1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 *
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
10 */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
32
33 #include <asm/cpu.h>
34 #include <asm/delay.h>
35 #include <asm/elf.h>
36 #include <asm/irq.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sal.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/unwind.h>
44 #include <asm/user.h>
45
46 #include "entry.h"
47
48 #ifdef CONFIG_PERFMON
49 # include <asm/perfmon.h>
50 #endif
51
52 #include "sigframe.h"
53
54 void (*ia64_mark_idle)(int);
55
56 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
57 EXPORT_SYMBOL(boot_option_idle_override);
58 void (*pm_idle) (void);
59 EXPORT_SYMBOL(pm_idle);
60 void (*pm_power_off) (void);
61 EXPORT_SYMBOL(pm_power_off);
62
63 void
ia64_do_show_stack(struct unw_frame_info * info,void * arg)64 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
65 {
66 unsigned long ip, sp, bsp;
67 char buf[128]; /* don't make it so big that it overflows the stack! */
68
69 printk("\nCall Trace:\n");
70 do {
71 unw_get_ip(info, &ip);
72 if (ip == 0)
73 break;
74
75 unw_get_sp(info, &sp);
76 unw_get_bsp(info, &bsp);
77 snprintf(buf, sizeof(buf),
78 " [<%016lx>] %%s\n"
79 " sp=%016lx bsp=%016lx\n",
80 ip, sp, bsp);
81 print_symbol(buf, ip);
82 } while (unw_unwind(info) >= 0);
83 }
84
85 void
show_stack(struct task_struct * task,unsigned long * sp)86 show_stack (struct task_struct *task, unsigned long *sp)
87 {
88 if (!task)
89 unw_init_running(ia64_do_show_stack, NULL);
90 else {
91 struct unw_frame_info info;
92
93 unw_init_from_blocked_task(&info, task);
94 ia64_do_show_stack(&info, NULL);
95 }
96 }
97
98 void
dump_stack(void)99 dump_stack (void)
100 {
101 show_stack(NULL, NULL);
102 }
103
104 EXPORT_SYMBOL(dump_stack);
105
106 void
show_regs(struct pt_regs * regs)107 show_regs (struct pt_regs *regs)
108 {
109 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
110
111 print_modules();
112 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
113 smp_processor_id(), current->comm);
114 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
115 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
116 init_utsname()->release);
117 print_symbol("ip is at %s\n", ip);
118 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
119 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
120 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
121 regs->ar_rnat, regs->ar_bspstore, regs->pr);
122 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
123 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
124 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
125 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
126 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
127 regs->f6.u.bits[1], regs->f6.u.bits[0],
128 regs->f7.u.bits[1], regs->f7.u.bits[0]);
129 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
130 regs->f8.u.bits[1], regs->f8.u.bits[0],
131 regs->f9.u.bits[1], regs->f9.u.bits[0]);
132 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
133 regs->f10.u.bits[1], regs->f10.u.bits[0],
134 regs->f11.u.bits[1], regs->f11.u.bits[0]);
135
136 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
137 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
138 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
139 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
140 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
141 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
142 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
143 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
144 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
145
146 if (user_mode(regs)) {
147 /* print the stacked registers */
148 unsigned long val, *bsp, ndirty;
149 int i, sof, is_nat = 0;
150
151 sof = regs->cr_ifs & 0x7f; /* size of frame */
152 ndirty = (regs->loadrs >> 19);
153 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
154 for (i = 0; i < sof; ++i) {
155 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
156 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
157 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
158 }
159 } else
160 show_stack(NULL, NULL);
161 }
162
163 /* local support for deprecated console_print */
164 void
console_print(const char * s)165 console_print(const char *s)
166 {
167 printk(KERN_EMERG "%s", s);
168 }
169
170 void
do_notify_resume_user(sigset_t * unused,struct sigscratch * scr,long in_syscall)171 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
172 {
173 if (fsys_mode(current, &scr->pt)) {
174 /*
175 * defer signal-handling etc. until we return to
176 * privilege-level 0.
177 */
178 if (!ia64_psr(&scr->pt)->lp)
179 ia64_psr(&scr->pt)->lp = 1;
180 return;
181 }
182
183 #ifdef CONFIG_PERFMON
184 if (current->thread.pfm_needs_checking)
185 /*
186 * Note: pfm_handle_work() allow us to call it with interrupts
187 * disabled, and may enable interrupts within the function.
188 */
189 pfm_handle_work();
190 #endif
191
192 /* deal with pending signal delivery */
193 if (test_thread_flag(TIF_SIGPENDING)) {
194 local_irq_enable(); /* force interrupt enable */
195 ia64_do_signal(scr, in_syscall);
196 }
197
198 if (test_thread_flag(TIF_NOTIFY_RESUME)) {
199 clear_thread_flag(TIF_NOTIFY_RESUME);
200 tracehook_notify_resume(&scr->pt);
201 if (current->replacement_session_keyring)
202 key_replace_session_keyring();
203 }
204
205 /* copy user rbs to kernel rbs */
206 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
207 local_irq_enable(); /* force interrupt enable */
208 ia64_sync_krbs();
209 }
210
211 local_irq_disable(); /* force interrupt disable */
212 }
213
214 static int pal_halt = 1;
215 static int can_do_pal_halt = 1;
216
nohalt_setup(char * str)217 static int __init nohalt_setup(char * str)
218 {
219 pal_halt = can_do_pal_halt = 0;
220 return 1;
221 }
222 __setup("nohalt", nohalt_setup);
223
224 void
update_pal_halt_status(int status)225 update_pal_halt_status(int status)
226 {
227 can_do_pal_halt = pal_halt && status;
228 }
229
230 /*
231 * We use this if we don't have any better idle routine..
232 */
233 void
default_idle(void)234 default_idle (void)
235 {
236 local_irq_enable();
237 while (!need_resched()) {
238 if (can_do_pal_halt) {
239 local_irq_disable();
240 if (!need_resched()) {
241 safe_halt();
242 }
243 local_irq_enable();
244 } else
245 cpu_relax();
246 }
247 }
248
249 #ifdef CONFIG_HOTPLUG_CPU
250 /* We don't actually take CPU down, just spin without interrupts. */
play_dead(void)251 static inline void play_dead(void)
252 {
253 unsigned int this_cpu = smp_processor_id();
254
255 /* Ack it */
256 __get_cpu_var(cpu_state) = CPU_DEAD;
257
258 max_xtp();
259 local_irq_disable();
260 idle_task_exit();
261 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
262 /*
263 * The above is a point of no-return, the processor is
264 * expected to be in SAL loop now.
265 */
266 BUG();
267 }
268 #else
play_dead(void)269 static inline void play_dead(void)
270 {
271 BUG();
272 }
273 #endif /* CONFIG_HOTPLUG_CPU */
274
do_nothing(void * unused)275 static void do_nothing(void *unused)
276 {
277 }
278
279 /*
280 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
281 * pm_idle and update to new pm_idle value. Required while changing pm_idle
282 * handler on SMP systems.
283 *
284 * Caller must have changed pm_idle to the new value before the call. Old
285 * pm_idle value will not be used by any CPU after the return of this function.
286 */
cpu_idle_wait(void)287 void cpu_idle_wait(void)
288 {
289 smp_mb();
290 /* kick all the CPUs so that they exit out of pm_idle */
291 smp_call_function(do_nothing, NULL, 1);
292 }
293 EXPORT_SYMBOL_GPL(cpu_idle_wait);
294
295 void __attribute__((noreturn))
cpu_idle(void)296 cpu_idle (void)
297 {
298 void (*mark_idle)(int) = ia64_mark_idle;
299 int cpu = smp_processor_id();
300
301 /* endless idle loop with no priority at all */
302 while (1) {
303 if (can_do_pal_halt) {
304 current_thread_info()->status &= ~TS_POLLING;
305 /*
306 * TS_POLLING-cleared state must be visible before we
307 * test NEED_RESCHED:
308 */
309 smp_mb();
310 } else {
311 current_thread_info()->status |= TS_POLLING;
312 }
313
314 if (!need_resched()) {
315 void (*idle)(void);
316 #ifdef CONFIG_SMP
317 min_xtp();
318 #endif
319 rmb();
320 if (mark_idle)
321 (*mark_idle)(1);
322
323 idle = pm_idle;
324 if (!idle)
325 idle = default_idle;
326 (*idle)();
327 if (mark_idle)
328 (*mark_idle)(0);
329 #ifdef CONFIG_SMP
330 normal_xtp();
331 #endif
332 }
333 preempt_enable_no_resched();
334 schedule();
335 preempt_disable();
336 check_pgt_cache();
337 if (cpu_is_offline(cpu))
338 play_dead();
339 }
340 }
341
342 void
ia64_save_extra(struct task_struct * task)343 ia64_save_extra (struct task_struct *task)
344 {
345 #ifdef CONFIG_PERFMON
346 unsigned long info;
347 #endif
348
349 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
350 ia64_save_debug_regs(&task->thread.dbr[0]);
351
352 #ifdef CONFIG_PERFMON
353 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
354 pfm_save_regs(task);
355
356 info = __get_cpu_var(pfm_syst_info);
357 if (info & PFM_CPUINFO_SYST_WIDE)
358 pfm_syst_wide_update_task(task, info, 0);
359 #endif
360 }
361
362 void
ia64_load_extra(struct task_struct * task)363 ia64_load_extra (struct task_struct *task)
364 {
365 #ifdef CONFIG_PERFMON
366 unsigned long info;
367 #endif
368
369 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
370 ia64_load_debug_regs(&task->thread.dbr[0]);
371
372 #ifdef CONFIG_PERFMON
373 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
374 pfm_load_regs(task);
375
376 info = __get_cpu_var(pfm_syst_info);
377 if (info & PFM_CPUINFO_SYST_WIDE)
378 pfm_syst_wide_update_task(task, info, 1);
379 #endif
380 }
381
382 /*
383 * Copy the state of an ia-64 thread.
384 *
385 * We get here through the following call chain:
386 *
387 * from user-level: from kernel:
388 *
389 * <clone syscall> <some kernel call frames>
390 * sys_clone :
391 * do_fork do_fork
392 * copy_thread copy_thread
393 *
394 * This means that the stack layout is as follows:
395 *
396 * +---------------------+ (highest addr)
397 * | struct pt_regs |
398 * +---------------------+
399 * | struct switch_stack |
400 * +---------------------+
401 * | |
402 * | memory stack |
403 * | | <-- sp (lowest addr)
404 * +---------------------+
405 *
406 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
407 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
408 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
409 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
410 * the stack is page aligned and the page size is at least 4KB, this is always the case,
411 * so there is nothing to worry about.
412 */
413 int
copy_thread(unsigned long clone_flags,unsigned long user_stack_base,unsigned long user_stack_size,struct task_struct * p,struct pt_regs * regs)414 copy_thread(unsigned long clone_flags,
415 unsigned long user_stack_base, unsigned long user_stack_size,
416 struct task_struct *p, struct pt_regs *regs)
417 {
418 extern char ia64_ret_from_clone;
419 struct switch_stack *child_stack, *stack;
420 unsigned long rbs, child_rbs, rbs_size;
421 struct pt_regs *child_ptregs;
422 int retval = 0;
423
424 #ifdef CONFIG_SMP
425 /*
426 * For SMP idle threads, fork_by_hand() calls do_fork with
427 * NULL regs.
428 */
429 if (!regs)
430 return 0;
431 #endif
432
433 stack = ((struct switch_stack *) regs) - 1;
434
435 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
436 child_stack = (struct switch_stack *) child_ptregs - 1;
437
438 /* copy parent's switch_stack & pt_regs to child: */
439 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
440
441 rbs = (unsigned long) current + IA64_RBS_OFFSET;
442 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
443 rbs_size = stack->ar_bspstore - rbs;
444
445 /* copy the parent's register backing store to the child: */
446 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
447
448 if (likely(user_mode(child_ptregs))) {
449 if (clone_flags & CLONE_SETTLS)
450 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
451 if (user_stack_base) {
452 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
453 child_ptregs->ar_bspstore = user_stack_base;
454 child_ptregs->ar_rnat = 0;
455 child_ptregs->loadrs = 0;
456 }
457 } else {
458 /*
459 * Note: we simply preserve the relative position of
460 * the stack pointer here. There is no need to
461 * allocate a scratch area here, since that will have
462 * been taken care of by the caller of sys_clone()
463 * already.
464 */
465 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
466 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
467 }
468 child_stack->ar_bspstore = child_rbs + rbs_size;
469 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
470
471 /* copy parts of thread_struct: */
472 p->thread.ksp = (unsigned long) child_stack - 16;
473
474 /* stop some PSR bits from being inherited.
475 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
476 * therefore we must specify them explicitly here and not include them in
477 * IA64_PSR_BITS_TO_CLEAR.
478 */
479 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
480 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
481
482 /*
483 * NOTE: The calling convention considers all floating point
484 * registers in the high partition (fph) to be scratch. Since
485 * the only way to get to this point is through a system call,
486 * we know that the values in fph are all dead. Hence, there
487 * is no need to inherit the fph state from the parent to the
488 * child and all we have to do is to make sure that
489 * IA64_THREAD_FPH_VALID is cleared in the child.
490 *
491 * XXX We could push this optimization a bit further by
492 * clearing IA64_THREAD_FPH_VALID on ANY system call.
493 * However, it's not clear this is worth doing. Also, it
494 * would be a slight deviation from the normal Linux system
495 * call behavior where scratch registers are preserved across
496 * system calls (unless used by the system call itself).
497 */
498 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
499 | IA64_THREAD_PM_VALID)
500 # define THREAD_FLAGS_TO_SET 0
501 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
502 | THREAD_FLAGS_TO_SET);
503 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
504
505 #ifdef CONFIG_PERFMON
506 if (current->thread.pfm_context)
507 pfm_inherit(p, child_ptregs);
508 #endif
509 return retval;
510 }
511
512 static void
do_copy_task_regs(struct task_struct * task,struct unw_frame_info * info,void * arg)513 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
514 {
515 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
516 unsigned long uninitialized_var(ip); /* GCC be quiet */
517 elf_greg_t *dst = arg;
518 struct pt_regs *pt;
519 char nat;
520 int i;
521
522 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
523
524 if (unw_unwind_to_user(info) < 0)
525 return;
526
527 unw_get_sp(info, &sp);
528 pt = (struct pt_regs *) (sp + 16);
529
530 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
531
532 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
533 return;
534
535 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
536 &ar_rnat);
537
538 /*
539 * coredump format:
540 * r0-r31
541 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
542 * predicate registers (p0-p63)
543 * b0-b7
544 * ip cfm user-mask
545 * ar.rsc ar.bsp ar.bspstore ar.rnat
546 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
547 */
548
549 /* r0 is zero */
550 for (i = 1, mask = (1UL << i); i < 32; ++i) {
551 unw_get_gr(info, i, &dst[i], &nat);
552 if (nat)
553 nat_bits |= mask;
554 mask <<= 1;
555 }
556 dst[32] = nat_bits;
557 unw_get_pr(info, &dst[33]);
558
559 for (i = 0; i < 8; ++i)
560 unw_get_br(info, i, &dst[34 + i]);
561
562 unw_get_rp(info, &ip);
563 dst[42] = ip + ia64_psr(pt)->ri;
564 dst[43] = cfm;
565 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
566
567 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
568 /*
569 * For bsp and bspstore, unw_get_ar() would return the kernel
570 * addresses, but we need the user-level addresses instead:
571 */
572 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
573 dst[47] = pt->ar_bspstore;
574 dst[48] = ar_rnat;
575 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
576 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
577 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
578 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
579 unw_get_ar(info, UNW_AR_LC, &dst[53]);
580 unw_get_ar(info, UNW_AR_EC, &dst[54]);
581 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
582 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
583 }
584
585 void
do_dump_task_fpu(struct task_struct * task,struct unw_frame_info * info,void * arg)586 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
587 {
588 elf_fpreg_t *dst = arg;
589 int i;
590
591 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
592
593 if (unw_unwind_to_user(info) < 0)
594 return;
595
596 /* f0 is 0.0, f1 is 1.0 */
597
598 for (i = 2; i < 32; ++i)
599 unw_get_fr(info, i, dst + i);
600
601 ia64_flush_fph(task);
602 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
603 memcpy(dst + 32, task->thread.fph, 96*16);
604 }
605
606 void
do_copy_regs(struct unw_frame_info * info,void * arg)607 do_copy_regs (struct unw_frame_info *info, void *arg)
608 {
609 do_copy_task_regs(current, info, arg);
610 }
611
612 void
do_dump_fpu(struct unw_frame_info * info,void * arg)613 do_dump_fpu (struct unw_frame_info *info, void *arg)
614 {
615 do_dump_task_fpu(current, info, arg);
616 }
617
618 void
ia64_elf_core_copy_regs(struct pt_regs * pt,elf_gregset_t dst)619 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
620 {
621 unw_init_running(do_copy_regs, dst);
622 }
623
624 int
dump_fpu(struct pt_regs * pt,elf_fpregset_t dst)625 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
626 {
627 unw_init_running(do_dump_fpu, dst);
628 return 1; /* f0-f31 are always valid so we always return 1 */
629 }
630
631 long
sys_execve(const char __user * filename,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)632 sys_execve (const char __user *filename,
633 const char __user *const __user *argv,
634 const char __user *const __user *envp,
635 struct pt_regs *regs)
636 {
637 char *fname;
638 int error;
639
640 fname = getname(filename);
641 error = PTR_ERR(fname);
642 if (IS_ERR(fname))
643 goto out;
644 error = do_execve(fname, argv, envp, regs);
645 putname(fname);
646 out:
647 return error;
648 }
649
650 pid_t
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)651 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
652 {
653 extern void start_kernel_thread (void);
654 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
655 struct {
656 struct switch_stack sw;
657 struct pt_regs pt;
658 } regs;
659
660 memset(®s, 0, sizeof(regs));
661 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
662 regs.pt.r1 = helper_fptr[1]; /* set GP */
663 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
664 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
665 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
666 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
667 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
668 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
669 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
670 regs.sw.pr = (1 << PRED_KERNEL_STACK);
671 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL);
672 }
673 EXPORT_SYMBOL(kernel_thread);
674
675 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
676 int
kernel_thread_helper(int (* fn)(void *),void * arg)677 kernel_thread_helper (int (*fn)(void *), void *arg)
678 {
679 return (*fn)(arg);
680 }
681
682 /*
683 * Flush thread state. This is called when a thread does an execve().
684 */
685 void
flush_thread(void)686 flush_thread (void)
687 {
688 /* drop floating-point and debug-register state if it exists: */
689 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
690 ia64_drop_fpu(current);
691 }
692
693 /*
694 * Clean up state associated with current thread. This is called when
695 * the thread calls exit().
696 */
697 void
exit_thread(void)698 exit_thread (void)
699 {
700
701 ia64_drop_fpu(current);
702 #ifdef CONFIG_PERFMON
703 /* if needed, stop monitoring and flush state to perfmon context */
704 if (current->thread.pfm_context)
705 pfm_exit_thread(current);
706
707 /* free debug register resources */
708 if (current->thread.flags & IA64_THREAD_DBG_VALID)
709 pfm_release_debug_registers(current);
710 #endif
711 }
712
713 unsigned long
get_wchan(struct task_struct * p)714 get_wchan (struct task_struct *p)
715 {
716 struct unw_frame_info info;
717 unsigned long ip;
718 int count = 0;
719
720 if (!p || p == current || p->state == TASK_RUNNING)
721 return 0;
722
723 /*
724 * Note: p may not be a blocked task (it could be current or
725 * another process running on some other CPU. Rather than
726 * trying to determine if p is really blocked, we just assume
727 * it's blocked and rely on the unwind routines to fail
728 * gracefully if the process wasn't really blocked after all.
729 * --davidm 99/12/15
730 */
731 unw_init_from_blocked_task(&info, p);
732 do {
733 if (p->state == TASK_RUNNING)
734 return 0;
735 if (unw_unwind(&info) < 0)
736 return 0;
737 unw_get_ip(&info, &ip);
738 if (!in_sched_functions(ip))
739 return ip;
740 } while (count++ < 16);
741 return 0;
742 }
743
744 void
cpu_halt(void)745 cpu_halt (void)
746 {
747 pal_power_mgmt_info_u_t power_info[8];
748 unsigned long min_power;
749 int i, min_power_state;
750
751 if (ia64_pal_halt_info(power_info) != 0)
752 return;
753
754 min_power_state = 0;
755 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
756 for (i = 1; i < 8; ++i)
757 if (power_info[i].pal_power_mgmt_info_s.im
758 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
759 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
760 min_power_state = i;
761 }
762
763 while (1)
764 ia64_pal_halt(min_power_state);
765 }
766
machine_shutdown(void)767 void machine_shutdown(void)
768 {
769 #ifdef CONFIG_HOTPLUG_CPU
770 int cpu;
771
772 for_each_online_cpu(cpu) {
773 if (cpu != smp_processor_id())
774 cpu_down(cpu);
775 }
776 #endif
777 #ifdef CONFIG_KEXEC
778 kexec_disable_iosapic();
779 #endif
780 }
781
782 void
machine_restart(char * restart_cmd)783 machine_restart (char *restart_cmd)
784 {
785 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
786 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
787 }
788
789 void
machine_halt(void)790 machine_halt (void)
791 {
792 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
793 cpu_halt();
794 }
795
796 void
machine_power_off(void)797 machine_power_off (void)
798 {
799 if (pm_power_off)
800 pm_power_off();
801 machine_halt();
802 }
803
804