1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 #include <linux/sched/sysctl.h>
60
61 #include "internal.h"
62 #include "swap.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/vmscan.h>
66
67 struct scan_control {
68 /* How many pages shrink_list() should reclaim */
69 unsigned long nr_to_reclaim;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /*
84 * Scan pressure balancing between anon and file LRUs
85 */
86 unsigned long anon_cost;
87 unsigned long file_cost;
88
89 /* Can active pages be deactivated as part of reclaim? */
90 #define DEACTIVATE_ANON 1
91 #define DEACTIVATE_FILE 2
92 unsigned int may_deactivate:2;
93 unsigned int force_deactivate:1;
94 unsigned int skipped_deactivate:1;
95
96 /* Writepage batching in laptop mode; RECLAIM_WRITE */
97 unsigned int may_writepage:1;
98
99 /* Can mapped pages be reclaimed? */
100 unsigned int may_unmap:1;
101
102 /* Can pages be swapped as part of reclaim? */
103 unsigned int may_swap:1;
104
105 /*
106 * Cgroup memory below memory.low is protected as long as we
107 * don't threaten to OOM. If any cgroup is reclaimed at
108 * reduced force or passed over entirely due to its memory.low
109 * setting (memcg_low_skipped), and nothing is reclaimed as a
110 * result, then go back for one more cycle that reclaims the protected
111 * memory (memcg_low_reclaim) to avert OOM.
112 */
113 unsigned int memcg_low_reclaim:1;
114 unsigned int memcg_low_skipped:1;
115
116 unsigned int hibernation_mode:1;
117
118 /* One of the zones is ready for compaction */
119 unsigned int compaction_ready:1;
120
121 /* There is easily reclaimable cold cache in the current node */
122 unsigned int cache_trim_mode:1;
123
124 /* The file pages on the current node are dangerously low */
125 unsigned int file_is_tiny:1;
126
127 /* Always discard instead of demoting to lower tier memory */
128 unsigned int no_demotion:1;
129
130 /* Allocation order */
131 s8 order;
132
133 /* Scan (total_size >> priority) pages at once */
134 s8 priority;
135
136 /* The highest zone to isolate pages for reclaim from */
137 s8 reclaim_idx;
138
139 /* This context's GFP mask */
140 gfp_t gfp_mask;
141
142 /* Incremented by the number of inactive pages that were scanned */
143 unsigned long nr_scanned;
144
145 /* Number of pages freed so far during a call to shrink_zones() */
146 unsigned long nr_reclaimed;
147
148 struct {
149 unsigned int dirty;
150 unsigned int unqueued_dirty;
151 unsigned int congested;
152 unsigned int writeback;
153 unsigned int immediate;
154 unsigned int file_taken;
155 unsigned int taken;
156 } nr;
157
158 /* for recording the reclaimed slab by now */
159 struct reclaim_state reclaim_state;
160 };
161
162 #ifdef ARCH_HAS_PREFETCHW
163 #define prefetchw_prev_lru_page(_page, _base, _field) \
164 do { \
165 if ((_page)->lru.prev != _base) { \
166 struct page *prev; \
167 \
168 prev = lru_to_page(&(_page->lru)); \
169 prefetchw(&prev->_field); \
170 } \
171 } while (0)
172 #else
173 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
174 #endif
175
176 /*
177 * From 0 .. 200. Higher means more swappy.
178 */
179 int vm_swappiness = 60;
180
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)181 static void set_task_reclaim_state(struct task_struct *task,
182 struct reclaim_state *rs)
183 {
184 /* Check for an overwrite */
185 WARN_ON_ONCE(rs && task->reclaim_state);
186
187 /* Check for the nulling of an already-nulled member */
188 WARN_ON_ONCE(!rs && !task->reclaim_state);
189
190 task->reclaim_state = rs;
191 }
192
193 static LIST_HEAD(shrinker_list);
194 static DECLARE_RWSEM(shrinker_rwsem);
195
196 #ifdef CONFIG_MEMCG
197 static int shrinker_nr_max;
198
199 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
shrinker_map_size(int nr_items)200 static inline int shrinker_map_size(int nr_items)
201 {
202 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203 }
204
shrinker_defer_size(int nr_items)205 static inline int shrinker_defer_size(int nr_items)
206 {
207 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208 }
209
shrinker_info_protected(struct mem_cgroup * memcg,int nid)210 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 int nid)
212 {
213 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
214 lockdep_is_held(&shrinker_rwsem));
215 }
216
expand_one_shrinker_info(struct mem_cgroup * memcg,int map_size,int defer_size,int old_map_size,int old_defer_size)217 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
218 int map_size, int defer_size,
219 int old_map_size, int old_defer_size)
220 {
221 struct shrinker_info *new, *old;
222 struct mem_cgroup_per_node *pn;
223 int nid;
224 int size = map_size + defer_size;
225
226 for_each_node(nid) {
227 pn = memcg->nodeinfo[nid];
228 old = shrinker_info_protected(memcg, nid);
229 /* Not yet online memcg */
230 if (!old)
231 return 0;
232
233 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
234 if (!new)
235 return -ENOMEM;
236
237 new->nr_deferred = (atomic_long_t *)(new + 1);
238 new->map = (void *)new->nr_deferred + defer_size;
239
240 /* map: set all old bits, clear all new bits */
241 memset(new->map, (int)0xff, old_map_size);
242 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
243 /* nr_deferred: copy old values, clear all new values */
244 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
245 memset((void *)new->nr_deferred + old_defer_size, 0,
246 defer_size - old_defer_size);
247
248 rcu_assign_pointer(pn->shrinker_info, new);
249 kvfree_rcu(old, rcu);
250 }
251
252 return 0;
253 }
254
free_shrinker_info(struct mem_cgroup * memcg)255 void free_shrinker_info(struct mem_cgroup *memcg)
256 {
257 struct mem_cgroup_per_node *pn;
258 struct shrinker_info *info;
259 int nid;
260
261 for_each_node(nid) {
262 pn = memcg->nodeinfo[nid];
263 info = rcu_dereference_protected(pn->shrinker_info, true);
264 kvfree(info);
265 rcu_assign_pointer(pn->shrinker_info, NULL);
266 }
267 }
268
alloc_shrinker_info(struct mem_cgroup * memcg)269 int alloc_shrinker_info(struct mem_cgroup *memcg)
270 {
271 struct shrinker_info *info;
272 int nid, size, ret = 0;
273 int map_size, defer_size = 0;
274
275 down_write(&shrinker_rwsem);
276 map_size = shrinker_map_size(shrinker_nr_max);
277 defer_size = shrinker_defer_size(shrinker_nr_max);
278 size = map_size + defer_size;
279 for_each_node(nid) {
280 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 if (!info) {
282 free_shrinker_info(memcg);
283 ret = -ENOMEM;
284 break;
285 }
286 info->nr_deferred = (atomic_long_t *)(info + 1);
287 info->map = (void *)info->nr_deferred + defer_size;
288 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
289 }
290 up_write(&shrinker_rwsem);
291
292 return ret;
293 }
294
need_expand(int nr_max)295 static inline bool need_expand(int nr_max)
296 {
297 return round_up(nr_max, BITS_PER_LONG) >
298 round_up(shrinker_nr_max, BITS_PER_LONG);
299 }
300
expand_shrinker_info(int new_id)301 static int expand_shrinker_info(int new_id)
302 {
303 int ret = 0;
304 int new_nr_max = new_id + 1;
305 int map_size, defer_size = 0;
306 int old_map_size, old_defer_size = 0;
307 struct mem_cgroup *memcg;
308
309 if (!need_expand(new_nr_max))
310 goto out;
311
312 if (!root_mem_cgroup)
313 goto out;
314
315 lockdep_assert_held(&shrinker_rwsem);
316
317 map_size = shrinker_map_size(new_nr_max);
318 defer_size = shrinker_defer_size(new_nr_max);
319 old_map_size = shrinker_map_size(shrinker_nr_max);
320 old_defer_size = shrinker_defer_size(shrinker_nr_max);
321
322 memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 do {
324 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
325 old_map_size, old_defer_size);
326 if (ret) {
327 mem_cgroup_iter_break(NULL, memcg);
328 goto out;
329 }
330 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
331 out:
332 if (!ret)
333 shrinker_nr_max = new_nr_max;
334
335 return ret;
336 }
337
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)338 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339 {
340 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
341 struct shrinker_info *info;
342
343 rcu_read_lock();
344 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
345 /* Pairs with smp mb in shrink_slab() */
346 smp_mb__before_atomic();
347 set_bit(shrinker_id, info->map);
348 rcu_read_unlock();
349 }
350 }
351
352 static DEFINE_IDR(shrinker_idr);
353
prealloc_memcg_shrinker(struct shrinker * shrinker)354 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355 {
356 int id, ret = -ENOMEM;
357
358 if (mem_cgroup_disabled())
359 return -ENOSYS;
360
361 down_write(&shrinker_rwsem);
362 /* This may call shrinker, so it must use down_read_trylock() */
363 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
364 if (id < 0)
365 goto unlock;
366
367 if (id >= shrinker_nr_max) {
368 if (expand_shrinker_info(id)) {
369 idr_remove(&shrinker_idr, id);
370 goto unlock;
371 }
372 }
373 shrinker->id = id;
374 ret = 0;
375 unlock:
376 up_write(&shrinker_rwsem);
377 return ret;
378 }
379
unregister_memcg_shrinker(struct shrinker * shrinker)380 static void unregister_memcg_shrinker(struct shrinker *shrinker)
381 {
382 int id = shrinker->id;
383
384 BUG_ON(id < 0);
385
386 lockdep_assert_held(&shrinker_rwsem);
387
388 idr_remove(&shrinker_idr, id);
389 }
390
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)391 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
393 {
394 struct shrinker_info *info;
395
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398 }
399
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)400 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
401 struct mem_cgroup *memcg)
402 {
403 struct shrinker_info *info;
404
405 info = shrinker_info_protected(memcg, nid);
406 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407 }
408
reparent_shrinker_deferred(struct mem_cgroup * memcg)409 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
410 {
411 int i, nid;
412 long nr;
413 struct mem_cgroup *parent;
414 struct shrinker_info *child_info, *parent_info;
415
416 parent = parent_mem_cgroup(memcg);
417 if (!parent)
418 parent = root_mem_cgroup;
419
420 /* Prevent from concurrent shrinker_info expand */
421 down_read(&shrinker_rwsem);
422 for_each_node(nid) {
423 child_info = shrinker_info_protected(memcg, nid);
424 parent_info = shrinker_info_protected(parent, nid);
425 for (i = 0; i < shrinker_nr_max; i++) {
426 nr = atomic_long_read(&child_info->nr_deferred[i]);
427 atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 }
429 }
430 up_read(&shrinker_rwsem);
431 }
432
cgroup_reclaim(struct scan_control * sc)433 static bool cgroup_reclaim(struct scan_control *sc)
434 {
435 return sc->target_mem_cgroup;
436 }
437
438 /**
439 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
440 * @sc: scan_control in question
441 *
442 * The normal page dirty throttling mechanism in balance_dirty_pages() is
443 * completely broken with the legacy memcg and direct stalling in
444 * shrink_page_list() is used for throttling instead, which lacks all the
445 * niceties such as fairness, adaptive pausing, bandwidth proportional
446 * allocation and configurability.
447 *
448 * This function tests whether the vmscan currently in progress can assume
449 * that the normal dirty throttling mechanism is operational.
450 */
writeback_throttling_sane(struct scan_control * sc)451 static bool writeback_throttling_sane(struct scan_control *sc)
452 {
453 if (!cgroup_reclaim(sc))
454 return true;
455 #ifdef CONFIG_CGROUP_WRITEBACK
456 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
457 return true;
458 #endif
459 return false;
460 }
461 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)462 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
463 {
464 return -ENOSYS;
465 }
466
unregister_memcg_shrinker(struct shrinker * shrinker)467 static void unregister_memcg_shrinker(struct shrinker *shrinker)
468 {
469 }
470
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)471 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
472 struct mem_cgroup *memcg)
473 {
474 return 0;
475 }
476
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)477 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
478 struct mem_cgroup *memcg)
479 {
480 return 0;
481 }
482
cgroup_reclaim(struct scan_control * sc)483 static bool cgroup_reclaim(struct scan_control *sc)
484 {
485 return false;
486 }
487
writeback_throttling_sane(struct scan_control * sc)488 static bool writeback_throttling_sane(struct scan_control *sc)
489 {
490 return true;
491 }
492 #endif
493
xchg_nr_deferred(struct shrinker * shrinker,struct shrink_control * sc)494 static long xchg_nr_deferred(struct shrinker *shrinker,
495 struct shrink_control *sc)
496 {
497 int nid = sc->nid;
498
499 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
500 nid = 0;
501
502 if (sc->memcg &&
503 (shrinker->flags & SHRINKER_MEMCG_AWARE))
504 return xchg_nr_deferred_memcg(nid, shrinker,
505 sc->memcg);
506
507 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
508 }
509
510
add_nr_deferred(long nr,struct shrinker * shrinker,struct shrink_control * sc)511 static long add_nr_deferred(long nr, struct shrinker *shrinker,
512 struct shrink_control *sc)
513 {
514 int nid = sc->nid;
515
516 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 nid = 0;
518
519 if (sc->memcg &&
520 (shrinker->flags & SHRINKER_MEMCG_AWARE))
521 return add_nr_deferred_memcg(nr, nid, shrinker,
522 sc->memcg);
523
524 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525 }
526
can_demote(int nid,struct scan_control * sc)527 static bool can_demote(int nid, struct scan_control *sc)
528 {
529 if (!numa_demotion_enabled)
530 return false;
531 if (sc && sc->no_demotion)
532 return false;
533 if (next_demotion_node(nid) == NUMA_NO_NODE)
534 return false;
535
536 return true;
537 }
538
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)539 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
540 int nid,
541 struct scan_control *sc)
542 {
543 if (memcg == NULL) {
544 /*
545 * For non-memcg reclaim, is there
546 * space in any swap device?
547 */
548 if (get_nr_swap_pages() > 0)
549 return true;
550 } else {
551 /* Is the memcg below its swap limit? */
552 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
553 return true;
554 }
555
556 /*
557 * The page can not be swapped.
558 *
559 * Can it be reclaimed from this node via demotion?
560 */
561 return can_demote(nid, sc);
562 }
563
564 /*
565 * This misses isolated pages which are not accounted for to save counters.
566 * As the data only determines if reclaim or compaction continues, it is
567 * not expected that isolated pages will be a dominating factor.
568 */
zone_reclaimable_pages(struct zone * zone)569 unsigned long zone_reclaimable_pages(struct zone *zone)
570 {
571 unsigned long nr;
572
573 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
574 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
575 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
576 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
578
579 return nr;
580 }
581
582 /**
583 * lruvec_lru_size - Returns the number of pages on the given LRU list.
584 * @lruvec: lru vector
585 * @lru: lru to use
586 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
587 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)588 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
589 int zone_idx)
590 {
591 unsigned long size = 0;
592 int zid;
593
594 for (zid = 0; zid <= zone_idx; zid++) {
595 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
596
597 if (!managed_zone(zone))
598 continue;
599
600 if (!mem_cgroup_disabled())
601 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
602 else
603 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
604 }
605 return size;
606 }
607
608 /*
609 * Add a shrinker callback to be called from the vm.
610 */
prealloc_shrinker(struct shrinker * shrinker)611 int prealloc_shrinker(struct shrinker *shrinker)
612 {
613 unsigned int size;
614 int err;
615
616 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
617 err = prealloc_memcg_shrinker(shrinker);
618 if (err != -ENOSYS)
619 return err;
620
621 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
622 }
623
624 size = sizeof(*shrinker->nr_deferred);
625 if (shrinker->flags & SHRINKER_NUMA_AWARE)
626 size *= nr_node_ids;
627
628 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
629 if (!shrinker->nr_deferred)
630 return -ENOMEM;
631
632 return 0;
633 }
634
free_prealloced_shrinker(struct shrinker * shrinker)635 void free_prealloced_shrinker(struct shrinker *shrinker)
636 {
637 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
638 down_write(&shrinker_rwsem);
639 unregister_memcg_shrinker(shrinker);
640 up_write(&shrinker_rwsem);
641 return;
642 }
643
644 kfree(shrinker->nr_deferred);
645 shrinker->nr_deferred = NULL;
646 }
647
register_shrinker_prepared(struct shrinker * shrinker)648 void register_shrinker_prepared(struct shrinker *shrinker)
649 {
650 down_write(&shrinker_rwsem);
651 list_add_tail(&shrinker->list, &shrinker_list);
652 shrinker->flags |= SHRINKER_REGISTERED;
653 up_write(&shrinker_rwsem);
654 }
655
register_shrinker(struct shrinker * shrinker)656 int register_shrinker(struct shrinker *shrinker)
657 {
658 int err = prealloc_shrinker(shrinker);
659
660 if (err)
661 return err;
662 register_shrinker_prepared(shrinker);
663 return 0;
664 }
665 EXPORT_SYMBOL(register_shrinker);
666
667 /*
668 * Remove one
669 */
unregister_shrinker(struct shrinker * shrinker)670 void unregister_shrinker(struct shrinker *shrinker)
671 {
672 if (!(shrinker->flags & SHRINKER_REGISTERED))
673 return;
674
675 down_write(&shrinker_rwsem);
676 list_del(&shrinker->list);
677 shrinker->flags &= ~SHRINKER_REGISTERED;
678 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
679 unregister_memcg_shrinker(shrinker);
680 up_write(&shrinker_rwsem);
681
682 kfree(shrinker->nr_deferred);
683 shrinker->nr_deferred = NULL;
684 }
685 EXPORT_SYMBOL(unregister_shrinker);
686
687 /**
688 * synchronize_shrinkers - Wait for all running shrinkers to complete.
689 *
690 * This is equivalent to calling unregister_shrink() and register_shrinker(),
691 * but atomically and with less overhead. This is useful to guarantee that all
692 * shrinker invocations have seen an update, before freeing memory, similar to
693 * rcu.
694 */
synchronize_shrinkers(void)695 void synchronize_shrinkers(void)
696 {
697 down_write(&shrinker_rwsem);
698 up_write(&shrinker_rwsem);
699 }
700 EXPORT_SYMBOL(synchronize_shrinkers);
701
702 #define SHRINK_BATCH 128
703
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)704 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
705 struct shrinker *shrinker, int priority)
706 {
707 unsigned long freed = 0;
708 unsigned long long delta;
709 long total_scan;
710 long freeable;
711 long nr;
712 long new_nr;
713 long batch_size = shrinker->batch ? shrinker->batch
714 : SHRINK_BATCH;
715 long scanned = 0, next_deferred;
716
717 freeable = shrinker->count_objects(shrinker, shrinkctl);
718 if (freeable == 0 || freeable == SHRINK_EMPTY)
719 return freeable;
720
721 /*
722 * copy the current shrinker scan count into a local variable
723 * and zero it so that other concurrent shrinker invocations
724 * don't also do this scanning work.
725 */
726 nr = xchg_nr_deferred(shrinker, shrinkctl);
727
728 if (shrinker->seeks) {
729 delta = freeable >> priority;
730 delta *= 4;
731 do_div(delta, shrinker->seeks);
732 } else {
733 /*
734 * These objects don't require any IO to create. Trim
735 * them aggressively under memory pressure to keep
736 * them from causing refetches in the IO caches.
737 */
738 delta = freeable / 2;
739 }
740
741 total_scan = nr >> priority;
742 total_scan += delta;
743 total_scan = min(total_scan, (2 * freeable));
744
745 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
746 freeable, delta, total_scan, priority);
747
748 /*
749 * Normally, we should not scan less than batch_size objects in one
750 * pass to avoid too frequent shrinker calls, but if the slab has less
751 * than batch_size objects in total and we are really tight on memory,
752 * we will try to reclaim all available objects, otherwise we can end
753 * up failing allocations although there are plenty of reclaimable
754 * objects spread over several slabs with usage less than the
755 * batch_size.
756 *
757 * We detect the "tight on memory" situations by looking at the total
758 * number of objects we want to scan (total_scan). If it is greater
759 * than the total number of objects on slab (freeable), we must be
760 * scanning at high prio and therefore should try to reclaim as much as
761 * possible.
762 */
763 while (total_scan >= batch_size ||
764 total_scan >= freeable) {
765 unsigned long ret;
766 unsigned long nr_to_scan = min(batch_size, total_scan);
767
768 shrinkctl->nr_to_scan = nr_to_scan;
769 shrinkctl->nr_scanned = nr_to_scan;
770 ret = shrinker->scan_objects(shrinker, shrinkctl);
771 if (ret == SHRINK_STOP)
772 break;
773 freed += ret;
774
775 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
776 total_scan -= shrinkctl->nr_scanned;
777 scanned += shrinkctl->nr_scanned;
778
779 cond_resched();
780 }
781
782 /*
783 * The deferred work is increased by any new work (delta) that wasn't
784 * done, decreased by old deferred work that was done now.
785 *
786 * And it is capped to two times of the freeable items.
787 */
788 next_deferred = max_t(long, (nr + delta - scanned), 0);
789 next_deferred = min(next_deferred, (2 * freeable));
790
791 /*
792 * move the unused scan count back into the shrinker in a
793 * manner that handles concurrent updates.
794 */
795 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
796
797 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
798 return freed;
799 }
800
801 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)802 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
803 struct mem_cgroup *memcg, int priority)
804 {
805 struct shrinker_info *info;
806 unsigned long ret, freed = 0;
807 int i;
808
809 if (!mem_cgroup_online(memcg))
810 return 0;
811
812 if (!down_read_trylock(&shrinker_rwsem))
813 return 0;
814
815 info = shrinker_info_protected(memcg, nid);
816 if (unlikely(!info))
817 goto unlock;
818
819 for_each_set_bit(i, info->map, shrinker_nr_max) {
820 struct shrink_control sc = {
821 .gfp_mask = gfp_mask,
822 .nid = nid,
823 .memcg = memcg,
824 };
825 struct shrinker *shrinker;
826
827 shrinker = idr_find(&shrinker_idr, i);
828 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
829 if (!shrinker)
830 clear_bit(i, info->map);
831 continue;
832 }
833
834 /* Call non-slab shrinkers even though kmem is disabled */
835 if (!memcg_kmem_enabled() &&
836 !(shrinker->flags & SHRINKER_NONSLAB))
837 continue;
838
839 ret = do_shrink_slab(&sc, shrinker, priority);
840 if (ret == SHRINK_EMPTY) {
841 clear_bit(i, info->map);
842 /*
843 * After the shrinker reported that it had no objects to
844 * free, but before we cleared the corresponding bit in
845 * the memcg shrinker map, a new object might have been
846 * added. To make sure, we have the bit set in this
847 * case, we invoke the shrinker one more time and reset
848 * the bit if it reports that it is not empty anymore.
849 * The memory barrier here pairs with the barrier in
850 * set_shrinker_bit():
851 *
852 * list_lru_add() shrink_slab_memcg()
853 * list_add_tail() clear_bit()
854 * <MB> <MB>
855 * set_bit() do_shrink_slab()
856 */
857 smp_mb__after_atomic();
858 ret = do_shrink_slab(&sc, shrinker, priority);
859 if (ret == SHRINK_EMPTY)
860 ret = 0;
861 else
862 set_shrinker_bit(memcg, nid, i);
863 }
864 freed += ret;
865
866 if (rwsem_is_contended(&shrinker_rwsem)) {
867 freed = freed ? : 1;
868 break;
869 }
870 }
871 unlock:
872 up_read(&shrinker_rwsem);
873 return freed;
874 }
875 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)876 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
877 struct mem_cgroup *memcg, int priority)
878 {
879 return 0;
880 }
881 #endif /* CONFIG_MEMCG */
882
883 /**
884 * shrink_slab - shrink slab caches
885 * @gfp_mask: allocation context
886 * @nid: node whose slab caches to target
887 * @memcg: memory cgroup whose slab caches to target
888 * @priority: the reclaim priority
889 *
890 * Call the shrink functions to age shrinkable caches.
891 *
892 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
893 * unaware shrinkers will receive a node id of 0 instead.
894 *
895 * @memcg specifies the memory cgroup to target. Unaware shrinkers
896 * are called only if it is the root cgroup.
897 *
898 * @priority is sc->priority, we take the number of objects and >> by priority
899 * in order to get the scan target.
900 *
901 * Returns the number of reclaimed slab objects.
902 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)903 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
904 struct mem_cgroup *memcg,
905 int priority)
906 {
907 unsigned long ret, freed = 0;
908 struct shrinker *shrinker;
909
910 /*
911 * The root memcg might be allocated even though memcg is disabled
912 * via "cgroup_disable=memory" boot parameter. This could make
913 * mem_cgroup_is_root() return false, then just run memcg slab
914 * shrink, but skip global shrink. This may result in premature
915 * oom.
916 */
917 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
918 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
919
920 if (!down_read_trylock(&shrinker_rwsem))
921 goto out;
922
923 list_for_each_entry(shrinker, &shrinker_list, list) {
924 struct shrink_control sc = {
925 .gfp_mask = gfp_mask,
926 .nid = nid,
927 .memcg = memcg,
928 };
929
930 ret = do_shrink_slab(&sc, shrinker, priority);
931 if (ret == SHRINK_EMPTY)
932 ret = 0;
933 freed += ret;
934 /*
935 * Bail out if someone want to register a new shrinker to
936 * prevent the registration from being stalled for long periods
937 * by parallel ongoing shrinking.
938 */
939 if (rwsem_is_contended(&shrinker_rwsem)) {
940 freed = freed ? : 1;
941 break;
942 }
943 }
944
945 up_read(&shrinker_rwsem);
946 out:
947 cond_resched();
948 return freed;
949 }
950
drop_slab_node(int nid)951 static void drop_slab_node(int nid)
952 {
953 unsigned long freed;
954 int shift = 0;
955
956 do {
957 struct mem_cgroup *memcg = NULL;
958
959 if (fatal_signal_pending(current))
960 return;
961
962 freed = 0;
963 memcg = mem_cgroup_iter(NULL, NULL, NULL);
964 do {
965 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
966 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
967 } while ((freed >> shift++) > 1);
968 }
969
drop_slab(void)970 void drop_slab(void)
971 {
972 int nid;
973
974 for_each_online_node(nid)
975 drop_slab_node(nid);
976 }
977
is_page_cache_freeable(struct folio * folio)978 static inline int is_page_cache_freeable(struct folio *folio)
979 {
980 /*
981 * A freeable page cache page is referenced only by the caller
982 * that isolated the page, the page cache and optional buffer
983 * heads at page->private.
984 */
985 return folio_ref_count(folio) - folio_test_private(folio) ==
986 1 + folio_nr_pages(folio);
987 }
988
989 /*
990 * We detected a synchronous write error writing a folio out. Probably
991 * -ENOSPC. We need to propagate that into the address_space for a subsequent
992 * fsync(), msync() or close().
993 *
994 * The tricky part is that after writepage we cannot touch the mapping: nothing
995 * prevents it from being freed up. But we have a ref on the folio and once
996 * that folio is locked, the mapping is pinned.
997 *
998 * We're allowed to run sleeping folio_lock() here because we know the caller has
999 * __GFP_FS.
1000 */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)1001 static void handle_write_error(struct address_space *mapping,
1002 struct folio *folio, int error)
1003 {
1004 folio_lock(folio);
1005 if (folio_mapping(folio) == mapping)
1006 mapping_set_error(mapping, error);
1007 folio_unlock(folio);
1008 }
1009
skip_throttle_noprogress(pg_data_t * pgdat)1010 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1011 {
1012 int reclaimable = 0, write_pending = 0;
1013 int i;
1014
1015 /*
1016 * If kswapd is disabled, reschedule if necessary but do not
1017 * throttle as the system is likely near OOM.
1018 */
1019 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1020 return true;
1021
1022 /*
1023 * If there are a lot of dirty/writeback pages then do not
1024 * throttle as throttling will occur when the pages cycle
1025 * towards the end of the LRU if still under writeback.
1026 */
1027 for (i = 0; i < MAX_NR_ZONES; i++) {
1028 struct zone *zone = pgdat->node_zones + i;
1029
1030 if (!managed_zone(zone))
1031 continue;
1032
1033 reclaimable += zone_reclaimable_pages(zone);
1034 write_pending += zone_page_state_snapshot(zone,
1035 NR_ZONE_WRITE_PENDING);
1036 }
1037 if (2 * write_pending <= reclaimable)
1038 return true;
1039
1040 return false;
1041 }
1042
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)1043 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1044 {
1045 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1046 long timeout, ret;
1047 DEFINE_WAIT(wait);
1048
1049 /*
1050 * Do not throttle IO workers, kthreads other than kswapd or
1051 * workqueues. They may be required for reclaim to make
1052 * forward progress (e.g. journalling workqueues or kthreads).
1053 */
1054 if (!current_is_kswapd() &&
1055 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1056 cond_resched();
1057 return;
1058 }
1059
1060 /*
1061 * These figures are pulled out of thin air.
1062 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1063 * parallel reclaimers which is a short-lived event so the timeout is
1064 * short. Failing to make progress or waiting on writeback are
1065 * potentially long-lived events so use a longer timeout. This is shaky
1066 * logic as a failure to make progress could be due to anything from
1067 * writeback to a slow device to excessive references pages at the tail
1068 * of the inactive LRU.
1069 */
1070 switch(reason) {
1071 case VMSCAN_THROTTLE_WRITEBACK:
1072 timeout = HZ/10;
1073
1074 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1075 WRITE_ONCE(pgdat->nr_reclaim_start,
1076 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1077 }
1078
1079 break;
1080 case VMSCAN_THROTTLE_CONGESTED:
1081 fallthrough;
1082 case VMSCAN_THROTTLE_NOPROGRESS:
1083 if (skip_throttle_noprogress(pgdat)) {
1084 cond_resched();
1085 return;
1086 }
1087
1088 timeout = 1;
1089
1090 break;
1091 case VMSCAN_THROTTLE_ISOLATED:
1092 timeout = HZ/50;
1093 break;
1094 default:
1095 WARN_ON_ONCE(1);
1096 timeout = HZ;
1097 break;
1098 }
1099
1100 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1101 ret = schedule_timeout(timeout);
1102 finish_wait(wqh, &wait);
1103
1104 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1105 atomic_dec(&pgdat->nr_writeback_throttled);
1106
1107 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1108 jiffies_to_usecs(timeout - ret),
1109 reason);
1110 }
1111
1112 /*
1113 * Account for pages written if tasks are throttled waiting on dirty
1114 * pages to clean. If enough pages have been cleaned since throttling
1115 * started then wakeup the throttled tasks.
1116 */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)1117 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1118 int nr_throttled)
1119 {
1120 unsigned long nr_written;
1121
1122 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1123
1124 /*
1125 * This is an inaccurate read as the per-cpu deltas may not
1126 * be synchronised. However, given that the system is
1127 * writeback throttled, it is not worth taking the penalty
1128 * of getting an accurate count. At worst, the throttle
1129 * timeout guarantees forward progress.
1130 */
1131 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1132 READ_ONCE(pgdat->nr_reclaim_start);
1133
1134 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1135 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1136 }
1137
1138 /* possible outcome of pageout() */
1139 typedef enum {
1140 /* failed to write page out, page is locked */
1141 PAGE_KEEP,
1142 /* move page to the active list, page is locked */
1143 PAGE_ACTIVATE,
1144 /* page has been sent to the disk successfully, page is unlocked */
1145 PAGE_SUCCESS,
1146 /* page is clean and locked */
1147 PAGE_CLEAN,
1148 } pageout_t;
1149
1150 /*
1151 * pageout is called by shrink_page_list() for each dirty page.
1152 * Calls ->writepage().
1153 */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug)1154 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1155 struct swap_iocb **plug)
1156 {
1157 /*
1158 * If the folio is dirty, only perform writeback if that write
1159 * will be non-blocking. To prevent this allocation from being
1160 * stalled by pagecache activity. But note that there may be
1161 * stalls if we need to run get_block(). We could test
1162 * PagePrivate for that.
1163 *
1164 * If this process is currently in __generic_file_write_iter() against
1165 * this folio's queue, we can perform writeback even if that
1166 * will block.
1167 *
1168 * If the folio is swapcache, write it back even if that would
1169 * block, for some throttling. This happens by accident, because
1170 * swap_backing_dev_info is bust: it doesn't reflect the
1171 * congestion state of the swapdevs. Easy to fix, if needed.
1172 */
1173 if (!is_page_cache_freeable(folio))
1174 return PAGE_KEEP;
1175 if (!mapping) {
1176 /*
1177 * Some data journaling orphaned folios can have
1178 * folio->mapping == NULL while being dirty with clean buffers.
1179 */
1180 if (folio_test_private(folio)) {
1181 if (try_to_free_buffers(folio)) {
1182 folio_clear_dirty(folio);
1183 pr_info("%s: orphaned folio\n", __func__);
1184 return PAGE_CLEAN;
1185 }
1186 }
1187 return PAGE_KEEP;
1188 }
1189 if (mapping->a_ops->writepage == NULL)
1190 return PAGE_ACTIVATE;
1191
1192 if (folio_clear_dirty_for_io(folio)) {
1193 int res;
1194 struct writeback_control wbc = {
1195 .sync_mode = WB_SYNC_NONE,
1196 .nr_to_write = SWAP_CLUSTER_MAX,
1197 .range_start = 0,
1198 .range_end = LLONG_MAX,
1199 .for_reclaim = 1,
1200 .swap_plug = plug,
1201 };
1202
1203 folio_set_reclaim(folio);
1204 res = mapping->a_ops->writepage(&folio->page, &wbc);
1205 if (res < 0)
1206 handle_write_error(mapping, folio, res);
1207 if (res == AOP_WRITEPAGE_ACTIVATE) {
1208 folio_clear_reclaim(folio);
1209 return PAGE_ACTIVATE;
1210 }
1211
1212 if (!folio_test_writeback(folio)) {
1213 /* synchronous write or broken a_ops? */
1214 folio_clear_reclaim(folio);
1215 }
1216 trace_mm_vmscan_write_folio(folio);
1217 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1218 return PAGE_SUCCESS;
1219 }
1220
1221 return PAGE_CLEAN;
1222 }
1223
1224 /*
1225 * Same as remove_mapping, but if the page is removed from the mapping, it
1226 * gets returned with a refcount of 0.
1227 */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)1228 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1229 bool reclaimed, struct mem_cgroup *target_memcg)
1230 {
1231 int refcount;
1232 void *shadow = NULL;
1233
1234 BUG_ON(!folio_test_locked(folio));
1235 BUG_ON(mapping != folio_mapping(folio));
1236
1237 if (!folio_test_swapcache(folio))
1238 spin_lock(&mapping->host->i_lock);
1239 xa_lock_irq(&mapping->i_pages);
1240 /*
1241 * The non racy check for a busy page.
1242 *
1243 * Must be careful with the order of the tests. When someone has
1244 * a ref to the page, it may be possible that they dirty it then
1245 * drop the reference. So if PageDirty is tested before page_count
1246 * here, then the following race may occur:
1247 *
1248 * get_user_pages(&page);
1249 * [user mapping goes away]
1250 * write_to(page);
1251 * !PageDirty(page) [good]
1252 * SetPageDirty(page);
1253 * put_page(page);
1254 * !page_count(page) [good, discard it]
1255 *
1256 * [oops, our write_to data is lost]
1257 *
1258 * Reversing the order of the tests ensures such a situation cannot
1259 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1260 * load is not satisfied before that of page->_refcount.
1261 *
1262 * Note that if SetPageDirty is always performed via set_page_dirty,
1263 * and thus under the i_pages lock, then this ordering is not required.
1264 */
1265 refcount = 1 + folio_nr_pages(folio);
1266 if (!folio_ref_freeze(folio, refcount))
1267 goto cannot_free;
1268 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1269 if (unlikely(folio_test_dirty(folio))) {
1270 folio_ref_unfreeze(folio, refcount);
1271 goto cannot_free;
1272 }
1273
1274 if (folio_test_swapcache(folio)) {
1275 swp_entry_t swap = folio_swap_entry(folio);
1276 mem_cgroup_swapout(folio, swap);
1277 if (reclaimed && !mapping_exiting(mapping))
1278 shadow = workingset_eviction(folio, target_memcg);
1279 __delete_from_swap_cache(&folio->page, swap, shadow);
1280 xa_unlock_irq(&mapping->i_pages);
1281 put_swap_page(&folio->page, swap);
1282 } else {
1283 void (*free_folio)(struct folio *);
1284
1285 free_folio = mapping->a_ops->free_folio;
1286 /*
1287 * Remember a shadow entry for reclaimed file cache in
1288 * order to detect refaults, thus thrashing, later on.
1289 *
1290 * But don't store shadows in an address space that is
1291 * already exiting. This is not just an optimization,
1292 * inode reclaim needs to empty out the radix tree or
1293 * the nodes are lost. Don't plant shadows behind its
1294 * back.
1295 *
1296 * We also don't store shadows for DAX mappings because the
1297 * only page cache pages found in these are zero pages
1298 * covering holes, and because we don't want to mix DAX
1299 * exceptional entries and shadow exceptional entries in the
1300 * same address_space.
1301 */
1302 if (reclaimed && folio_is_file_lru(folio) &&
1303 !mapping_exiting(mapping) && !dax_mapping(mapping))
1304 shadow = workingset_eviction(folio, target_memcg);
1305 __filemap_remove_folio(folio, shadow);
1306 xa_unlock_irq(&mapping->i_pages);
1307 if (mapping_shrinkable(mapping))
1308 inode_add_lru(mapping->host);
1309 spin_unlock(&mapping->host->i_lock);
1310
1311 if (free_folio)
1312 free_folio(folio);
1313 }
1314
1315 return 1;
1316
1317 cannot_free:
1318 xa_unlock_irq(&mapping->i_pages);
1319 if (!folio_test_swapcache(folio))
1320 spin_unlock(&mapping->host->i_lock);
1321 return 0;
1322 }
1323
1324 /**
1325 * remove_mapping() - Attempt to remove a folio from its mapping.
1326 * @mapping: The address space.
1327 * @folio: The folio to remove.
1328 *
1329 * If the folio is dirty, under writeback or if someone else has a ref
1330 * on it, removal will fail.
1331 * Return: The number of pages removed from the mapping. 0 if the folio
1332 * could not be removed.
1333 * Context: The caller should have a single refcount on the folio and
1334 * hold its lock.
1335 */
remove_mapping(struct address_space * mapping,struct folio * folio)1336 long remove_mapping(struct address_space *mapping, struct folio *folio)
1337 {
1338 if (__remove_mapping(mapping, folio, false, NULL)) {
1339 /*
1340 * Unfreezing the refcount with 1 effectively
1341 * drops the pagecache ref for us without requiring another
1342 * atomic operation.
1343 */
1344 folio_ref_unfreeze(folio, 1);
1345 return folio_nr_pages(folio);
1346 }
1347 return 0;
1348 }
1349
1350 /**
1351 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1352 * @folio: Folio to be returned to an LRU list.
1353 *
1354 * Add previously isolated @folio to appropriate LRU list.
1355 * The folio may still be unevictable for other reasons.
1356 *
1357 * Context: lru_lock must not be held, interrupts must be enabled.
1358 */
folio_putback_lru(struct folio * folio)1359 void folio_putback_lru(struct folio *folio)
1360 {
1361 folio_add_lru(folio);
1362 folio_put(folio); /* drop ref from isolate */
1363 }
1364
1365 enum page_references {
1366 PAGEREF_RECLAIM,
1367 PAGEREF_RECLAIM_CLEAN,
1368 PAGEREF_KEEP,
1369 PAGEREF_ACTIVATE,
1370 };
1371
folio_check_references(struct folio * folio,struct scan_control * sc)1372 static enum page_references folio_check_references(struct folio *folio,
1373 struct scan_control *sc)
1374 {
1375 int referenced_ptes, referenced_folio;
1376 unsigned long vm_flags;
1377
1378 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1379 &vm_flags);
1380 referenced_folio = folio_test_clear_referenced(folio);
1381
1382 /*
1383 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1384 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1385 */
1386 if (vm_flags & VM_LOCKED)
1387 return PAGEREF_ACTIVATE;
1388
1389 /* rmap lock contention: rotate */
1390 if (referenced_ptes == -1)
1391 return PAGEREF_KEEP;
1392
1393 if (referenced_ptes) {
1394 /*
1395 * All mapped folios start out with page table
1396 * references from the instantiating fault, so we need
1397 * to look twice if a mapped file/anon folio is used more
1398 * than once.
1399 *
1400 * Mark it and spare it for another trip around the
1401 * inactive list. Another page table reference will
1402 * lead to its activation.
1403 *
1404 * Note: the mark is set for activated folios as well
1405 * so that recently deactivated but used folios are
1406 * quickly recovered.
1407 */
1408 folio_set_referenced(folio);
1409
1410 if (referenced_folio || referenced_ptes > 1)
1411 return PAGEREF_ACTIVATE;
1412
1413 /*
1414 * Activate file-backed executable folios after first usage.
1415 */
1416 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1417 return PAGEREF_ACTIVATE;
1418
1419 return PAGEREF_KEEP;
1420 }
1421
1422 /* Reclaim if clean, defer dirty folios to writeback */
1423 if (referenced_folio && folio_is_file_lru(folio))
1424 return PAGEREF_RECLAIM_CLEAN;
1425
1426 return PAGEREF_RECLAIM;
1427 }
1428
1429 /* Check if a page is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)1430 static void folio_check_dirty_writeback(struct folio *folio,
1431 bool *dirty, bool *writeback)
1432 {
1433 struct address_space *mapping;
1434
1435 /*
1436 * Anonymous pages are not handled by flushers and must be written
1437 * from reclaim context. Do not stall reclaim based on them.
1438 * MADV_FREE anonymous pages are put into inactive file list too.
1439 * They could be mistakenly treated as file lru. So further anon
1440 * test is needed.
1441 */
1442 if (!folio_is_file_lru(folio) ||
1443 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1444 *dirty = false;
1445 *writeback = false;
1446 return;
1447 }
1448
1449 /* By default assume that the folio flags are accurate */
1450 *dirty = folio_test_dirty(folio);
1451 *writeback = folio_test_writeback(folio);
1452
1453 /* Verify dirty/writeback state if the filesystem supports it */
1454 if (!folio_test_private(folio))
1455 return;
1456
1457 mapping = folio_mapping(folio);
1458 if (mapping && mapping->a_ops->is_dirty_writeback)
1459 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1460 }
1461
alloc_demote_page(struct page * page,unsigned long node)1462 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1463 {
1464 struct migration_target_control mtc = {
1465 /*
1466 * Allocate from 'node', or fail quickly and quietly.
1467 * When this happens, 'page' will likely just be discarded
1468 * instead of migrated.
1469 */
1470 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1471 __GFP_THISNODE | __GFP_NOWARN |
1472 __GFP_NOMEMALLOC | GFP_NOWAIT,
1473 .nid = node
1474 };
1475
1476 return alloc_migration_target(page, (unsigned long)&mtc);
1477 }
1478
1479 /*
1480 * Take pages on @demote_list and attempt to demote them to
1481 * another node. Pages which are not demoted are left on
1482 * @demote_pages.
1483 */
demote_page_list(struct list_head * demote_pages,struct pglist_data * pgdat)1484 static unsigned int demote_page_list(struct list_head *demote_pages,
1485 struct pglist_data *pgdat)
1486 {
1487 int target_nid = next_demotion_node(pgdat->node_id);
1488 unsigned int nr_succeeded;
1489
1490 if (list_empty(demote_pages))
1491 return 0;
1492
1493 if (target_nid == NUMA_NO_NODE)
1494 return 0;
1495
1496 /* Demotion ignores all cpuset and mempolicy settings */
1497 migrate_pages(demote_pages, alloc_demote_page, NULL,
1498 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1499 &nr_succeeded);
1500
1501 if (current_is_kswapd())
1502 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1503 else
1504 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1505
1506 return nr_succeeded;
1507 }
1508
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1509 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1510 {
1511 if (gfp_mask & __GFP_FS)
1512 return true;
1513 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1514 return false;
1515 /*
1516 * We can "enter_fs" for swap-cache with only __GFP_IO
1517 * providing this isn't SWP_FS_OPS.
1518 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1519 * but that will never affect SWP_FS_OPS, so the data_race
1520 * is safe.
1521 */
1522 return !data_race(page_swap_flags(&folio->page) & SWP_FS_OPS);
1523 }
1524
1525 /*
1526 * shrink_page_list() returns the number of reclaimed pages
1527 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1528 static unsigned int shrink_page_list(struct list_head *page_list,
1529 struct pglist_data *pgdat,
1530 struct scan_control *sc,
1531 struct reclaim_stat *stat,
1532 bool ignore_references)
1533 {
1534 LIST_HEAD(ret_pages);
1535 LIST_HEAD(free_pages);
1536 LIST_HEAD(demote_pages);
1537 unsigned int nr_reclaimed = 0;
1538 unsigned int pgactivate = 0;
1539 bool do_demote_pass;
1540 struct swap_iocb *plug = NULL;
1541
1542 memset(stat, 0, sizeof(*stat));
1543 cond_resched();
1544 do_demote_pass = can_demote(pgdat->node_id, sc);
1545
1546 retry:
1547 while (!list_empty(page_list)) {
1548 struct address_space *mapping;
1549 struct folio *folio;
1550 enum page_references references = PAGEREF_RECLAIM;
1551 bool dirty, writeback;
1552 unsigned int nr_pages;
1553
1554 cond_resched();
1555
1556 folio = lru_to_folio(page_list);
1557 list_del(&folio->lru);
1558
1559 if (!folio_trylock(folio))
1560 goto keep;
1561
1562 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1563
1564 nr_pages = folio_nr_pages(folio);
1565
1566 /* Account the number of base pages */
1567 sc->nr_scanned += nr_pages;
1568
1569 if (unlikely(!folio_evictable(folio)))
1570 goto activate_locked;
1571
1572 if (!sc->may_unmap && folio_mapped(folio))
1573 goto keep_locked;
1574
1575 /*
1576 * The number of dirty pages determines if a node is marked
1577 * reclaim_congested. kswapd will stall and start writing
1578 * folios if the tail of the LRU is all dirty unqueued folios.
1579 */
1580 folio_check_dirty_writeback(folio, &dirty, &writeback);
1581 if (dirty || writeback)
1582 stat->nr_dirty += nr_pages;
1583
1584 if (dirty && !writeback)
1585 stat->nr_unqueued_dirty += nr_pages;
1586
1587 /*
1588 * Treat this folio as congested if folios are cycling
1589 * through the LRU so quickly that the folios marked
1590 * for immediate reclaim are making it to the end of
1591 * the LRU a second time.
1592 */
1593 if (writeback && folio_test_reclaim(folio))
1594 stat->nr_congested += nr_pages;
1595
1596 /*
1597 * If a folio at the tail of the LRU is under writeback, there
1598 * are three cases to consider.
1599 *
1600 * 1) If reclaim is encountering an excessive number
1601 * of folios under writeback and this folio has both
1602 * the writeback and reclaim flags set, then it
1603 * indicates that folios are being queued for I/O but
1604 * are being recycled through the LRU before the I/O
1605 * can complete. Waiting on the folio itself risks an
1606 * indefinite stall if it is impossible to writeback
1607 * the folio due to I/O error or disconnected storage
1608 * so instead note that the LRU is being scanned too
1609 * quickly and the caller can stall after the folio
1610 * list has been processed.
1611 *
1612 * 2) Global or new memcg reclaim encounters a folio that is
1613 * not marked for immediate reclaim, or the caller does not
1614 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1615 * not to fs). In this case mark the folio for immediate
1616 * reclaim and continue scanning.
1617 *
1618 * Require may_enter_fs() because we would wait on fs, which
1619 * may not have submitted I/O yet. And the loop driver might
1620 * enter reclaim, and deadlock if it waits on a folio for
1621 * which it is needed to do the write (loop masks off
1622 * __GFP_IO|__GFP_FS for this reason); but more thought
1623 * would probably show more reasons.
1624 *
1625 * 3) Legacy memcg encounters a folio that already has the
1626 * reclaim flag set. memcg does not have any dirty folio
1627 * throttling so we could easily OOM just because too many
1628 * folios are in writeback and there is nothing else to
1629 * reclaim. Wait for the writeback to complete.
1630 *
1631 * In cases 1) and 2) we activate the folios to get them out of
1632 * the way while we continue scanning for clean folios on the
1633 * inactive list and refilling from the active list. The
1634 * observation here is that waiting for disk writes is more
1635 * expensive than potentially causing reloads down the line.
1636 * Since they're marked for immediate reclaim, they won't put
1637 * memory pressure on the cache working set any longer than it
1638 * takes to write them to disk.
1639 */
1640 if (folio_test_writeback(folio)) {
1641 /* Case 1 above */
1642 if (current_is_kswapd() &&
1643 folio_test_reclaim(folio) &&
1644 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1645 stat->nr_immediate += nr_pages;
1646 goto activate_locked;
1647
1648 /* Case 2 above */
1649 } else if (writeback_throttling_sane(sc) ||
1650 !folio_test_reclaim(folio) ||
1651 !may_enter_fs(folio, sc->gfp_mask)) {
1652 /*
1653 * This is slightly racy -
1654 * folio_end_writeback() might have
1655 * just cleared the reclaim flag, then
1656 * setting the reclaim flag here ends up
1657 * interpreted as the readahead flag - but
1658 * that does not matter enough to care.
1659 * What we do want is for this folio to
1660 * have the reclaim flag set next time
1661 * memcg reclaim reaches the tests above,
1662 * so it will then wait for writeback to
1663 * avoid OOM; and it's also appropriate
1664 * in global reclaim.
1665 */
1666 folio_set_reclaim(folio);
1667 stat->nr_writeback += nr_pages;
1668 goto activate_locked;
1669
1670 /* Case 3 above */
1671 } else {
1672 folio_unlock(folio);
1673 folio_wait_writeback(folio);
1674 /* then go back and try same folio again */
1675 list_add_tail(&folio->lru, page_list);
1676 continue;
1677 }
1678 }
1679
1680 if (!ignore_references)
1681 references = folio_check_references(folio, sc);
1682
1683 switch (references) {
1684 case PAGEREF_ACTIVATE:
1685 goto activate_locked;
1686 case PAGEREF_KEEP:
1687 stat->nr_ref_keep += nr_pages;
1688 goto keep_locked;
1689 case PAGEREF_RECLAIM:
1690 case PAGEREF_RECLAIM_CLEAN:
1691 ; /* try to reclaim the folio below */
1692 }
1693
1694 /*
1695 * Before reclaiming the folio, try to relocate
1696 * its contents to another node.
1697 */
1698 if (do_demote_pass &&
1699 (thp_migration_supported() || !folio_test_large(folio))) {
1700 list_add(&folio->lru, &demote_pages);
1701 folio_unlock(folio);
1702 continue;
1703 }
1704
1705 /*
1706 * Anonymous process memory has backing store?
1707 * Try to allocate it some swap space here.
1708 * Lazyfree folio could be freed directly
1709 */
1710 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1711 if (!folio_test_swapcache(folio)) {
1712 if (!(sc->gfp_mask & __GFP_IO))
1713 goto keep_locked;
1714 if (folio_maybe_dma_pinned(folio))
1715 goto keep_locked;
1716 if (folio_test_large(folio)) {
1717 /* cannot split folio, skip it */
1718 if (!can_split_folio(folio, NULL))
1719 goto activate_locked;
1720 /*
1721 * Split folios without a PMD map right
1722 * away. Chances are some or all of the
1723 * tail pages can be freed without IO.
1724 */
1725 if (!folio_entire_mapcount(folio) &&
1726 split_folio_to_list(folio,
1727 page_list))
1728 goto activate_locked;
1729 }
1730 if (!add_to_swap(folio)) {
1731 if (!folio_test_large(folio))
1732 goto activate_locked_split;
1733 /* Fallback to swap normal pages */
1734 if (split_folio_to_list(folio,
1735 page_list))
1736 goto activate_locked;
1737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1738 count_vm_event(THP_SWPOUT_FALLBACK);
1739 #endif
1740 if (!add_to_swap(folio))
1741 goto activate_locked_split;
1742 }
1743 }
1744 } else if (folio_test_swapbacked(folio) &&
1745 folio_test_large(folio)) {
1746 /* Split shmem folio */
1747 if (split_folio_to_list(folio, page_list))
1748 goto keep_locked;
1749 }
1750
1751 /*
1752 * If the folio was split above, the tail pages will make
1753 * their own pass through this function and be accounted
1754 * then.
1755 */
1756 if ((nr_pages > 1) && !folio_test_large(folio)) {
1757 sc->nr_scanned -= (nr_pages - 1);
1758 nr_pages = 1;
1759 }
1760
1761 /*
1762 * The folio is mapped into the page tables of one or more
1763 * processes. Try to unmap it here.
1764 */
1765 if (folio_mapped(folio)) {
1766 enum ttu_flags flags = TTU_BATCH_FLUSH;
1767 bool was_swapbacked = folio_test_swapbacked(folio);
1768
1769 if (folio_test_pmd_mappable(folio))
1770 flags |= TTU_SPLIT_HUGE_PMD;
1771
1772 try_to_unmap(folio, flags);
1773 if (folio_mapped(folio)) {
1774 stat->nr_unmap_fail += nr_pages;
1775 if (!was_swapbacked &&
1776 folio_test_swapbacked(folio))
1777 stat->nr_lazyfree_fail += nr_pages;
1778 goto activate_locked;
1779 }
1780 }
1781
1782 mapping = folio_mapping(folio);
1783 if (folio_test_dirty(folio)) {
1784 /*
1785 * Only kswapd can writeback filesystem folios
1786 * to avoid risk of stack overflow. But avoid
1787 * injecting inefficient single-folio I/O into
1788 * flusher writeback as much as possible: only
1789 * write folios when we've encountered many
1790 * dirty folios, and when we've already scanned
1791 * the rest of the LRU for clean folios and see
1792 * the same dirty folios again (with the reclaim
1793 * flag set).
1794 */
1795 if (folio_is_file_lru(folio) &&
1796 (!current_is_kswapd() ||
1797 !folio_test_reclaim(folio) ||
1798 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1799 /*
1800 * Immediately reclaim when written back.
1801 * Similar in principle to deactivate_page()
1802 * except we already have the folio isolated
1803 * and know it's dirty
1804 */
1805 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1806 nr_pages);
1807 folio_set_reclaim(folio);
1808
1809 goto activate_locked;
1810 }
1811
1812 if (references == PAGEREF_RECLAIM_CLEAN)
1813 goto keep_locked;
1814 if (!may_enter_fs(folio, sc->gfp_mask))
1815 goto keep_locked;
1816 if (!sc->may_writepage)
1817 goto keep_locked;
1818
1819 /*
1820 * Folio is dirty. Flush the TLB if a writable entry
1821 * potentially exists to avoid CPU writes after I/O
1822 * starts and then write it out here.
1823 */
1824 try_to_unmap_flush_dirty();
1825 switch (pageout(folio, mapping, &plug)) {
1826 case PAGE_KEEP:
1827 goto keep_locked;
1828 case PAGE_ACTIVATE:
1829 goto activate_locked;
1830 case PAGE_SUCCESS:
1831 stat->nr_pageout += nr_pages;
1832
1833 if (folio_test_writeback(folio))
1834 goto keep;
1835 if (folio_test_dirty(folio))
1836 goto keep;
1837
1838 /*
1839 * A synchronous write - probably a ramdisk. Go
1840 * ahead and try to reclaim the folio.
1841 */
1842 if (!folio_trylock(folio))
1843 goto keep;
1844 if (folio_test_dirty(folio) ||
1845 folio_test_writeback(folio))
1846 goto keep_locked;
1847 mapping = folio_mapping(folio);
1848 fallthrough;
1849 case PAGE_CLEAN:
1850 ; /* try to free the folio below */
1851 }
1852 }
1853
1854 /*
1855 * If the folio has buffers, try to free the buffer
1856 * mappings associated with this folio. If we succeed
1857 * we try to free the folio as well.
1858 *
1859 * We do this even if the folio is dirty.
1860 * filemap_release_folio() does not perform I/O, but it
1861 * is possible for a folio to have the dirty flag set,
1862 * but it is actually clean (all its buffers are clean).
1863 * This happens if the buffers were written out directly,
1864 * with submit_bh(). ext3 will do this, as well as
1865 * the blockdev mapping. filemap_release_folio() will
1866 * discover that cleanness and will drop the buffers
1867 * and mark the folio clean - it can be freed.
1868 *
1869 * Rarely, folios can have buffers and no ->mapping.
1870 * These are the folios which were not successfully
1871 * invalidated in truncate_cleanup_folio(). We try to
1872 * drop those buffers here and if that worked, and the
1873 * folio is no longer mapped into process address space
1874 * (refcount == 1) it can be freed. Otherwise, leave
1875 * the folio on the LRU so it is swappable.
1876 */
1877 if (folio_has_private(folio)) {
1878 if (!filemap_release_folio(folio, sc->gfp_mask))
1879 goto activate_locked;
1880 if (!mapping && folio_ref_count(folio) == 1) {
1881 folio_unlock(folio);
1882 if (folio_put_testzero(folio))
1883 goto free_it;
1884 else {
1885 /*
1886 * rare race with speculative reference.
1887 * the speculative reference will free
1888 * this folio shortly, so we may
1889 * increment nr_reclaimed here (and
1890 * leave it off the LRU).
1891 */
1892 nr_reclaimed += nr_pages;
1893 continue;
1894 }
1895 }
1896 }
1897
1898 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1899 /* follow __remove_mapping for reference */
1900 if (!folio_ref_freeze(folio, 1))
1901 goto keep_locked;
1902 /*
1903 * The folio has only one reference left, which is
1904 * from the isolation. After the caller puts the
1905 * folio back on the lru and drops the reference, the
1906 * folio will be freed anyway. It doesn't matter
1907 * which lru it goes on. So we don't bother checking
1908 * the dirty flag here.
1909 */
1910 count_vm_events(PGLAZYFREED, nr_pages);
1911 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1912 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1913 sc->target_mem_cgroup))
1914 goto keep_locked;
1915
1916 folio_unlock(folio);
1917 free_it:
1918 /*
1919 * Folio may get swapped out as a whole, need to account
1920 * all pages in it.
1921 */
1922 nr_reclaimed += nr_pages;
1923
1924 /*
1925 * Is there need to periodically free_page_list? It would
1926 * appear not as the counts should be low
1927 */
1928 if (unlikely(folio_test_large(folio)))
1929 destroy_compound_page(&folio->page);
1930 else
1931 list_add(&folio->lru, &free_pages);
1932 continue;
1933
1934 activate_locked_split:
1935 /*
1936 * The tail pages that are failed to add into swap cache
1937 * reach here. Fixup nr_scanned and nr_pages.
1938 */
1939 if (nr_pages > 1) {
1940 sc->nr_scanned -= (nr_pages - 1);
1941 nr_pages = 1;
1942 }
1943 activate_locked:
1944 /* Not a candidate for swapping, so reclaim swap space. */
1945 if (folio_test_swapcache(folio) &&
1946 (mem_cgroup_swap_full(&folio->page) ||
1947 folio_test_mlocked(folio)))
1948 try_to_free_swap(&folio->page);
1949 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1950 if (!folio_test_mlocked(folio)) {
1951 int type = folio_is_file_lru(folio);
1952 folio_set_active(folio);
1953 stat->nr_activate[type] += nr_pages;
1954 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1955 }
1956 keep_locked:
1957 folio_unlock(folio);
1958 keep:
1959 list_add(&folio->lru, &ret_pages);
1960 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1961 folio_test_unevictable(folio), folio);
1962 }
1963 /* 'page_list' is always empty here */
1964
1965 /* Migrate folios selected for demotion */
1966 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1967 /* Folios that could not be demoted are still in @demote_pages */
1968 if (!list_empty(&demote_pages)) {
1969 /* Folios which weren't demoted go back on @page_list for retry: */
1970 list_splice_init(&demote_pages, page_list);
1971 do_demote_pass = false;
1972 goto retry;
1973 }
1974
1975 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1976
1977 mem_cgroup_uncharge_list(&free_pages);
1978 try_to_unmap_flush();
1979 free_unref_page_list(&free_pages);
1980
1981 list_splice(&ret_pages, page_list);
1982 count_vm_events(PGACTIVATE, pgactivate);
1983
1984 if (plug)
1985 swap_write_unplug(plug);
1986 return nr_reclaimed;
1987 }
1988
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1989 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1990 struct list_head *page_list)
1991 {
1992 struct scan_control sc = {
1993 .gfp_mask = GFP_KERNEL,
1994 .may_unmap = 1,
1995 };
1996 struct reclaim_stat stat;
1997 unsigned int nr_reclaimed;
1998 struct page *page, *next;
1999 LIST_HEAD(clean_pages);
2000 unsigned int noreclaim_flag;
2001
2002 list_for_each_entry_safe(page, next, page_list, lru) {
2003 if (!PageHuge(page) && page_is_file_lru(page) &&
2004 !PageDirty(page) && !__PageMovable(page) &&
2005 !PageUnevictable(page)) {
2006 ClearPageActive(page);
2007 list_move(&page->lru, &clean_pages);
2008 }
2009 }
2010
2011 /*
2012 * We should be safe here since we are only dealing with file pages and
2013 * we are not kswapd and therefore cannot write dirty file pages. But
2014 * call memalloc_noreclaim_save() anyway, just in case these conditions
2015 * change in the future.
2016 */
2017 noreclaim_flag = memalloc_noreclaim_save();
2018 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
2019 &stat, true);
2020 memalloc_noreclaim_restore(noreclaim_flag);
2021
2022 list_splice(&clean_pages, page_list);
2023 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2024 -(long)nr_reclaimed);
2025 /*
2026 * Since lazyfree pages are isolated from file LRU from the beginning,
2027 * they will rotate back to anonymous LRU in the end if it failed to
2028 * discard so isolated count will be mismatched.
2029 * Compensate the isolated count for both LRU lists.
2030 */
2031 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2032 stat.nr_lazyfree_fail);
2033 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2034 -(long)stat.nr_lazyfree_fail);
2035 return nr_reclaimed;
2036 }
2037
2038 /*
2039 * Update LRU sizes after isolating pages. The LRU size updates must
2040 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2041 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)2042 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2043 enum lru_list lru, unsigned long *nr_zone_taken)
2044 {
2045 int zid;
2046
2047 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2048 if (!nr_zone_taken[zid])
2049 continue;
2050
2051 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2052 }
2053
2054 }
2055
2056 /*
2057 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2058 *
2059 * lruvec->lru_lock is heavily contended. Some of the functions that
2060 * shrink the lists perform better by taking out a batch of pages
2061 * and working on them outside the LRU lock.
2062 *
2063 * For pagecache intensive workloads, this function is the hottest
2064 * spot in the kernel (apart from copy_*_user functions).
2065 *
2066 * Lru_lock must be held before calling this function.
2067 *
2068 * @nr_to_scan: The number of eligible pages to look through on the list.
2069 * @lruvec: The LRU vector to pull pages from.
2070 * @dst: The temp list to put pages on to.
2071 * @nr_scanned: The number of pages that were scanned.
2072 * @sc: The scan_control struct for this reclaim session
2073 * @lru: LRU list id for isolating
2074 *
2075 * returns how many pages were moved onto *@dst.
2076 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)2077 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2078 struct lruvec *lruvec, struct list_head *dst,
2079 unsigned long *nr_scanned, struct scan_control *sc,
2080 enum lru_list lru)
2081 {
2082 struct list_head *src = &lruvec->lists[lru];
2083 unsigned long nr_taken = 0;
2084 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2085 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2086 unsigned long skipped = 0;
2087 unsigned long scan, total_scan, nr_pages;
2088 LIST_HEAD(pages_skipped);
2089
2090 total_scan = 0;
2091 scan = 0;
2092 while (scan < nr_to_scan && !list_empty(src)) {
2093 struct list_head *move_to = src;
2094 struct page *page;
2095
2096 page = lru_to_page(src);
2097 prefetchw_prev_lru_page(page, src, flags);
2098
2099 nr_pages = compound_nr(page);
2100 total_scan += nr_pages;
2101
2102 if (page_zonenum(page) > sc->reclaim_idx) {
2103 nr_skipped[page_zonenum(page)] += nr_pages;
2104 move_to = &pages_skipped;
2105 goto move;
2106 }
2107
2108 /*
2109 * Do not count skipped pages because that makes the function
2110 * return with no isolated pages if the LRU mostly contains
2111 * ineligible pages. This causes the VM to not reclaim any
2112 * pages, triggering a premature OOM.
2113 * Account all tail pages of THP.
2114 */
2115 scan += nr_pages;
2116
2117 if (!PageLRU(page))
2118 goto move;
2119 if (!sc->may_unmap && page_mapped(page))
2120 goto move;
2121
2122 /*
2123 * Be careful not to clear PageLRU until after we're
2124 * sure the page is not being freed elsewhere -- the
2125 * page release code relies on it.
2126 */
2127 if (unlikely(!get_page_unless_zero(page)))
2128 goto move;
2129
2130 if (!TestClearPageLRU(page)) {
2131 /* Another thread is already isolating this page */
2132 put_page(page);
2133 goto move;
2134 }
2135
2136 nr_taken += nr_pages;
2137 nr_zone_taken[page_zonenum(page)] += nr_pages;
2138 move_to = dst;
2139 move:
2140 list_move(&page->lru, move_to);
2141 }
2142
2143 /*
2144 * Splice any skipped pages to the start of the LRU list. Note that
2145 * this disrupts the LRU order when reclaiming for lower zones but
2146 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2147 * scanning would soon rescan the same pages to skip and waste lots
2148 * of cpu cycles.
2149 */
2150 if (!list_empty(&pages_skipped)) {
2151 int zid;
2152
2153 list_splice(&pages_skipped, src);
2154 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2155 if (!nr_skipped[zid])
2156 continue;
2157
2158 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2159 skipped += nr_skipped[zid];
2160 }
2161 }
2162 *nr_scanned = total_scan;
2163 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2164 total_scan, skipped, nr_taken,
2165 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2166 update_lru_sizes(lruvec, lru, nr_zone_taken);
2167 return nr_taken;
2168 }
2169
2170 /**
2171 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2172 * @folio: Folio to isolate from its LRU list.
2173 *
2174 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2175 * corresponding to whatever LRU list the folio was on.
2176 *
2177 * The folio will have its LRU flag cleared. If it was found on the
2178 * active list, it will have the Active flag set. If it was found on the
2179 * unevictable list, it will have the Unevictable flag set. These flags
2180 * may need to be cleared by the caller before letting the page go.
2181 *
2182 * Context:
2183 *
2184 * (1) Must be called with an elevated refcount on the page. This is a
2185 * fundamental difference from isolate_lru_pages() (which is called
2186 * without a stable reference).
2187 * (2) The lru_lock must not be held.
2188 * (3) Interrupts must be enabled.
2189 *
2190 * Return: 0 if the folio was removed from an LRU list.
2191 * -EBUSY if the folio was not on an LRU list.
2192 */
folio_isolate_lru(struct folio * folio)2193 int folio_isolate_lru(struct folio *folio)
2194 {
2195 int ret = -EBUSY;
2196
2197 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2198
2199 if (folio_test_clear_lru(folio)) {
2200 struct lruvec *lruvec;
2201
2202 folio_get(folio);
2203 lruvec = folio_lruvec_lock_irq(folio);
2204 lruvec_del_folio(lruvec, folio);
2205 unlock_page_lruvec_irq(lruvec);
2206 ret = 0;
2207 }
2208
2209 return ret;
2210 }
2211
2212 /*
2213 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2214 * then get rescheduled. When there are massive number of tasks doing page
2215 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2216 * the LRU list will go small and be scanned faster than necessary, leading to
2217 * unnecessary swapping, thrashing and OOM.
2218 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)2219 static int too_many_isolated(struct pglist_data *pgdat, int file,
2220 struct scan_control *sc)
2221 {
2222 unsigned long inactive, isolated;
2223 bool too_many;
2224
2225 if (current_is_kswapd())
2226 return 0;
2227
2228 if (!writeback_throttling_sane(sc))
2229 return 0;
2230
2231 if (file) {
2232 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2233 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2234 } else {
2235 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2236 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2237 }
2238
2239 /*
2240 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2241 * won't get blocked by normal direct-reclaimers, forming a circular
2242 * deadlock.
2243 */
2244 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2245 inactive >>= 3;
2246
2247 too_many = isolated > inactive;
2248
2249 /* Wake up tasks throttled due to too_many_isolated. */
2250 if (!too_many)
2251 wake_throttle_isolated(pgdat);
2252
2253 return too_many;
2254 }
2255
2256 /*
2257 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2258 * On return, @list is reused as a list of pages to be freed by the caller.
2259 *
2260 * Returns the number of pages moved to the given lruvec.
2261 */
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)2262 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2263 struct list_head *list)
2264 {
2265 int nr_pages, nr_moved = 0;
2266 LIST_HEAD(pages_to_free);
2267 struct page *page;
2268
2269 while (!list_empty(list)) {
2270 page = lru_to_page(list);
2271 VM_BUG_ON_PAGE(PageLRU(page), page);
2272 list_del(&page->lru);
2273 if (unlikely(!page_evictable(page))) {
2274 spin_unlock_irq(&lruvec->lru_lock);
2275 putback_lru_page(page);
2276 spin_lock_irq(&lruvec->lru_lock);
2277 continue;
2278 }
2279
2280 /*
2281 * The SetPageLRU needs to be kept here for list integrity.
2282 * Otherwise:
2283 * #0 move_pages_to_lru #1 release_pages
2284 * if !put_page_testzero
2285 * if (put_page_testzero())
2286 * !PageLRU //skip lru_lock
2287 * SetPageLRU()
2288 * list_add(&page->lru,)
2289 * list_add(&page->lru,)
2290 */
2291 SetPageLRU(page);
2292
2293 if (unlikely(put_page_testzero(page))) {
2294 __clear_page_lru_flags(page);
2295
2296 if (unlikely(PageCompound(page))) {
2297 spin_unlock_irq(&lruvec->lru_lock);
2298 destroy_compound_page(page);
2299 spin_lock_irq(&lruvec->lru_lock);
2300 } else
2301 list_add(&page->lru, &pages_to_free);
2302
2303 continue;
2304 }
2305
2306 /*
2307 * All pages were isolated from the same lruvec (and isolation
2308 * inhibits memcg migration).
2309 */
2310 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2311 add_page_to_lru_list(page, lruvec);
2312 nr_pages = thp_nr_pages(page);
2313 nr_moved += nr_pages;
2314 if (PageActive(page))
2315 workingset_age_nonresident(lruvec, nr_pages);
2316 }
2317
2318 /*
2319 * To save our caller's stack, now use input list for pages to free.
2320 */
2321 list_splice(&pages_to_free, list);
2322
2323 return nr_moved;
2324 }
2325
2326 /*
2327 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2328 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2329 * we should not throttle. Otherwise it is safe to do so.
2330 */
current_may_throttle(void)2331 static int current_may_throttle(void)
2332 {
2333 return !(current->flags & PF_LOCAL_THROTTLE);
2334 }
2335
2336 /*
2337 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2338 * of reclaimed pages
2339 */
2340 static unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2341 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2342 struct scan_control *sc, enum lru_list lru)
2343 {
2344 LIST_HEAD(page_list);
2345 unsigned long nr_scanned;
2346 unsigned int nr_reclaimed = 0;
2347 unsigned long nr_taken;
2348 struct reclaim_stat stat;
2349 bool file = is_file_lru(lru);
2350 enum vm_event_item item;
2351 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2352 bool stalled = false;
2353
2354 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2355 if (stalled)
2356 return 0;
2357
2358 /* wait a bit for the reclaimer. */
2359 stalled = true;
2360 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2361
2362 /* We are about to die and free our memory. Return now. */
2363 if (fatal_signal_pending(current))
2364 return SWAP_CLUSTER_MAX;
2365 }
2366
2367 lru_add_drain();
2368
2369 spin_lock_irq(&lruvec->lru_lock);
2370
2371 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2372 &nr_scanned, sc, lru);
2373
2374 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2375 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2376 if (!cgroup_reclaim(sc))
2377 __count_vm_events(item, nr_scanned);
2378 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2379 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2380
2381 spin_unlock_irq(&lruvec->lru_lock);
2382
2383 if (nr_taken == 0)
2384 return 0;
2385
2386 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2387
2388 spin_lock_irq(&lruvec->lru_lock);
2389 move_pages_to_lru(lruvec, &page_list);
2390
2391 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2392 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2393 if (!cgroup_reclaim(sc))
2394 __count_vm_events(item, nr_reclaimed);
2395 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2396 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2397 spin_unlock_irq(&lruvec->lru_lock);
2398
2399 lru_note_cost(lruvec, file, stat.nr_pageout);
2400 mem_cgroup_uncharge_list(&page_list);
2401 free_unref_page_list(&page_list);
2402
2403 /*
2404 * If dirty pages are scanned that are not queued for IO, it
2405 * implies that flushers are not doing their job. This can
2406 * happen when memory pressure pushes dirty pages to the end of
2407 * the LRU before the dirty limits are breached and the dirty
2408 * data has expired. It can also happen when the proportion of
2409 * dirty pages grows not through writes but through memory
2410 * pressure reclaiming all the clean cache. And in some cases,
2411 * the flushers simply cannot keep up with the allocation
2412 * rate. Nudge the flusher threads in case they are asleep.
2413 */
2414 if (stat.nr_unqueued_dirty == nr_taken)
2415 wakeup_flusher_threads(WB_REASON_VMSCAN);
2416
2417 sc->nr.dirty += stat.nr_dirty;
2418 sc->nr.congested += stat.nr_congested;
2419 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2420 sc->nr.writeback += stat.nr_writeback;
2421 sc->nr.immediate += stat.nr_immediate;
2422 sc->nr.taken += nr_taken;
2423 if (file)
2424 sc->nr.file_taken += nr_taken;
2425
2426 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2427 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2428 return nr_reclaimed;
2429 }
2430
2431 /*
2432 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2433 *
2434 * We move them the other way if the page is referenced by one or more
2435 * processes.
2436 *
2437 * If the pages are mostly unmapped, the processing is fast and it is
2438 * appropriate to hold lru_lock across the whole operation. But if
2439 * the pages are mapped, the processing is slow (folio_referenced()), so
2440 * we should drop lru_lock around each page. It's impossible to balance
2441 * this, so instead we remove the pages from the LRU while processing them.
2442 * It is safe to rely on PG_active against the non-LRU pages in here because
2443 * nobody will play with that bit on a non-LRU page.
2444 *
2445 * The downside is that we have to touch page->_refcount against each page.
2446 * But we had to alter page->flags anyway.
2447 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2448 static void shrink_active_list(unsigned long nr_to_scan,
2449 struct lruvec *lruvec,
2450 struct scan_control *sc,
2451 enum lru_list lru)
2452 {
2453 unsigned long nr_taken;
2454 unsigned long nr_scanned;
2455 unsigned long vm_flags;
2456 LIST_HEAD(l_hold); /* The pages which were snipped off */
2457 LIST_HEAD(l_active);
2458 LIST_HEAD(l_inactive);
2459 unsigned nr_deactivate, nr_activate;
2460 unsigned nr_rotated = 0;
2461 int file = is_file_lru(lru);
2462 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2463
2464 lru_add_drain();
2465
2466 spin_lock_irq(&lruvec->lru_lock);
2467
2468 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2469 &nr_scanned, sc, lru);
2470
2471 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2472
2473 if (!cgroup_reclaim(sc))
2474 __count_vm_events(PGREFILL, nr_scanned);
2475 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2476
2477 spin_unlock_irq(&lruvec->lru_lock);
2478
2479 while (!list_empty(&l_hold)) {
2480 struct folio *folio;
2481 struct page *page;
2482
2483 cond_resched();
2484 folio = lru_to_folio(&l_hold);
2485 list_del(&folio->lru);
2486 page = &folio->page;
2487
2488 if (unlikely(!page_evictable(page))) {
2489 putback_lru_page(page);
2490 continue;
2491 }
2492
2493 if (unlikely(buffer_heads_over_limit)) {
2494 if (page_has_private(page) && trylock_page(page)) {
2495 if (page_has_private(page))
2496 try_to_release_page(page, 0);
2497 unlock_page(page);
2498 }
2499 }
2500
2501 /* Referenced or rmap lock contention: rotate */
2502 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2503 &vm_flags) != 0) {
2504 /*
2505 * Identify referenced, file-backed active pages and
2506 * give them one more trip around the active list. So
2507 * that executable code get better chances to stay in
2508 * memory under moderate memory pressure. Anon pages
2509 * are not likely to be evicted by use-once streaming
2510 * IO, plus JVM can create lots of anon VM_EXEC pages,
2511 * so we ignore them here.
2512 */
2513 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2514 nr_rotated += thp_nr_pages(page);
2515 list_add(&page->lru, &l_active);
2516 continue;
2517 }
2518 }
2519
2520 ClearPageActive(page); /* we are de-activating */
2521 SetPageWorkingset(page);
2522 list_add(&page->lru, &l_inactive);
2523 }
2524
2525 /*
2526 * Move pages back to the lru list.
2527 */
2528 spin_lock_irq(&lruvec->lru_lock);
2529
2530 nr_activate = move_pages_to_lru(lruvec, &l_active);
2531 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2532 /* Keep all free pages in l_active list */
2533 list_splice(&l_inactive, &l_active);
2534
2535 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2536 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2537
2538 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2539 spin_unlock_irq(&lruvec->lru_lock);
2540
2541 mem_cgroup_uncharge_list(&l_active);
2542 free_unref_page_list(&l_active);
2543 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2544 nr_deactivate, nr_rotated, sc->priority, file);
2545 }
2546
reclaim_page_list(struct list_head * page_list,struct pglist_data * pgdat)2547 static unsigned int reclaim_page_list(struct list_head *page_list,
2548 struct pglist_data *pgdat)
2549 {
2550 struct reclaim_stat dummy_stat;
2551 unsigned int nr_reclaimed;
2552 struct folio *folio;
2553 struct scan_control sc = {
2554 .gfp_mask = GFP_KERNEL,
2555 .may_writepage = 1,
2556 .may_unmap = 1,
2557 .may_swap = 1,
2558 .no_demotion = 1,
2559 };
2560
2561 nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2562 while (!list_empty(page_list)) {
2563 folio = lru_to_folio(page_list);
2564 list_del(&folio->lru);
2565 folio_putback_lru(folio);
2566 }
2567
2568 return nr_reclaimed;
2569 }
2570
reclaim_pages(struct list_head * page_list)2571 unsigned long reclaim_pages(struct list_head *page_list)
2572 {
2573 int nid;
2574 unsigned int nr_reclaimed = 0;
2575 LIST_HEAD(node_page_list);
2576 struct page *page;
2577 unsigned int noreclaim_flag;
2578
2579 if (list_empty(page_list))
2580 return nr_reclaimed;
2581
2582 noreclaim_flag = memalloc_noreclaim_save();
2583
2584 nid = page_to_nid(lru_to_page(page_list));
2585 do {
2586 page = lru_to_page(page_list);
2587
2588 if (nid == page_to_nid(page)) {
2589 ClearPageActive(page);
2590 list_move(&page->lru, &node_page_list);
2591 continue;
2592 }
2593
2594 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
2595 nid = page_to_nid(lru_to_page(page_list));
2596 } while (!list_empty(page_list));
2597
2598 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
2599
2600 memalloc_noreclaim_restore(noreclaim_flag);
2601
2602 return nr_reclaimed;
2603 }
2604
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2605 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2606 struct lruvec *lruvec, struct scan_control *sc)
2607 {
2608 if (is_active_lru(lru)) {
2609 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2610 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2611 else
2612 sc->skipped_deactivate = 1;
2613 return 0;
2614 }
2615
2616 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2617 }
2618
2619 /*
2620 * The inactive anon list should be small enough that the VM never has
2621 * to do too much work.
2622 *
2623 * The inactive file list should be small enough to leave most memory
2624 * to the established workingset on the scan-resistant active list,
2625 * but large enough to avoid thrashing the aggregate readahead window.
2626 *
2627 * Both inactive lists should also be large enough that each inactive
2628 * page has a chance to be referenced again before it is reclaimed.
2629 *
2630 * If that fails and refaulting is observed, the inactive list grows.
2631 *
2632 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2633 * on this LRU, maintained by the pageout code. An inactive_ratio
2634 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2635 *
2636 * total target max
2637 * memory ratio inactive
2638 * -------------------------------------
2639 * 10MB 1 5MB
2640 * 100MB 1 50MB
2641 * 1GB 3 250MB
2642 * 10GB 10 0.9GB
2643 * 100GB 31 3GB
2644 * 1TB 101 10GB
2645 * 10TB 320 32GB
2646 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2647 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2648 {
2649 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2650 unsigned long inactive, active;
2651 unsigned long inactive_ratio;
2652 unsigned long gb;
2653
2654 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2655 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2656
2657 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2658 if (gb)
2659 inactive_ratio = int_sqrt(10 * gb);
2660 else
2661 inactive_ratio = 1;
2662
2663 return inactive * inactive_ratio < active;
2664 }
2665
2666 enum scan_balance {
2667 SCAN_EQUAL,
2668 SCAN_FRACT,
2669 SCAN_ANON,
2670 SCAN_FILE,
2671 };
2672
2673 /*
2674 * Determine how aggressively the anon and file LRU lists should be
2675 * scanned.
2676 *
2677 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2678 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2679 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2680 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2681 unsigned long *nr)
2682 {
2683 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2684 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2685 unsigned long anon_cost, file_cost, total_cost;
2686 int swappiness = mem_cgroup_swappiness(memcg);
2687 u64 fraction[ANON_AND_FILE];
2688 u64 denominator = 0; /* gcc */
2689 enum scan_balance scan_balance;
2690 unsigned long ap, fp;
2691 enum lru_list lru;
2692
2693 /* If we have no swap space, do not bother scanning anon pages. */
2694 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2695 scan_balance = SCAN_FILE;
2696 goto out;
2697 }
2698
2699 /*
2700 * Global reclaim will swap to prevent OOM even with no
2701 * swappiness, but memcg users want to use this knob to
2702 * disable swapping for individual groups completely when
2703 * using the memory controller's swap limit feature would be
2704 * too expensive.
2705 */
2706 if (cgroup_reclaim(sc) && !swappiness) {
2707 scan_balance = SCAN_FILE;
2708 goto out;
2709 }
2710
2711 /*
2712 * Do not apply any pressure balancing cleverness when the
2713 * system is close to OOM, scan both anon and file equally
2714 * (unless the swappiness setting disagrees with swapping).
2715 */
2716 if (!sc->priority && swappiness) {
2717 scan_balance = SCAN_EQUAL;
2718 goto out;
2719 }
2720
2721 /*
2722 * If the system is almost out of file pages, force-scan anon.
2723 */
2724 if (sc->file_is_tiny) {
2725 scan_balance = SCAN_ANON;
2726 goto out;
2727 }
2728
2729 /*
2730 * If there is enough inactive page cache, we do not reclaim
2731 * anything from the anonymous working right now.
2732 */
2733 if (sc->cache_trim_mode) {
2734 scan_balance = SCAN_FILE;
2735 goto out;
2736 }
2737
2738 scan_balance = SCAN_FRACT;
2739 /*
2740 * Calculate the pressure balance between anon and file pages.
2741 *
2742 * The amount of pressure we put on each LRU is inversely
2743 * proportional to the cost of reclaiming each list, as
2744 * determined by the share of pages that are refaulting, times
2745 * the relative IO cost of bringing back a swapped out
2746 * anonymous page vs reloading a filesystem page (swappiness).
2747 *
2748 * Although we limit that influence to ensure no list gets
2749 * left behind completely: at least a third of the pressure is
2750 * applied, before swappiness.
2751 *
2752 * With swappiness at 100, anon and file have equal IO cost.
2753 */
2754 total_cost = sc->anon_cost + sc->file_cost;
2755 anon_cost = total_cost + sc->anon_cost;
2756 file_cost = total_cost + sc->file_cost;
2757 total_cost = anon_cost + file_cost;
2758
2759 ap = swappiness * (total_cost + 1);
2760 ap /= anon_cost + 1;
2761
2762 fp = (200 - swappiness) * (total_cost + 1);
2763 fp /= file_cost + 1;
2764
2765 fraction[0] = ap;
2766 fraction[1] = fp;
2767 denominator = ap + fp;
2768 out:
2769 for_each_evictable_lru(lru) {
2770 int file = is_file_lru(lru);
2771 unsigned long lruvec_size;
2772 unsigned long low, min;
2773 unsigned long scan;
2774
2775 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2776 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2777 &min, &low);
2778
2779 if (min || low) {
2780 /*
2781 * Scale a cgroup's reclaim pressure by proportioning
2782 * its current usage to its memory.low or memory.min
2783 * setting.
2784 *
2785 * This is important, as otherwise scanning aggression
2786 * becomes extremely binary -- from nothing as we
2787 * approach the memory protection threshold, to totally
2788 * nominal as we exceed it. This results in requiring
2789 * setting extremely liberal protection thresholds. It
2790 * also means we simply get no protection at all if we
2791 * set it too low, which is not ideal.
2792 *
2793 * If there is any protection in place, we reduce scan
2794 * pressure by how much of the total memory used is
2795 * within protection thresholds.
2796 *
2797 * There is one special case: in the first reclaim pass,
2798 * we skip over all groups that are within their low
2799 * protection. If that fails to reclaim enough pages to
2800 * satisfy the reclaim goal, we come back and override
2801 * the best-effort low protection. However, we still
2802 * ideally want to honor how well-behaved groups are in
2803 * that case instead of simply punishing them all
2804 * equally. As such, we reclaim them based on how much
2805 * memory they are using, reducing the scan pressure
2806 * again by how much of the total memory used is under
2807 * hard protection.
2808 */
2809 unsigned long cgroup_size = mem_cgroup_size(memcg);
2810 unsigned long protection;
2811
2812 /* memory.low scaling, make sure we retry before OOM */
2813 if (!sc->memcg_low_reclaim && low > min) {
2814 protection = low;
2815 sc->memcg_low_skipped = 1;
2816 } else {
2817 protection = min;
2818 }
2819
2820 /* Avoid TOCTOU with earlier protection check */
2821 cgroup_size = max(cgroup_size, protection);
2822
2823 scan = lruvec_size - lruvec_size * protection /
2824 (cgroup_size + 1);
2825
2826 /*
2827 * Minimally target SWAP_CLUSTER_MAX pages to keep
2828 * reclaim moving forwards, avoiding decrementing
2829 * sc->priority further than desirable.
2830 */
2831 scan = max(scan, SWAP_CLUSTER_MAX);
2832 } else {
2833 scan = lruvec_size;
2834 }
2835
2836 scan >>= sc->priority;
2837
2838 /*
2839 * If the cgroup's already been deleted, make sure to
2840 * scrape out the remaining cache.
2841 */
2842 if (!scan && !mem_cgroup_online(memcg))
2843 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2844
2845 switch (scan_balance) {
2846 case SCAN_EQUAL:
2847 /* Scan lists relative to size */
2848 break;
2849 case SCAN_FRACT:
2850 /*
2851 * Scan types proportional to swappiness and
2852 * their relative recent reclaim efficiency.
2853 * Make sure we don't miss the last page on
2854 * the offlined memory cgroups because of a
2855 * round-off error.
2856 */
2857 scan = mem_cgroup_online(memcg) ?
2858 div64_u64(scan * fraction[file], denominator) :
2859 DIV64_U64_ROUND_UP(scan * fraction[file],
2860 denominator);
2861 break;
2862 case SCAN_FILE:
2863 case SCAN_ANON:
2864 /* Scan one type exclusively */
2865 if ((scan_balance == SCAN_FILE) != file)
2866 scan = 0;
2867 break;
2868 default:
2869 /* Look ma, no brain */
2870 BUG();
2871 }
2872
2873 nr[lru] = scan;
2874 }
2875 }
2876
2877 /*
2878 * Anonymous LRU management is a waste if there is
2879 * ultimately no way to reclaim the memory.
2880 */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)2881 static bool can_age_anon_pages(struct pglist_data *pgdat,
2882 struct scan_control *sc)
2883 {
2884 /* Aging the anon LRU is valuable if swap is present: */
2885 if (total_swap_pages > 0)
2886 return true;
2887
2888 /* Also valuable if anon pages can be demoted: */
2889 return can_demote(pgdat->node_id, sc);
2890 }
2891
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2892 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2893 {
2894 unsigned long nr[NR_LRU_LISTS];
2895 unsigned long targets[NR_LRU_LISTS];
2896 unsigned long nr_to_scan;
2897 enum lru_list lru;
2898 unsigned long nr_reclaimed = 0;
2899 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2900 struct blk_plug plug;
2901 bool scan_adjusted;
2902
2903 get_scan_count(lruvec, sc, nr);
2904
2905 /* Record the original scan target for proportional adjustments later */
2906 memcpy(targets, nr, sizeof(nr));
2907
2908 /*
2909 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2910 * event that can occur when there is little memory pressure e.g.
2911 * multiple streaming readers/writers. Hence, we do not abort scanning
2912 * when the requested number of pages are reclaimed when scanning at
2913 * DEF_PRIORITY on the assumption that the fact we are direct
2914 * reclaiming implies that kswapd is not keeping up and it is best to
2915 * do a batch of work at once. For memcg reclaim one check is made to
2916 * abort proportional reclaim if either the file or anon lru has already
2917 * dropped to zero at the first pass.
2918 */
2919 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2920 sc->priority == DEF_PRIORITY);
2921
2922 blk_start_plug(&plug);
2923 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2924 nr[LRU_INACTIVE_FILE]) {
2925 unsigned long nr_anon, nr_file, percentage;
2926 unsigned long nr_scanned;
2927
2928 for_each_evictable_lru(lru) {
2929 if (nr[lru]) {
2930 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2931 nr[lru] -= nr_to_scan;
2932
2933 nr_reclaimed += shrink_list(lru, nr_to_scan,
2934 lruvec, sc);
2935 }
2936 }
2937
2938 cond_resched();
2939
2940 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2941 continue;
2942
2943 /*
2944 * For kswapd and memcg, reclaim at least the number of pages
2945 * requested. Ensure that the anon and file LRUs are scanned
2946 * proportionally what was requested by get_scan_count(). We
2947 * stop reclaiming one LRU and reduce the amount scanning
2948 * proportional to the original scan target.
2949 */
2950 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2951 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2952
2953 /*
2954 * It's just vindictive to attack the larger once the smaller
2955 * has gone to zero. And given the way we stop scanning the
2956 * smaller below, this makes sure that we only make one nudge
2957 * towards proportionality once we've got nr_to_reclaim.
2958 */
2959 if (!nr_file || !nr_anon)
2960 break;
2961
2962 if (nr_file > nr_anon) {
2963 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2964 targets[LRU_ACTIVE_ANON] + 1;
2965 lru = LRU_BASE;
2966 percentage = nr_anon * 100 / scan_target;
2967 } else {
2968 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2969 targets[LRU_ACTIVE_FILE] + 1;
2970 lru = LRU_FILE;
2971 percentage = nr_file * 100 / scan_target;
2972 }
2973
2974 /* Stop scanning the smaller of the LRU */
2975 nr[lru] = 0;
2976 nr[lru + LRU_ACTIVE] = 0;
2977
2978 /*
2979 * Recalculate the other LRU scan count based on its original
2980 * scan target and the percentage scanning already complete
2981 */
2982 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2983 nr_scanned = targets[lru] - nr[lru];
2984 nr[lru] = targets[lru] * (100 - percentage) / 100;
2985 nr[lru] -= min(nr[lru], nr_scanned);
2986
2987 lru += LRU_ACTIVE;
2988 nr_scanned = targets[lru] - nr[lru];
2989 nr[lru] = targets[lru] * (100 - percentage) / 100;
2990 nr[lru] -= min(nr[lru], nr_scanned);
2991
2992 scan_adjusted = true;
2993 }
2994 blk_finish_plug(&plug);
2995 sc->nr_reclaimed += nr_reclaimed;
2996
2997 /*
2998 * Even if we did not try to evict anon pages at all, we want to
2999 * rebalance the anon lru active/inactive ratio.
3000 */
3001 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3002 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3003 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3004 sc, LRU_ACTIVE_ANON);
3005 }
3006
3007 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)3008 static bool in_reclaim_compaction(struct scan_control *sc)
3009 {
3010 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3011 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3012 sc->priority < DEF_PRIORITY - 2))
3013 return true;
3014
3015 return false;
3016 }
3017
3018 /*
3019 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3020 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3021 * true if more pages should be reclaimed such that when the page allocator
3022 * calls try_to_compact_pages() that it will have enough free pages to succeed.
3023 * It will give up earlier than that if there is difficulty reclaiming pages.
3024 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)3025 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3026 unsigned long nr_reclaimed,
3027 struct scan_control *sc)
3028 {
3029 unsigned long pages_for_compaction;
3030 unsigned long inactive_lru_pages;
3031 int z;
3032
3033 /* If not in reclaim/compaction mode, stop */
3034 if (!in_reclaim_compaction(sc))
3035 return false;
3036
3037 /*
3038 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3039 * number of pages that were scanned. This will return to the caller
3040 * with the risk reclaim/compaction and the resulting allocation attempt
3041 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3042 * allocations through requiring that the full LRU list has been scanned
3043 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3044 * scan, but that approximation was wrong, and there were corner cases
3045 * where always a non-zero amount of pages were scanned.
3046 */
3047 if (!nr_reclaimed)
3048 return false;
3049
3050 /* If compaction would go ahead or the allocation would succeed, stop */
3051 for (z = 0; z <= sc->reclaim_idx; z++) {
3052 struct zone *zone = &pgdat->node_zones[z];
3053 if (!managed_zone(zone))
3054 continue;
3055
3056 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3057 case COMPACT_SUCCESS:
3058 case COMPACT_CONTINUE:
3059 return false;
3060 default:
3061 /* check next zone */
3062 ;
3063 }
3064 }
3065
3066 /*
3067 * If we have not reclaimed enough pages for compaction and the
3068 * inactive lists are large enough, continue reclaiming
3069 */
3070 pages_for_compaction = compact_gap(sc->order);
3071 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3072 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3073 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3074
3075 return inactive_lru_pages > pages_for_compaction;
3076 }
3077
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)3078 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3079 {
3080 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3081 struct mem_cgroup *memcg;
3082
3083 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3084 do {
3085 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3086 unsigned long reclaimed;
3087 unsigned long scanned;
3088
3089 /*
3090 * This loop can become CPU-bound when target memcgs
3091 * aren't eligible for reclaim - either because they
3092 * don't have any reclaimable pages, or because their
3093 * memory is explicitly protected. Avoid soft lockups.
3094 */
3095 cond_resched();
3096
3097 mem_cgroup_calculate_protection(target_memcg, memcg);
3098
3099 if (mem_cgroup_below_min(memcg)) {
3100 /*
3101 * Hard protection.
3102 * If there is no reclaimable memory, OOM.
3103 */
3104 continue;
3105 } else if (mem_cgroup_below_low(memcg)) {
3106 /*
3107 * Soft protection.
3108 * Respect the protection only as long as
3109 * there is an unprotected supply
3110 * of reclaimable memory from other cgroups.
3111 */
3112 if (!sc->memcg_low_reclaim) {
3113 sc->memcg_low_skipped = 1;
3114 continue;
3115 }
3116 memcg_memory_event(memcg, MEMCG_LOW);
3117 }
3118
3119 reclaimed = sc->nr_reclaimed;
3120 scanned = sc->nr_scanned;
3121
3122 shrink_lruvec(lruvec, sc);
3123
3124 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3125 sc->priority);
3126
3127 /* Record the group's reclaim efficiency */
3128 vmpressure(sc->gfp_mask, memcg, false,
3129 sc->nr_scanned - scanned,
3130 sc->nr_reclaimed - reclaimed);
3131
3132 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3133 }
3134
shrink_node(pg_data_t * pgdat,struct scan_control * sc)3135 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3136 {
3137 struct reclaim_state *reclaim_state = current->reclaim_state;
3138 unsigned long nr_reclaimed, nr_scanned;
3139 struct lruvec *target_lruvec;
3140 bool reclaimable = false;
3141 unsigned long file;
3142
3143 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3144
3145 again:
3146 /*
3147 * Flush the memory cgroup stats, so that we read accurate per-memcg
3148 * lruvec stats for heuristics.
3149 */
3150 mem_cgroup_flush_stats();
3151
3152 memset(&sc->nr, 0, sizeof(sc->nr));
3153
3154 nr_reclaimed = sc->nr_reclaimed;
3155 nr_scanned = sc->nr_scanned;
3156
3157 /*
3158 * Determine the scan balance between anon and file LRUs.
3159 */
3160 spin_lock_irq(&target_lruvec->lru_lock);
3161 sc->anon_cost = target_lruvec->anon_cost;
3162 sc->file_cost = target_lruvec->file_cost;
3163 spin_unlock_irq(&target_lruvec->lru_lock);
3164
3165 /*
3166 * Target desirable inactive:active list ratios for the anon
3167 * and file LRU lists.
3168 */
3169 if (!sc->force_deactivate) {
3170 unsigned long refaults;
3171
3172 refaults = lruvec_page_state(target_lruvec,
3173 WORKINGSET_ACTIVATE_ANON);
3174 if (refaults != target_lruvec->refaults[0] ||
3175 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3176 sc->may_deactivate |= DEACTIVATE_ANON;
3177 else
3178 sc->may_deactivate &= ~DEACTIVATE_ANON;
3179
3180 /*
3181 * When refaults are being observed, it means a new
3182 * workingset is being established. Deactivate to get
3183 * rid of any stale active pages quickly.
3184 */
3185 refaults = lruvec_page_state(target_lruvec,
3186 WORKINGSET_ACTIVATE_FILE);
3187 if (refaults != target_lruvec->refaults[1] ||
3188 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3189 sc->may_deactivate |= DEACTIVATE_FILE;
3190 else
3191 sc->may_deactivate &= ~DEACTIVATE_FILE;
3192 } else
3193 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3194
3195 /*
3196 * If we have plenty of inactive file pages that aren't
3197 * thrashing, try to reclaim those first before touching
3198 * anonymous pages.
3199 */
3200 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3201 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3202 sc->cache_trim_mode = 1;
3203 else
3204 sc->cache_trim_mode = 0;
3205
3206 /*
3207 * Prevent the reclaimer from falling into the cache trap: as
3208 * cache pages start out inactive, every cache fault will tip
3209 * the scan balance towards the file LRU. And as the file LRU
3210 * shrinks, so does the window for rotation from references.
3211 * This means we have a runaway feedback loop where a tiny
3212 * thrashing file LRU becomes infinitely more attractive than
3213 * anon pages. Try to detect this based on file LRU size.
3214 */
3215 if (!cgroup_reclaim(sc)) {
3216 unsigned long total_high_wmark = 0;
3217 unsigned long free, anon;
3218 int z;
3219
3220 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3221 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3222 node_page_state(pgdat, NR_INACTIVE_FILE);
3223
3224 for (z = 0; z < MAX_NR_ZONES; z++) {
3225 struct zone *zone = &pgdat->node_zones[z];
3226 if (!managed_zone(zone))
3227 continue;
3228
3229 total_high_wmark += high_wmark_pages(zone);
3230 }
3231
3232 /*
3233 * Consider anon: if that's low too, this isn't a
3234 * runaway file reclaim problem, but rather just
3235 * extreme pressure. Reclaim as per usual then.
3236 */
3237 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3238
3239 sc->file_is_tiny =
3240 file + free <= total_high_wmark &&
3241 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3242 anon >> sc->priority;
3243 }
3244
3245 shrink_node_memcgs(pgdat, sc);
3246
3247 if (reclaim_state) {
3248 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3249 reclaim_state->reclaimed_slab = 0;
3250 }
3251
3252 /* Record the subtree's reclaim efficiency */
3253 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3254 sc->nr_scanned - nr_scanned,
3255 sc->nr_reclaimed - nr_reclaimed);
3256
3257 if (sc->nr_reclaimed - nr_reclaimed)
3258 reclaimable = true;
3259
3260 if (current_is_kswapd()) {
3261 /*
3262 * If reclaim is isolating dirty pages under writeback,
3263 * it implies that the long-lived page allocation rate
3264 * is exceeding the page laundering rate. Either the
3265 * global limits are not being effective at throttling
3266 * processes due to the page distribution throughout
3267 * zones or there is heavy usage of a slow backing
3268 * device. The only option is to throttle from reclaim
3269 * context which is not ideal as there is no guarantee
3270 * the dirtying process is throttled in the same way
3271 * balance_dirty_pages() manages.
3272 *
3273 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3274 * count the number of pages under pages flagged for
3275 * immediate reclaim and stall if any are encountered
3276 * in the nr_immediate check below.
3277 */
3278 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3279 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3280
3281 /* Allow kswapd to start writing pages during reclaim.*/
3282 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3283 set_bit(PGDAT_DIRTY, &pgdat->flags);
3284
3285 /*
3286 * If kswapd scans pages marked for immediate
3287 * reclaim and under writeback (nr_immediate), it
3288 * implies that pages are cycling through the LRU
3289 * faster than they are written so forcibly stall
3290 * until some pages complete writeback.
3291 */
3292 if (sc->nr.immediate)
3293 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3294 }
3295
3296 /*
3297 * Tag a node/memcg as congested if all the dirty pages were marked
3298 * for writeback and immediate reclaim (counted in nr.congested).
3299 *
3300 * Legacy memcg will stall in page writeback so avoid forcibly
3301 * stalling in reclaim_throttle().
3302 */
3303 if ((current_is_kswapd() ||
3304 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3305 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3306 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3307
3308 /*
3309 * Stall direct reclaim for IO completions if the lruvec is
3310 * node is congested. Allow kswapd to continue until it
3311 * starts encountering unqueued dirty pages or cycling through
3312 * the LRU too quickly.
3313 */
3314 if (!current_is_kswapd() && current_may_throttle() &&
3315 !sc->hibernation_mode &&
3316 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3317 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3318
3319 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3320 sc))
3321 goto again;
3322
3323 /*
3324 * Kswapd gives up on balancing particular nodes after too
3325 * many failures to reclaim anything from them and goes to
3326 * sleep. On reclaim progress, reset the failure counter. A
3327 * successful direct reclaim run will revive a dormant kswapd.
3328 */
3329 if (reclaimable)
3330 pgdat->kswapd_failures = 0;
3331 }
3332
3333 /*
3334 * Returns true if compaction should go ahead for a costly-order request, or
3335 * the allocation would already succeed without compaction. Return false if we
3336 * should reclaim first.
3337 */
compaction_ready(struct zone * zone,struct scan_control * sc)3338 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3339 {
3340 unsigned long watermark;
3341 enum compact_result suitable;
3342
3343 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3344 if (suitable == COMPACT_SUCCESS)
3345 /* Allocation should succeed already. Don't reclaim. */
3346 return true;
3347 if (suitable == COMPACT_SKIPPED)
3348 /* Compaction cannot yet proceed. Do reclaim. */
3349 return false;
3350
3351 /*
3352 * Compaction is already possible, but it takes time to run and there
3353 * are potentially other callers using the pages just freed. So proceed
3354 * with reclaim to make a buffer of free pages available to give
3355 * compaction a reasonable chance of completing and allocating the page.
3356 * Note that we won't actually reclaim the whole buffer in one attempt
3357 * as the target watermark in should_continue_reclaim() is lower. But if
3358 * we are already above the high+gap watermark, don't reclaim at all.
3359 */
3360 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3361
3362 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3363 }
3364
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)3365 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3366 {
3367 /*
3368 * If reclaim is making progress greater than 12% efficiency then
3369 * wake all the NOPROGRESS throttled tasks.
3370 */
3371 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3372 wait_queue_head_t *wqh;
3373
3374 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3375 if (waitqueue_active(wqh))
3376 wake_up(wqh);
3377
3378 return;
3379 }
3380
3381 /*
3382 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3383 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3384 * under writeback and marked for immediate reclaim at the tail of the
3385 * LRU.
3386 */
3387 if (current_is_kswapd() || cgroup_reclaim(sc))
3388 return;
3389
3390 /* Throttle if making no progress at high prioities. */
3391 if (sc->priority == 1 && !sc->nr_reclaimed)
3392 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3393 }
3394
3395 /*
3396 * This is the direct reclaim path, for page-allocating processes. We only
3397 * try to reclaim pages from zones which will satisfy the caller's allocation
3398 * request.
3399 *
3400 * If a zone is deemed to be full of pinned pages then just give it a light
3401 * scan then give up on it.
3402 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)3403 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3404 {
3405 struct zoneref *z;
3406 struct zone *zone;
3407 unsigned long nr_soft_reclaimed;
3408 unsigned long nr_soft_scanned;
3409 gfp_t orig_mask;
3410 pg_data_t *last_pgdat = NULL;
3411 pg_data_t *first_pgdat = NULL;
3412
3413 /*
3414 * If the number of buffer_heads in the machine exceeds the maximum
3415 * allowed level, force direct reclaim to scan the highmem zone as
3416 * highmem pages could be pinning lowmem pages storing buffer_heads
3417 */
3418 orig_mask = sc->gfp_mask;
3419 if (buffer_heads_over_limit) {
3420 sc->gfp_mask |= __GFP_HIGHMEM;
3421 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3422 }
3423
3424 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3425 sc->reclaim_idx, sc->nodemask) {
3426 /*
3427 * Take care memory controller reclaiming has small influence
3428 * to global LRU.
3429 */
3430 if (!cgroup_reclaim(sc)) {
3431 if (!cpuset_zone_allowed(zone,
3432 GFP_KERNEL | __GFP_HARDWALL))
3433 continue;
3434
3435 /*
3436 * If we already have plenty of memory free for
3437 * compaction in this zone, don't free any more.
3438 * Even though compaction is invoked for any
3439 * non-zero order, only frequent costly order
3440 * reclamation is disruptive enough to become a
3441 * noticeable problem, like transparent huge
3442 * page allocations.
3443 */
3444 if (IS_ENABLED(CONFIG_COMPACTION) &&
3445 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3446 compaction_ready(zone, sc)) {
3447 sc->compaction_ready = true;
3448 continue;
3449 }
3450
3451 /*
3452 * Shrink each node in the zonelist once. If the
3453 * zonelist is ordered by zone (not the default) then a
3454 * node may be shrunk multiple times but in that case
3455 * the user prefers lower zones being preserved.
3456 */
3457 if (zone->zone_pgdat == last_pgdat)
3458 continue;
3459
3460 /*
3461 * This steals pages from memory cgroups over softlimit
3462 * and returns the number of reclaimed pages and
3463 * scanned pages. This works for global memory pressure
3464 * and balancing, not for a memcg's limit.
3465 */
3466 nr_soft_scanned = 0;
3467 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3468 sc->order, sc->gfp_mask,
3469 &nr_soft_scanned);
3470 sc->nr_reclaimed += nr_soft_reclaimed;
3471 sc->nr_scanned += nr_soft_scanned;
3472 /* need some check for avoid more shrink_zone() */
3473 }
3474
3475 if (!first_pgdat)
3476 first_pgdat = zone->zone_pgdat;
3477
3478 /* See comment about same check for global reclaim above */
3479 if (zone->zone_pgdat == last_pgdat)
3480 continue;
3481 last_pgdat = zone->zone_pgdat;
3482 shrink_node(zone->zone_pgdat, sc);
3483 }
3484
3485 if (first_pgdat)
3486 consider_reclaim_throttle(first_pgdat, sc);
3487
3488 /*
3489 * Restore to original mask to avoid the impact on the caller if we
3490 * promoted it to __GFP_HIGHMEM.
3491 */
3492 sc->gfp_mask = orig_mask;
3493 }
3494
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)3495 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3496 {
3497 struct lruvec *target_lruvec;
3498 unsigned long refaults;
3499
3500 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3501 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3502 target_lruvec->refaults[0] = refaults;
3503 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3504 target_lruvec->refaults[1] = refaults;
3505 }
3506
3507 /*
3508 * This is the main entry point to direct page reclaim.
3509 *
3510 * If a full scan of the inactive list fails to free enough memory then we
3511 * are "out of memory" and something needs to be killed.
3512 *
3513 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3514 * high - the zone may be full of dirty or under-writeback pages, which this
3515 * caller can't do much about. We kick the writeback threads and take explicit
3516 * naps in the hope that some of these pages can be written. But if the
3517 * allocating task holds filesystem locks which prevent writeout this might not
3518 * work, and the allocation attempt will fail.
3519 *
3520 * returns: 0, if no pages reclaimed
3521 * else, the number of pages reclaimed
3522 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3523 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3524 struct scan_control *sc)
3525 {
3526 int initial_priority = sc->priority;
3527 pg_data_t *last_pgdat;
3528 struct zoneref *z;
3529 struct zone *zone;
3530 retry:
3531 delayacct_freepages_start();
3532
3533 if (!cgroup_reclaim(sc))
3534 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3535
3536 do {
3537 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3538 sc->priority);
3539 sc->nr_scanned = 0;
3540 shrink_zones(zonelist, sc);
3541
3542 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3543 break;
3544
3545 if (sc->compaction_ready)
3546 break;
3547
3548 /*
3549 * If we're getting trouble reclaiming, start doing
3550 * writepage even in laptop mode.
3551 */
3552 if (sc->priority < DEF_PRIORITY - 2)
3553 sc->may_writepage = 1;
3554 } while (--sc->priority >= 0);
3555
3556 last_pgdat = NULL;
3557 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3558 sc->nodemask) {
3559 if (zone->zone_pgdat == last_pgdat)
3560 continue;
3561 last_pgdat = zone->zone_pgdat;
3562
3563 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3564
3565 if (cgroup_reclaim(sc)) {
3566 struct lruvec *lruvec;
3567
3568 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3569 zone->zone_pgdat);
3570 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3571 }
3572 }
3573
3574 delayacct_freepages_end();
3575
3576 if (sc->nr_reclaimed)
3577 return sc->nr_reclaimed;
3578
3579 /* Aborted reclaim to try compaction? don't OOM, then */
3580 if (sc->compaction_ready)
3581 return 1;
3582
3583 /*
3584 * We make inactive:active ratio decisions based on the node's
3585 * composition of memory, but a restrictive reclaim_idx or a
3586 * memory.low cgroup setting can exempt large amounts of
3587 * memory from reclaim. Neither of which are very common, so
3588 * instead of doing costly eligibility calculations of the
3589 * entire cgroup subtree up front, we assume the estimates are
3590 * good, and retry with forcible deactivation if that fails.
3591 */
3592 if (sc->skipped_deactivate) {
3593 sc->priority = initial_priority;
3594 sc->force_deactivate = 1;
3595 sc->skipped_deactivate = 0;
3596 goto retry;
3597 }
3598
3599 /* Untapped cgroup reserves? Don't OOM, retry. */
3600 if (sc->memcg_low_skipped) {
3601 sc->priority = initial_priority;
3602 sc->force_deactivate = 0;
3603 sc->memcg_low_reclaim = 1;
3604 sc->memcg_low_skipped = 0;
3605 goto retry;
3606 }
3607
3608 return 0;
3609 }
3610
allow_direct_reclaim(pg_data_t * pgdat)3611 static bool allow_direct_reclaim(pg_data_t *pgdat)
3612 {
3613 struct zone *zone;
3614 unsigned long pfmemalloc_reserve = 0;
3615 unsigned long free_pages = 0;
3616 int i;
3617 bool wmark_ok;
3618
3619 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3620 return true;
3621
3622 for (i = 0; i <= ZONE_NORMAL; i++) {
3623 zone = &pgdat->node_zones[i];
3624 if (!managed_zone(zone))
3625 continue;
3626
3627 if (!zone_reclaimable_pages(zone))
3628 continue;
3629
3630 pfmemalloc_reserve += min_wmark_pages(zone);
3631 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3632 }
3633
3634 /* If there are no reserves (unexpected config) then do not throttle */
3635 if (!pfmemalloc_reserve)
3636 return true;
3637
3638 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3639
3640 /* kswapd must be awake if processes are being throttled */
3641 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3642 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3643 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3644
3645 wake_up_interruptible(&pgdat->kswapd_wait);
3646 }
3647
3648 return wmark_ok;
3649 }
3650
3651 /*
3652 * Throttle direct reclaimers if backing storage is backed by the network
3653 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3654 * depleted. kswapd will continue to make progress and wake the processes
3655 * when the low watermark is reached.
3656 *
3657 * Returns true if a fatal signal was delivered during throttling. If this
3658 * happens, the page allocator should not consider triggering the OOM killer.
3659 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3660 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3661 nodemask_t *nodemask)
3662 {
3663 struct zoneref *z;
3664 struct zone *zone;
3665 pg_data_t *pgdat = NULL;
3666
3667 /*
3668 * Kernel threads should not be throttled as they may be indirectly
3669 * responsible for cleaning pages necessary for reclaim to make forward
3670 * progress. kjournald for example may enter direct reclaim while
3671 * committing a transaction where throttling it could forcing other
3672 * processes to block on log_wait_commit().
3673 */
3674 if (current->flags & PF_KTHREAD)
3675 goto out;
3676
3677 /*
3678 * If a fatal signal is pending, this process should not throttle.
3679 * It should return quickly so it can exit and free its memory
3680 */
3681 if (fatal_signal_pending(current))
3682 goto out;
3683
3684 /*
3685 * Check if the pfmemalloc reserves are ok by finding the first node
3686 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3687 * GFP_KERNEL will be required for allocating network buffers when
3688 * swapping over the network so ZONE_HIGHMEM is unusable.
3689 *
3690 * Throttling is based on the first usable node and throttled processes
3691 * wait on a queue until kswapd makes progress and wakes them. There
3692 * is an affinity then between processes waking up and where reclaim
3693 * progress has been made assuming the process wakes on the same node.
3694 * More importantly, processes running on remote nodes will not compete
3695 * for remote pfmemalloc reserves and processes on different nodes
3696 * should make reasonable progress.
3697 */
3698 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3699 gfp_zone(gfp_mask), nodemask) {
3700 if (zone_idx(zone) > ZONE_NORMAL)
3701 continue;
3702
3703 /* Throttle based on the first usable node */
3704 pgdat = zone->zone_pgdat;
3705 if (allow_direct_reclaim(pgdat))
3706 goto out;
3707 break;
3708 }
3709
3710 /* If no zone was usable by the allocation flags then do not throttle */
3711 if (!pgdat)
3712 goto out;
3713
3714 /* Account for the throttling */
3715 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3716
3717 /*
3718 * If the caller cannot enter the filesystem, it's possible that it
3719 * is due to the caller holding an FS lock or performing a journal
3720 * transaction in the case of a filesystem like ext[3|4]. In this case,
3721 * it is not safe to block on pfmemalloc_wait as kswapd could be
3722 * blocked waiting on the same lock. Instead, throttle for up to a
3723 * second before continuing.
3724 */
3725 if (!(gfp_mask & __GFP_FS))
3726 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3727 allow_direct_reclaim(pgdat), HZ);
3728 else
3729 /* Throttle until kswapd wakes the process */
3730 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3731 allow_direct_reclaim(pgdat));
3732
3733 if (fatal_signal_pending(current))
3734 return true;
3735
3736 out:
3737 return false;
3738 }
3739
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3740 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3741 gfp_t gfp_mask, nodemask_t *nodemask)
3742 {
3743 unsigned long nr_reclaimed;
3744 struct scan_control sc = {
3745 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3746 .gfp_mask = current_gfp_context(gfp_mask),
3747 .reclaim_idx = gfp_zone(gfp_mask),
3748 .order = order,
3749 .nodemask = nodemask,
3750 .priority = DEF_PRIORITY,
3751 .may_writepage = !laptop_mode,
3752 .may_unmap = 1,
3753 .may_swap = 1,
3754 };
3755
3756 /*
3757 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3758 * Confirm they are large enough for max values.
3759 */
3760 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3761 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3762 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3763
3764 /*
3765 * Do not enter reclaim if fatal signal was delivered while throttled.
3766 * 1 is returned so that the page allocator does not OOM kill at this
3767 * point.
3768 */
3769 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3770 return 1;
3771
3772 set_task_reclaim_state(current, &sc.reclaim_state);
3773 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3774
3775 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3776
3777 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3778 set_task_reclaim_state(current, NULL);
3779
3780 return nr_reclaimed;
3781 }
3782
3783 #ifdef CONFIG_MEMCG
3784
3785 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3786 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3787 gfp_t gfp_mask, bool noswap,
3788 pg_data_t *pgdat,
3789 unsigned long *nr_scanned)
3790 {
3791 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3792 struct scan_control sc = {
3793 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3794 .target_mem_cgroup = memcg,
3795 .may_writepage = !laptop_mode,
3796 .may_unmap = 1,
3797 .reclaim_idx = MAX_NR_ZONES - 1,
3798 .may_swap = !noswap,
3799 };
3800
3801 WARN_ON_ONCE(!current->reclaim_state);
3802
3803 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3804 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3805
3806 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3807 sc.gfp_mask);
3808
3809 /*
3810 * NOTE: Although we can get the priority field, using it
3811 * here is not a good idea, since it limits the pages we can scan.
3812 * if we don't reclaim here, the shrink_node from balance_pgdat
3813 * will pick up pages from other mem cgroup's as well. We hack
3814 * the priority and make it zero.
3815 */
3816 shrink_lruvec(lruvec, &sc);
3817
3818 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3819
3820 *nr_scanned = sc.nr_scanned;
3821
3822 return sc.nr_reclaimed;
3823 }
3824
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3825 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3826 unsigned long nr_pages,
3827 gfp_t gfp_mask,
3828 bool may_swap)
3829 {
3830 unsigned long nr_reclaimed;
3831 unsigned int noreclaim_flag;
3832 struct scan_control sc = {
3833 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3834 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3835 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3836 .reclaim_idx = MAX_NR_ZONES - 1,
3837 .target_mem_cgroup = memcg,
3838 .priority = DEF_PRIORITY,
3839 .may_writepage = !laptop_mode,
3840 .may_unmap = 1,
3841 .may_swap = may_swap,
3842 };
3843 /*
3844 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3845 * equal pressure on all the nodes. This is based on the assumption that
3846 * the reclaim does not bail out early.
3847 */
3848 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3849
3850 set_task_reclaim_state(current, &sc.reclaim_state);
3851 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3852 noreclaim_flag = memalloc_noreclaim_save();
3853
3854 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3855
3856 memalloc_noreclaim_restore(noreclaim_flag);
3857 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3858 set_task_reclaim_state(current, NULL);
3859
3860 return nr_reclaimed;
3861 }
3862 #endif
3863
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3864 static void age_active_anon(struct pglist_data *pgdat,
3865 struct scan_control *sc)
3866 {
3867 struct mem_cgroup *memcg;
3868 struct lruvec *lruvec;
3869
3870 if (!can_age_anon_pages(pgdat, sc))
3871 return;
3872
3873 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3874 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3875 return;
3876
3877 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3878 do {
3879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3880 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3881 sc, LRU_ACTIVE_ANON);
3882 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3883 } while (memcg);
3884 }
3885
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3886 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3887 {
3888 int i;
3889 struct zone *zone;
3890
3891 /*
3892 * Check for watermark boosts top-down as the higher zones
3893 * are more likely to be boosted. Both watermarks and boosts
3894 * should not be checked at the same time as reclaim would
3895 * start prematurely when there is no boosting and a lower
3896 * zone is balanced.
3897 */
3898 for (i = highest_zoneidx; i >= 0; i--) {
3899 zone = pgdat->node_zones + i;
3900 if (!managed_zone(zone))
3901 continue;
3902
3903 if (zone->watermark_boost)
3904 return true;
3905 }
3906
3907 return false;
3908 }
3909
3910 /*
3911 * Returns true if there is an eligible zone balanced for the request order
3912 * and highest_zoneidx
3913 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3914 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3915 {
3916 int i;
3917 unsigned long mark = -1;
3918 struct zone *zone;
3919
3920 /*
3921 * Check watermarks bottom-up as lower zones are more likely to
3922 * meet watermarks.
3923 */
3924 for (i = 0; i <= highest_zoneidx; i++) {
3925 zone = pgdat->node_zones + i;
3926
3927 if (!managed_zone(zone))
3928 continue;
3929
3930 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3931 mark = wmark_pages(zone, WMARK_PROMO);
3932 else
3933 mark = high_wmark_pages(zone);
3934 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3935 return true;
3936 }
3937
3938 /*
3939 * If a node has no managed zone within highest_zoneidx, it does not
3940 * need balancing by definition. This can happen if a zone-restricted
3941 * allocation tries to wake a remote kswapd.
3942 */
3943 if (mark == -1)
3944 return true;
3945
3946 return false;
3947 }
3948
3949 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3950 static void clear_pgdat_congested(pg_data_t *pgdat)
3951 {
3952 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3953
3954 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3955 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3956 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3957 }
3958
3959 /*
3960 * Prepare kswapd for sleeping. This verifies that there are no processes
3961 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3962 *
3963 * Returns true if kswapd is ready to sleep
3964 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3965 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3966 int highest_zoneidx)
3967 {
3968 /*
3969 * The throttled processes are normally woken up in balance_pgdat() as
3970 * soon as allow_direct_reclaim() is true. But there is a potential
3971 * race between when kswapd checks the watermarks and a process gets
3972 * throttled. There is also a potential race if processes get
3973 * throttled, kswapd wakes, a large process exits thereby balancing the
3974 * zones, which causes kswapd to exit balance_pgdat() before reaching
3975 * the wake up checks. If kswapd is going to sleep, no process should
3976 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3977 * the wake up is premature, processes will wake kswapd and get
3978 * throttled again. The difference from wake ups in balance_pgdat() is
3979 * that here we are under prepare_to_wait().
3980 */
3981 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3982 wake_up_all(&pgdat->pfmemalloc_wait);
3983
3984 /* Hopeless node, leave it to direct reclaim */
3985 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3986 return true;
3987
3988 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3989 clear_pgdat_congested(pgdat);
3990 return true;
3991 }
3992
3993 return false;
3994 }
3995
3996 /*
3997 * kswapd shrinks a node of pages that are at or below the highest usable
3998 * zone that is currently unbalanced.
3999 *
4000 * Returns true if kswapd scanned at least the requested number of pages to
4001 * reclaim or if the lack of progress was due to pages under writeback.
4002 * This is used to determine if the scanning priority needs to be raised.
4003 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)4004 static bool kswapd_shrink_node(pg_data_t *pgdat,
4005 struct scan_control *sc)
4006 {
4007 struct zone *zone;
4008 int z;
4009
4010 /* Reclaim a number of pages proportional to the number of zones */
4011 sc->nr_to_reclaim = 0;
4012 for (z = 0; z <= sc->reclaim_idx; z++) {
4013 zone = pgdat->node_zones + z;
4014 if (!managed_zone(zone))
4015 continue;
4016
4017 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4018 }
4019
4020 /*
4021 * Historically care was taken to put equal pressure on all zones but
4022 * now pressure is applied based on node LRU order.
4023 */
4024 shrink_node(pgdat, sc);
4025
4026 /*
4027 * Fragmentation may mean that the system cannot be rebalanced for
4028 * high-order allocations. If twice the allocation size has been
4029 * reclaimed then recheck watermarks only at order-0 to prevent
4030 * excessive reclaim. Assume that a process requested a high-order
4031 * can direct reclaim/compact.
4032 */
4033 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4034 sc->order = 0;
4035
4036 return sc->nr_scanned >= sc->nr_to_reclaim;
4037 }
4038
4039 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4040 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)4041 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4042 {
4043 int i;
4044 struct zone *zone;
4045
4046 for (i = 0; i <= highest_zoneidx; i++) {
4047 zone = pgdat->node_zones + i;
4048
4049 if (!managed_zone(zone))
4050 continue;
4051
4052 if (active)
4053 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4054 else
4055 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4056 }
4057 }
4058
4059 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)4060 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4061 {
4062 update_reclaim_active(pgdat, highest_zoneidx, true);
4063 }
4064
4065 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)4066 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4067 {
4068 update_reclaim_active(pgdat, highest_zoneidx, false);
4069 }
4070
4071 /*
4072 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4073 * that are eligible for use by the caller until at least one zone is
4074 * balanced.
4075 *
4076 * Returns the order kswapd finished reclaiming at.
4077 *
4078 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4079 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4080 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4081 * or lower is eligible for reclaim until at least one usable zone is
4082 * balanced.
4083 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)4084 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4085 {
4086 int i;
4087 unsigned long nr_soft_reclaimed;
4088 unsigned long nr_soft_scanned;
4089 unsigned long pflags;
4090 unsigned long nr_boost_reclaim;
4091 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4092 bool boosted;
4093 struct zone *zone;
4094 struct scan_control sc = {
4095 .gfp_mask = GFP_KERNEL,
4096 .order = order,
4097 .may_unmap = 1,
4098 };
4099
4100 set_task_reclaim_state(current, &sc.reclaim_state);
4101 psi_memstall_enter(&pflags);
4102 __fs_reclaim_acquire(_THIS_IP_);
4103
4104 count_vm_event(PAGEOUTRUN);
4105
4106 /*
4107 * Account for the reclaim boost. Note that the zone boost is left in
4108 * place so that parallel allocations that are near the watermark will
4109 * stall or direct reclaim until kswapd is finished.
4110 */
4111 nr_boost_reclaim = 0;
4112 for (i = 0; i <= highest_zoneidx; i++) {
4113 zone = pgdat->node_zones + i;
4114 if (!managed_zone(zone))
4115 continue;
4116
4117 nr_boost_reclaim += zone->watermark_boost;
4118 zone_boosts[i] = zone->watermark_boost;
4119 }
4120 boosted = nr_boost_reclaim;
4121
4122 restart:
4123 set_reclaim_active(pgdat, highest_zoneidx);
4124 sc.priority = DEF_PRIORITY;
4125 do {
4126 unsigned long nr_reclaimed = sc.nr_reclaimed;
4127 bool raise_priority = true;
4128 bool balanced;
4129 bool ret;
4130
4131 sc.reclaim_idx = highest_zoneidx;
4132
4133 /*
4134 * If the number of buffer_heads exceeds the maximum allowed
4135 * then consider reclaiming from all zones. This has a dual
4136 * purpose -- on 64-bit systems it is expected that
4137 * buffer_heads are stripped during active rotation. On 32-bit
4138 * systems, highmem pages can pin lowmem memory and shrinking
4139 * buffers can relieve lowmem pressure. Reclaim may still not
4140 * go ahead if all eligible zones for the original allocation
4141 * request are balanced to avoid excessive reclaim from kswapd.
4142 */
4143 if (buffer_heads_over_limit) {
4144 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4145 zone = pgdat->node_zones + i;
4146 if (!managed_zone(zone))
4147 continue;
4148
4149 sc.reclaim_idx = i;
4150 break;
4151 }
4152 }
4153
4154 /*
4155 * If the pgdat is imbalanced then ignore boosting and preserve
4156 * the watermarks for a later time and restart. Note that the
4157 * zone watermarks will be still reset at the end of balancing
4158 * on the grounds that the normal reclaim should be enough to
4159 * re-evaluate if boosting is required when kswapd next wakes.
4160 */
4161 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4162 if (!balanced && nr_boost_reclaim) {
4163 nr_boost_reclaim = 0;
4164 goto restart;
4165 }
4166
4167 /*
4168 * If boosting is not active then only reclaim if there are no
4169 * eligible zones. Note that sc.reclaim_idx is not used as
4170 * buffer_heads_over_limit may have adjusted it.
4171 */
4172 if (!nr_boost_reclaim && balanced)
4173 goto out;
4174
4175 /* Limit the priority of boosting to avoid reclaim writeback */
4176 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4177 raise_priority = false;
4178
4179 /*
4180 * Do not writeback or swap pages for boosted reclaim. The
4181 * intent is to relieve pressure not issue sub-optimal IO
4182 * from reclaim context. If no pages are reclaimed, the
4183 * reclaim will be aborted.
4184 */
4185 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4186 sc.may_swap = !nr_boost_reclaim;
4187
4188 /*
4189 * Do some background aging of the anon list, to give
4190 * pages a chance to be referenced before reclaiming. All
4191 * pages are rotated regardless of classzone as this is
4192 * about consistent aging.
4193 */
4194 age_active_anon(pgdat, &sc);
4195
4196 /*
4197 * If we're getting trouble reclaiming, start doing writepage
4198 * even in laptop mode.
4199 */
4200 if (sc.priority < DEF_PRIORITY - 2)
4201 sc.may_writepage = 1;
4202
4203 /* Call soft limit reclaim before calling shrink_node. */
4204 sc.nr_scanned = 0;
4205 nr_soft_scanned = 0;
4206 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4207 sc.gfp_mask, &nr_soft_scanned);
4208 sc.nr_reclaimed += nr_soft_reclaimed;
4209
4210 /*
4211 * There should be no need to raise the scanning priority if
4212 * enough pages are already being scanned that that high
4213 * watermark would be met at 100% efficiency.
4214 */
4215 if (kswapd_shrink_node(pgdat, &sc))
4216 raise_priority = false;
4217
4218 /*
4219 * If the low watermark is met there is no need for processes
4220 * to be throttled on pfmemalloc_wait as they should not be
4221 * able to safely make forward progress. Wake them
4222 */
4223 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4224 allow_direct_reclaim(pgdat))
4225 wake_up_all(&pgdat->pfmemalloc_wait);
4226
4227 /* Check if kswapd should be suspending */
4228 __fs_reclaim_release(_THIS_IP_);
4229 ret = try_to_freeze();
4230 __fs_reclaim_acquire(_THIS_IP_);
4231 if (ret || kthread_should_stop())
4232 break;
4233
4234 /*
4235 * Raise priority if scanning rate is too low or there was no
4236 * progress in reclaiming pages
4237 */
4238 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4239 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4240
4241 /*
4242 * If reclaim made no progress for a boost, stop reclaim as
4243 * IO cannot be queued and it could be an infinite loop in
4244 * extreme circumstances.
4245 */
4246 if (nr_boost_reclaim && !nr_reclaimed)
4247 break;
4248
4249 if (raise_priority || !nr_reclaimed)
4250 sc.priority--;
4251 } while (sc.priority >= 1);
4252
4253 if (!sc.nr_reclaimed)
4254 pgdat->kswapd_failures++;
4255
4256 out:
4257 clear_reclaim_active(pgdat, highest_zoneidx);
4258
4259 /* If reclaim was boosted, account for the reclaim done in this pass */
4260 if (boosted) {
4261 unsigned long flags;
4262
4263 for (i = 0; i <= highest_zoneidx; i++) {
4264 if (!zone_boosts[i])
4265 continue;
4266
4267 /* Increments are under the zone lock */
4268 zone = pgdat->node_zones + i;
4269 spin_lock_irqsave(&zone->lock, flags);
4270 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4271 spin_unlock_irqrestore(&zone->lock, flags);
4272 }
4273
4274 /*
4275 * As there is now likely space, wakeup kcompact to defragment
4276 * pageblocks.
4277 */
4278 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4279 }
4280
4281 snapshot_refaults(NULL, pgdat);
4282 __fs_reclaim_release(_THIS_IP_);
4283 psi_memstall_leave(&pflags);
4284 set_task_reclaim_state(current, NULL);
4285
4286 /*
4287 * Return the order kswapd stopped reclaiming at as
4288 * prepare_kswapd_sleep() takes it into account. If another caller
4289 * entered the allocator slow path while kswapd was awake, order will
4290 * remain at the higher level.
4291 */
4292 return sc.order;
4293 }
4294
4295 /*
4296 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4297 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4298 * not a valid index then either kswapd runs for first time or kswapd couldn't
4299 * sleep after previous reclaim attempt (node is still unbalanced). In that
4300 * case return the zone index of the previous kswapd reclaim cycle.
4301 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)4302 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4303 enum zone_type prev_highest_zoneidx)
4304 {
4305 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4306
4307 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4308 }
4309
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)4310 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4311 unsigned int highest_zoneidx)
4312 {
4313 long remaining = 0;
4314 DEFINE_WAIT(wait);
4315
4316 if (freezing(current) || kthread_should_stop())
4317 return;
4318
4319 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4320
4321 /*
4322 * Try to sleep for a short interval. Note that kcompactd will only be
4323 * woken if it is possible to sleep for a short interval. This is
4324 * deliberate on the assumption that if reclaim cannot keep an
4325 * eligible zone balanced that it's also unlikely that compaction will
4326 * succeed.
4327 */
4328 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4329 /*
4330 * Compaction records what page blocks it recently failed to
4331 * isolate pages from and skips them in the future scanning.
4332 * When kswapd is going to sleep, it is reasonable to assume
4333 * that pages and compaction may succeed so reset the cache.
4334 */
4335 reset_isolation_suitable(pgdat);
4336
4337 /*
4338 * We have freed the memory, now we should compact it to make
4339 * allocation of the requested order possible.
4340 */
4341 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4342
4343 remaining = schedule_timeout(HZ/10);
4344
4345 /*
4346 * If woken prematurely then reset kswapd_highest_zoneidx and
4347 * order. The values will either be from a wakeup request or
4348 * the previous request that slept prematurely.
4349 */
4350 if (remaining) {
4351 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4352 kswapd_highest_zoneidx(pgdat,
4353 highest_zoneidx));
4354
4355 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4356 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4357 }
4358
4359 finish_wait(&pgdat->kswapd_wait, &wait);
4360 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4361 }
4362
4363 /*
4364 * After a short sleep, check if it was a premature sleep. If not, then
4365 * go fully to sleep until explicitly woken up.
4366 */
4367 if (!remaining &&
4368 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4369 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4370
4371 /*
4372 * vmstat counters are not perfectly accurate and the estimated
4373 * value for counters such as NR_FREE_PAGES can deviate from the
4374 * true value by nr_online_cpus * threshold. To avoid the zone
4375 * watermarks being breached while under pressure, we reduce the
4376 * per-cpu vmstat threshold while kswapd is awake and restore
4377 * them before going back to sleep.
4378 */
4379 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4380
4381 if (!kthread_should_stop())
4382 schedule();
4383
4384 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4385 } else {
4386 if (remaining)
4387 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4388 else
4389 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4390 }
4391 finish_wait(&pgdat->kswapd_wait, &wait);
4392 }
4393
4394 /*
4395 * The background pageout daemon, started as a kernel thread
4396 * from the init process.
4397 *
4398 * This basically trickles out pages so that we have _some_
4399 * free memory available even if there is no other activity
4400 * that frees anything up. This is needed for things like routing
4401 * etc, where we otherwise might have all activity going on in
4402 * asynchronous contexts that cannot page things out.
4403 *
4404 * If there are applications that are active memory-allocators
4405 * (most normal use), this basically shouldn't matter.
4406 */
kswapd(void * p)4407 static int kswapd(void *p)
4408 {
4409 unsigned int alloc_order, reclaim_order;
4410 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4411 pg_data_t *pgdat = (pg_data_t *)p;
4412 struct task_struct *tsk = current;
4413 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4414
4415 if (!cpumask_empty(cpumask))
4416 set_cpus_allowed_ptr(tsk, cpumask);
4417
4418 /*
4419 * Tell the memory management that we're a "memory allocator",
4420 * and that if we need more memory we should get access to it
4421 * regardless (see "__alloc_pages()"). "kswapd" should
4422 * never get caught in the normal page freeing logic.
4423 *
4424 * (Kswapd normally doesn't need memory anyway, but sometimes
4425 * you need a small amount of memory in order to be able to
4426 * page out something else, and this flag essentially protects
4427 * us from recursively trying to free more memory as we're
4428 * trying to free the first piece of memory in the first place).
4429 */
4430 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4431 set_freezable();
4432
4433 WRITE_ONCE(pgdat->kswapd_order, 0);
4434 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4435 atomic_set(&pgdat->nr_writeback_throttled, 0);
4436 for ( ; ; ) {
4437 bool ret;
4438
4439 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4440 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4441 highest_zoneidx);
4442
4443 kswapd_try_sleep:
4444 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4445 highest_zoneidx);
4446
4447 /* Read the new order and highest_zoneidx */
4448 alloc_order = READ_ONCE(pgdat->kswapd_order);
4449 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4450 highest_zoneidx);
4451 WRITE_ONCE(pgdat->kswapd_order, 0);
4452 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4453
4454 ret = try_to_freeze();
4455 if (kthread_should_stop())
4456 break;
4457
4458 /*
4459 * We can speed up thawing tasks if we don't call balance_pgdat
4460 * after returning from the refrigerator
4461 */
4462 if (ret)
4463 continue;
4464
4465 /*
4466 * Reclaim begins at the requested order but if a high-order
4467 * reclaim fails then kswapd falls back to reclaiming for
4468 * order-0. If that happens, kswapd will consider sleeping
4469 * for the order it finished reclaiming at (reclaim_order)
4470 * but kcompactd is woken to compact for the original
4471 * request (alloc_order).
4472 */
4473 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4474 alloc_order);
4475 reclaim_order = balance_pgdat(pgdat, alloc_order,
4476 highest_zoneidx);
4477 if (reclaim_order < alloc_order)
4478 goto kswapd_try_sleep;
4479 }
4480
4481 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4482
4483 return 0;
4484 }
4485
4486 /*
4487 * A zone is low on free memory or too fragmented for high-order memory. If
4488 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4489 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4490 * has failed or is not needed, still wake up kcompactd if only compaction is
4491 * needed.
4492 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)4493 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4494 enum zone_type highest_zoneidx)
4495 {
4496 pg_data_t *pgdat;
4497 enum zone_type curr_idx;
4498
4499 if (!managed_zone(zone))
4500 return;
4501
4502 if (!cpuset_zone_allowed(zone, gfp_flags))
4503 return;
4504
4505 pgdat = zone->zone_pgdat;
4506 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4507
4508 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4509 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4510
4511 if (READ_ONCE(pgdat->kswapd_order) < order)
4512 WRITE_ONCE(pgdat->kswapd_order, order);
4513
4514 if (!waitqueue_active(&pgdat->kswapd_wait))
4515 return;
4516
4517 /* Hopeless node, leave it to direct reclaim if possible */
4518 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4519 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4520 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4521 /*
4522 * There may be plenty of free memory available, but it's too
4523 * fragmented for high-order allocations. Wake up kcompactd
4524 * and rely on compaction_suitable() to determine if it's
4525 * needed. If it fails, it will defer subsequent attempts to
4526 * ratelimit its work.
4527 */
4528 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4529 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4530 return;
4531 }
4532
4533 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4534 gfp_flags);
4535 wake_up_interruptible(&pgdat->kswapd_wait);
4536 }
4537
4538 #ifdef CONFIG_HIBERNATION
4539 /*
4540 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4541 * freed pages.
4542 *
4543 * Rather than trying to age LRUs the aim is to preserve the overall
4544 * LRU order by reclaiming preferentially
4545 * inactive > active > active referenced > active mapped
4546 */
shrink_all_memory(unsigned long nr_to_reclaim)4547 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4548 {
4549 struct scan_control sc = {
4550 .nr_to_reclaim = nr_to_reclaim,
4551 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4552 .reclaim_idx = MAX_NR_ZONES - 1,
4553 .priority = DEF_PRIORITY,
4554 .may_writepage = 1,
4555 .may_unmap = 1,
4556 .may_swap = 1,
4557 .hibernation_mode = 1,
4558 };
4559 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4560 unsigned long nr_reclaimed;
4561 unsigned int noreclaim_flag;
4562
4563 fs_reclaim_acquire(sc.gfp_mask);
4564 noreclaim_flag = memalloc_noreclaim_save();
4565 set_task_reclaim_state(current, &sc.reclaim_state);
4566
4567 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4568
4569 set_task_reclaim_state(current, NULL);
4570 memalloc_noreclaim_restore(noreclaim_flag);
4571 fs_reclaim_release(sc.gfp_mask);
4572
4573 return nr_reclaimed;
4574 }
4575 #endif /* CONFIG_HIBERNATION */
4576
4577 /*
4578 * This kswapd start function will be called by init and node-hot-add.
4579 */
kswapd_run(int nid)4580 void kswapd_run(int nid)
4581 {
4582 pg_data_t *pgdat = NODE_DATA(nid);
4583
4584 if (pgdat->kswapd)
4585 return;
4586
4587 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4588 if (IS_ERR(pgdat->kswapd)) {
4589 /* failure at boot is fatal */
4590 BUG_ON(system_state < SYSTEM_RUNNING);
4591 pr_err("Failed to start kswapd on node %d\n", nid);
4592 pgdat->kswapd = NULL;
4593 }
4594 }
4595
4596 /*
4597 * Called by memory hotplug when all memory in a node is offlined. Caller must
4598 * hold mem_hotplug_begin/end().
4599 */
kswapd_stop(int nid)4600 void kswapd_stop(int nid)
4601 {
4602 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4603
4604 if (kswapd) {
4605 kthread_stop(kswapd);
4606 NODE_DATA(nid)->kswapd = NULL;
4607 }
4608 }
4609
kswapd_init(void)4610 static int __init kswapd_init(void)
4611 {
4612 int nid;
4613
4614 swap_setup();
4615 for_each_node_state(nid, N_MEMORY)
4616 kswapd_run(nid);
4617 return 0;
4618 }
4619
4620 module_init(kswapd_init)
4621
4622 #ifdef CONFIG_NUMA
4623 /*
4624 * Node reclaim mode
4625 *
4626 * If non-zero call node_reclaim when the number of free pages falls below
4627 * the watermarks.
4628 */
4629 int node_reclaim_mode __read_mostly;
4630
4631 /*
4632 * Priority for NODE_RECLAIM. This determines the fraction of pages
4633 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4634 * a zone.
4635 */
4636 #define NODE_RECLAIM_PRIORITY 4
4637
4638 /*
4639 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4640 * occur.
4641 */
4642 int sysctl_min_unmapped_ratio = 1;
4643
4644 /*
4645 * If the number of slab pages in a zone grows beyond this percentage then
4646 * slab reclaim needs to occur.
4647 */
4648 int sysctl_min_slab_ratio = 5;
4649
node_unmapped_file_pages(struct pglist_data * pgdat)4650 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4651 {
4652 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4653 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4654 node_page_state(pgdat, NR_ACTIVE_FILE);
4655
4656 /*
4657 * It's possible for there to be more file mapped pages than
4658 * accounted for by the pages on the file LRU lists because
4659 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4660 */
4661 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4662 }
4663
4664 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4665 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4666 {
4667 unsigned long nr_pagecache_reclaimable;
4668 unsigned long delta = 0;
4669
4670 /*
4671 * If RECLAIM_UNMAP is set, then all file pages are considered
4672 * potentially reclaimable. Otherwise, we have to worry about
4673 * pages like swapcache and node_unmapped_file_pages() provides
4674 * a better estimate
4675 */
4676 if (node_reclaim_mode & RECLAIM_UNMAP)
4677 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4678 else
4679 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4680
4681 /* If we can't clean pages, remove dirty pages from consideration */
4682 if (!(node_reclaim_mode & RECLAIM_WRITE))
4683 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4684
4685 /* Watch for any possible underflows due to delta */
4686 if (unlikely(delta > nr_pagecache_reclaimable))
4687 delta = nr_pagecache_reclaimable;
4688
4689 return nr_pagecache_reclaimable - delta;
4690 }
4691
4692 /*
4693 * Try to free up some pages from this node through reclaim.
4694 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4695 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4696 {
4697 /* Minimum pages needed in order to stay on node */
4698 const unsigned long nr_pages = 1 << order;
4699 struct task_struct *p = current;
4700 unsigned int noreclaim_flag;
4701 struct scan_control sc = {
4702 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4703 .gfp_mask = current_gfp_context(gfp_mask),
4704 .order = order,
4705 .priority = NODE_RECLAIM_PRIORITY,
4706 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4707 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4708 .may_swap = 1,
4709 .reclaim_idx = gfp_zone(gfp_mask),
4710 };
4711 unsigned long pflags;
4712
4713 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4714 sc.gfp_mask);
4715
4716 cond_resched();
4717 psi_memstall_enter(&pflags);
4718 fs_reclaim_acquire(sc.gfp_mask);
4719 /*
4720 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4721 */
4722 noreclaim_flag = memalloc_noreclaim_save();
4723 set_task_reclaim_state(p, &sc.reclaim_state);
4724
4725 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
4726 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
4727 /*
4728 * Free memory by calling shrink node with increasing
4729 * priorities until we have enough memory freed.
4730 */
4731 do {
4732 shrink_node(pgdat, &sc);
4733 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4734 }
4735
4736 set_task_reclaim_state(p, NULL);
4737 memalloc_noreclaim_restore(noreclaim_flag);
4738 fs_reclaim_release(sc.gfp_mask);
4739 psi_memstall_leave(&pflags);
4740
4741 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4742
4743 return sc.nr_reclaimed >= nr_pages;
4744 }
4745
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4746 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4747 {
4748 int ret;
4749
4750 /*
4751 * Node reclaim reclaims unmapped file backed pages and
4752 * slab pages if we are over the defined limits.
4753 *
4754 * A small portion of unmapped file backed pages is needed for
4755 * file I/O otherwise pages read by file I/O will be immediately
4756 * thrown out if the node is overallocated. So we do not reclaim
4757 * if less than a specified percentage of the node is used by
4758 * unmapped file backed pages.
4759 */
4760 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4761 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4762 pgdat->min_slab_pages)
4763 return NODE_RECLAIM_FULL;
4764
4765 /*
4766 * Do not scan if the allocation should not be delayed.
4767 */
4768 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4769 return NODE_RECLAIM_NOSCAN;
4770
4771 /*
4772 * Only run node reclaim on the local node or on nodes that do not
4773 * have associated processors. This will favor the local processor
4774 * over remote processors and spread off node memory allocations
4775 * as wide as possible.
4776 */
4777 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4778 return NODE_RECLAIM_NOSCAN;
4779
4780 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4781 return NODE_RECLAIM_NOSCAN;
4782
4783 ret = __node_reclaim(pgdat, gfp_mask, order);
4784 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4785
4786 if (!ret)
4787 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4788
4789 return ret;
4790 }
4791 #endif
4792
4793 /**
4794 * check_move_unevictable_pages - check pages for evictability and move to
4795 * appropriate zone lru list
4796 * @pvec: pagevec with lru pages to check
4797 *
4798 * Checks pages for evictability, if an evictable page is in the unevictable
4799 * lru list, moves it to the appropriate evictable lru list. This function
4800 * should be only used for lru pages.
4801 */
check_move_unevictable_pages(struct pagevec * pvec)4802 void check_move_unevictable_pages(struct pagevec *pvec)
4803 {
4804 struct lruvec *lruvec = NULL;
4805 int pgscanned = 0;
4806 int pgrescued = 0;
4807 int i;
4808
4809 for (i = 0; i < pvec->nr; i++) {
4810 struct page *page = pvec->pages[i];
4811 struct folio *folio = page_folio(page);
4812 int nr_pages;
4813
4814 if (PageTransTail(page))
4815 continue;
4816
4817 nr_pages = thp_nr_pages(page);
4818 pgscanned += nr_pages;
4819
4820 /* block memcg migration during page moving between lru */
4821 if (!TestClearPageLRU(page))
4822 continue;
4823
4824 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4825 if (page_evictable(page) && PageUnevictable(page)) {
4826 del_page_from_lru_list(page, lruvec);
4827 ClearPageUnevictable(page);
4828 add_page_to_lru_list(page, lruvec);
4829 pgrescued += nr_pages;
4830 }
4831 SetPageLRU(page);
4832 }
4833
4834 if (lruvec) {
4835 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4836 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4837 unlock_page_lruvec_irq(lruvec);
4838 } else if (pgscanned) {
4839 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4840 }
4841 }
4842 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4843