1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
7  *
8  * 2005-10-07 Keith Owens <kaos@sgi.com>
9  *	      Add notify_die() hooks.
10  */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
32 
33 #include <asm/cpu.h>
34 #include <asm/delay.h>
35 #include <asm/elf.h>
36 #include <asm/irq.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sal.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/unwind.h>
44 #include <asm/user.h>
45 
46 #include "entry.h"
47 
48 #ifdef CONFIG_PERFMON
49 # include <asm/perfmon.h>
50 #endif
51 
52 #include "sigframe.h"
53 
54 void (*ia64_mark_idle)(int);
55 
56 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
57 EXPORT_SYMBOL(boot_option_idle_override);
58 void (*pm_idle) (void);
59 EXPORT_SYMBOL(pm_idle);
60 void (*pm_power_off) (void);
61 EXPORT_SYMBOL(pm_power_off);
62 
63 void
ia64_do_show_stack(struct unw_frame_info * info,void * arg)64 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
65 {
66 	unsigned long ip, sp, bsp;
67 	char buf[128];			/* don't make it so big that it overflows the stack! */
68 
69 	printk("\nCall Trace:\n");
70 	do {
71 		unw_get_ip(info, &ip);
72 		if (ip == 0)
73 			break;
74 
75 		unw_get_sp(info, &sp);
76 		unw_get_bsp(info, &bsp);
77 		snprintf(buf, sizeof(buf),
78 			 " [<%016lx>] %%s\n"
79 			 "                                sp=%016lx bsp=%016lx\n",
80 			 ip, sp, bsp);
81 		print_symbol(buf, ip);
82 	} while (unw_unwind(info) >= 0);
83 }
84 
85 void
show_stack(struct task_struct * task,unsigned long * sp)86 show_stack (struct task_struct *task, unsigned long *sp)
87 {
88 	if (!task)
89 		unw_init_running(ia64_do_show_stack, NULL);
90 	else {
91 		struct unw_frame_info info;
92 
93 		unw_init_from_blocked_task(&info, task);
94 		ia64_do_show_stack(&info, NULL);
95 	}
96 }
97 
98 void
dump_stack(void)99 dump_stack (void)
100 {
101 	show_stack(NULL, NULL);
102 }
103 
104 EXPORT_SYMBOL(dump_stack);
105 
106 void
show_regs(struct pt_regs * regs)107 show_regs (struct pt_regs *regs)
108 {
109 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
110 
111 	print_modules();
112 	printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
113 			smp_processor_id(), current->comm);
114 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
115 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
116 	       init_utsname()->release);
117 	print_symbol("ip is at %s\n", ip);
118 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
119 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
120 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
121 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
122 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
123 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
124 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
125 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
126 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
127 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
128 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
129 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
130 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
131 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
132 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
133 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
134 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
135 
136 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
137 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
138 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
139 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
140 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
141 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
142 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
143 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
144 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
145 
146 	if (user_mode(regs)) {
147 		/* print the stacked registers */
148 		unsigned long val, *bsp, ndirty;
149 		int i, sof, is_nat = 0;
150 
151 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
152 		ndirty = (regs->loadrs >> 19);
153 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
154 		for (i = 0; i < sof; ++i) {
155 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
156 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
157 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
158 		}
159 	} else
160 		show_stack(NULL, NULL);
161 }
162 
163 /* local support for deprecated console_print */
164 void
console_print(const char * s)165 console_print(const char *s)
166 {
167 	printk(KERN_EMERG "%s", s);
168 }
169 
170 void
do_notify_resume_user(sigset_t * unused,struct sigscratch * scr,long in_syscall)171 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
172 {
173 	if (fsys_mode(current, &scr->pt)) {
174 		/*
175 		 * defer signal-handling etc. until we return to
176 		 * privilege-level 0.
177 		 */
178 		if (!ia64_psr(&scr->pt)->lp)
179 			ia64_psr(&scr->pt)->lp = 1;
180 		return;
181 	}
182 
183 #ifdef CONFIG_PERFMON
184 	if (current->thread.pfm_needs_checking)
185 		/*
186 		 * Note: pfm_handle_work() allow us to call it with interrupts
187 		 * disabled, and may enable interrupts within the function.
188 		 */
189 		pfm_handle_work();
190 #endif
191 
192 	/* deal with pending signal delivery */
193 	if (test_thread_flag(TIF_SIGPENDING)) {
194 		local_irq_enable();	/* force interrupt enable */
195 		ia64_do_signal(scr, in_syscall);
196 	}
197 
198 	if (test_thread_flag(TIF_NOTIFY_RESUME)) {
199 		clear_thread_flag(TIF_NOTIFY_RESUME);
200 		tracehook_notify_resume(&scr->pt);
201 		if (current->replacement_session_keyring)
202 			key_replace_session_keyring();
203 	}
204 
205 	/* copy user rbs to kernel rbs */
206 	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
207 		local_irq_enable();	/* force interrupt enable */
208 		ia64_sync_krbs();
209 	}
210 
211 	local_irq_disable();	/* force interrupt disable */
212 }
213 
214 static int pal_halt        = 1;
215 static int can_do_pal_halt = 1;
216 
nohalt_setup(char * str)217 static int __init nohalt_setup(char * str)
218 {
219 	pal_halt = can_do_pal_halt = 0;
220 	return 1;
221 }
222 __setup("nohalt", nohalt_setup);
223 
224 void
update_pal_halt_status(int status)225 update_pal_halt_status(int status)
226 {
227 	can_do_pal_halt = pal_halt && status;
228 }
229 
230 /*
231  * We use this if we don't have any better idle routine..
232  */
233 void
default_idle(void)234 default_idle (void)
235 {
236 	local_irq_enable();
237 	while (!need_resched()) {
238 		if (can_do_pal_halt) {
239 			local_irq_disable();
240 			if (!need_resched()) {
241 				safe_halt();
242 			}
243 			local_irq_enable();
244 		} else
245 			cpu_relax();
246 	}
247 }
248 
249 #ifdef CONFIG_HOTPLUG_CPU
250 /* We don't actually take CPU down, just spin without interrupts. */
play_dead(void)251 static inline void play_dead(void)
252 {
253 	unsigned int this_cpu = smp_processor_id();
254 
255 	/* Ack it */
256 	__get_cpu_var(cpu_state) = CPU_DEAD;
257 
258 	max_xtp();
259 	local_irq_disable();
260 	idle_task_exit();
261 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
262 	/*
263 	 * The above is a point of no-return, the processor is
264 	 * expected to be in SAL loop now.
265 	 */
266 	BUG();
267 }
268 #else
play_dead(void)269 static inline void play_dead(void)
270 {
271 	BUG();
272 }
273 #endif /* CONFIG_HOTPLUG_CPU */
274 
do_nothing(void * unused)275 static void do_nothing(void *unused)
276 {
277 }
278 
279 /*
280  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
281  * pm_idle and update to new pm_idle value. Required while changing pm_idle
282  * handler on SMP systems.
283  *
284  * Caller must have changed pm_idle to the new value before the call. Old
285  * pm_idle value will not be used by any CPU after the return of this function.
286  */
cpu_idle_wait(void)287 void cpu_idle_wait(void)
288 {
289 	smp_mb();
290 	/* kick all the CPUs so that they exit out of pm_idle */
291 	smp_call_function(do_nothing, NULL, 1);
292 }
293 EXPORT_SYMBOL_GPL(cpu_idle_wait);
294 
295 void __attribute__((noreturn))
cpu_idle(void)296 cpu_idle (void)
297 {
298 	void (*mark_idle)(int) = ia64_mark_idle;
299   	int cpu = smp_processor_id();
300 
301 	/* endless idle loop with no priority at all */
302 	while (1) {
303 		if (can_do_pal_halt) {
304 			current_thread_info()->status &= ~TS_POLLING;
305 			/*
306 			 * TS_POLLING-cleared state must be visible before we
307 			 * test NEED_RESCHED:
308 			 */
309 			smp_mb();
310 		} else {
311 			current_thread_info()->status |= TS_POLLING;
312 		}
313 
314 		if (!need_resched()) {
315 			void (*idle)(void);
316 #ifdef CONFIG_SMP
317 			min_xtp();
318 #endif
319 			rmb();
320 			if (mark_idle)
321 				(*mark_idle)(1);
322 
323 			idle = pm_idle;
324 			if (!idle)
325 				idle = default_idle;
326 			(*idle)();
327 			if (mark_idle)
328 				(*mark_idle)(0);
329 #ifdef CONFIG_SMP
330 			normal_xtp();
331 #endif
332 		}
333 		preempt_enable_no_resched();
334 		schedule();
335 		preempt_disable();
336 		check_pgt_cache();
337 		if (cpu_is_offline(cpu))
338 			play_dead();
339 	}
340 }
341 
342 void
ia64_save_extra(struct task_struct * task)343 ia64_save_extra (struct task_struct *task)
344 {
345 #ifdef CONFIG_PERFMON
346 	unsigned long info;
347 #endif
348 
349 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
350 		ia64_save_debug_regs(&task->thread.dbr[0]);
351 
352 #ifdef CONFIG_PERFMON
353 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
354 		pfm_save_regs(task);
355 
356 	info = __get_cpu_var(pfm_syst_info);
357 	if (info & PFM_CPUINFO_SYST_WIDE)
358 		pfm_syst_wide_update_task(task, info, 0);
359 #endif
360 }
361 
362 void
ia64_load_extra(struct task_struct * task)363 ia64_load_extra (struct task_struct *task)
364 {
365 #ifdef CONFIG_PERFMON
366 	unsigned long info;
367 #endif
368 
369 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
370 		ia64_load_debug_regs(&task->thread.dbr[0]);
371 
372 #ifdef CONFIG_PERFMON
373 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
374 		pfm_load_regs(task);
375 
376 	info = __get_cpu_var(pfm_syst_info);
377 	if (info & PFM_CPUINFO_SYST_WIDE)
378 		pfm_syst_wide_update_task(task, info, 1);
379 #endif
380 }
381 
382 /*
383  * Copy the state of an ia-64 thread.
384  *
385  * We get here through the following  call chain:
386  *
387  *	from user-level:	from kernel:
388  *
389  *	<clone syscall>	        <some kernel call frames>
390  *	sys_clone		   :
391  *	do_fork			do_fork
392  *	copy_thread		copy_thread
393  *
394  * This means that the stack layout is as follows:
395  *
396  *	+---------------------+ (highest addr)
397  *	|   struct pt_regs    |
398  *	+---------------------+
399  *	| struct switch_stack |
400  *	+---------------------+
401  *	|                     |
402  *	|    memory stack     |
403  *	|                     | <-- sp (lowest addr)
404  *	+---------------------+
405  *
406  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
407  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
408  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
409  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
410  * the stack is page aligned and the page size is at least 4KB, this is always the case,
411  * so there is nothing to worry about.
412  */
413 int
copy_thread(unsigned long clone_flags,unsigned long user_stack_base,unsigned long user_stack_size,struct task_struct * p,struct pt_regs * regs)414 copy_thread(unsigned long clone_flags,
415 	     unsigned long user_stack_base, unsigned long user_stack_size,
416 	     struct task_struct *p, struct pt_regs *regs)
417 {
418 	extern char ia64_ret_from_clone;
419 	struct switch_stack *child_stack, *stack;
420 	unsigned long rbs, child_rbs, rbs_size;
421 	struct pt_regs *child_ptregs;
422 	int retval = 0;
423 
424 #ifdef CONFIG_SMP
425 	/*
426 	 * For SMP idle threads, fork_by_hand() calls do_fork with
427 	 * NULL regs.
428 	 */
429 	if (!regs)
430 		return 0;
431 #endif
432 
433 	stack = ((struct switch_stack *) regs) - 1;
434 
435 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
436 	child_stack = (struct switch_stack *) child_ptregs - 1;
437 
438 	/* copy parent's switch_stack & pt_regs to child: */
439 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
440 
441 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
442 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
443 	rbs_size = stack->ar_bspstore - rbs;
444 
445 	/* copy the parent's register backing store to the child: */
446 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
447 
448 	if (likely(user_mode(child_ptregs))) {
449 		if (clone_flags & CLONE_SETTLS)
450 			child_ptregs->r13 = regs->r16;	/* see sys_clone2() in entry.S */
451 		if (user_stack_base) {
452 			child_ptregs->r12 = user_stack_base + user_stack_size - 16;
453 			child_ptregs->ar_bspstore = user_stack_base;
454 			child_ptregs->ar_rnat = 0;
455 			child_ptregs->loadrs = 0;
456 		}
457 	} else {
458 		/*
459 		 * Note: we simply preserve the relative position of
460 		 * the stack pointer here.  There is no need to
461 		 * allocate a scratch area here, since that will have
462 		 * been taken care of by the caller of sys_clone()
463 		 * already.
464 		 */
465 		child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
466 		child_ptregs->r13 = (unsigned long) p;		/* set `current' pointer */
467 	}
468 	child_stack->ar_bspstore = child_rbs + rbs_size;
469 	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
470 
471 	/* copy parts of thread_struct: */
472 	p->thread.ksp = (unsigned long) child_stack - 16;
473 
474 	/* stop some PSR bits from being inherited.
475 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
476 	 * therefore we must specify them explicitly here and not include them in
477 	 * IA64_PSR_BITS_TO_CLEAR.
478 	 */
479 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
480 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
481 
482 	/*
483 	 * NOTE: The calling convention considers all floating point
484 	 * registers in the high partition (fph) to be scratch.  Since
485 	 * the only way to get to this point is through a system call,
486 	 * we know that the values in fph are all dead.  Hence, there
487 	 * is no need to inherit the fph state from the parent to the
488 	 * child and all we have to do is to make sure that
489 	 * IA64_THREAD_FPH_VALID is cleared in the child.
490 	 *
491 	 * XXX We could push this optimization a bit further by
492 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
493 	 * However, it's not clear this is worth doing.  Also, it
494 	 * would be a slight deviation from the normal Linux system
495 	 * call behavior where scratch registers are preserved across
496 	 * system calls (unless used by the system call itself).
497 	 */
498 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
499 					 | IA64_THREAD_PM_VALID)
500 #	define THREAD_FLAGS_TO_SET	0
501 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
502 			   | THREAD_FLAGS_TO_SET);
503 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
504 
505 #ifdef CONFIG_PERFMON
506 	if (current->thread.pfm_context)
507 		pfm_inherit(p, child_ptregs);
508 #endif
509 	return retval;
510 }
511 
512 static void
do_copy_task_regs(struct task_struct * task,struct unw_frame_info * info,void * arg)513 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
514 {
515 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
516 	unsigned long uninitialized_var(ip);	/* GCC be quiet */
517 	elf_greg_t *dst = arg;
518 	struct pt_regs *pt;
519 	char nat;
520 	int i;
521 
522 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
523 
524 	if (unw_unwind_to_user(info) < 0)
525 		return;
526 
527 	unw_get_sp(info, &sp);
528 	pt = (struct pt_regs *) (sp + 16);
529 
530 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
531 
532 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
533 		return;
534 
535 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
536 		  &ar_rnat);
537 
538 	/*
539 	 * coredump format:
540 	 *	r0-r31
541 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
542 	 *	predicate registers (p0-p63)
543 	 *	b0-b7
544 	 *	ip cfm user-mask
545 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
546 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
547 	 */
548 
549 	/* r0 is zero */
550 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
551 		unw_get_gr(info, i, &dst[i], &nat);
552 		if (nat)
553 			nat_bits |= mask;
554 		mask <<= 1;
555 	}
556 	dst[32] = nat_bits;
557 	unw_get_pr(info, &dst[33]);
558 
559 	for (i = 0; i < 8; ++i)
560 		unw_get_br(info, i, &dst[34 + i]);
561 
562 	unw_get_rp(info, &ip);
563 	dst[42] = ip + ia64_psr(pt)->ri;
564 	dst[43] = cfm;
565 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
566 
567 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
568 	/*
569 	 * For bsp and bspstore, unw_get_ar() would return the kernel
570 	 * addresses, but we need the user-level addresses instead:
571 	 */
572 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
573 	dst[47] = pt->ar_bspstore;
574 	dst[48] = ar_rnat;
575 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
576 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
577 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
578 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
579 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
580 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
581 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
582 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
583 }
584 
585 void
do_dump_task_fpu(struct task_struct * task,struct unw_frame_info * info,void * arg)586 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
587 {
588 	elf_fpreg_t *dst = arg;
589 	int i;
590 
591 	memset(dst, 0, sizeof(elf_fpregset_t));	/* don't leak any "random" bits */
592 
593 	if (unw_unwind_to_user(info) < 0)
594 		return;
595 
596 	/* f0 is 0.0, f1 is 1.0 */
597 
598 	for (i = 2; i < 32; ++i)
599 		unw_get_fr(info, i, dst + i);
600 
601 	ia64_flush_fph(task);
602 	if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
603 		memcpy(dst + 32, task->thread.fph, 96*16);
604 }
605 
606 void
do_copy_regs(struct unw_frame_info * info,void * arg)607 do_copy_regs (struct unw_frame_info *info, void *arg)
608 {
609 	do_copy_task_regs(current, info, arg);
610 }
611 
612 void
do_dump_fpu(struct unw_frame_info * info,void * arg)613 do_dump_fpu (struct unw_frame_info *info, void *arg)
614 {
615 	do_dump_task_fpu(current, info, arg);
616 }
617 
618 void
ia64_elf_core_copy_regs(struct pt_regs * pt,elf_gregset_t dst)619 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
620 {
621 	unw_init_running(do_copy_regs, dst);
622 }
623 
624 int
dump_fpu(struct pt_regs * pt,elf_fpregset_t dst)625 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
626 {
627 	unw_init_running(do_dump_fpu, dst);
628 	return 1;	/* f0-f31 are always valid so we always return 1 */
629 }
630 
631 long
sys_execve(const char __user * filename,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)632 sys_execve (const char __user *filename,
633 	    const char __user *const __user *argv,
634 	    const char __user *const __user *envp,
635 	    struct pt_regs *regs)
636 {
637 	char *fname;
638 	int error;
639 
640 	fname = getname(filename);
641 	error = PTR_ERR(fname);
642 	if (IS_ERR(fname))
643 		goto out;
644 	error = do_execve(fname, argv, envp, regs);
645 	putname(fname);
646 out:
647 	return error;
648 }
649 
650 pid_t
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)651 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
652 {
653 	extern void start_kernel_thread (void);
654 	unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
655 	struct {
656 		struct switch_stack sw;
657 		struct pt_regs pt;
658 	} regs;
659 
660 	memset(&regs, 0, sizeof(regs));
661 	regs.pt.cr_iip = helper_fptr[0];	/* set entry point (IP) */
662 	regs.pt.r1 = helper_fptr[1];		/* set GP */
663 	regs.pt.r9 = (unsigned long) fn;	/* 1st argument */
664 	regs.pt.r11 = (unsigned long) arg;	/* 2nd argument */
665 	/* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read.  */
666 	regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
667 	regs.pt.cr_ifs = 1UL << 63;		/* mark as valid, empty frame */
668 	regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
669 	regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
670 	regs.sw.pr = (1 << PRED_KERNEL_STACK);
671 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
672 }
673 EXPORT_SYMBOL(kernel_thread);
674 
675 /* This gets called from kernel_thread() via ia64_invoke_thread_helper().  */
676 int
kernel_thread_helper(int (* fn)(void *),void * arg)677 kernel_thread_helper (int (*fn)(void *), void *arg)
678 {
679 	return (*fn)(arg);
680 }
681 
682 /*
683  * Flush thread state.  This is called when a thread does an execve().
684  */
685 void
flush_thread(void)686 flush_thread (void)
687 {
688 	/* drop floating-point and debug-register state if it exists: */
689 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
690 	ia64_drop_fpu(current);
691 }
692 
693 /*
694  * Clean up state associated with current thread.  This is called when
695  * the thread calls exit().
696  */
697 void
exit_thread(void)698 exit_thread (void)
699 {
700 
701 	ia64_drop_fpu(current);
702 #ifdef CONFIG_PERFMON
703        /* if needed, stop monitoring and flush state to perfmon context */
704 	if (current->thread.pfm_context)
705 		pfm_exit_thread(current);
706 
707 	/* free debug register resources */
708 	if (current->thread.flags & IA64_THREAD_DBG_VALID)
709 		pfm_release_debug_registers(current);
710 #endif
711 }
712 
713 unsigned long
get_wchan(struct task_struct * p)714 get_wchan (struct task_struct *p)
715 {
716 	struct unw_frame_info info;
717 	unsigned long ip;
718 	int count = 0;
719 
720 	if (!p || p == current || p->state == TASK_RUNNING)
721 		return 0;
722 
723 	/*
724 	 * Note: p may not be a blocked task (it could be current or
725 	 * another process running on some other CPU.  Rather than
726 	 * trying to determine if p is really blocked, we just assume
727 	 * it's blocked and rely on the unwind routines to fail
728 	 * gracefully if the process wasn't really blocked after all.
729 	 * --davidm 99/12/15
730 	 */
731 	unw_init_from_blocked_task(&info, p);
732 	do {
733 		if (p->state == TASK_RUNNING)
734 			return 0;
735 		if (unw_unwind(&info) < 0)
736 			return 0;
737 		unw_get_ip(&info, &ip);
738 		if (!in_sched_functions(ip))
739 			return ip;
740 	} while (count++ < 16);
741 	return 0;
742 }
743 
744 void
cpu_halt(void)745 cpu_halt (void)
746 {
747 	pal_power_mgmt_info_u_t power_info[8];
748 	unsigned long min_power;
749 	int i, min_power_state;
750 
751 	if (ia64_pal_halt_info(power_info) != 0)
752 		return;
753 
754 	min_power_state = 0;
755 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
756 	for (i = 1; i < 8; ++i)
757 		if (power_info[i].pal_power_mgmt_info_s.im
758 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
759 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
760 			min_power_state = i;
761 		}
762 
763 	while (1)
764 		ia64_pal_halt(min_power_state);
765 }
766 
machine_shutdown(void)767 void machine_shutdown(void)
768 {
769 #ifdef CONFIG_HOTPLUG_CPU
770 	int cpu;
771 
772 	for_each_online_cpu(cpu) {
773 		if (cpu != smp_processor_id())
774 			cpu_down(cpu);
775 	}
776 #endif
777 #ifdef CONFIG_KEXEC
778 	kexec_disable_iosapic();
779 #endif
780 }
781 
782 void
machine_restart(char * restart_cmd)783 machine_restart (char *restart_cmd)
784 {
785 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
786 	(*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
787 }
788 
789 void
machine_halt(void)790 machine_halt (void)
791 {
792 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
793 	cpu_halt();
794 }
795 
796 void
machine_power_off(void)797 machine_power_off (void)
798 {
799 	if (pm_power_off)
800 		pm_power_off();
801 	machine_halt();
802 }
803 
804