1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
7  *
8  * 2005-10-07 Keith Owens <kaos@sgi.com>
9  *	      Add notify_die() hooks.
10  */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
32 #include <linux/rcupdate.h>
33 
34 #include <asm/cpu.h>
35 #include <asm/delay.h>
36 #include <asm/elf.h>
37 #include <asm/irq.h>
38 #include <asm/kexec.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sal.h>
42 #include <asm/switch_to.h>
43 #include <asm/tlbflush.h>
44 #include <asm/uaccess.h>
45 #include <asm/unwind.h>
46 #include <asm/user.h>
47 
48 #include "entry.h"
49 
50 #ifdef CONFIG_PERFMON
51 # include <asm/perfmon.h>
52 #endif
53 
54 #include "sigframe.h"
55 
56 void (*ia64_mark_idle)(int);
57 
58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
59 EXPORT_SYMBOL(boot_option_idle_override);
60 void (*pm_idle) (void);
61 EXPORT_SYMBOL(pm_idle);
62 void (*pm_power_off) (void);
63 EXPORT_SYMBOL(pm_power_off);
64 
65 void
ia64_do_show_stack(struct unw_frame_info * info,void * arg)66 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
67 {
68 	unsigned long ip, sp, bsp;
69 	char buf[128];			/* don't make it so big that it overflows the stack! */
70 
71 	printk("\nCall Trace:\n");
72 	do {
73 		unw_get_ip(info, &ip);
74 		if (ip == 0)
75 			break;
76 
77 		unw_get_sp(info, &sp);
78 		unw_get_bsp(info, &bsp);
79 		snprintf(buf, sizeof(buf),
80 			 " [<%016lx>] %%s\n"
81 			 "                                sp=%016lx bsp=%016lx\n",
82 			 ip, sp, bsp);
83 		print_symbol(buf, ip);
84 	} while (unw_unwind(info) >= 0);
85 }
86 
87 void
show_stack(struct task_struct * task,unsigned long * sp)88 show_stack (struct task_struct *task, unsigned long *sp)
89 {
90 	if (!task)
91 		unw_init_running(ia64_do_show_stack, NULL);
92 	else {
93 		struct unw_frame_info info;
94 
95 		unw_init_from_blocked_task(&info, task);
96 		ia64_do_show_stack(&info, NULL);
97 	}
98 }
99 
100 void
dump_stack(void)101 dump_stack (void)
102 {
103 	show_stack(NULL, NULL);
104 }
105 
106 EXPORT_SYMBOL(dump_stack);
107 
108 void
show_regs(struct pt_regs * regs)109 show_regs (struct pt_regs *regs)
110 {
111 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
112 
113 	print_modules();
114 	printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
115 			smp_processor_id(), current->comm);
116 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
117 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
118 	       init_utsname()->release);
119 	print_symbol("ip is at %s\n", ip);
120 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
121 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
122 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
123 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
124 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
125 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
126 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
127 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
128 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
129 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
130 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
131 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
132 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
133 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
134 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
135 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
136 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
137 
138 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
139 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
140 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
141 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
142 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
143 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
144 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
145 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
146 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
147 
148 	if (user_mode(regs)) {
149 		/* print the stacked registers */
150 		unsigned long val, *bsp, ndirty;
151 		int i, sof, is_nat = 0;
152 
153 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
154 		ndirty = (regs->loadrs >> 19);
155 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
156 		for (i = 0; i < sof; ++i) {
157 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
158 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
159 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
160 		}
161 	} else
162 		show_stack(NULL, NULL);
163 }
164 
165 /* local support for deprecated console_print */
166 void
console_print(const char * s)167 console_print(const char *s)
168 {
169 	printk(KERN_EMERG "%s", s);
170 }
171 
172 void
do_notify_resume_user(sigset_t * unused,struct sigscratch * scr,long in_syscall)173 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
174 {
175 	if (fsys_mode(current, &scr->pt)) {
176 		/*
177 		 * defer signal-handling etc. until we return to
178 		 * privilege-level 0.
179 		 */
180 		if (!ia64_psr(&scr->pt)->lp)
181 			ia64_psr(&scr->pt)->lp = 1;
182 		return;
183 	}
184 
185 #ifdef CONFIG_PERFMON
186 	if (current->thread.pfm_needs_checking)
187 		/*
188 		 * Note: pfm_handle_work() allow us to call it with interrupts
189 		 * disabled, and may enable interrupts within the function.
190 		 */
191 		pfm_handle_work();
192 #endif
193 
194 	/* deal with pending signal delivery */
195 	if (test_thread_flag(TIF_SIGPENDING)) {
196 		local_irq_enable();	/* force interrupt enable */
197 		ia64_do_signal(scr, in_syscall);
198 	}
199 
200 	if (test_thread_flag(TIF_NOTIFY_RESUME)) {
201 		clear_thread_flag(TIF_NOTIFY_RESUME);
202 		tracehook_notify_resume(&scr->pt);
203 		if (current->replacement_session_keyring)
204 			key_replace_session_keyring();
205 	}
206 
207 	/* copy user rbs to kernel rbs */
208 	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
209 		local_irq_enable();	/* force interrupt enable */
210 		ia64_sync_krbs();
211 	}
212 
213 	local_irq_disable();	/* force interrupt disable */
214 }
215 
216 static int pal_halt        = 1;
217 static int can_do_pal_halt = 1;
218 
nohalt_setup(char * str)219 static int __init nohalt_setup(char * str)
220 {
221 	pal_halt = can_do_pal_halt = 0;
222 	return 1;
223 }
224 __setup("nohalt", nohalt_setup);
225 
226 void
update_pal_halt_status(int status)227 update_pal_halt_status(int status)
228 {
229 	can_do_pal_halt = pal_halt && status;
230 }
231 
232 /*
233  * We use this if we don't have any better idle routine..
234  */
235 void
default_idle(void)236 default_idle (void)
237 {
238 	local_irq_enable();
239 	while (!need_resched()) {
240 		if (can_do_pal_halt) {
241 			local_irq_disable();
242 			if (!need_resched()) {
243 				safe_halt();
244 			}
245 			local_irq_enable();
246 		} else
247 			cpu_relax();
248 	}
249 }
250 
251 #ifdef CONFIG_HOTPLUG_CPU
252 /* We don't actually take CPU down, just spin without interrupts. */
play_dead(void)253 static inline void play_dead(void)
254 {
255 	unsigned int this_cpu = smp_processor_id();
256 
257 	/* Ack it */
258 	__get_cpu_var(cpu_state) = CPU_DEAD;
259 
260 	max_xtp();
261 	local_irq_disable();
262 	idle_task_exit();
263 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
264 	/*
265 	 * The above is a point of no-return, the processor is
266 	 * expected to be in SAL loop now.
267 	 */
268 	BUG();
269 }
270 #else
play_dead(void)271 static inline void play_dead(void)
272 {
273 	BUG();
274 }
275 #endif /* CONFIG_HOTPLUG_CPU */
276 
do_nothing(void * unused)277 static void do_nothing(void *unused)
278 {
279 }
280 
281 /*
282  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
283  * pm_idle and update to new pm_idle value. Required while changing pm_idle
284  * handler on SMP systems.
285  *
286  * Caller must have changed pm_idle to the new value before the call. Old
287  * pm_idle value will not be used by any CPU after the return of this function.
288  */
cpu_idle_wait(void)289 void cpu_idle_wait(void)
290 {
291 	smp_mb();
292 	/* kick all the CPUs so that they exit out of pm_idle */
293 	smp_call_function(do_nothing, NULL, 1);
294 }
295 EXPORT_SYMBOL_GPL(cpu_idle_wait);
296 
297 void __attribute__((noreturn))
cpu_idle(void)298 cpu_idle (void)
299 {
300 	void (*mark_idle)(int) = ia64_mark_idle;
301   	int cpu = smp_processor_id();
302 
303 	/* endless idle loop with no priority at all */
304 	while (1) {
305 		rcu_idle_enter();
306 		if (can_do_pal_halt) {
307 			current_thread_info()->status &= ~TS_POLLING;
308 			/*
309 			 * TS_POLLING-cleared state must be visible before we
310 			 * test NEED_RESCHED:
311 			 */
312 			smp_mb();
313 		} else {
314 			current_thread_info()->status |= TS_POLLING;
315 		}
316 
317 		if (!need_resched()) {
318 			void (*idle)(void);
319 #ifdef CONFIG_SMP
320 			min_xtp();
321 #endif
322 			rmb();
323 			if (mark_idle)
324 				(*mark_idle)(1);
325 
326 			idle = pm_idle;
327 			if (!idle)
328 				idle = default_idle;
329 			(*idle)();
330 			if (mark_idle)
331 				(*mark_idle)(0);
332 #ifdef CONFIG_SMP
333 			normal_xtp();
334 #endif
335 		}
336 		rcu_idle_exit();
337 		schedule_preempt_disabled();
338 		check_pgt_cache();
339 		if (cpu_is_offline(cpu))
340 			play_dead();
341 	}
342 }
343 
344 void
ia64_save_extra(struct task_struct * task)345 ia64_save_extra (struct task_struct *task)
346 {
347 #ifdef CONFIG_PERFMON
348 	unsigned long info;
349 #endif
350 
351 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
352 		ia64_save_debug_regs(&task->thread.dbr[0]);
353 
354 #ifdef CONFIG_PERFMON
355 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
356 		pfm_save_regs(task);
357 
358 	info = __get_cpu_var(pfm_syst_info);
359 	if (info & PFM_CPUINFO_SYST_WIDE)
360 		pfm_syst_wide_update_task(task, info, 0);
361 #endif
362 }
363 
364 void
ia64_load_extra(struct task_struct * task)365 ia64_load_extra (struct task_struct *task)
366 {
367 #ifdef CONFIG_PERFMON
368 	unsigned long info;
369 #endif
370 
371 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
372 		ia64_load_debug_regs(&task->thread.dbr[0]);
373 
374 #ifdef CONFIG_PERFMON
375 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
376 		pfm_load_regs(task);
377 
378 	info = __get_cpu_var(pfm_syst_info);
379 	if (info & PFM_CPUINFO_SYST_WIDE)
380 		pfm_syst_wide_update_task(task, info, 1);
381 #endif
382 }
383 
384 /*
385  * Copy the state of an ia-64 thread.
386  *
387  * We get here through the following  call chain:
388  *
389  *	from user-level:	from kernel:
390  *
391  *	<clone syscall>	        <some kernel call frames>
392  *	sys_clone		   :
393  *	do_fork			do_fork
394  *	copy_thread		copy_thread
395  *
396  * This means that the stack layout is as follows:
397  *
398  *	+---------------------+ (highest addr)
399  *	|   struct pt_regs    |
400  *	+---------------------+
401  *	| struct switch_stack |
402  *	+---------------------+
403  *	|                     |
404  *	|    memory stack     |
405  *	|                     | <-- sp (lowest addr)
406  *	+---------------------+
407  *
408  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
409  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
410  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
411  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
412  * the stack is page aligned and the page size is at least 4KB, this is always the case,
413  * so there is nothing to worry about.
414  */
415 int
copy_thread(unsigned long clone_flags,unsigned long user_stack_base,unsigned long user_stack_size,struct task_struct * p,struct pt_regs * regs)416 copy_thread(unsigned long clone_flags,
417 	     unsigned long user_stack_base, unsigned long user_stack_size,
418 	     struct task_struct *p, struct pt_regs *regs)
419 {
420 	extern char ia64_ret_from_clone;
421 	struct switch_stack *child_stack, *stack;
422 	unsigned long rbs, child_rbs, rbs_size;
423 	struct pt_regs *child_ptregs;
424 	int retval = 0;
425 
426 #ifdef CONFIG_SMP
427 	/*
428 	 * For SMP idle threads, fork_by_hand() calls do_fork with
429 	 * NULL regs.
430 	 */
431 	if (!regs)
432 		return 0;
433 #endif
434 
435 	stack = ((struct switch_stack *) regs) - 1;
436 
437 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
438 	child_stack = (struct switch_stack *) child_ptregs - 1;
439 
440 	/* copy parent's switch_stack & pt_regs to child: */
441 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
442 
443 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
444 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
445 	rbs_size = stack->ar_bspstore - rbs;
446 
447 	/* copy the parent's register backing store to the child: */
448 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
449 
450 	if (likely(user_mode(child_ptregs))) {
451 		if (clone_flags & CLONE_SETTLS)
452 			child_ptregs->r13 = regs->r16;	/* see sys_clone2() in entry.S */
453 		if (user_stack_base) {
454 			child_ptregs->r12 = user_stack_base + user_stack_size - 16;
455 			child_ptregs->ar_bspstore = user_stack_base;
456 			child_ptregs->ar_rnat = 0;
457 			child_ptregs->loadrs = 0;
458 		}
459 	} else {
460 		/*
461 		 * Note: we simply preserve the relative position of
462 		 * the stack pointer here.  There is no need to
463 		 * allocate a scratch area here, since that will have
464 		 * been taken care of by the caller of sys_clone()
465 		 * already.
466 		 */
467 		child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
468 		child_ptregs->r13 = (unsigned long) p;		/* set `current' pointer */
469 	}
470 	child_stack->ar_bspstore = child_rbs + rbs_size;
471 	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
472 
473 	/* copy parts of thread_struct: */
474 	p->thread.ksp = (unsigned long) child_stack - 16;
475 
476 	/* stop some PSR bits from being inherited.
477 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
478 	 * therefore we must specify them explicitly here and not include them in
479 	 * IA64_PSR_BITS_TO_CLEAR.
480 	 */
481 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
482 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
483 
484 	/*
485 	 * NOTE: The calling convention considers all floating point
486 	 * registers in the high partition (fph) to be scratch.  Since
487 	 * the only way to get to this point is through a system call,
488 	 * we know that the values in fph are all dead.  Hence, there
489 	 * is no need to inherit the fph state from the parent to the
490 	 * child and all we have to do is to make sure that
491 	 * IA64_THREAD_FPH_VALID is cleared in the child.
492 	 *
493 	 * XXX We could push this optimization a bit further by
494 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
495 	 * However, it's not clear this is worth doing.  Also, it
496 	 * would be a slight deviation from the normal Linux system
497 	 * call behavior where scratch registers are preserved across
498 	 * system calls (unless used by the system call itself).
499 	 */
500 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
501 					 | IA64_THREAD_PM_VALID)
502 #	define THREAD_FLAGS_TO_SET	0
503 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
504 			   | THREAD_FLAGS_TO_SET);
505 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
506 
507 #ifdef CONFIG_PERFMON
508 	if (current->thread.pfm_context)
509 		pfm_inherit(p, child_ptregs);
510 #endif
511 	return retval;
512 }
513 
514 static void
do_copy_task_regs(struct task_struct * task,struct unw_frame_info * info,void * arg)515 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
516 {
517 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
518 	unsigned long uninitialized_var(ip);	/* GCC be quiet */
519 	elf_greg_t *dst = arg;
520 	struct pt_regs *pt;
521 	char nat;
522 	int i;
523 
524 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
525 
526 	if (unw_unwind_to_user(info) < 0)
527 		return;
528 
529 	unw_get_sp(info, &sp);
530 	pt = (struct pt_regs *) (sp + 16);
531 
532 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
533 
534 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
535 		return;
536 
537 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
538 		  &ar_rnat);
539 
540 	/*
541 	 * coredump format:
542 	 *	r0-r31
543 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
544 	 *	predicate registers (p0-p63)
545 	 *	b0-b7
546 	 *	ip cfm user-mask
547 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
548 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
549 	 */
550 
551 	/* r0 is zero */
552 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
553 		unw_get_gr(info, i, &dst[i], &nat);
554 		if (nat)
555 			nat_bits |= mask;
556 		mask <<= 1;
557 	}
558 	dst[32] = nat_bits;
559 	unw_get_pr(info, &dst[33]);
560 
561 	for (i = 0; i < 8; ++i)
562 		unw_get_br(info, i, &dst[34 + i]);
563 
564 	unw_get_rp(info, &ip);
565 	dst[42] = ip + ia64_psr(pt)->ri;
566 	dst[43] = cfm;
567 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
568 
569 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
570 	/*
571 	 * For bsp and bspstore, unw_get_ar() would return the kernel
572 	 * addresses, but we need the user-level addresses instead:
573 	 */
574 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
575 	dst[47] = pt->ar_bspstore;
576 	dst[48] = ar_rnat;
577 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
578 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
579 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
580 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
581 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
582 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
583 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
584 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
585 }
586 
587 void
do_dump_task_fpu(struct task_struct * task,struct unw_frame_info * info,void * arg)588 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
589 {
590 	elf_fpreg_t *dst = arg;
591 	int i;
592 
593 	memset(dst, 0, sizeof(elf_fpregset_t));	/* don't leak any "random" bits */
594 
595 	if (unw_unwind_to_user(info) < 0)
596 		return;
597 
598 	/* f0 is 0.0, f1 is 1.0 */
599 
600 	for (i = 2; i < 32; ++i)
601 		unw_get_fr(info, i, dst + i);
602 
603 	ia64_flush_fph(task);
604 	if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
605 		memcpy(dst + 32, task->thread.fph, 96*16);
606 }
607 
608 void
do_copy_regs(struct unw_frame_info * info,void * arg)609 do_copy_regs (struct unw_frame_info *info, void *arg)
610 {
611 	do_copy_task_regs(current, info, arg);
612 }
613 
614 void
do_dump_fpu(struct unw_frame_info * info,void * arg)615 do_dump_fpu (struct unw_frame_info *info, void *arg)
616 {
617 	do_dump_task_fpu(current, info, arg);
618 }
619 
620 void
ia64_elf_core_copy_regs(struct pt_regs * pt,elf_gregset_t dst)621 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
622 {
623 	unw_init_running(do_copy_regs, dst);
624 }
625 
626 int
dump_fpu(struct pt_regs * pt,elf_fpregset_t dst)627 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
628 {
629 	unw_init_running(do_dump_fpu, dst);
630 	return 1;	/* f0-f31 are always valid so we always return 1 */
631 }
632 
633 long
sys_execve(const char __user * filename,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)634 sys_execve (const char __user *filename,
635 	    const char __user *const __user *argv,
636 	    const char __user *const __user *envp,
637 	    struct pt_regs *regs)
638 {
639 	char *fname;
640 	int error;
641 
642 	fname = getname(filename);
643 	error = PTR_ERR(fname);
644 	if (IS_ERR(fname))
645 		goto out;
646 	error = do_execve(fname, argv, envp, regs);
647 	putname(fname);
648 out:
649 	return error;
650 }
651 
652 pid_t
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)653 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
654 {
655 	extern void start_kernel_thread (void);
656 	unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
657 	struct {
658 		struct switch_stack sw;
659 		struct pt_regs pt;
660 	} regs;
661 
662 	memset(&regs, 0, sizeof(regs));
663 	regs.pt.cr_iip = helper_fptr[0];	/* set entry point (IP) */
664 	regs.pt.r1 = helper_fptr[1];		/* set GP */
665 	regs.pt.r9 = (unsigned long) fn;	/* 1st argument */
666 	regs.pt.r11 = (unsigned long) arg;	/* 2nd argument */
667 	/* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read.  */
668 	regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
669 	regs.pt.cr_ifs = 1UL << 63;		/* mark as valid, empty frame */
670 	regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
671 	regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
672 	regs.sw.pr = (1 << PRED_KERNEL_STACK);
673 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
674 }
675 EXPORT_SYMBOL(kernel_thread);
676 
677 /* This gets called from kernel_thread() via ia64_invoke_thread_helper().  */
678 int
kernel_thread_helper(int (* fn)(void *),void * arg)679 kernel_thread_helper (int (*fn)(void *), void *arg)
680 {
681 	return (*fn)(arg);
682 }
683 
684 /*
685  * Flush thread state.  This is called when a thread does an execve().
686  */
687 void
flush_thread(void)688 flush_thread (void)
689 {
690 	/* drop floating-point and debug-register state if it exists: */
691 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
692 	ia64_drop_fpu(current);
693 }
694 
695 /*
696  * Clean up state associated with current thread.  This is called when
697  * the thread calls exit().
698  */
699 void
exit_thread(void)700 exit_thread (void)
701 {
702 
703 	ia64_drop_fpu(current);
704 #ifdef CONFIG_PERFMON
705        /* if needed, stop monitoring and flush state to perfmon context */
706 	if (current->thread.pfm_context)
707 		pfm_exit_thread(current);
708 
709 	/* free debug register resources */
710 	if (current->thread.flags & IA64_THREAD_DBG_VALID)
711 		pfm_release_debug_registers(current);
712 #endif
713 }
714 
715 unsigned long
get_wchan(struct task_struct * p)716 get_wchan (struct task_struct *p)
717 {
718 	struct unw_frame_info info;
719 	unsigned long ip;
720 	int count = 0;
721 
722 	if (!p || p == current || p->state == TASK_RUNNING)
723 		return 0;
724 
725 	/*
726 	 * Note: p may not be a blocked task (it could be current or
727 	 * another process running on some other CPU.  Rather than
728 	 * trying to determine if p is really blocked, we just assume
729 	 * it's blocked and rely on the unwind routines to fail
730 	 * gracefully if the process wasn't really blocked after all.
731 	 * --davidm 99/12/15
732 	 */
733 	unw_init_from_blocked_task(&info, p);
734 	do {
735 		if (p->state == TASK_RUNNING)
736 			return 0;
737 		if (unw_unwind(&info) < 0)
738 			return 0;
739 		unw_get_ip(&info, &ip);
740 		if (!in_sched_functions(ip))
741 			return ip;
742 	} while (count++ < 16);
743 	return 0;
744 }
745 
746 void
cpu_halt(void)747 cpu_halt (void)
748 {
749 	pal_power_mgmt_info_u_t power_info[8];
750 	unsigned long min_power;
751 	int i, min_power_state;
752 
753 	if (ia64_pal_halt_info(power_info) != 0)
754 		return;
755 
756 	min_power_state = 0;
757 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
758 	for (i = 1; i < 8; ++i)
759 		if (power_info[i].pal_power_mgmt_info_s.im
760 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
761 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
762 			min_power_state = i;
763 		}
764 
765 	while (1)
766 		ia64_pal_halt(min_power_state);
767 }
768 
machine_shutdown(void)769 void machine_shutdown(void)
770 {
771 #ifdef CONFIG_HOTPLUG_CPU
772 	int cpu;
773 
774 	for_each_online_cpu(cpu) {
775 		if (cpu != smp_processor_id())
776 			cpu_down(cpu);
777 	}
778 #endif
779 #ifdef CONFIG_KEXEC
780 	kexec_disable_iosapic();
781 #endif
782 }
783 
784 void
machine_restart(char * restart_cmd)785 machine_restart (char *restart_cmd)
786 {
787 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
788 	(*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
789 }
790 
791 void
machine_halt(void)792 machine_halt (void)
793 {
794 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
795 	cpu_halt();
796 }
797 
798 void
machine_power_off(void)799 machine_power_off (void)
800 {
801 	if (pm_power_off)
802 		pm_power_off();
803 	machine_halt();
804 }
805 
806