1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include "swap.h"
63 #include "internal.h"
64 #include "ras/ras_event.h"
65
66 int sysctl_memory_failure_early_kill __read_mostly = 0;
67
68 int sysctl_memory_failure_recovery __read_mostly = 1;
69
70 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
71
72 static bool hw_memory_failure __read_mostly = false;
73
__page_handle_poison(struct page * page)74 static bool __page_handle_poison(struct page *page)
75 {
76 int ret;
77
78 zone_pcp_disable(page_zone(page));
79 ret = dissolve_free_huge_page(page);
80 if (!ret)
81 ret = take_page_off_buddy(page);
82 zone_pcp_enable(page_zone(page));
83
84 return ret > 0;
85 }
86
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)87 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
88 {
89 if (hugepage_or_freepage) {
90 /*
91 * Doing this check for free pages is also fine since dissolve_free_huge_page
92 * returns 0 for non-hugetlb pages as well.
93 */
94 if (!__page_handle_poison(page))
95 /*
96 * We could fail to take off the target page from buddy
97 * for example due to racy page allocation, but that's
98 * acceptable because soft-offlined page is not broken
99 * and if someone really want to use it, they should
100 * take it.
101 */
102 return false;
103 }
104
105 SetPageHWPoison(page);
106 if (release)
107 put_page(page);
108 page_ref_inc(page);
109 num_poisoned_pages_inc();
110
111 return true;
112 }
113
114 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
115
116 u32 hwpoison_filter_enable = 0;
117 u32 hwpoison_filter_dev_major = ~0U;
118 u32 hwpoison_filter_dev_minor = ~0U;
119 u64 hwpoison_filter_flags_mask;
120 u64 hwpoison_filter_flags_value;
121 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
123 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
124 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
125 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
126
hwpoison_filter_dev(struct page * p)127 static int hwpoison_filter_dev(struct page *p)
128 {
129 struct address_space *mapping;
130 dev_t dev;
131
132 if (hwpoison_filter_dev_major == ~0U &&
133 hwpoison_filter_dev_minor == ~0U)
134 return 0;
135
136 mapping = page_mapping(p);
137 if (mapping == NULL || mapping->host == NULL)
138 return -EINVAL;
139
140 dev = mapping->host->i_sb->s_dev;
141 if (hwpoison_filter_dev_major != ~0U &&
142 hwpoison_filter_dev_major != MAJOR(dev))
143 return -EINVAL;
144 if (hwpoison_filter_dev_minor != ~0U &&
145 hwpoison_filter_dev_minor != MINOR(dev))
146 return -EINVAL;
147
148 return 0;
149 }
150
hwpoison_filter_flags(struct page * p)151 static int hwpoison_filter_flags(struct page *p)
152 {
153 if (!hwpoison_filter_flags_mask)
154 return 0;
155
156 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
157 hwpoison_filter_flags_value)
158 return 0;
159 else
160 return -EINVAL;
161 }
162
163 /*
164 * This allows stress tests to limit test scope to a collection of tasks
165 * by putting them under some memcg. This prevents killing unrelated/important
166 * processes such as /sbin/init. Note that the target task may share clean
167 * pages with init (eg. libc text), which is harmless. If the target task
168 * share _dirty_ pages with another task B, the test scheme must make sure B
169 * is also included in the memcg. At last, due to race conditions this filter
170 * can only guarantee that the page either belongs to the memcg tasks, or is
171 * a freed page.
172 */
173 #ifdef CONFIG_MEMCG
174 u64 hwpoison_filter_memcg;
175 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)176 static int hwpoison_filter_task(struct page *p)
177 {
178 if (!hwpoison_filter_memcg)
179 return 0;
180
181 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
182 return -EINVAL;
183
184 return 0;
185 }
186 #else
hwpoison_filter_task(struct page * p)187 static int hwpoison_filter_task(struct page *p) { return 0; }
188 #endif
189
hwpoison_filter(struct page * p)190 int hwpoison_filter(struct page *p)
191 {
192 if (!hwpoison_filter_enable)
193 return 0;
194
195 if (hwpoison_filter_dev(p))
196 return -EINVAL;
197
198 if (hwpoison_filter_flags(p))
199 return -EINVAL;
200
201 if (hwpoison_filter_task(p))
202 return -EINVAL;
203
204 return 0;
205 }
206 #else
hwpoison_filter(struct page * p)207 int hwpoison_filter(struct page *p)
208 {
209 return 0;
210 }
211 #endif
212
213 EXPORT_SYMBOL_GPL(hwpoison_filter);
214
215 /*
216 * Kill all processes that have a poisoned page mapped and then isolate
217 * the page.
218 *
219 * General strategy:
220 * Find all processes having the page mapped and kill them.
221 * But we keep a page reference around so that the page is not
222 * actually freed yet.
223 * Then stash the page away
224 *
225 * There's no convenient way to get back to mapped processes
226 * from the VMAs. So do a brute-force search over all
227 * running processes.
228 *
229 * Remember that machine checks are not common (or rather
230 * if they are common you have other problems), so this shouldn't
231 * be a performance issue.
232 *
233 * Also there are some races possible while we get from the
234 * error detection to actually handle it.
235 */
236
237 struct to_kill {
238 struct list_head nd;
239 struct task_struct *tsk;
240 unsigned long addr;
241 short size_shift;
242 };
243
244 /*
245 * Send all the processes who have the page mapped a signal.
246 * ``action optional'' if they are not immediately affected by the error
247 * ``action required'' if error happened in current execution context
248 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)249 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
250 {
251 struct task_struct *t = tk->tsk;
252 short addr_lsb = tk->size_shift;
253 int ret = 0;
254
255 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
256 pfn, t->comm, t->pid);
257
258 if ((flags & MF_ACTION_REQUIRED) && (t == current))
259 ret = force_sig_mceerr(BUS_MCEERR_AR,
260 (void __user *)tk->addr, addr_lsb);
261 else
262 /*
263 * Signal other processes sharing the page if they have
264 * PF_MCE_EARLY set.
265 * Don't use force here, it's convenient if the signal
266 * can be temporarily blocked.
267 * This could cause a loop when the user sets SIGBUS
268 * to SIG_IGN, but hopefully no one will do that?
269 */
270 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
271 addr_lsb, t); /* synchronous? */
272 if (ret < 0)
273 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
274 t->comm, t->pid, ret);
275 return ret;
276 }
277
278 /*
279 * Unknown page type encountered. Try to check whether it can turn PageLRU by
280 * lru_add_drain_all.
281 */
shake_page(struct page * p)282 void shake_page(struct page *p)
283 {
284 if (PageHuge(p))
285 return;
286
287 if (!PageSlab(p)) {
288 lru_add_drain_all();
289 if (PageLRU(p) || is_free_buddy_page(p))
290 return;
291 }
292
293 /*
294 * TODO: Could shrink slab caches here if a lightweight range-based
295 * shrinker will be available.
296 */
297 }
298 EXPORT_SYMBOL_GPL(shake_page);
299
dev_pagemap_mapping_shift(struct page * page,struct vm_area_struct * vma)300 static unsigned long dev_pagemap_mapping_shift(struct page *page,
301 struct vm_area_struct *vma)
302 {
303 unsigned long address = vma_address(page, vma);
304 unsigned long ret = 0;
305 pgd_t *pgd;
306 p4d_t *p4d;
307 pud_t *pud;
308 pmd_t *pmd;
309 pte_t *pte;
310
311 VM_BUG_ON_VMA(address == -EFAULT, vma);
312 pgd = pgd_offset(vma->vm_mm, address);
313 if (!pgd_present(*pgd))
314 return 0;
315 p4d = p4d_offset(pgd, address);
316 if (!p4d_present(*p4d))
317 return 0;
318 pud = pud_offset(p4d, address);
319 if (!pud_present(*pud))
320 return 0;
321 if (pud_devmap(*pud))
322 return PUD_SHIFT;
323 pmd = pmd_offset(pud, address);
324 if (!pmd_present(*pmd))
325 return 0;
326 if (pmd_devmap(*pmd))
327 return PMD_SHIFT;
328 pte = pte_offset_map(pmd, address);
329 if (pte_present(*pte) && pte_devmap(*pte))
330 ret = PAGE_SHIFT;
331 pte_unmap(pte);
332 return ret;
333 }
334
335 /*
336 * Failure handling: if we can't find or can't kill a process there's
337 * not much we can do. We just print a message and ignore otherwise.
338 */
339
340 /*
341 * Schedule a process for later kill.
342 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
343 */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill)344 static void add_to_kill(struct task_struct *tsk, struct page *p,
345 struct vm_area_struct *vma,
346 struct list_head *to_kill)
347 {
348 struct to_kill *tk;
349
350 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
351 if (!tk) {
352 pr_err("Memory failure: Out of memory while machine check handling\n");
353 return;
354 }
355
356 tk->addr = page_address_in_vma(p, vma);
357 if (is_zone_device_page(p))
358 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
359 else
360 tk->size_shift = page_shift(compound_head(p));
361
362 /*
363 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
364 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
365 * so "tk->size_shift == 0" effectively checks no mapping on
366 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
367 * to a process' address space, it's possible not all N VMAs
368 * contain mappings for the page, but at least one VMA does.
369 * Only deliver SIGBUS with payload derived from the VMA that
370 * has a mapping for the page.
371 */
372 if (tk->addr == -EFAULT) {
373 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
374 page_to_pfn(p), tsk->comm);
375 } else if (tk->size_shift == 0) {
376 kfree(tk);
377 return;
378 }
379
380 get_task_struct(tsk);
381 tk->tsk = tsk;
382 list_add_tail(&tk->nd, to_kill);
383 }
384
385 /*
386 * Kill the processes that have been collected earlier.
387 *
388 * Only do anything when FORCEKILL is set, otherwise just free the
389 * list (this is used for clean pages which do not need killing)
390 * Also when FAIL is set do a force kill because something went
391 * wrong earlier.
392 */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)393 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
394 unsigned long pfn, int flags)
395 {
396 struct to_kill *tk, *next;
397
398 list_for_each_entry_safe (tk, next, to_kill, nd) {
399 if (forcekill) {
400 /*
401 * In case something went wrong with munmapping
402 * make sure the process doesn't catch the
403 * signal and then access the memory. Just kill it.
404 */
405 if (fail || tk->addr == -EFAULT) {
406 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
407 pfn, tk->tsk->comm, tk->tsk->pid);
408 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
409 tk->tsk, PIDTYPE_PID);
410 }
411
412 /*
413 * In theory the process could have mapped
414 * something else on the address in-between. We could
415 * check for that, but we need to tell the
416 * process anyways.
417 */
418 else if (kill_proc(tk, pfn, flags) < 0)
419 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
420 pfn, tk->tsk->comm, tk->tsk->pid);
421 }
422 put_task_struct(tk->tsk);
423 kfree(tk);
424 }
425 }
426
427 /*
428 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
429 * on behalf of the thread group. Return task_struct of the (first found)
430 * dedicated thread if found, and return NULL otherwise.
431 *
432 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
433 * have to call rcu_read_lock/unlock() in this function.
434 */
find_early_kill_thread(struct task_struct * tsk)435 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
436 {
437 struct task_struct *t;
438
439 for_each_thread(tsk, t) {
440 if (t->flags & PF_MCE_PROCESS) {
441 if (t->flags & PF_MCE_EARLY)
442 return t;
443 } else {
444 if (sysctl_memory_failure_early_kill)
445 return t;
446 }
447 }
448 return NULL;
449 }
450
451 /*
452 * Determine whether a given process is "early kill" process which expects
453 * to be signaled when some page under the process is hwpoisoned.
454 * Return task_struct of the dedicated thread (main thread unless explicitly
455 * specified) if the process is "early kill" and otherwise returns NULL.
456 *
457 * Note that the above is true for Action Optional case. For Action Required
458 * case, it's only meaningful to the current thread which need to be signaled
459 * with SIGBUS, this error is Action Optional for other non current
460 * processes sharing the same error page,if the process is "early kill", the
461 * task_struct of the dedicated thread will also be returned.
462 */
task_early_kill(struct task_struct * tsk,int force_early)463 static struct task_struct *task_early_kill(struct task_struct *tsk,
464 int force_early)
465 {
466 if (!tsk->mm)
467 return NULL;
468 /*
469 * Comparing ->mm here because current task might represent
470 * a subthread, while tsk always points to the main thread.
471 */
472 if (force_early && tsk->mm == current->mm)
473 return current;
474
475 return find_early_kill_thread(tsk);
476 }
477
478 /*
479 * Collect processes when the error hit an anonymous page.
480 */
collect_procs_anon(struct page * page,struct list_head * to_kill,int force_early)481 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
482 int force_early)
483 {
484 struct folio *folio = page_folio(page);
485 struct vm_area_struct *vma;
486 struct task_struct *tsk;
487 struct anon_vma *av;
488 pgoff_t pgoff;
489
490 av = folio_lock_anon_vma_read(folio, NULL);
491 if (av == NULL) /* Not actually mapped anymore */
492 return;
493
494 pgoff = page_to_pgoff(page);
495 read_lock(&tasklist_lock);
496 for_each_process (tsk) {
497 struct anon_vma_chain *vmac;
498 struct task_struct *t = task_early_kill(tsk, force_early);
499
500 if (!t)
501 continue;
502 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
503 pgoff, pgoff) {
504 vma = vmac->vma;
505 if (!page_mapped_in_vma(page, vma))
506 continue;
507 if (vma->vm_mm == t->mm)
508 add_to_kill(t, page, vma, to_kill);
509 }
510 }
511 read_unlock(&tasklist_lock);
512 page_unlock_anon_vma_read(av);
513 }
514
515 /*
516 * Collect processes when the error hit a file mapped page.
517 */
collect_procs_file(struct page * page,struct list_head * to_kill,int force_early)518 static void collect_procs_file(struct page *page, struct list_head *to_kill,
519 int force_early)
520 {
521 struct vm_area_struct *vma;
522 struct task_struct *tsk;
523 struct address_space *mapping = page->mapping;
524 pgoff_t pgoff;
525
526 i_mmap_lock_read(mapping);
527 read_lock(&tasklist_lock);
528 pgoff = page_to_pgoff(page);
529 for_each_process(tsk) {
530 struct task_struct *t = task_early_kill(tsk, force_early);
531
532 if (!t)
533 continue;
534 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
535 pgoff) {
536 /*
537 * Send early kill signal to tasks where a vma covers
538 * the page but the corrupted page is not necessarily
539 * mapped it in its pte.
540 * Assume applications who requested early kill want
541 * to be informed of all such data corruptions.
542 */
543 if (vma->vm_mm == t->mm)
544 add_to_kill(t, page, vma, to_kill);
545 }
546 }
547 read_unlock(&tasklist_lock);
548 i_mmap_unlock_read(mapping);
549 }
550
551 /*
552 * Collect the processes who have the corrupted page mapped to kill.
553 */
collect_procs(struct page * page,struct list_head * tokill,int force_early)554 static void collect_procs(struct page *page, struct list_head *tokill,
555 int force_early)
556 {
557 if (!page->mapping)
558 return;
559
560 if (PageAnon(page))
561 collect_procs_anon(page, tokill, force_early);
562 else
563 collect_procs_file(page, tokill, force_early);
564 }
565
566 struct hwp_walk {
567 struct to_kill tk;
568 unsigned long pfn;
569 int flags;
570 };
571
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)572 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
573 {
574 tk->addr = addr;
575 tk->size_shift = shift;
576 }
577
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)578 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
579 unsigned long poisoned_pfn, struct to_kill *tk)
580 {
581 unsigned long pfn = 0;
582
583 if (pte_present(pte)) {
584 pfn = pte_pfn(pte);
585 } else {
586 swp_entry_t swp = pte_to_swp_entry(pte);
587
588 if (is_hwpoison_entry(swp))
589 pfn = hwpoison_entry_to_pfn(swp);
590 }
591
592 if (!pfn || pfn != poisoned_pfn)
593 return 0;
594
595 set_to_kill(tk, addr, shift);
596 return 1;
597 }
598
599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwp_walk * hwp)600 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
601 struct hwp_walk *hwp)
602 {
603 pmd_t pmd = *pmdp;
604 unsigned long pfn;
605 unsigned long hwpoison_vaddr;
606
607 if (!pmd_present(pmd))
608 return 0;
609 pfn = pmd_pfn(pmd);
610 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
611 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
612 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
613 return 1;
614 }
615 return 0;
616 }
617 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwp_walk * hwp)618 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
619 struct hwp_walk *hwp)
620 {
621 return 0;
622 }
623 #endif
624
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)625 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
626 unsigned long end, struct mm_walk *walk)
627 {
628 struct hwp_walk *hwp = walk->private;
629 int ret = 0;
630 pte_t *ptep, *mapped_pte;
631 spinlock_t *ptl;
632
633 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
634 if (ptl) {
635 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
636 spin_unlock(ptl);
637 goto out;
638 }
639
640 if (pmd_trans_unstable(pmdp))
641 goto out;
642
643 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
644 addr, &ptl);
645 for (; addr != end; ptep++, addr += PAGE_SIZE) {
646 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
647 hwp->pfn, &hwp->tk);
648 if (ret == 1)
649 break;
650 }
651 pte_unmap_unlock(mapped_pte, ptl);
652 out:
653 cond_resched();
654 return ret;
655 }
656
657 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)658 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
659 unsigned long addr, unsigned long end,
660 struct mm_walk *walk)
661 {
662 struct hwp_walk *hwp = walk->private;
663 pte_t pte = huge_ptep_get(ptep);
664 struct hstate *h = hstate_vma(walk->vma);
665
666 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
667 hwp->pfn, &hwp->tk);
668 }
669 #else
670 #define hwpoison_hugetlb_range NULL
671 #endif
672
673 static const struct mm_walk_ops hwp_walk_ops = {
674 .pmd_entry = hwpoison_pte_range,
675 .hugetlb_entry = hwpoison_hugetlb_range,
676 };
677
678 /*
679 * Sends SIGBUS to the current process with error info.
680 *
681 * This function is intended to handle "Action Required" MCEs on already
682 * hardware poisoned pages. They could happen, for example, when
683 * memory_failure() failed to unmap the error page at the first call, or
684 * when multiple local machine checks happened on different CPUs.
685 *
686 * MCE handler currently has no easy access to the error virtual address,
687 * so this function walks page table to find it. The returned virtual address
688 * is proper in most cases, but it could be wrong when the application
689 * process has multiple entries mapping the error page.
690 */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)691 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
692 int flags)
693 {
694 int ret;
695 struct hwp_walk priv = {
696 .pfn = pfn,
697 };
698 priv.tk.tsk = p;
699
700 mmap_read_lock(p->mm);
701 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
702 (void *)&priv);
703 if (ret == 1 && priv.tk.addr)
704 kill_proc(&priv.tk, pfn, flags);
705 else
706 ret = 0;
707 mmap_read_unlock(p->mm);
708 return ret > 0 ? -EHWPOISON : -EFAULT;
709 }
710
711 static const char *action_name[] = {
712 [MF_IGNORED] = "Ignored",
713 [MF_FAILED] = "Failed",
714 [MF_DELAYED] = "Delayed",
715 [MF_RECOVERED] = "Recovered",
716 };
717
718 static const char * const action_page_types[] = {
719 [MF_MSG_KERNEL] = "reserved kernel page",
720 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
721 [MF_MSG_SLAB] = "kernel slab page",
722 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
723 [MF_MSG_HUGE] = "huge page",
724 [MF_MSG_FREE_HUGE] = "free huge page",
725 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
726 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
727 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
728 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
729 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
730 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
731 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
732 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
733 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
734 [MF_MSG_CLEAN_LRU] = "clean LRU page",
735 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
736 [MF_MSG_BUDDY] = "free buddy page",
737 [MF_MSG_DAX] = "dax page",
738 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
739 [MF_MSG_UNKNOWN] = "unknown page",
740 };
741
742 /*
743 * XXX: It is possible that a page is isolated from LRU cache,
744 * and then kept in swap cache or failed to remove from page cache.
745 * The page count will stop it from being freed by unpoison.
746 * Stress tests should be aware of this memory leak problem.
747 */
delete_from_lru_cache(struct page * p)748 static int delete_from_lru_cache(struct page *p)
749 {
750 if (!isolate_lru_page(p)) {
751 /*
752 * Clear sensible page flags, so that the buddy system won't
753 * complain when the page is unpoison-and-freed.
754 */
755 ClearPageActive(p);
756 ClearPageUnevictable(p);
757
758 /*
759 * Poisoned page might never drop its ref count to 0 so we have
760 * to uncharge it manually from its memcg.
761 */
762 mem_cgroup_uncharge(page_folio(p));
763
764 /*
765 * drop the page count elevated by isolate_lru_page()
766 */
767 put_page(p);
768 return 0;
769 }
770 return -EIO;
771 }
772
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)773 static int truncate_error_page(struct page *p, unsigned long pfn,
774 struct address_space *mapping)
775 {
776 int ret = MF_FAILED;
777
778 if (mapping->a_ops->error_remove_page) {
779 int err = mapping->a_ops->error_remove_page(mapping, p);
780
781 if (err != 0) {
782 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
783 pfn, err);
784 } else if (page_has_private(p) &&
785 !try_to_release_page(p, GFP_NOIO)) {
786 pr_info("Memory failure: %#lx: failed to release buffers\n",
787 pfn);
788 } else {
789 ret = MF_RECOVERED;
790 }
791 } else {
792 /*
793 * If the file system doesn't support it just invalidate
794 * This fails on dirty or anything with private pages
795 */
796 if (invalidate_inode_page(p))
797 ret = MF_RECOVERED;
798 else
799 pr_info("Memory failure: %#lx: Failed to invalidate\n",
800 pfn);
801 }
802
803 return ret;
804 }
805
806 struct page_state {
807 unsigned long mask;
808 unsigned long res;
809 enum mf_action_page_type type;
810
811 /* Callback ->action() has to unlock the relevant page inside it. */
812 int (*action)(struct page_state *ps, struct page *p);
813 };
814
815 /*
816 * Return true if page is still referenced by others, otherwise return
817 * false.
818 *
819 * The extra_pins is true when one extra refcount is expected.
820 */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)821 static bool has_extra_refcount(struct page_state *ps, struct page *p,
822 bool extra_pins)
823 {
824 int count = page_count(p) - 1;
825
826 if (extra_pins)
827 count -= 1;
828
829 if (count > 0) {
830 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
831 page_to_pfn(p), action_page_types[ps->type], count);
832 return true;
833 }
834
835 return false;
836 }
837
838 /*
839 * Error hit kernel page.
840 * Do nothing, try to be lucky and not touch this instead. For a few cases we
841 * could be more sophisticated.
842 */
me_kernel(struct page_state * ps,struct page * p)843 static int me_kernel(struct page_state *ps, struct page *p)
844 {
845 unlock_page(p);
846 return MF_IGNORED;
847 }
848
849 /*
850 * Page in unknown state. Do nothing.
851 */
me_unknown(struct page_state * ps,struct page * p)852 static int me_unknown(struct page_state *ps, struct page *p)
853 {
854 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
855 unlock_page(p);
856 return MF_FAILED;
857 }
858
859 /*
860 * Clean (or cleaned) page cache page.
861 */
me_pagecache_clean(struct page_state * ps,struct page * p)862 static int me_pagecache_clean(struct page_state *ps, struct page *p)
863 {
864 int ret;
865 struct address_space *mapping;
866 bool extra_pins;
867
868 delete_from_lru_cache(p);
869
870 /*
871 * For anonymous pages we're done the only reference left
872 * should be the one m_f() holds.
873 */
874 if (PageAnon(p)) {
875 ret = MF_RECOVERED;
876 goto out;
877 }
878
879 /*
880 * Now truncate the page in the page cache. This is really
881 * more like a "temporary hole punch"
882 * Don't do this for block devices when someone else
883 * has a reference, because it could be file system metadata
884 * and that's not safe to truncate.
885 */
886 mapping = page_mapping(p);
887 if (!mapping) {
888 /*
889 * Page has been teared down in the meanwhile
890 */
891 ret = MF_FAILED;
892 goto out;
893 }
894
895 /*
896 * The shmem page is kept in page cache instead of truncating
897 * so is expected to have an extra refcount after error-handling.
898 */
899 extra_pins = shmem_mapping(mapping);
900
901 /*
902 * Truncation is a bit tricky. Enable it per file system for now.
903 *
904 * Open: to take i_rwsem or not for this? Right now we don't.
905 */
906 ret = truncate_error_page(p, page_to_pfn(p), mapping);
907 if (has_extra_refcount(ps, p, extra_pins))
908 ret = MF_FAILED;
909
910 out:
911 unlock_page(p);
912
913 return ret;
914 }
915
916 /*
917 * Dirty pagecache page
918 * Issues: when the error hit a hole page the error is not properly
919 * propagated.
920 */
me_pagecache_dirty(struct page_state * ps,struct page * p)921 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
922 {
923 struct address_space *mapping = page_mapping(p);
924
925 SetPageError(p);
926 /* TBD: print more information about the file. */
927 if (mapping) {
928 /*
929 * IO error will be reported by write(), fsync(), etc.
930 * who check the mapping.
931 * This way the application knows that something went
932 * wrong with its dirty file data.
933 *
934 * There's one open issue:
935 *
936 * The EIO will be only reported on the next IO
937 * operation and then cleared through the IO map.
938 * Normally Linux has two mechanisms to pass IO error
939 * first through the AS_EIO flag in the address space
940 * and then through the PageError flag in the page.
941 * Since we drop pages on memory failure handling the
942 * only mechanism open to use is through AS_AIO.
943 *
944 * This has the disadvantage that it gets cleared on
945 * the first operation that returns an error, while
946 * the PageError bit is more sticky and only cleared
947 * when the page is reread or dropped. If an
948 * application assumes it will always get error on
949 * fsync, but does other operations on the fd before
950 * and the page is dropped between then the error
951 * will not be properly reported.
952 *
953 * This can already happen even without hwpoisoned
954 * pages: first on metadata IO errors (which only
955 * report through AS_EIO) or when the page is dropped
956 * at the wrong time.
957 *
958 * So right now we assume that the application DTRT on
959 * the first EIO, but we're not worse than other parts
960 * of the kernel.
961 */
962 mapping_set_error(mapping, -EIO);
963 }
964
965 return me_pagecache_clean(ps, p);
966 }
967
968 /*
969 * Clean and dirty swap cache.
970 *
971 * Dirty swap cache page is tricky to handle. The page could live both in page
972 * cache and swap cache(ie. page is freshly swapped in). So it could be
973 * referenced concurrently by 2 types of PTEs:
974 * normal PTEs and swap PTEs. We try to handle them consistently by calling
975 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
976 * and then
977 * - clear dirty bit to prevent IO
978 * - remove from LRU
979 * - but keep in the swap cache, so that when we return to it on
980 * a later page fault, we know the application is accessing
981 * corrupted data and shall be killed (we installed simple
982 * interception code in do_swap_page to catch it).
983 *
984 * Clean swap cache pages can be directly isolated. A later page fault will
985 * bring in the known good data from disk.
986 */
me_swapcache_dirty(struct page_state * ps,struct page * p)987 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
988 {
989 int ret;
990 bool extra_pins = false;
991
992 ClearPageDirty(p);
993 /* Trigger EIO in shmem: */
994 ClearPageUptodate(p);
995
996 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
997 unlock_page(p);
998
999 if (ret == MF_DELAYED)
1000 extra_pins = true;
1001
1002 if (has_extra_refcount(ps, p, extra_pins))
1003 ret = MF_FAILED;
1004
1005 return ret;
1006 }
1007
me_swapcache_clean(struct page_state * ps,struct page * p)1008 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1009 {
1010 int ret;
1011
1012 delete_from_swap_cache(p);
1013
1014 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1015 unlock_page(p);
1016
1017 if (has_extra_refcount(ps, p, false))
1018 ret = MF_FAILED;
1019
1020 return ret;
1021 }
1022
1023 /*
1024 * Huge pages. Needs work.
1025 * Issues:
1026 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1027 * To narrow down kill region to one page, we need to break up pmd.
1028 */
me_huge_page(struct page_state * ps,struct page * p)1029 static int me_huge_page(struct page_state *ps, struct page *p)
1030 {
1031 int res;
1032 struct page *hpage = compound_head(p);
1033 struct address_space *mapping;
1034
1035 if (!PageHuge(hpage))
1036 return MF_DELAYED;
1037
1038 mapping = page_mapping(hpage);
1039 if (mapping) {
1040 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1041 unlock_page(hpage);
1042 } else {
1043 res = MF_FAILED;
1044 unlock_page(hpage);
1045 /*
1046 * migration entry prevents later access on error hugepage,
1047 * so we can free and dissolve it into buddy to save healthy
1048 * subpages.
1049 */
1050 put_page(hpage);
1051 if (__page_handle_poison(p)) {
1052 page_ref_inc(p);
1053 res = MF_RECOVERED;
1054 }
1055 }
1056
1057 if (has_extra_refcount(ps, p, false))
1058 res = MF_FAILED;
1059
1060 return res;
1061 }
1062
1063 /*
1064 * Various page states we can handle.
1065 *
1066 * A page state is defined by its current page->flags bits.
1067 * The table matches them in order and calls the right handler.
1068 *
1069 * This is quite tricky because we can access page at any time
1070 * in its live cycle, so all accesses have to be extremely careful.
1071 *
1072 * This is not complete. More states could be added.
1073 * For any missing state don't attempt recovery.
1074 */
1075
1076 #define dirty (1UL << PG_dirty)
1077 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1078 #define unevict (1UL << PG_unevictable)
1079 #define mlock (1UL << PG_mlocked)
1080 #define lru (1UL << PG_lru)
1081 #define head (1UL << PG_head)
1082 #define slab (1UL << PG_slab)
1083 #define reserved (1UL << PG_reserved)
1084
1085 static struct page_state error_states[] = {
1086 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1087 /*
1088 * free pages are specially detected outside this table:
1089 * PG_buddy pages only make a small fraction of all free pages.
1090 */
1091
1092 /*
1093 * Could in theory check if slab page is free or if we can drop
1094 * currently unused objects without touching them. But just
1095 * treat it as standard kernel for now.
1096 */
1097 { slab, slab, MF_MSG_SLAB, me_kernel },
1098
1099 { head, head, MF_MSG_HUGE, me_huge_page },
1100
1101 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1102 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1103
1104 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1105 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1106
1107 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1108 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1109
1110 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1111 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1112
1113 /*
1114 * Catchall entry: must be at end.
1115 */
1116 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1117 };
1118
1119 #undef dirty
1120 #undef sc
1121 #undef unevict
1122 #undef mlock
1123 #undef lru
1124 #undef head
1125 #undef slab
1126 #undef reserved
1127
1128 /*
1129 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1130 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1131 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1132 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1133 enum mf_result result)
1134 {
1135 trace_memory_failure_event(pfn, type, result);
1136
1137 num_poisoned_pages_inc();
1138 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1139 pfn, action_page_types[type], action_name[result]);
1140 }
1141
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1142 static int page_action(struct page_state *ps, struct page *p,
1143 unsigned long pfn)
1144 {
1145 int result;
1146
1147 /* page p should be unlocked after returning from ps->action(). */
1148 result = ps->action(ps, p);
1149
1150 action_result(pfn, ps->type, result);
1151
1152 /* Could do more checks here if page looks ok */
1153 /*
1154 * Could adjust zone counters here to correct for the missing page.
1155 */
1156
1157 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1158 }
1159
PageHWPoisonTakenOff(struct page * page)1160 static inline bool PageHWPoisonTakenOff(struct page *page)
1161 {
1162 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1163 }
1164
SetPageHWPoisonTakenOff(struct page * page)1165 void SetPageHWPoisonTakenOff(struct page *page)
1166 {
1167 set_page_private(page, MAGIC_HWPOISON);
1168 }
1169
ClearPageHWPoisonTakenOff(struct page * page)1170 void ClearPageHWPoisonTakenOff(struct page *page)
1171 {
1172 if (PageHWPoison(page))
1173 set_page_private(page, 0);
1174 }
1175
1176 /*
1177 * Return true if a page type of a given page is supported by hwpoison
1178 * mechanism (while handling could fail), otherwise false. This function
1179 * does not return true for hugetlb or device memory pages, so it's assumed
1180 * to be called only in the context where we never have such pages.
1181 */
HWPoisonHandlable(struct page * page,unsigned long flags)1182 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1183 {
1184 /* Soft offline could migrate non-LRU movable pages */
1185 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1186 return true;
1187
1188 return PageLRU(page) || is_free_buddy_page(page);
1189 }
1190
__get_hwpoison_page(struct page * page,unsigned long flags)1191 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1192 {
1193 struct page *head = compound_head(page);
1194 int ret = 0;
1195 bool hugetlb = false;
1196
1197 ret = get_hwpoison_huge_page(head, &hugetlb);
1198 if (hugetlb)
1199 return ret;
1200
1201 /*
1202 * This check prevents from calling get_hwpoison_unless_zero()
1203 * for any unsupported type of page in order to reduce the risk of
1204 * unexpected races caused by taking a page refcount.
1205 */
1206 if (!HWPoisonHandlable(head, flags))
1207 return -EBUSY;
1208
1209 if (get_page_unless_zero(head)) {
1210 if (head == compound_head(page))
1211 return 1;
1212
1213 pr_info("Memory failure: %#lx cannot catch tail\n",
1214 page_to_pfn(page));
1215 put_page(head);
1216 }
1217
1218 return 0;
1219 }
1220
get_any_page(struct page * p,unsigned long flags)1221 static int get_any_page(struct page *p, unsigned long flags)
1222 {
1223 int ret = 0, pass = 0;
1224 bool count_increased = false;
1225
1226 if (flags & MF_COUNT_INCREASED)
1227 count_increased = true;
1228
1229 try_again:
1230 if (!count_increased) {
1231 ret = __get_hwpoison_page(p, flags);
1232 if (!ret) {
1233 if (page_count(p)) {
1234 /* We raced with an allocation, retry. */
1235 if (pass++ < 3)
1236 goto try_again;
1237 ret = -EBUSY;
1238 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1239 /* We raced with put_page, retry. */
1240 if (pass++ < 3)
1241 goto try_again;
1242 ret = -EIO;
1243 }
1244 goto out;
1245 } else if (ret == -EBUSY) {
1246 /*
1247 * We raced with (possibly temporary) unhandlable
1248 * page, retry.
1249 */
1250 if (pass++ < 3) {
1251 shake_page(p);
1252 goto try_again;
1253 }
1254 ret = -EIO;
1255 goto out;
1256 }
1257 }
1258
1259 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1260 ret = 1;
1261 } else {
1262 /*
1263 * A page we cannot handle. Check whether we can turn
1264 * it into something we can handle.
1265 */
1266 if (pass++ < 3) {
1267 put_page(p);
1268 shake_page(p);
1269 count_increased = false;
1270 goto try_again;
1271 }
1272 put_page(p);
1273 ret = -EIO;
1274 }
1275 out:
1276 if (ret == -EIO)
1277 pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
1278
1279 return ret;
1280 }
1281
__get_unpoison_page(struct page * page)1282 static int __get_unpoison_page(struct page *page)
1283 {
1284 struct page *head = compound_head(page);
1285 int ret = 0;
1286 bool hugetlb = false;
1287
1288 ret = get_hwpoison_huge_page(head, &hugetlb);
1289 if (hugetlb)
1290 return ret;
1291
1292 /*
1293 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1294 * but also isolated from buddy freelist, so need to identify the
1295 * state and have to cancel both operations to unpoison.
1296 */
1297 if (PageHWPoisonTakenOff(page))
1298 return -EHWPOISON;
1299
1300 return get_page_unless_zero(page) ? 1 : 0;
1301 }
1302
1303 /**
1304 * get_hwpoison_page() - Get refcount for memory error handling
1305 * @p: Raw error page (hit by memory error)
1306 * @flags: Flags controlling behavior of error handling
1307 *
1308 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1309 * error on it, after checking that the error page is in a well-defined state
1310 * (defined as a page-type we can successfully handle the memory error on it,
1311 * such as LRU page and hugetlb page).
1312 *
1313 * Memory error handling could be triggered at any time on any type of page,
1314 * so it's prone to race with typical memory management lifecycle (like
1315 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1316 * extra care for the error page's state (as done in __get_hwpoison_page()),
1317 * and has some retry logic in get_any_page().
1318 *
1319 * When called from unpoison_memory(), the caller should already ensure that
1320 * the given page has PG_hwpoison. So it's never reused for other page
1321 * allocations, and __get_unpoison_page() never races with them.
1322 *
1323 * Return: 0 on failure,
1324 * 1 on success for in-use pages in a well-defined state,
1325 * -EIO for pages on which we can not handle memory errors,
1326 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1327 * operations like allocation and free,
1328 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1329 */
get_hwpoison_page(struct page * p,unsigned long flags)1330 static int get_hwpoison_page(struct page *p, unsigned long flags)
1331 {
1332 int ret;
1333
1334 zone_pcp_disable(page_zone(p));
1335 if (flags & MF_UNPOISON)
1336 ret = __get_unpoison_page(p);
1337 else
1338 ret = get_any_page(p, flags);
1339 zone_pcp_enable(page_zone(p));
1340
1341 return ret;
1342 }
1343
1344 /*
1345 * Do all that is necessary to remove user space mappings. Unmap
1346 * the pages and send SIGBUS to the processes if the data was dirty.
1347 */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page * hpage)1348 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1349 int flags, struct page *hpage)
1350 {
1351 struct folio *folio = page_folio(hpage);
1352 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1353 struct address_space *mapping;
1354 LIST_HEAD(tokill);
1355 bool unmap_success;
1356 int kill = 1, forcekill;
1357 bool mlocked = PageMlocked(hpage);
1358
1359 /*
1360 * Here we are interested only in user-mapped pages, so skip any
1361 * other types of pages.
1362 */
1363 if (PageReserved(p) || PageSlab(p))
1364 return true;
1365 if (!(PageLRU(hpage) || PageHuge(p)))
1366 return true;
1367
1368 /*
1369 * This check implies we don't kill processes if their pages
1370 * are in the swap cache early. Those are always late kills.
1371 */
1372 if (!page_mapped(hpage))
1373 return true;
1374
1375 if (PageKsm(p)) {
1376 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1377 return false;
1378 }
1379
1380 if (PageSwapCache(p)) {
1381 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1382 pfn);
1383 ttu |= TTU_IGNORE_HWPOISON;
1384 }
1385
1386 /*
1387 * Propagate the dirty bit from PTEs to struct page first, because we
1388 * need this to decide if we should kill or just drop the page.
1389 * XXX: the dirty test could be racy: set_page_dirty() may not always
1390 * be called inside page lock (it's recommended but not enforced).
1391 */
1392 mapping = page_mapping(hpage);
1393 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1394 mapping_can_writeback(mapping)) {
1395 if (page_mkclean(hpage)) {
1396 SetPageDirty(hpage);
1397 } else {
1398 kill = 0;
1399 ttu |= TTU_IGNORE_HWPOISON;
1400 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1401 pfn);
1402 }
1403 }
1404
1405 /*
1406 * First collect all the processes that have the page
1407 * mapped in dirty form. This has to be done before try_to_unmap,
1408 * because ttu takes the rmap data structures down.
1409 *
1410 * Error handling: We ignore errors here because
1411 * there's nothing that can be done.
1412 */
1413 if (kill)
1414 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1415
1416 if (PageHuge(hpage) && !PageAnon(hpage)) {
1417 /*
1418 * For hugetlb pages in shared mappings, try_to_unmap
1419 * could potentially call huge_pmd_unshare. Because of
1420 * this, take semaphore in write mode here and set
1421 * TTU_RMAP_LOCKED to indicate we have taken the lock
1422 * at this higher level.
1423 */
1424 mapping = hugetlb_page_mapping_lock_write(hpage);
1425 if (mapping) {
1426 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1427 i_mmap_unlock_write(mapping);
1428 } else
1429 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1430 } else {
1431 try_to_unmap(folio, ttu);
1432 }
1433
1434 unmap_success = !page_mapped(hpage);
1435 if (!unmap_success)
1436 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1437 pfn, page_mapcount(hpage));
1438
1439 /*
1440 * try_to_unmap() might put mlocked page in lru cache, so call
1441 * shake_page() again to ensure that it's flushed.
1442 */
1443 if (mlocked)
1444 shake_page(hpage);
1445
1446 /*
1447 * Now that the dirty bit has been propagated to the
1448 * struct page and all unmaps done we can decide if
1449 * killing is needed or not. Only kill when the page
1450 * was dirty or the process is not restartable,
1451 * otherwise the tokill list is merely
1452 * freed. When there was a problem unmapping earlier
1453 * use a more force-full uncatchable kill to prevent
1454 * any accesses to the poisoned memory.
1455 */
1456 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1457 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1458
1459 return unmap_success;
1460 }
1461
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1462 static int identify_page_state(unsigned long pfn, struct page *p,
1463 unsigned long page_flags)
1464 {
1465 struct page_state *ps;
1466
1467 /*
1468 * The first check uses the current page flags which may not have any
1469 * relevant information. The second check with the saved page flags is
1470 * carried out only if the first check can't determine the page status.
1471 */
1472 for (ps = error_states;; ps++)
1473 if ((p->flags & ps->mask) == ps->res)
1474 break;
1475
1476 page_flags |= (p->flags & (1UL << PG_dirty));
1477
1478 if (!ps->mask)
1479 for (ps = error_states;; ps++)
1480 if ((page_flags & ps->mask) == ps->res)
1481 break;
1482 return page_action(ps, p, pfn);
1483 }
1484
try_to_split_thp_page(struct page * page,const char * msg)1485 static int try_to_split_thp_page(struct page *page, const char *msg)
1486 {
1487 lock_page(page);
1488 if (unlikely(split_huge_page(page))) {
1489 unsigned long pfn = page_to_pfn(page);
1490
1491 unlock_page(page);
1492 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1493 put_page(page);
1494 return -EBUSY;
1495 }
1496 unlock_page(page);
1497
1498 return 0;
1499 }
1500
1501 /*
1502 * Called from hugetlb code with hugetlb_lock held.
1503 *
1504 * Return values:
1505 * 0 - free hugepage
1506 * 1 - in-use hugepage
1507 * 2 - not a hugepage
1508 * -EBUSY - the hugepage is busy (try to retry)
1509 * -EHWPOISON - the hugepage is already hwpoisoned
1510 */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags)1511 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1512 {
1513 struct page *page = pfn_to_page(pfn);
1514 struct page *head = compound_head(page);
1515 int ret = 2; /* fallback to normal page handling */
1516 bool count_increased = false;
1517
1518 if (!PageHeadHuge(head))
1519 goto out;
1520
1521 if (flags & MF_COUNT_INCREASED) {
1522 ret = 1;
1523 count_increased = true;
1524 } else if (HPageFreed(head)) {
1525 ret = 0;
1526 } else if (HPageMigratable(head)) {
1527 ret = get_page_unless_zero(head);
1528 if (ret)
1529 count_increased = true;
1530 } else {
1531 ret = -EBUSY;
1532 goto out;
1533 }
1534
1535 if (TestSetPageHWPoison(head)) {
1536 ret = -EHWPOISON;
1537 goto out;
1538 }
1539
1540 return ret;
1541 out:
1542 if (count_increased)
1543 put_page(head);
1544 return ret;
1545 }
1546
1547 #ifdef CONFIG_HUGETLB_PAGE
1548 /*
1549 * Taking refcount of hugetlb pages needs extra care about race conditions
1550 * with basic operations like hugepage allocation/free/demotion.
1551 * So some of prechecks for hwpoison (pinning, and testing/setting
1552 * PageHWPoison) should be done in single hugetlb_lock range.
1553 */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)1554 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1555 {
1556 int res;
1557 struct page *p = pfn_to_page(pfn);
1558 struct page *head;
1559 unsigned long page_flags;
1560 bool retry = true;
1561
1562 *hugetlb = 1;
1563 retry:
1564 res = get_huge_page_for_hwpoison(pfn, flags);
1565 if (res == 2) { /* fallback to normal page handling */
1566 *hugetlb = 0;
1567 return 0;
1568 } else if (res == -EHWPOISON) {
1569 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1570 if (flags & MF_ACTION_REQUIRED) {
1571 head = compound_head(p);
1572 res = kill_accessing_process(current, page_to_pfn(head), flags);
1573 }
1574 return res;
1575 } else if (res == -EBUSY) {
1576 if (retry) {
1577 retry = false;
1578 goto retry;
1579 }
1580 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1581 return res;
1582 }
1583
1584 head = compound_head(p);
1585 lock_page(head);
1586
1587 if (hwpoison_filter(p)) {
1588 ClearPageHWPoison(head);
1589 res = -EOPNOTSUPP;
1590 goto out;
1591 }
1592
1593 /*
1594 * Handling free hugepage. The possible race with hugepage allocation
1595 * or demotion can be prevented by PageHWPoison flag.
1596 */
1597 if (res == 0) {
1598 unlock_page(head);
1599 res = MF_FAILED;
1600 if (__page_handle_poison(p)) {
1601 page_ref_inc(p);
1602 res = MF_RECOVERED;
1603 }
1604 action_result(pfn, MF_MSG_FREE_HUGE, res);
1605 return res == MF_RECOVERED ? 0 : -EBUSY;
1606 }
1607
1608 page_flags = head->flags;
1609
1610 /*
1611 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1612 * simply disable it. In order to make it work properly, we need
1613 * make sure that:
1614 * - conversion of a pud that maps an error hugetlb into hwpoison
1615 * entry properly works, and
1616 * - other mm code walking over page table is aware of pud-aligned
1617 * hwpoison entries.
1618 */
1619 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1620 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1621 res = -EBUSY;
1622 goto out;
1623 }
1624
1625 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1626 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1627 res = -EBUSY;
1628 goto out;
1629 }
1630
1631 return identify_page_state(pfn, p, page_flags);
1632 out:
1633 unlock_page(head);
1634 return res;
1635 }
1636 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)1637 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1638 {
1639 return 0;
1640 }
1641 #endif
1642
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)1643 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1644 struct dev_pagemap *pgmap)
1645 {
1646 struct page *page = pfn_to_page(pfn);
1647 unsigned long size = 0;
1648 struct to_kill *tk;
1649 LIST_HEAD(tokill);
1650 int rc = -EBUSY;
1651 loff_t start;
1652 dax_entry_t cookie;
1653
1654 if (flags & MF_COUNT_INCREASED)
1655 /*
1656 * Drop the extra refcount in case we come from madvise().
1657 */
1658 put_page(page);
1659
1660 /* device metadata space is not recoverable */
1661 if (!pgmap_pfn_valid(pgmap, pfn)) {
1662 rc = -ENXIO;
1663 goto out;
1664 }
1665
1666 /*
1667 * Pages instantiated by device-dax (not filesystem-dax)
1668 * may be compound pages.
1669 */
1670 page = compound_head(page);
1671
1672 /*
1673 * Prevent the inode from being freed while we are interrogating
1674 * the address_space, typically this would be handled by
1675 * lock_page(), but dax pages do not use the page lock. This
1676 * also prevents changes to the mapping of this pfn until
1677 * poison signaling is complete.
1678 */
1679 cookie = dax_lock_page(page);
1680 if (!cookie)
1681 goto out;
1682
1683 if (hwpoison_filter(page)) {
1684 rc = -EOPNOTSUPP;
1685 goto unlock;
1686 }
1687
1688 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1689 /*
1690 * TODO: Handle HMM pages which may need coordination
1691 * with device-side memory.
1692 */
1693 goto unlock;
1694 }
1695
1696 /*
1697 * Use this flag as an indication that the dax page has been
1698 * remapped UC to prevent speculative consumption of poison.
1699 */
1700 SetPageHWPoison(page);
1701
1702 /*
1703 * Unlike System-RAM there is no possibility to swap in a
1704 * different physical page at a given virtual address, so all
1705 * userspace consumption of ZONE_DEVICE memory necessitates
1706 * SIGBUS (i.e. MF_MUST_KILL)
1707 */
1708 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1709 collect_procs(page, &tokill, true);
1710
1711 list_for_each_entry(tk, &tokill, nd)
1712 if (tk->size_shift)
1713 size = max(size, 1UL << tk->size_shift);
1714 if (size) {
1715 /*
1716 * Unmap the largest mapping to avoid breaking up
1717 * device-dax mappings which are constant size. The
1718 * actual size of the mapping being torn down is
1719 * communicated in siginfo, see kill_proc()
1720 */
1721 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1722 unmap_mapping_range(page->mapping, start, size, 0);
1723 }
1724 kill_procs(&tokill, true, false, pfn, flags);
1725 rc = 0;
1726 unlock:
1727 dax_unlock_page(page, cookie);
1728 out:
1729 /* drop pgmap ref acquired in caller */
1730 put_dev_pagemap(pgmap);
1731 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1732 return rc;
1733 }
1734
1735 static DEFINE_MUTEX(mf_mutex);
1736
1737 /**
1738 * memory_failure - Handle memory failure of a page.
1739 * @pfn: Page Number of the corrupted page
1740 * @flags: fine tune action taken
1741 *
1742 * This function is called by the low level machine check code
1743 * of an architecture when it detects hardware memory corruption
1744 * of a page. It tries its best to recover, which includes
1745 * dropping pages, killing processes etc.
1746 *
1747 * The function is primarily of use for corruptions that
1748 * happen outside the current execution context (e.g. when
1749 * detected by a background scrubber)
1750 *
1751 * Must run in process context (e.g. a work queue) with interrupts
1752 * enabled and no spinlocks hold.
1753 *
1754 * Return: 0 for successfully handled the memory error,
1755 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
1756 * < 0(except -EOPNOTSUPP) on failure.
1757 */
memory_failure(unsigned long pfn,int flags)1758 int memory_failure(unsigned long pfn, int flags)
1759 {
1760 struct page *p;
1761 struct page *hpage;
1762 struct dev_pagemap *pgmap;
1763 int res = 0;
1764 unsigned long page_flags;
1765 bool retry = true;
1766 int hugetlb = 0;
1767
1768 if (!sysctl_memory_failure_recovery)
1769 panic("Memory failure on page %lx", pfn);
1770
1771 mutex_lock(&mf_mutex);
1772
1773 if (!(flags & MF_SW_SIMULATED))
1774 hw_memory_failure = true;
1775
1776 p = pfn_to_online_page(pfn);
1777 if (!p) {
1778 res = arch_memory_failure(pfn, flags);
1779 if (res == 0)
1780 goto unlock_mutex;
1781
1782 if (pfn_valid(pfn)) {
1783 pgmap = get_dev_pagemap(pfn, NULL);
1784 if (pgmap) {
1785 res = memory_failure_dev_pagemap(pfn, flags,
1786 pgmap);
1787 goto unlock_mutex;
1788 }
1789 }
1790 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1791 pfn);
1792 res = -ENXIO;
1793 goto unlock_mutex;
1794 }
1795
1796 try_again:
1797 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1798 if (hugetlb)
1799 goto unlock_mutex;
1800
1801 if (TestSetPageHWPoison(p)) {
1802 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1803 pfn);
1804 res = -EHWPOISON;
1805 if (flags & MF_ACTION_REQUIRED)
1806 res = kill_accessing_process(current, pfn, flags);
1807 if (flags & MF_COUNT_INCREASED)
1808 put_page(p);
1809 goto unlock_mutex;
1810 }
1811
1812 hpage = compound_head(p);
1813
1814 /*
1815 * We need/can do nothing about count=0 pages.
1816 * 1) it's a free page, and therefore in safe hand:
1817 * prep_new_page() will be the gate keeper.
1818 * 2) it's part of a non-compound high order page.
1819 * Implies some kernel user: cannot stop them from
1820 * R/W the page; let's pray that the page has been
1821 * used and will be freed some time later.
1822 * In fact it's dangerous to directly bump up page count from 0,
1823 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1824 */
1825 if (!(flags & MF_COUNT_INCREASED)) {
1826 res = get_hwpoison_page(p, flags);
1827 if (!res) {
1828 if (is_free_buddy_page(p)) {
1829 if (take_page_off_buddy(p)) {
1830 page_ref_inc(p);
1831 res = MF_RECOVERED;
1832 } else {
1833 /* We lost the race, try again */
1834 if (retry) {
1835 ClearPageHWPoison(p);
1836 retry = false;
1837 goto try_again;
1838 }
1839 res = MF_FAILED;
1840 }
1841 action_result(pfn, MF_MSG_BUDDY, res);
1842 res = res == MF_RECOVERED ? 0 : -EBUSY;
1843 } else {
1844 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1845 res = -EBUSY;
1846 }
1847 goto unlock_mutex;
1848 } else if (res < 0) {
1849 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1850 res = -EBUSY;
1851 goto unlock_mutex;
1852 }
1853 }
1854
1855 if (PageTransHuge(hpage)) {
1856 /*
1857 * The flag must be set after the refcount is bumped
1858 * otherwise it may race with THP split.
1859 * And the flag can't be set in get_hwpoison_page() since
1860 * it is called by soft offline too and it is just called
1861 * for !MF_COUNT_INCREASE. So here seems to be the best
1862 * place.
1863 *
1864 * Don't need care about the above error handling paths for
1865 * get_hwpoison_page() since they handle either free page
1866 * or unhandlable page. The refcount is bumped iff the
1867 * page is a valid handlable page.
1868 */
1869 SetPageHasHWPoisoned(hpage);
1870 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1871 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1872 res = -EBUSY;
1873 goto unlock_mutex;
1874 }
1875 VM_BUG_ON_PAGE(!page_count(p), p);
1876 }
1877
1878 /*
1879 * We ignore non-LRU pages for good reasons.
1880 * - PG_locked is only well defined for LRU pages and a few others
1881 * - to avoid races with __SetPageLocked()
1882 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1883 * The check (unnecessarily) ignores LRU pages being isolated and
1884 * walked by the page reclaim code, however that's not a big loss.
1885 */
1886 shake_page(p);
1887
1888 lock_page(p);
1889
1890 /*
1891 * We're only intended to deal with the non-Compound page here.
1892 * However, the page could have changed compound pages due to
1893 * race window. If this happens, we could try again to hopefully
1894 * handle the page next round.
1895 */
1896 if (PageCompound(p)) {
1897 if (retry) {
1898 ClearPageHWPoison(p);
1899 unlock_page(p);
1900 put_page(p);
1901 flags &= ~MF_COUNT_INCREASED;
1902 retry = false;
1903 goto try_again;
1904 }
1905 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1906 res = -EBUSY;
1907 goto unlock_page;
1908 }
1909
1910 /*
1911 * We use page flags to determine what action should be taken, but
1912 * the flags can be modified by the error containment action. One
1913 * example is an mlocked page, where PG_mlocked is cleared by
1914 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1915 * correctly, we save a copy of the page flags at this time.
1916 */
1917 page_flags = p->flags;
1918
1919 if (hwpoison_filter(p)) {
1920 TestClearPageHWPoison(p);
1921 unlock_page(p);
1922 put_page(p);
1923 res = -EOPNOTSUPP;
1924 goto unlock_mutex;
1925 }
1926
1927 /*
1928 * __munlock_pagevec may clear a writeback page's LRU flag without
1929 * page_lock. We need wait writeback completion for this page or it
1930 * may trigger vfs BUG while evict inode.
1931 */
1932 if (!PageLRU(p) && !PageWriteback(p))
1933 goto identify_page_state;
1934
1935 /*
1936 * It's very difficult to mess with pages currently under IO
1937 * and in many cases impossible, so we just avoid it here.
1938 */
1939 wait_on_page_writeback(p);
1940
1941 /*
1942 * Now take care of user space mappings.
1943 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1944 */
1945 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1946 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1947 res = -EBUSY;
1948 goto unlock_page;
1949 }
1950
1951 /*
1952 * Torn down by someone else?
1953 */
1954 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1955 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1956 res = -EBUSY;
1957 goto unlock_page;
1958 }
1959
1960 identify_page_state:
1961 res = identify_page_state(pfn, p, page_flags);
1962 mutex_unlock(&mf_mutex);
1963 return res;
1964 unlock_page:
1965 unlock_page(p);
1966 unlock_mutex:
1967 mutex_unlock(&mf_mutex);
1968 return res;
1969 }
1970 EXPORT_SYMBOL_GPL(memory_failure);
1971
1972 #define MEMORY_FAILURE_FIFO_ORDER 4
1973 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1974
1975 struct memory_failure_entry {
1976 unsigned long pfn;
1977 int flags;
1978 };
1979
1980 struct memory_failure_cpu {
1981 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1982 MEMORY_FAILURE_FIFO_SIZE);
1983 spinlock_t lock;
1984 struct work_struct work;
1985 };
1986
1987 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1988
1989 /**
1990 * memory_failure_queue - Schedule handling memory failure of a page.
1991 * @pfn: Page Number of the corrupted page
1992 * @flags: Flags for memory failure handling
1993 *
1994 * This function is called by the low level hardware error handler
1995 * when it detects hardware memory corruption of a page. It schedules
1996 * the recovering of error page, including dropping pages, killing
1997 * processes etc.
1998 *
1999 * The function is primarily of use for corruptions that
2000 * happen outside the current execution context (e.g. when
2001 * detected by a background scrubber)
2002 *
2003 * Can run in IRQ context.
2004 */
memory_failure_queue(unsigned long pfn,int flags)2005 void memory_failure_queue(unsigned long pfn, int flags)
2006 {
2007 struct memory_failure_cpu *mf_cpu;
2008 unsigned long proc_flags;
2009 struct memory_failure_entry entry = {
2010 .pfn = pfn,
2011 .flags = flags,
2012 };
2013
2014 mf_cpu = &get_cpu_var(memory_failure_cpu);
2015 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2016 if (kfifo_put(&mf_cpu->fifo, entry))
2017 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2018 else
2019 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
2020 pfn);
2021 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2022 put_cpu_var(memory_failure_cpu);
2023 }
2024 EXPORT_SYMBOL_GPL(memory_failure_queue);
2025
memory_failure_work_func(struct work_struct * work)2026 static void memory_failure_work_func(struct work_struct *work)
2027 {
2028 struct memory_failure_cpu *mf_cpu;
2029 struct memory_failure_entry entry = { 0, };
2030 unsigned long proc_flags;
2031 int gotten;
2032
2033 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2034 for (;;) {
2035 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2036 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2037 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2038 if (!gotten)
2039 break;
2040 if (entry.flags & MF_SOFT_OFFLINE)
2041 soft_offline_page(entry.pfn, entry.flags);
2042 else
2043 memory_failure(entry.pfn, entry.flags);
2044 }
2045 }
2046
2047 /*
2048 * Process memory_failure work queued on the specified CPU.
2049 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2050 */
memory_failure_queue_kick(int cpu)2051 void memory_failure_queue_kick(int cpu)
2052 {
2053 struct memory_failure_cpu *mf_cpu;
2054
2055 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2056 cancel_work_sync(&mf_cpu->work);
2057 memory_failure_work_func(&mf_cpu->work);
2058 }
2059
memory_failure_init(void)2060 static int __init memory_failure_init(void)
2061 {
2062 struct memory_failure_cpu *mf_cpu;
2063 int cpu;
2064
2065 for_each_possible_cpu(cpu) {
2066 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2067 spin_lock_init(&mf_cpu->lock);
2068 INIT_KFIFO(mf_cpu->fifo);
2069 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2070 }
2071
2072 return 0;
2073 }
2074 core_initcall(memory_failure_init);
2075
2076 #define unpoison_pr_info(fmt, pfn, rs) \
2077 ({ \
2078 if (__ratelimit(rs)) \
2079 pr_info(fmt, pfn); \
2080 })
2081
2082 /**
2083 * unpoison_memory - Unpoison a previously poisoned page
2084 * @pfn: Page number of the to be unpoisoned page
2085 *
2086 * Software-unpoison a page that has been poisoned by
2087 * memory_failure() earlier.
2088 *
2089 * This is only done on the software-level, so it only works
2090 * for linux injected failures, not real hardware failures
2091 *
2092 * Returns 0 for success, otherwise -errno.
2093 */
unpoison_memory(unsigned long pfn)2094 int unpoison_memory(unsigned long pfn)
2095 {
2096 struct page *page;
2097 struct page *p;
2098 int ret = -EBUSY;
2099 int freeit = 0;
2100 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2101 DEFAULT_RATELIMIT_BURST);
2102
2103 if (!pfn_valid(pfn))
2104 return -ENXIO;
2105
2106 p = pfn_to_page(pfn);
2107 page = compound_head(p);
2108
2109 mutex_lock(&mf_mutex);
2110
2111 if (hw_memory_failure) {
2112 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2113 pfn, &unpoison_rs);
2114 ret = -EOPNOTSUPP;
2115 goto unlock_mutex;
2116 }
2117
2118 if (!PageHWPoison(p)) {
2119 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2120 pfn, &unpoison_rs);
2121 goto unlock_mutex;
2122 }
2123
2124 if (page_count(page) > 1) {
2125 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2126 pfn, &unpoison_rs);
2127 goto unlock_mutex;
2128 }
2129
2130 if (page_mapped(page)) {
2131 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2132 pfn, &unpoison_rs);
2133 goto unlock_mutex;
2134 }
2135
2136 if (page_mapping(page)) {
2137 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2138 pfn, &unpoison_rs);
2139 goto unlock_mutex;
2140 }
2141
2142 if (PageSlab(page) || PageTable(page))
2143 goto unlock_mutex;
2144
2145 ret = get_hwpoison_page(p, MF_UNPOISON);
2146 if (!ret) {
2147 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2148 } else if (ret < 0) {
2149 if (ret == -EHWPOISON) {
2150 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2151 } else
2152 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2153 pfn, &unpoison_rs);
2154 } else {
2155 freeit = !!TestClearPageHWPoison(p);
2156
2157 put_page(page);
2158 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2159 put_page(page);
2160 ret = 0;
2161 }
2162 }
2163
2164 unlock_mutex:
2165 mutex_unlock(&mf_mutex);
2166 if (!ret || freeit) {
2167 num_poisoned_pages_dec();
2168 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2169 page_to_pfn(p), &unpoison_rs);
2170 }
2171 return ret;
2172 }
2173 EXPORT_SYMBOL(unpoison_memory);
2174
isolate_page(struct page * page,struct list_head * pagelist)2175 static bool isolate_page(struct page *page, struct list_head *pagelist)
2176 {
2177 bool isolated = false;
2178 bool lru = PageLRU(page);
2179
2180 if (PageHuge(page)) {
2181 isolated = !isolate_hugetlb(page, pagelist);
2182 } else {
2183 if (lru)
2184 isolated = !isolate_lru_page(page);
2185 else
2186 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2187
2188 if (isolated)
2189 list_add(&page->lru, pagelist);
2190 }
2191
2192 if (isolated && lru)
2193 inc_node_page_state(page, NR_ISOLATED_ANON +
2194 page_is_file_lru(page));
2195
2196 /*
2197 * If we succeed to isolate the page, we grabbed another refcount on
2198 * the page, so we can safely drop the one we got from get_any_pages().
2199 * If we failed to isolate the page, it means that we cannot go further
2200 * and we will return an error, so drop the reference we got from
2201 * get_any_pages() as well.
2202 */
2203 put_page(page);
2204 return isolated;
2205 }
2206
2207 /*
2208 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2209 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2210 * If the page is mapped, it migrates the contents over.
2211 */
__soft_offline_page(struct page * page)2212 static int __soft_offline_page(struct page *page)
2213 {
2214 long ret = 0;
2215 unsigned long pfn = page_to_pfn(page);
2216 struct page *hpage = compound_head(page);
2217 char const *msg_page[] = {"page", "hugepage"};
2218 bool huge = PageHuge(page);
2219 LIST_HEAD(pagelist);
2220 struct migration_target_control mtc = {
2221 .nid = NUMA_NO_NODE,
2222 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2223 };
2224
2225 lock_page(page);
2226 if (!PageHuge(page))
2227 wait_on_page_writeback(page);
2228 if (PageHWPoison(page)) {
2229 unlock_page(page);
2230 put_page(page);
2231 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2232 return 0;
2233 }
2234
2235 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2236 /*
2237 * Try to invalidate first. This should work for
2238 * non dirty unmapped page cache pages.
2239 */
2240 ret = invalidate_inode_page(page);
2241 unlock_page(page);
2242
2243 if (ret) {
2244 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2245 page_handle_poison(page, false, true);
2246 return 0;
2247 }
2248
2249 if (isolate_page(hpage, &pagelist)) {
2250 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2251 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2252 if (!ret) {
2253 bool release = !huge;
2254
2255 if (!page_handle_poison(page, huge, release))
2256 ret = -EBUSY;
2257 } else {
2258 if (!list_empty(&pagelist))
2259 putback_movable_pages(&pagelist);
2260
2261 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2262 pfn, msg_page[huge], ret, &page->flags);
2263 if (ret > 0)
2264 ret = -EBUSY;
2265 }
2266 } else {
2267 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2268 pfn, msg_page[huge], page_count(page), &page->flags);
2269 ret = -EBUSY;
2270 }
2271 return ret;
2272 }
2273
soft_offline_in_use_page(struct page * page)2274 static int soft_offline_in_use_page(struct page *page)
2275 {
2276 struct page *hpage = compound_head(page);
2277
2278 if (!PageHuge(page) && PageTransHuge(hpage))
2279 if (try_to_split_thp_page(page, "soft offline") < 0)
2280 return -EBUSY;
2281 return __soft_offline_page(page);
2282 }
2283
soft_offline_free_page(struct page * page)2284 static int soft_offline_free_page(struct page *page)
2285 {
2286 int rc = 0;
2287
2288 if (!page_handle_poison(page, true, false))
2289 rc = -EBUSY;
2290
2291 return rc;
2292 }
2293
put_ref_page(struct page * page)2294 static void put_ref_page(struct page *page)
2295 {
2296 if (page)
2297 put_page(page);
2298 }
2299
2300 /**
2301 * soft_offline_page - Soft offline a page.
2302 * @pfn: pfn to soft-offline
2303 * @flags: flags. Same as memory_failure().
2304 *
2305 * Returns 0 on success
2306 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2307 * < 0 otherwise negated errno.
2308 *
2309 * Soft offline a page, by migration or invalidation,
2310 * without killing anything. This is for the case when
2311 * a page is not corrupted yet (so it's still valid to access),
2312 * but has had a number of corrected errors and is better taken
2313 * out.
2314 *
2315 * The actual policy on when to do that is maintained by
2316 * user space.
2317 *
2318 * This should never impact any application or cause data loss,
2319 * however it might take some time.
2320 *
2321 * This is not a 100% solution for all memory, but tries to be
2322 * ``good enough'' for the majority of memory.
2323 */
soft_offline_page(unsigned long pfn,int flags)2324 int soft_offline_page(unsigned long pfn, int flags)
2325 {
2326 int ret;
2327 bool try_again = true;
2328 struct page *page, *ref_page = NULL;
2329
2330 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2331
2332 if (!pfn_valid(pfn))
2333 return -ENXIO;
2334 if (flags & MF_COUNT_INCREASED)
2335 ref_page = pfn_to_page(pfn);
2336
2337 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2338 page = pfn_to_online_page(pfn);
2339 if (!page) {
2340 put_ref_page(ref_page);
2341 return -EIO;
2342 }
2343
2344 mutex_lock(&mf_mutex);
2345
2346 if (PageHWPoison(page)) {
2347 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2348 put_ref_page(ref_page);
2349 mutex_unlock(&mf_mutex);
2350 return 0;
2351 }
2352
2353 retry:
2354 get_online_mems();
2355 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2356 put_online_mems();
2357
2358 if (hwpoison_filter(page)) {
2359 if (ret > 0)
2360 put_page(page);
2361 else
2362 put_ref_page(ref_page);
2363
2364 mutex_unlock(&mf_mutex);
2365 return -EOPNOTSUPP;
2366 }
2367
2368 if (ret > 0) {
2369 ret = soft_offline_in_use_page(page);
2370 } else if (ret == 0) {
2371 if (soft_offline_free_page(page) && try_again) {
2372 try_again = false;
2373 flags &= ~MF_COUNT_INCREASED;
2374 goto retry;
2375 }
2376 }
2377
2378 mutex_unlock(&mf_mutex);
2379
2380 return ret;
2381 }
2382
clear_hwpoisoned_pages(struct page * memmap,int nr_pages)2383 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2384 {
2385 int i;
2386
2387 /*
2388 * A further optimization is to have per section refcounted
2389 * num_poisoned_pages. But that would need more space per memmap, so
2390 * for now just do a quick global check to speed up this routine in the
2391 * absence of bad pages.
2392 */
2393 if (atomic_long_read(&num_poisoned_pages) == 0)
2394 return;
2395
2396 for (i = 0; i < nr_pages; i++) {
2397 if (PageHWPoison(&memmap[i])) {
2398 num_poisoned_pages_dec();
2399 ClearPageHWPoison(&memmap[i]);
2400 }
2401 }
2402 }
2403