1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 *
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
10 */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
32 #include <linux/rcupdate.h>
33
34 #include <asm/cpu.h>
35 #include <asm/delay.h>
36 #include <asm/elf.h>
37 #include <asm/irq.h>
38 #include <asm/kexec.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sal.h>
42 #include <asm/switch_to.h>
43 #include <asm/tlbflush.h>
44 #include <asm/uaccess.h>
45 #include <asm/unwind.h>
46 #include <asm/user.h>
47
48 #include "entry.h"
49
50 #ifdef CONFIG_PERFMON
51 # include <asm/perfmon.h>
52 #endif
53
54 #include "sigframe.h"
55
56 void (*ia64_mark_idle)(int);
57
58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
59 EXPORT_SYMBOL(boot_option_idle_override);
60 void (*pm_idle) (void);
61 EXPORT_SYMBOL(pm_idle);
62 void (*pm_power_off) (void);
63 EXPORT_SYMBOL(pm_power_off);
64
65 void
ia64_do_show_stack(struct unw_frame_info * info,void * arg)66 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
67 {
68 unsigned long ip, sp, bsp;
69 char buf[128]; /* don't make it so big that it overflows the stack! */
70
71 printk("\nCall Trace:\n");
72 do {
73 unw_get_ip(info, &ip);
74 if (ip == 0)
75 break;
76
77 unw_get_sp(info, &sp);
78 unw_get_bsp(info, &bsp);
79 snprintf(buf, sizeof(buf),
80 " [<%016lx>] %%s\n"
81 " sp=%016lx bsp=%016lx\n",
82 ip, sp, bsp);
83 print_symbol(buf, ip);
84 } while (unw_unwind(info) >= 0);
85 }
86
87 void
show_stack(struct task_struct * task,unsigned long * sp)88 show_stack (struct task_struct *task, unsigned long *sp)
89 {
90 if (!task)
91 unw_init_running(ia64_do_show_stack, NULL);
92 else {
93 struct unw_frame_info info;
94
95 unw_init_from_blocked_task(&info, task);
96 ia64_do_show_stack(&info, NULL);
97 }
98 }
99
100 void
dump_stack(void)101 dump_stack (void)
102 {
103 show_stack(NULL, NULL);
104 }
105
106 EXPORT_SYMBOL(dump_stack);
107
108 void
show_regs(struct pt_regs * regs)109 show_regs (struct pt_regs *regs)
110 {
111 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
112
113 print_modules();
114 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
115 smp_processor_id(), current->comm);
116 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
117 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
118 init_utsname()->release);
119 print_symbol("ip is at %s\n", ip);
120 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
121 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
122 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
123 regs->ar_rnat, regs->ar_bspstore, regs->pr);
124 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
125 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
126 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
127 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
128 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
129 regs->f6.u.bits[1], regs->f6.u.bits[0],
130 regs->f7.u.bits[1], regs->f7.u.bits[0]);
131 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
132 regs->f8.u.bits[1], regs->f8.u.bits[0],
133 regs->f9.u.bits[1], regs->f9.u.bits[0]);
134 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
135 regs->f10.u.bits[1], regs->f10.u.bits[0],
136 regs->f11.u.bits[1], regs->f11.u.bits[0]);
137
138 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
139 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
140 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
141 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
142 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
143 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
144 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
145 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
146 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
147
148 if (user_mode(regs)) {
149 /* print the stacked registers */
150 unsigned long val, *bsp, ndirty;
151 int i, sof, is_nat = 0;
152
153 sof = regs->cr_ifs & 0x7f; /* size of frame */
154 ndirty = (regs->loadrs >> 19);
155 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
156 for (i = 0; i < sof; ++i) {
157 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
158 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
159 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
160 }
161 } else
162 show_stack(NULL, NULL);
163 }
164
165 /* local support for deprecated console_print */
166 void
console_print(const char * s)167 console_print(const char *s)
168 {
169 printk(KERN_EMERG "%s", s);
170 }
171
172 void
do_notify_resume_user(sigset_t * unused,struct sigscratch * scr,long in_syscall)173 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
174 {
175 if (fsys_mode(current, &scr->pt)) {
176 /*
177 * defer signal-handling etc. until we return to
178 * privilege-level 0.
179 */
180 if (!ia64_psr(&scr->pt)->lp)
181 ia64_psr(&scr->pt)->lp = 1;
182 return;
183 }
184
185 #ifdef CONFIG_PERFMON
186 if (current->thread.pfm_needs_checking)
187 /*
188 * Note: pfm_handle_work() allow us to call it with interrupts
189 * disabled, and may enable interrupts within the function.
190 */
191 pfm_handle_work();
192 #endif
193
194 /* deal with pending signal delivery */
195 if (test_thread_flag(TIF_SIGPENDING)) {
196 local_irq_enable(); /* force interrupt enable */
197 ia64_do_signal(scr, in_syscall);
198 }
199
200 if (test_thread_flag(TIF_NOTIFY_RESUME)) {
201 clear_thread_flag(TIF_NOTIFY_RESUME);
202 tracehook_notify_resume(&scr->pt);
203 if (current->replacement_session_keyring)
204 key_replace_session_keyring();
205 }
206
207 /* copy user rbs to kernel rbs */
208 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
209 local_irq_enable(); /* force interrupt enable */
210 ia64_sync_krbs();
211 }
212
213 local_irq_disable(); /* force interrupt disable */
214 }
215
216 static int pal_halt = 1;
217 static int can_do_pal_halt = 1;
218
nohalt_setup(char * str)219 static int __init nohalt_setup(char * str)
220 {
221 pal_halt = can_do_pal_halt = 0;
222 return 1;
223 }
224 __setup("nohalt", nohalt_setup);
225
226 void
update_pal_halt_status(int status)227 update_pal_halt_status(int status)
228 {
229 can_do_pal_halt = pal_halt && status;
230 }
231
232 /*
233 * We use this if we don't have any better idle routine..
234 */
235 void
default_idle(void)236 default_idle (void)
237 {
238 local_irq_enable();
239 while (!need_resched()) {
240 if (can_do_pal_halt) {
241 local_irq_disable();
242 if (!need_resched()) {
243 safe_halt();
244 }
245 local_irq_enable();
246 } else
247 cpu_relax();
248 }
249 }
250
251 #ifdef CONFIG_HOTPLUG_CPU
252 /* We don't actually take CPU down, just spin without interrupts. */
play_dead(void)253 static inline void play_dead(void)
254 {
255 unsigned int this_cpu = smp_processor_id();
256
257 /* Ack it */
258 __get_cpu_var(cpu_state) = CPU_DEAD;
259
260 max_xtp();
261 local_irq_disable();
262 idle_task_exit();
263 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
264 /*
265 * The above is a point of no-return, the processor is
266 * expected to be in SAL loop now.
267 */
268 BUG();
269 }
270 #else
play_dead(void)271 static inline void play_dead(void)
272 {
273 BUG();
274 }
275 #endif /* CONFIG_HOTPLUG_CPU */
276
do_nothing(void * unused)277 static void do_nothing(void *unused)
278 {
279 }
280
281 /*
282 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
283 * pm_idle and update to new pm_idle value. Required while changing pm_idle
284 * handler on SMP systems.
285 *
286 * Caller must have changed pm_idle to the new value before the call. Old
287 * pm_idle value will not be used by any CPU after the return of this function.
288 */
cpu_idle_wait(void)289 void cpu_idle_wait(void)
290 {
291 smp_mb();
292 /* kick all the CPUs so that they exit out of pm_idle */
293 smp_call_function(do_nothing, NULL, 1);
294 }
295 EXPORT_SYMBOL_GPL(cpu_idle_wait);
296
297 void __attribute__((noreturn))
cpu_idle(void)298 cpu_idle (void)
299 {
300 void (*mark_idle)(int) = ia64_mark_idle;
301 int cpu = smp_processor_id();
302
303 /* endless idle loop with no priority at all */
304 while (1) {
305 rcu_idle_enter();
306 if (can_do_pal_halt) {
307 current_thread_info()->status &= ~TS_POLLING;
308 /*
309 * TS_POLLING-cleared state must be visible before we
310 * test NEED_RESCHED:
311 */
312 smp_mb();
313 } else {
314 current_thread_info()->status |= TS_POLLING;
315 }
316
317 if (!need_resched()) {
318 void (*idle)(void);
319 #ifdef CONFIG_SMP
320 min_xtp();
321 #endif
322 rmb();
323 if (mark_idle)
324 (*mark_idle)(1);
325
326 idle = pm_idle;
327 if (!idle)
328 idle = default_idle;
329 (*idle)();
330 if (mark_idle)
331 (*mark_idle)(0);
332 #ifdef CONFIG_SMP
333 normal_xtp();
334 #endif
335 }
336 rcu_idle_exit();
337 schedule_preempt_disabled();
338 check_pgt_cache();
339 if (cpu_is_offline(cpu))
340 play_dead();
341 }
342 }
343
344 void
ia64_save_extra(struct task_struct * task)345 ia64_save_extra (struct task_struct *task)
346 {
347 #ifdef CONFIG_PERFMON
348 unsigned long info;
349 #endif
350
351 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
352 ia64_save_debug_regs(&task->thread.dbr[0]);
353
354 #ifdef CONFIG_PERFMON
355 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
356 pfm_save_regs(task);
357
358 info = __get_cpu_var(pfm_syst_info);
359 if (info & PFM_CPUINFO_SYST_WIDE)
360 pfm_syst_wide_update_task(task, info, 0);
361 #endif
362 }
363
364 void
ia64_load_extra(struct task_struct * task)365 ia64_load_extra (struct task_struct *task)
366 {
367 #ifdef CONFIG_PERFMON
368 unsigned long info;
369 #endif
370
371 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
372 ia64_load_debug_regs(&task->thread.dbr[0]);
373
374 #ifdef CONFIG_PERFMON
375 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
376 pfm_load_regs(task);
377
378 info = __get_cpu_var(pfm_syst_info);
379 if (info & PFM_CPUINFO_SYST_WIDE)
380 pfm_syst_wide_update_task(task, info, 1);
381 #endif
382 }
383
384 /*
385 * Copy the state of an ia-64 thread.
386 *
387 * We get here through the following call chain:
388 *
389 * from user-level: from kernel:
390 *
391 * <clone syscall> <some kernel call frames>
392 * sys_clone :
393 * do_fork do_fork
394 * copy_thread copy_thread
395 *
396 * This means that the stack layout is as follows:
397 *
398 * +---------------------+ (highest addr)
399 * | struct pt_regs |
400 * +---------------------+
401 * | struct switch_stack |
402 * +---------------------+
403 * | |
404 * | memory stack |
405 * | | <-- sp (lowest addr)
406 * +---------------------+
407 *
408 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
409 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
410 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
411 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
412 * the stack is page aligned and the page size is at least 4KB, this is always the case,
413 * so there is nothing to worry about.
414 */
415 int
copy_thread(unsigned long clone_flags,unsigned long user_stack_base,unsigned long user_stack_size,struct task_struct * p,struct pt_regs * regs)416 copy_thread(unsigned long clone_flags,
417 unsigned long user_stack_base, unsigned long user_stack_size,
418 struct task_struct *p, struct pt_regs *regs)
419 {
420 extern char ia64_ret_from_clone;
421 struct switch_stack *child_stack, *stack;
422 unsigned long rbs, child_rbs, rbs_size;
423 struct pt_regs *child_ptregs;
424 int retval = 0;
425
426 #ifdef CONFIG_SMP
427 /*
428 * For SMP idle threads, fork_by_hand() calls do_fork with
429 * NULL regs.
430 */
431 if (!regs)
432 return 0;
433 #endif
434
435 stack = ((struct switch_stack *) regs) - 1;
436
437 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
438 child_stack = (struct switch_stack *) child_ptregs - 1;
439
440 /* copy parent's switch_stack & pt_regs to child: */
441 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
442
443 rbs = (unsigned long) current + IA64_RBS_OFFSET;
444 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
445 rbs_size = stack->ar_bspstore - rbs;
446
447 /* copy the parent's register backing store to the child: */
448 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
449
450 if (likely(user_mode(child_ptregs))) {
451 if (clone_flags & CLONE_SETTLS)
452 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
453 if (user_stack_base) {
454 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
455 child_ptregs->ar_bspstore = user_stack_base;
456 child_ptregs->ar_rnat = 0;
457 child_ptregs->loadrs = 0;
458 }
459 } else {
460 /*
461 * Note: we simply preserve the relative position of
462 * the stack pointer here. There is no need to
463 * allocate a scratch area here, since that will have
464 * been taken care of by the caller of sys_clone()
465 * already.
466 */
467 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
468 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
469 }
470 child_stack->ar_bspstore = child_rbs + rbs_size;
471 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
472
473 /* copy parts of thread_struct: */
474 p->thread.ksp = (unsigned long) child_stack - 16;
475
476 /* stop some PSR bits from being inherited.
477 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
478 * therefore we must specify them explicitly here and not include them in
479 * IA64_PSR_BITS_TO_CLEAR.
480 */
481 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
482 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
483
484 /*
485 * NOTE: The calling convention considers all floating point
486 * registers in the high partition (fph) to be scratch. Since
487 * the only way to get to this point is through a system call,
488 * we know that the values in fph are all dead. Hence, there
489 * is no need to inherit the fph state from the parent to the
490 * child and all we have to do is to make sure that
491 * IA64_THREAD_FPH_VALID is cleared in the child.
492 *
493 * XXX We could push this optimization a bit further by
494 * clearing IA64_THREAD_FPH_VALID on ANY system call.
495 * However, it's not clear this is worth doing. Also, it
496 * would be a slight deviation from the normal Linux system
497 * call behavior where scratch registers are preserved across
498 * system calls (unless used by the system call itself).
499 */
500 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
501 | IA64_THREAD_PM_VALID)
502 # define THREAD_FLAGS_TO_SET 0
503 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
504 | THREAD_FLAGS_TO_SET);
505 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
506
507 #ifdef CONFIG_PERFMON
508 if (current->thread.pfm_context)
509 pfm_inherit(p, child_ptregs);
510 #endif
511 return retval;
512 }
513
514 static void
do_copy_task_regs(struct task_struct * task,struct unw_frame_info * info,void * arg)515 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
516 {
517 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
518 unsigned long uninitialized_var(ip); /* GCC be quiet */
519 elf_greg_t *dst = arg;
520 struct pt_regs *pt;
521 char nat;
522 int i;
523
524 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
525
526 if (unw_unwind_to_user(info) < 0)
527 return;
528
529 unw_get_sp(info, &sp);
530 pt = (struct pt_regs *) (sp + 16);
531
532 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
533
534 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
535 return;
536
537 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
538 &ar_rnat);
539
540 /*
541 * coredump format:
542 * r0-r31
543 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
544 * predicate registers (p0-p63)
545 * b0-b7
546 * ip cfm user-mask
547 * ar.rsc ar.bsp ar.bspstore ar.rnat
548 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
549 */
550
551 /* r0 is zero */
552 for (i = 1, mask = (1UL << i); i < 32; ++i) {
553 unw_get_gr(info, i, &dst[i], &nat);
554 if (nat)
555 nat_bits |= mask;
556 mask <<= 1;
557 }
558 dst[32] = nat_bits;
559 unw_get_pr(info, &dst[33]);
560
561 for (i = 0; i < 8; ++i)
562 unw_get_br(info, i, &dst[34 + i]);
563
564 unw_get_rp(info, &ip);
565 dst[42] = ip + ia64_psr(pt)->ri;
566 dst[43] = cfm;
567 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
568
569 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
570 /*
571 * For bsp and bspstore, unw_get_ar() would return the kernel
572 * addresses, but we need the user-level addresses instead:
573 */
574 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
575 dst[47] = pt->ar_bspstore;
576 dst[48] = ar_rnat;
577 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
578 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
579 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
580 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
581 unw_get_ar(info, UNW_AR_LC, &dst[53]);
582 unw_get_ar(info, UNW_AR_EC, &dst[54]);
583 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
584 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
585 }
586
587 void
do_dump_task_fpu(struct task_struct * task,struct unw_frame_info * info,void * arg)588 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
589 {
590 elf_fpreg_t *dst = arg;
591 int i;
592
593 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
594
595 if (unw_unwind_to_user(info) < 0)
596 return;
597
598 /* f0 is 0.0, f1 is 1.0 */
599
600 for (i = 2; i < 32; ++i)
601 unw_get_fr(info, i, dst + i);
602
603 ia64_flush_fph(task);
604 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
605 memcpy(dst + 32, task->thread.fph, 96*16);
606 }
607
608 void
do_copy_regs(struct unw_frame_info * info,void * arg)609 do_copy_regs (struct unw_frame_info *info, void *arg)
610 {
611 do_copy_task_regs(current, info, arg);
612 }
613
614 void
do_dump_fpu(struct unw_frame_info * info,void * arg)615 do_dump_fpu (struct unw_frame_info *info, void *arg)
616 {
617 do_dump_task_fpu(current, info, arg);
618 }
619
620 void
ia64_elf_core_copy_regs(struct pt_regs * pt,elf_gregset_t dst)621 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
622 {
623 unw_init_running(do_copy_regs, dst);
624 }
625
626 int
dump_fpu(struct pt_regs * pt,elf_fpregset_t dst)627 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
628 {
629 unw_init_running(do_dump_fpu, dst);
630 return 1; /* f0-f31 are always valid so we always return 1 */
631 }
632
633 long
sys_execve(const char __user * filename,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)634 sys_execve (const char __user *filename,
635 const char __user *const __user *argv,
636 const char __user *const __user *envp,
637 struct pt_regs *regs)
638 {
639 char *fname;
640 int error;
641
642 fname = getname(filename);
643 error = PTR_ERR(fname);
644 if (IS_ERR(fname))
645 goto out;
646 error = do_execve(fname, argv, envp, regs);
647 putname(fname);
648 out:
649 return error;
650 }
651
652 pid_t
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)653 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
654 {
655 extern void start_kernel_thread (void);
656 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
657 struct {
658 struct switch_stack sw;
659 struct pt_regs pt;
660 } regs;
661
662 memset(®s, 0, sizeof(regs));
663 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
664 regs.pt.r1 = helper_fptr[1]; /* set GP */
665 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
666 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
667 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
668 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
669 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
670 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
671 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
672 regs.sw.pr = (1 << PRED_KERNEL_STACK);
673 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL);
674 }
675 EXPORT_SYMBOL(kernel_thread);
676
677 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
678 int
kernel_thread_helper(int (* fn)(void *),void * arg)679 kernel_thread_helper (int (*fn)(void *), void *arg)
680 {
681 return (*fn)(arg);
682 }
683
684 /*
685 * Flush thread state. This is called when a thread does an execve().
686 */
687 void
flush_thread(void)688 flush_thread (void)
689 {
690 /* drop floating-point and debug-register state if it exists: */
691 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
692 ia64_drop_fpu(current);
693 }
694
695 /*
696 * Clean up state associated with current thread. This is called when
697 * the thread calls exit().
698 */
699 void
exit_thread(void)700 exit_thread (void)
701 {
702
703 ia64_drop_fpu(current);
704 #ifdef CONFIG_PERFMON
705 /* if needed, stop monitoring and flush state to perfmon context */
706 if (current->thread.pfm_context)
707 pfm_exit_thread(current);
708
709 /* free debug register resources */
710 if (current->thread.flags & IA64_THREAD_DBG_VALID)
711 pfm_release_debug_registers(current);
712 #endif
713 }
714
715 unsigned long
get_wchan(struct task_struct * p)716 get_wchan (struct task_struct *p)
717 {
718 struct unw_frame_info info;
719 unsigned long ip;
720 int count = 0;
721
722 if (!p || p == current || p->state == TASK_RUNNING)
723 return 0;
724
725 /*
726 * Note: p may not be a blocked task (it could be current or
727 * another process running on some other CPU. Rather than
728 * trying to determine if p is really blocked, we just assume
729 * it's blocked and rely on the unwind routines to fail
730 * gracefully if the process wasn't really blocked after all.
731 * --davidm 99/12/15
732 */
733 unw_init_from_blocked_task(&info, p);
734 do {
735 if (p->state == TASK_RUNNING)
736 return 0;
737 if (unw_unwind(&info) < 0)
738 return 0;
739 unw_get_ip(&info, &ip);
740 if (!in_sched_functions(ip))
741 return ip;
742 } while (count++ < 16);
743 return 0;
744 }
745
746 void
cpu_halt(void)747 cpu_halt (void)
748 {
749 pal_power_mgmt_info_u_t power_info[8];
750 unsigned long min_power;
751 int i, min_power_state;
752
753 if (ia64_pal_halt_info(power_info) != 0)
754 return;
755
756 min_power_state = 0;
757 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
758 for (i = 1; i < 8; ++i)
759 if (power_info[i].pal_power_mgmt_info_s.im
760 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
761 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
762 min_power_state = i;
763 }
764
765 while (1)
766 ia64_pal_halt(min_power_state);
767 }
768
machine_shutdown(void)769 void machine_shutdown(void)
770 {
771 #ifdef CONFIG_HOTPLUG_CPU
772 int cpu;
773
774 for_each_online_cpu(cpu) {
775 if (cpu != smp_processor_id())
776 cpu_down(cpu);
777 }
778 #endif
779 #ifdef CONFIG_KEXEC
780 kexec_disable_iosapic();
781 #endif
782 }
783
784 void
machine_restart(char * restart_cmd)785 machine_restart (char *restart_cmd)
786 {
787 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
788 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
789 }
790
791 void
machine_halt(void)792 machine_halt (void)
793 {
794 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
795 cpu_halt();
796 }
797
798 void
machine_power_off(void)799 machine_power_off (void)
800 {
801 if (pm_power_off)
802 pm_power_off();
803 machine_halt();
804 }
805
806