u32 const twist_table[8] = {
473 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
474 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
475 
476 /*
477  * This function adds bytes into the entropy "pool".  It does not
478  * update the entropy estimate.  The caller should call
479  * credit_entropy_bits if this is appropriate.
480  *
481  * The pool is stirred with a primitive polynomial of the appropriate
482  * degree, and then twisted.  We twist by three bits at a time because
483  * it's cheap to do so and helps slightly in the expected case where
484  * the entropy is concentrated in the low-order bits.
485  */
_mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes,__u8 out[64])486 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
487 			    int nbytes, __u8 out[64])
488 {
489 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
490 	int input_rotate;
491 	int wordmask = r->poolinfo->poolwords - 1;
492 	const char *bytes = in;
493 	__u32 w;
494 
495 	tap1 = r->poolinfo->tap1;
496 	tap2 = r->poolinfo->tap2;
497 	tap3 = r->poolinfo->tap3;
498 	tap4 = r->poolinfo->tap4;
499 	tap5 = r->poolinfo->tap5;
500 
501 	smp_rmb();
502 	input_rotate = ACCESS_ONCE(r->input_rotate);
503 	i = ACCESS_ONCE(r->add_ptr);
504 
505 	/* mix one byte at a time to simplify size handling and churn faster */
506 	while (nbytes--) {
507 		w = rol32(*bytes++, input_rotate & 31);
508 		i = (i - 1) & wordmask;
509 
510 		/* XOR in the various taps */
511 		w ^= r->pool[i];
512 		w ^= r->pool[(i + tap1) & wordmask];
513 		w ^= r->pool[(i + tap2) & wordmask];
514 		w ^= r->pool[(i + tap3) & wordmask];
515 		w ^= r->pool[(i + tap4) & wordmask];
516 		w ^= r->pool[(i + tap5) & wordmask];
517 
518 		/* Mix the result back in with a twist */
519 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
520 
521 		/*
522 		 * Normally, we add 7 bits of rotation to the pool.
523 		 * At the beginning of the pool, add an extra 7 bits
524 		 * rotation, so that successive passes spread the
525 		 * input bits across the pool evenly.
526 		 */
527 		input_rotate += i ? 7 : 14;
528 	}
529 
530 	ACCESS_ONCE(r->input_rotate) = input_rotate;
531 	ACCESS_ONCE(r->add_ptr) = i;
532 	smp_wmb();
533 
534 	if (out)
535 		for (j = 0; j < 16; j++)
536 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
537 }
538 
__mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes,__u8 out[64])539 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
540 			     int nbytes, __u8 out[64])
541 {
542 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
543 	_mix_pool_bytes(r, in, nbytes, out);
544 }
545 
mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes,__u8 out[64])546 static void mix_pool_bytes(struct entropy_store *r, const void *in,
547 			   int nbytes, __u8 out[64])
548 {
549 	unsigned long flags;
550 
551 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
552 	spin_lock_irqsave(&r->lock, flags);
553 	_mix_pool_bytes(r, in, nbytes, out);
554 	spin_unlock_irqrestore(&r->lock, flags);
555 }
556 
557 struct fast_pool {
558 	__u32		pool[4];
559 	unsigned long	last;
560 	unsigned short	count;
561 	unsigned char	rotate;
562 	unsigned char	last_timer_intr;
563 };
564 
565 /*
566  * This is a fast mixing routine used by the interrupt randomness
567  * collector.  It's hardcoded for an 128 bit pool and assumes that any
568  * locks that might be needed are taken by the caller.
569  */
fast_mix(struct fast_pool * f,const void * in,int nbytes)570 static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
571 {
572 	const char	*bytes = in;
573 	__u32		w;
574 	unsigned	i = f->count;
575 	unsigned	input_rotate = f->rotate;
576 
577 	while (nbytes--) {
578 		w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
579 			f->pool[(i + 1) & 3];
580 		f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
581 		input_rotate += (i++ & 3) ? 7 : 14;
582 	}
583 	f->count = i;
584 	f->rotate = input_rotate;
585 }
586 
587 /*
588  * Credit (or debit) the entropy store with n bits of entropy
589  */
credit_entropy_bits(struct entropy_store * r,int nbits)590 static void credit_entropy_bits(struct entropy_store *r, int nbits)
591 {
592 	int entropy_count, orig;
593 
594 	if (!nbits)
595 		return;
596 
597 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
598 retry:
599 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
600 	entropy_count += nbits;
601 
602 	if (entropy_count < 0) {
603 		DEBUG_ENT("negative entropy/overflow\n");
604 		entropy_count = 0;
605 	} else if (entropy_count > r->poolinfo->POOLBITS)
606 		entropy_count = r->poolinfo->POOLBITS;
607 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
608 		goto retry;
609 
610 	if (!r->initialized && nbits > 0) {
611 		r->entropy_total += nbits;
612 		if (r->entropy_total > 128)
613 			r->initialized = 1;
614 	}
615 
616 	trace_credit_entropy_bits(r->name, nbits, entropy_count,
617 				  r->entropy_total, _RET_IP_);
618 
619 	/* should we wake readers? */
620 	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
621 		wake_up_interruptible(&random_read_wait);
622 		kill_fasync(&fasync, SIGIO, POLL_IN);
623 	}
624 }
625 
626 /*********************************************************************
627  *
628  * Entropy input management
629  *
630  *********************************************************************/
631 
632 /* There is one of these per entropy source */
633 struct timer_rand_state {
634 	cycles_t last_time;
635 	long last_delta, last_delta2;
636 	unsigned dont_count_entropy:1;
637 };
638 
639 /*
640  * Add device- or boot-specific data to the input and nonblocking
641  * pools to help initialize them to unique values.
642  *
643  * None of this adds any entropy, it is meant to avoid the
644  * problem of the nonblocking pool having similar initial state
645  * across largely identical devices.
646  */
add_device_randomness(const void * buf,unsigned int size)647 void add_device_randomness(const void *buf, unsigned int size)
648 {
649 	unsigned long time = get_cycles() ^ jiffies;
650 
651 	mix_pool_bytes(&input_pool, buf, size, NULL);
652 	mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
653 	mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
654 	mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
655 }
656 EXPORT_SYMBOL(add_device_randomness);
657 
658 static struct timer_rand_state input_timer_state;
659 
660 /*
661  * This function adds entropy to the entropy "pool" by using timing
662  * delays.  It uses the timer_rand_state structure to make an estimate
663  * of how many bits of entropy this call has added to the pool.
664  *
665  * The number "num" is also added to the pool - it should somehow describe
666  * the type of event which just happened.  This is currently 0-255 for
667  * keyboard scan codes, and 256 upwards for interrupts.
668  *
669  */
add_timer_randomness(struct timer_rand_state * state,unsigned num)670 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
671 {
672 	struct {
673 		long jiffies;
674 		unsigned cycles;
675 		unsigned num;
676 	} sample;
677 	long delta, delta2, delta3;
678 
679 	preempt_disable();
680 	/* if over the trickle threshold, use only 1 in 4096 samples */
681 	if (input_pool.entropy_count > trickle_thresh &&
682 	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
683 		goto out;
684 
685 	sample.jiffies = jiffies;
686 	sample.cycles = get_cycles();
687 	sample.num = num;
688 	mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
689 
690 	/*
691 	 * Calculate number of bits of randomness we probably added.
692 	 * We take into account the first, second and third-order deltas
693 	 * in order to make our estimate.
694 	 */
695 
696 	if (!state->dont_count_entropy) {
697 		delta = sample.jiffies - state->last_time;
698 		state->last_time = sample.jiffies;
699 
700 		delta2 = delta - state->last_delta;
701 		state->last_delta = delta;
702 
703 		delta3 = delta2 - state->last_delta2;
704 		state->last_delta2 = delta2;
705 
706 		if (delta < 0)
707 			delta = -delta;
708 		if (delta2 < 0)
709 			delta2 = -delta2;
710 		if (delta3 < 0)
711 			delta3 = -delta3;
712 		if (delta > delta2)
713 			delta = delta2;
714 		if (delta > delta3)
715 			delta = delta3;
716 
717 		/*
718 		 * delta is now minimum absolute delta.
719 		 * Round down by 1 bit on general principles,
720 		 * and limit entropy entimate to 12 bits.
721 		 */
722 		credit_entropy_bits(&input_pool,
723 				    min_t(int, fls(delta>>1), 11));
724 	}
725 out:
726 	preempt_enable();
727 }
728 
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)729 void add_input_randomness(unsigned int type, unsigned int code,
730 				 unsigned int value)
731 {
732 	static unsigned char last_value;
733 
734 	/* ignore autorepeat and the like */
735 	if (value == last_value)
736 		return;
737 
738 	DEBUG_ENT("input event\n");
739 	last_value = value;
740 	add_timer_randomness(&input_timer_state,
741 			     (type << 4) ^ code ^ (code >> 4) ^ value);
742 }
743 EXPORT_SYMBOL_GPL(add_input_randomness);
744 
745 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
746 
add_interrupt_randomness(int irq,int irq_flags)747 void add_interrupt_randomness(int irq, int irq_flags)
748 {
749 	struct entropy_store	*r;
750 	struct fast_pool	*fast_pool = &__get_cpu_var(irq_randomness);
751 	struct pt_regs		*regs = get_irq_regs();
752 	unsigned long		now = jiffies;
753 	__u32			input[4], cycles = get_cycles();
754 
755 	input[0] = cycles ^ jiffies;
756 	input[1] = irq;
757 	if (regs) {
758 		__u64 ip = instruction_pointer(regs);
759 		input[2] = ip;
760 		input[3] = ip >> 32;
761 	}
762 
763 	fast_mix(fast_pool, input, sizeof(input));
764 
765 	if ((fast_pool->count & 1023) &&
766 	    !time_after(now, fast_pool->last + HZ))
767 		return;
768 
769 	fast_pool->last = now;
770 
771 	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
772 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
773 	/*
774 	 * If we don't have a valid cycle counter, and we see
775 	 * back-to-back timer interrupts, then skip giving credit for
776 	 * any entropy.
777 	 */
778 	if (cycles == 0) {
779 		if (irq_flags & __IRQF_TIMER) {
780 			if (fast_pool->last_timer_intr)
781 				return;
782 			fast_pool->last_timer_intr = 1;
783 		} else
784 			fast_pool->last_timer_intr = 0;
785 	}
786 	credit_entropy_bits(r, 1);
787 }
788 
789 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)790 void add_disk_randomness(struct gendisk *disk)
791 {
792 	if (!disk || !disk->random)
793 		return;
794 	/* first major is 1, so we get >= 0x200 here */
795 	DEBUG_ENT("disk event %d:%d\n",
796 		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
797 
798 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
799 }
800 #endif
801 
802 /*********************************************************************
803  *
804  * Entropy extraction routines
805  *
806  *********************************************************************/
807 
808 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
809 			       size_t nbytes, int min, int rsvd);
810 
811 /*
812  * This utility inline function is responsible for transferring entropy
813  * from the primary pool to the secondary extraction pool. We make
814  * sure we pull enough for a 'catastrophic reseed'.
815  */
xfer_secondary_pool(struct entropy_store * r,size_t nbytes)816 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
817 {
818 	__u32	tmp[OUTPUT_POOL_WORDS];
819 
820 	if (r->pull && r->entropy_count < nbytes * 8 &&
821 	    r->entropy_count < r->poolinfo->POOLBITS) {
822 		/* If we're limited, always leave two wakeup worth's BITS */
823 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
824 		int bytes = nbytes;
825 
826 		/* pull at least as many as BYTES as wakeup BITS */
827 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
828 		/* but never more than the buffer size */
829 		bytes = min_t(int, bytes, sizeof(tmp));
830 
831 		DEBUG_ENT("going to reseed %s with %d bits "
832 			  "(%d of %d requested)\n",
833 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
834 
835 		bytes = extract_entropy(r->pull, tmp, bytes,
836 					random_read_wakeup_thresh / 8, rsvd);
837 		mix_pool_bytes(r, tmp, bytes, NULL);
838 		credit_entropy_bits(r, bytes*8);
839 	}
840 }
841 
842 /*
843  * These functions extracts randomness from the "entropy pool", and
844  * returns it in a buffer.
845  *
846  * The min parameter specifies the minimum amount we can pull before
847  * failing to avoid races that defeat catastrophic reseeding while the
848  * reserved parameter indicates how much entropy we must leave in the
849  * pool after each pull to avoid starving other readers.
850  *
851  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
852  */
853 
account(struct entropy_store * r,size_t nbytes,int min,int reserved)854 static size_t account(struct entropy_store *r, size_t nbytes, int min,
855 		      int reserved)
856 {
857 	unsigned long flags;
858 
859 	/* Hold lock while accounting */
860 	spin_lock_irqsave(&r->lock, flags);
861 
862 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
863 	DEBUG_ENT("trying to extract %d bits from %s\n",
864 		  nbytes * 8, r->name);
865 
866 	/* Can we pull enough? */
867 	if (r->entropy_count / 8 < min + reserved) {
868 		nbytes = 0;
869 	} else {
870 		int entropy_count, orig;
871 retry:
872 		entropy_count = orig = ACCESS_ONCE(r->entropy_count);
873 		/* If limited, never pull more than available */
874 		if (r->limit && nbytes + reserved >= entropy_count / 8)
875 			nbytes = entropy_count/8 - reserved;
876 
877 		if (entropy_count / 8 >= nbytes + reserved) {
878 			entropy_count -= nbytes*8;
879 			if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
880 				goto retry;
881 		} else {
882 			entropy_count = reserved;
883 			if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
884 				goto retry;
885 		}
886 
887 		if (entropy_count < random_write_wakeup_thresh) {
888 			wake_up_interruptible(&random_write_wait);
889 			kill_fasync(&fasync, SIGIO, POLL_OUT);
890 		}
891 	}
892 
893 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
894 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
895 
896 	spin_unlock_irqrestore(&r->lock, flags);
897 
898 	return nbytes;
899 }
900 
extract_buf(struct entropy_store * r,__u8 * out)901 static void extract_buf(struct entropy_store *r, __u8 *out)
902 {
903 	int i;
904 	union {
905 		__u32 w[5];
906 		unsigned long l[LONGS(EXTRACT_SIZE)];
907 	} hash;
908 	__u32 workspace[SHA_WORKSPACE_WORDS];
909 	__u8 extract[64];
910 	unsigned long flags;
911 
912 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
913 	sha_init(hash.w);
914 	spin_lock_irqsave(&r->lock, flags);
915 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
916 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
917 
918 	/*
919 	 * We mix the hash back into the pool to prevent backtracking
920 	 * attacks (where the attacker knows the state of the pool
921 	 * plus the current outputs, and attempts to find previous
922 	 * ouputs), unless the hash function can be inverted. By
923 	 * mixing at least a SHA1 worth of hash data back, we make
924 	 * brute-forcing the feedback as hard as brute-forcing the
925 	 * hash.
926 	 */
927 	__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
928 	spin_unlock_irqrestore(&r->lock, flags);
929 
930 	/*
931 	 * To avoid duplicates, we atomically extract a portion of the
932 	 * pool while mixing, and hash one final time.
933 	 */
934 	sha_transform(hash.w, extract, workspace);
935 	memset(extract, 0, sizeof(extract));
936 	memset(workspace, 0, sizeof(workspace));
937 
938 	/*
939 	 * In case the hash function has some recognizable output
940 	 * pattern, we fold it in half. Thus, we always feed back
941 	 * twice as much data as we output.
942 	 */
943 	hash.w[0] ^= hash.w[3];
944 	hash.w[1] ^= hash.w[4];
945 	hash.w[2] ^= rol32(hash.w[2], 16);
946 
947 	/*
948 	 * If we have a architectural hardware random number
949 	 * generator, mix that in, too.
950 	 */
951 	for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
952 		unsigned long v;
953 		if (!arch_get_random_long(&v))
954 			break;
955 		hash.l[i] ^= v;
956 	}
957 
958 	memcpy(out, &hash, EXTRACT_SIZE);
959 	memset(&hash, 0, sizeof(hash));
960 }
961 
extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int min,int reserved)962 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
963 				 size_t nbytes, int min, int reserved)
964 {
965 	ssize_t ret = 0, i;
966 	__u8 tmp[EXTRACT_SIZE];
967 
968 	trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
969 	xfer_secondary_pool(r, nbytes);
970 	nbytes = account(r, nbytes, min, reserved);
971 
972 	while (nbytes) {
973 		extract_buf(r, tmp);
974 
975 		if (fips_enabled) {
976 			unsigned long flags;
977 
978 			spin_lock_irqsave(&r->lock, flags);
979 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
980 				panic("Hardware RNG duplicated output!\n");
981 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
982 			spin_unlock_irqrestore(&r->lock, flags);
983 		}
984 		i = min_t(int, nbytes, EXTRACT_SIZE);
985 		memcpy(buf, tmp, i);
986 		nbytes -= i;
987 		buf += i;
988 		ret += i;
989 	}
990 
991 	/* Wipe data just returned from memory */
992 	memset(tmp, 0, sizeof(tmp));
993 
994 	return ret;
995 }
996 
extract_entropy_user(struct entropy_store * r,void __user * buf,size_t nbytes)997 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
998 				    size_t nbytes)
999 {
1000 	ssize_t ret = 0, i;
1001 	__u8 tmp[EXTRACT_SIZE];
1002 
1003 	trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
1004 	xfer_secondary_pool(r, nbytes);
1005 	nbytes = account(r, nbytes, 0, 0);
1006 
1007 	while (nbytes) {
1008 		if (need_resched()) {
1009 			if (signal_pending(current)) {
1010 				if (ret == 0)
1011 					ret = -ERESTARTSYS;
1012 				break;
1013 			}
1014 			schedule();
1015 		}
1016 
1017 		extract_buf(r, tmp);
1018 		i = min_t(int, nbytes, EXTRACT_SIZE);
1019 		if (copy_to_user(buf, tmp, i)) {
1020 			ret = -EFAULT;
1021 			break;
1022 		}
1023 
1024 		nbytes -= i;
1025 		buf += i;
1026 		ret += i;
1027 	}
1028 
1029 	/* Wipe data just returned from memory */
1030 	memset(tmp, 0, sizeof(tmp));
1031 
1032 	return ret;
1033 }
1034 
1035 /*
1036  * This function is the exported kernel interface.  It returns some
1037  * number of good random numbers, suitable for key generation, seeding
1038  * TCP sequence numbers, etc.  It does not use the hw random number
1039  * generator, if available; use get_random_bytes_arch() for that.
1040  */
get_random_bytes(void * buf,int nbytes)1041 void get_random_bytes(void *buf, int nbytes)
1042 {
1043 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1044 }
1045 EXPORT_SYMBOL(get_random_bytes);
1046 
1047 /*
1048  * This function will use the architecture-specific hardware random
1049  * number generator if it is available.  The arch-specific hw RNG will
1050  * almost certainly be faster than what we can do in software, but it
1051  * is impossible to verify that it is implemented securely (as
1052  * opposed, to, say, the AES encryption of a sequence number using a
1053  * key known by the NSA).  So it's useful if we need the speed, but
1054  * only if we're willing to trust the hardware manufacturer not to
1055  * have put in a back door.
1056  */
get_random_bytes_arch(void * buf,int nbytes)1057 void get_random_bytes_arch(void *buf, int nbytes)
1058 {
1059 	char *p = buf;
1060 
1061 	trace_get_random_bytes(nbytes, _RET_IP_);
1062 	while (nbytes) {
1063 		unsigned long v;
1064 		int chunk = min(nbytes, (int)sizeof(unsigned long));
1065 
1066 		if (!arch_get_random_long(&v))
1067 			break;
1068 
1069 		memcpy(p, &v, chunk);
1070 		p += chunk;
1071 		nbytes -= chunk;
1072 	}
1073 
1074 	if (nbytes)
1075 		extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1076 }
1077 EXPORT_SYMBOL(get_random_bytes_arch);
1078 
1079 
1080 /*
1081  * init_std_data - initialize pool with system data
1082  *
1083  * @r: pool to initialize
1084  *
1085  * This function clears the pool's entropy count and mixes some system
1086  * data into the pool to prepare it for use. The pool is not cleared
1087  * as that can only decrease the entropy in the pool.
1088  */
init_std_data(struct entropy_store * r)1089 static void init_std_data(struct entropy_store *r)
1090 {
1091 	int i;
1092 	ktime_t now = ktime_get_real();
1093 	unsigned long rv;
1094 
1095 	r->entropy_count = 0;
1096 	r->entropy_total = 0;
1097 	mix_pool_bytes(r, &now, sizeof(now), NULL);
1098 	for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1099 		if (!arch_get_random_long(&rv))
1100 			break;
1101 		mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1102 	}
1103 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1104 }
1105 
1106 /*
1107  * Note that setup_arch() may call add_device_randomness()
1108  * long before we get here. This allows seeding of the pools
1109  * with some platform dependent data very early in the boot
1110  * process. But it limits our options here. We must use
1111  * statically allocated structures that already have all
1112  * initializations complete at compile time. We should also
1113  * take care not to overwrite the precious per platform data
1114  * we were given.
1115  */
rand_initialize(void)1116 static int rand_initialize(void)
1117 {
1118 	init_std_data(&input_pool);
1119 	init_std_data(&blocking_pool);
1120 	init_std_data(&nonblocking_pool);
1121 	return 0;
1122 }
1123 module_init(rand_initialize);
1124 
1125 #ifdef CONFIG_BLOCK
rand_initialize_disk(struct gendisk * disk)1126 void rand_initialize_disk(struct gendisk *disk)
1127 {
1128 	struct timer_rand_state *state;
1129 
1130 	/*
1131 	 * If kzalloc returns null, we just won't use that entropy
1132 	 * source.
1133 	 */
1134 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1135 	if (state)
1136 		disk->random = state;
1137 }
1138 #endif
1139 
1140 static ssize_t
random_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1141 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1142 {
1143 	ssize_t n, retval = 0, count = 0;
1144 
1145 	if (nbytes == 0)
1146 		return 0;
1147 
1148 	while (nbytes > 0) {
1149 		n = nbytes;
1150 		if (n > SEC_XFER_SIZE)
1151 			n = SEC_XFER_SIZE;
1152 
1153 		DEBUG_ENT("reading %d bits\n", n*8);
1154 
1155 		n = extract_entropy_user(&blocking_pool, buf, n);
1156 
1157 		DEBUG_ENT("read got %d bits (%d still needed)\n",
1158 			  n*8, (nbytes-n)*8);
1159 
1160 		if (n == 0) {
1161 			if (file->f_flags & O_NONBLOCK) {
1162 				retval = -EAGAIN;
1163 				break;
1164 			}
1165 
1166 			DEBUG_ENT("sleeping?\n");
1167 
1168 			wait_event_interruptible(random_read_wait,
1169 				input_pool.entropy_count >=
1170 						 random_read_wakeup_thresh);
1171 
1172 			DEBUG_ENT("awake\n");
1173 
1174 			if (signal_pending(current)) {
1175 				retval = -ERESTARTSYS;
1176 				break;
1177 			}
1178 
1179 			continue;
1180 		}
1181 
1182 		if (n < 0) {
1183 			retval = n;
1184 			break;
1185 		}
1186 		count += n;
1187 		buf += n;
1188 		nbytes -= n;
1189 		break;		/* This break makes the device work */
1190 				/* like a named pipe */
1191 	}
1192 
1193 	return (count ? count : retval);
1194 }
1195 
1196 static ssize_t
urandom_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1197 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1198 {
1199 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1200 }
1201 
1202 static unsigned int
random_poll(struct file * file,poll_table * wait)1203 random_poll(struct file *file, poll_table * wait)
1204 {
1205 	unsigned int mask;
1206 
1207 	poll_wait(file, &random_read_wait, wait);
1208 	poll_wait(file, &random_write_wait, wait);
1209 	mask = 0;
1210 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1211 		mask |= POLLIN | POLLRDNORM;
1212 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1213 		mask |= POLLOUT | POLLWRNORM;
1214 	return mask;
1215 }
1216 
1217 static int
write_pool(struct entropy_store * r,const char __user * buffer,size_t count)1218 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1219 {
1220 	size_t bytes;
1221 	__u32 buf[16];
1222 	const char __user *p = buffer;
1223 
1224 	while (count > 0) {
1225 		bytes = min(count, sizeof(buf));
1226 		if (copy_from_user(&buf, p, bytes))
1227 			return -EFAULT;
1228 
1229 		count -= bytes;
1230 		p += bytes;
1231 
1232 		mix_pool_bytes(r, buf, bytes, NULL);
1233 		cond_resched();
1234 	}
1235 
1236 	return 0;
1237 }
1238 
random_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)1239 static ssize_t random_write(struct file *file, const char __user *buffer,
1240 			    size_t count, loff_t *ppos)
1241 {
1242 	size_t ret;
1243 
1244 	ret = write_pool(&blocking_pool, buffer, count);
1245 	if (ret)
1246 		return ret;
1247 	ret = write_pool(&nonblocking_pool, buffer, count);
1248 	if (ret)
1249 		return ret;
1250 
1251 	return (ssize_t)count;
1252 }
1253 
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1254 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1255 {
1256 	int size, ent_count;
1257 	int __user *p = (int __user *)arg;
1258 	int retval;
1259 
1260 	switch (cmd) {
1261 	case RNDGETENTCNT:
1262 		/* inherently racy, no point locking */
1263 		if (put_user(input_pool.entropy_count, p))
1264 			return -EFAULT;
1265 		return 0;
1266 	case RNDADDTOENTCNT:
1267 		if (!capable(CAP_SYS_ADMIN))
1268 			return -EPERM;
1269 		if (get_user(ent_count, p))
1270 			return -EFAULT;
1271 		credit_entropy_bits(&input_pool, ent_count);
1272 		return 0;
1273 	case RNDADDENTROPY:
1274 		if (!capable(CAP_SYS_ADMIN))
1275 			return -EPERM;
1276 		if (get_user(ent_count, p++))
1277 			return -EFAULT;
1278 		if (ent_count < 0)
1279 			return -EINVAL;
1280 		if (get_user(size, p++))
1281 			return -EFAULT;
1282 		retval = write_pool(&input_pool, (const char __user *)p,
1283 				    size);
1284 		if (retval < 0)
1285 			return retval;
1286 		credit_entropy_bits(&input_pool, ent_count);
1287 		return 0;
1288 	case RNDZAPENTCNT:
1289 	case RNDCLEARPOOL:
1290 		/* Clear the entropy pool counters. */
1291 		if (!capable(CAP_SYS_ADMIN))
1292 			return -EPERM;
1293 		rand_initialize();
1294 		return 0;
1295 	default:
1296 		return -EINVAL;
1297 	}
1298 }
1299 
random_fasync(int fd,struct file * filp,int on)1300 static int random_fasync(int fd, struct file *filp, int on)
1301 {
1302 	return fasync_helper(fd, filp, on, &fasync);
1303 }
1304 
1305 const struct file_operations random_fops = {
1306 	.read  = random_read,
1307 	.write = random_write,
1308 	.poll  = random_poll,
1309 	.unlocked_ioctl = random_ioctl,
1310 	.fasync = random_fasync,
1311 	.llseek = noop_llseek,
1312 };
1313 
1314 const struct file_operations urandom_fops = {
1315 	.read  = urandom_read,
1316 	.write = random_write,
1317 	.unlocked_ioctl = random_ioctl,
1318 	.fasync = random_fasync,
1319 	.llseek = noop_llseek,
1320 };
1321 
1322 /***************************************************************
1323  * Random UUID interface
1324  *
1325  * Used here for a Boot ID, but can be useful for other kernel
1326  * drivers.
1327  ***************************************************************/
1328 
1329 /*
1330  * Generate random UUID
1331  */
generate_random_uuid(unsigned char uuid_out[16])1332 void generate_random_uuid(unsigned char uuid_out[16])
1333 {
1334 	get_random_bytes(uuid_out, 16);
1335 	/* Set UUID version to 4 --- truly random generation */
1336 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1337 	/* Set the UUID variant to DCE */
1338 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1339 }
1340 EXPORT_SYMBOL(generate_random_uuid);
1341 
1342 /********************************************************************
1343  *
1344  * Sysctl interface
1345  *
1346  ********************************************************************/
1347 
1348 #ifdef CONFIG_SYSCTL
1349 
1350 #include <linux/sysctl.h>
1351 
1352 static int min_read_thresh = 8, min_write_thresh;
1353 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1354 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1355 static char sysctl_bootid[16];
1356 
1357 /*
1358  * These functions is used to return both the bootid UUID, and random
1359  * UUID.  The difference is in whether table->data is NULL; if it is,
1360  * then a new UUID is generated and returned to the user.
1361  *
1362  * If the user accesses this via the proc interface, it will be returned
1363  * as an ASCII string in the standard UUID format.  If accesses via the
1364  * sysctl system call, it is returned as 16 bytes of binary data.
1365  */
proc_do_uuid(ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1366 static int proc_do_uuid(ctl_table *table, int write,
1367 			void __user *buffer, size_t *lenp, loff_t *ppos)
1368 {
1369 	ctl_table fake_table;
1370 	unsigned char buf[64], tmp_uuid[16], *uuid;
1371 
1372 	uuid = table->data;
1373 	if (!uuid) {
1374 		uuid = tmp_uuid;
1375 		generate_random_uuid(uuid);
1376 	} else {
1377 		static DEFINE_SPINLOCK(bootid_spinlock);
1378 
1379 		spin_lock(&bootid_spinlock);
1380 		if (!uuid[8])
1381 			generate_random_uuid(uuid);
1382 		spin_unlock(&bootid_spinlock);
1383 	}
1384 
1385 	sprintf(buf, "%pU", uuid);
1386 
1387 	fake_table.data = buf;
1388 	fake_table.maxlen = sizeof(buf);
1389 
1390 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1391 }
1392 
1393 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1394 ctl_table random_table[] = {
1395 	{
1396 		.procname	= "poolsize",
1397 		.data		= &sysctl_poolsize,
1398 		.maxlen		= sizeof(int),
1399 		.mode		= 0444,
1400 		.proc_handler	= proc_dointvec,
1401 	},
1402 	{
1403 		.procname	= "entropy_avail",
1404 		.maxlen		= sizeof(int),
1405 		.mode		= 0444,
1406 		.proc_handler	= proc_dointvec,
1407 		.data		= &input_pool.entropy_count,
1408 	},
1409 	{
1410 		.procname	= "read_wakeup_threshold",
1411 		.data		= &random_read_wakeup_thresh,
1412 		.maxlen		= sizeof(int),
1413 		.mode		= 0644,
1414 		.proc_handler	= proc_dointvec_minmax,
1415 		.extra1		= &min_read_thresh,
1416 		.extra2		= &max_read_thresh,
1417 	},
1418 	{
1419 		.procname	= "write_wakeup_threshold",
1420 		.data		= &random_write_wakeup_thresh,
1421 		.maxlen		= sizeof(int),
1422 		.mode		= 0644,
1423 		.proc_handler	= proc_dointvec_minmax,
1424 		.extra1		= &min_write_thresh,
1425 		.extra2		= &max_write_thresh,
1426 	},
1427 	{
1428 		.procname	= "boot_id",
1429 		.data		= &sysctl_bootid,
1430 		.maxlen		= 16,
1431 		.mode		= 0444,
1432 		.proc_handler	= proc_do_uuid,
1433 	},
1434 	{
1435 		.procname	= "uuid",
1436 		.maxlen		= 16,
1437 		.mode		= 0444,
1438 		.proc_handler	= proc_do_uuid,
1439 	},
1440 	{ }
1441 };
1442 #endif 	/* CONFIG_SYSCTL */
1443 
1444 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1445 
random_int_secret_init(void)1446 int random_int_secret_init(void)
1447 {
1448 	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1449 	return 0;
1450 }
1451 
1452 /*
1453  * Get a random word for internal kernel use only. Similar to urandom but
1454  * with the goal of minimal entropy pool depletion. As a result, the random
1455  * value is not cryptographically secure but for several uses the cost of
1456  * depleting entropy is too high
1457  */
1458 DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
get_random_int(void)1459 unsigned int get_random_int(void)
1460 {
1461 	__u32 *hash;
1462 	unsigned int ret;
1463 
1464 	if (arch_get_random_int(&ret))
1465 		return ret;
1466 
1467 	hash = get_cpu_var(get_random_int_hash);
1468 
1469 	hash[0] += current->pid + jiffies + get_cycles();
1470 	md5_transform(hash, random_int_secret);
1471 	ret = hash[0];
1472 	put_cpu_var(get_random_int_hash);
1473 
1474 	return ret;
1475 }
1476 
1477 /*
1478  * randomize_range() returns a start address such that
1479  *
1480  *    [...... <range> .....]
1481  *  start                  end
1482  *
1483  * a <range> with size "len" starting at the return value is inside in the
1484  * area defined by [start, end], but is otherwise randomized.
1485  */
1486 unsigned long
randomize_range(unsigned long start,unsigned long end,unsigned long len)1487 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1488 {
1489 	unsigned long range = end - len - start;
1490 
1491 	if (end <= start + len)
1492 		return 0;
1493 	return PAGE_ALIGN(get_random_int() % range + start);
1494 }
1495