1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
try_get_folio(struct page * page,int refs)69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
try_grab_folio(struct page * page,int refs,unsigned int flags)124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (flags & FOLL_GET)
127 		return try_get_folio(page, refs);
128 	else if (flags & FOLL_PIN) {
129 		struct folio *folio;
130 
131 		/*
132 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 		 * right zone, so fail and let the caller fall back to the slow
134 		 * path.
135 		 */
136 		if (unlikely((flags & FOLL_LONGTERM) &&
137 			     !is_longterm_pinnable_page(page)))
138 			return NULL;
139 
140 		/*
141 		 * CAUTION: Don't use compound_head() on the page before this
142 		 * point, the result won't be stable.
143 		 */
144 		folio = try_get_folio(page, refs);
145 		if (!folio)
146 			return NULL;
147 
148 		/*
149 		 * When pinning a large folio, use an exact count to track it.
150 		 *
151 		 * However, be sure to *also* increment the normal folio
152 		 * refcount field at least once, so that the folio really
153 		 * is pinned.  That's why the refcount from the earlier
154 		 * try_get_folio() is left intact.
155 		 */
156 		if (folio_test_large(folio))
157 			atomic_add(refs, folio_pincount_ptr(folio));
158 		else
159 			folio_ref_add(folio,
160 					refs * (GUP_PIN_COUNTING_BIAS - 1));
161 		/*
162 		 * Adjust the pincount before re-checking the PTE for changes.
163 		 * This is essentially a smp_mb() and is paired with a memory
164 		 * barrier in page_try_share_anon_rmap().
165 		 */
166 		smp_mb__after_atomic();
167 
168 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
169 
170 		return folio;
171 	}
172 
173 	WARN_ON_ONCE(1);
174 	return NULL;
175 }
176 
gup_put_folio(struct folio * folio,int refs,unsigned int flags)177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
178 {
179 	if (flags & FOLL_PIN) {
180 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 		if (folio_test_large(folio))
182 			atomic_sub(refs, folio_pincount_ptr(folio));
183 		else
184 			refs *= GUP_PIN_COUNTING_BIAS;
185 	}
186 
187 	if (!put_devmap_managed_page_refs(&folio->page, refs))
188 		folio_put_refs(folio, refs);
189 }
190 
191 /**
192  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193  * @page:    pointer to page to be grabbed
194  * @flags:   gup flags: these are the FOLL_* flag values.
195  *
196  * This might not do anything at all, depending on the flags argument.
197  *
198  * "grab" names in this file mean, "look at flags to decide whether to use
199  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
200  *
201  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202  * time. Cases: please see the try_grab_folio() documentation, with
203  * "refs=1".
204  *
205  * Return: true for success, or if no action was required (if neither FOLL_PIN
206  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207  * FOLL_PIN was set, but the page could not be grabbed.
208  */
try_grab_page(struct page * page,unsigned int flags)209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 	struct folio *folio = page_folio(page);
212 
213 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
214 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
215 		return false;
216 
217 	if (flags & FOLL_GET)
218 		folio_ref_inc(folio);
219 	else if (flags & FOLL_PIN) {
220 		/*
221 		 * Similar to try_grab_folio(): be sure to *also*
222 		 * increment the normal page refcount field at least once,
223 		 * so that the page really is pinned.
224 		 */
225 		if (folio_test_large(folio)) {
226 			folio_ref_add(folio, 1);
227 			atomic_add(1, folio_pincount_ptr(folio));
228 		} else {
229 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 		}
231 
232 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
233 	}
234 
235 	return true;
236 }
237 
238 /**
239  * unpin_user_page() - release a dma-pinned page
240  * @page:            pointer to page to be released
241  *
242  * Pages that were pinned via pin_user_pages*() must be released via either
243  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244  * that such pages can be separately tracked and uniquely handled. In
245  * particular, interactions with RDMA and filesystems need special handling.
246  */
unpin_user_page(struct page * page)247 void unpin_user_page(struct page *page)
248 {
249 	sanity_check_pinned_pages(&page, 1);
250 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
251 }
252 EXPORT_SYMBOL(unpin_user_page);
253 
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)254 static inline struct folio *gup_folio_range_next(struct page *start,
255 		unsigned long npages, unsigned long i, unsigned int *ntails)
256 {
257 	struct page *next = nth_page(start, i);
258 	struct folio *folio = page_folio(next);
259 	unsigned int nr = 1;
260 
261 	if (folio_test_large(folio))
262 		nr = min_t(unsigned int, npages - i,
263 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
264 
265 	*ntails = nr;
266 	return folio;
267 }
268 
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)269 static inline struct folio *gup_folio_next(struct page **list,
270 		unsigned long npages, unsigned long i, unsigned int *ntails)
271 {
272 	struct folio *folio = page_folio(list[i]);
273 	unsigned int nr;
274 
275 	for (nr = i + 1; nr < npages; nr++) {
276 		if (page_folio(list[nr]) != folio)
277 			break;
278 	}
279 
280 	*ntails = nr - i;
281 	return folio;
282 }
283 
284 /**
285  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286  * @pages:  array of pages to be maybe marked dirty, and definitely released.
287  * @npages: number of pages in the @pages array.
288  * @make_dirty: whether to mark the pages dirty
289  *
290  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291  * variants called on that page.
292  *
293  * For each page in the @pages array, make that page (or its head page, if a
294  * compound page) dirty, if @make_dirty is true, and if the page was previously
295  * listed as clean. In any case, releases all pages using unpin_user_page(),
296  * possibly via unpin_user_pages(), for the non-dirty case.
297  *
298  * Please see the unpin_user_page() documentation for details.
299  *
300  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301  * required, then the caller should a) verify that this is really correct,
302  * because _lock() is usually required, and b) hand code it:
303  * set_page_dirty_lock(), unpin_user_page().
304  *
305  */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 				 bool make_dirty)
308 {
309 	unsigned long i;
310 	struct folio *folio;
311 	unsigned int nr;
312 
313 	if (!make_dirty) {
314 		unpin_user_pages(pages, npages);
315 		return;
316 	}
317 
318 	sanity_check_pinned_pages(pages, npages);
319 	for (i = 0; i < npages; i += nr) {
320 		folio = gup_folio_next(pages, npages, i, &nr);
321 		/*
322 		 * Checking PageDirty at this point may race with
323 		 * clear_page_dirty_for_io(), but that's OK. Two key
324 		 * cases:
325 		 *
326 		 * 1) This code sees the page as already dirty, so it
327 		 * skips the call to set_page_dirty(). That could happen
328 		 * because clear_page_dirty_for_io() called
329 		 * page_mkclean(), followed by set_page_dirty().
330 		 * However, now the page is going to get written back,
331 		 * which meets the original intention of setting it
332 		 * dirty, so all is well: clear_page_dirty_for_io() goes
333 		 * on to call TestClearPageDirty(), and write the page
334 		 * back.
335 		 *
336 		 * 2) This code sees the page as clean, so it calls
337 		 * set_page_dirty(). The page stays dirty, despite being
338 		 * written back, so it gets written back again in the
339 		 * next writeback cycle. This is harmless.
340 		 */
341 		if (!folio_test_dirty(folio)) {
342 			folio_lock(folio);
343 			folio_mark_dirty(folio);
344 			folio_unlock(folio);
345 		}
346 		gup_put_folio(folio, nr, FOLL_PIN);
347 	}
348 }
349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
350 
351 /**
352  * unpin_user_page_range_dirty_lock() - release and optionally dirty
353  * gup-pinned page range
354  *
355  * @page:  the starting page of a range maybe marked dirty, and definitely released.
356  * @npages: number of consecutive pages to release.
357  * @make_dirty: whether to mark the pages dirty
358  *
359  * "gup-pinned page range" refers to a range of pages that has had one of the
360  * pin_user_pages() variants called on that page.
361  *
362  * For the page ranges defined by [page .. page+npages], make that range (or
363  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364  * page range was previously listed as clean.
365  *
366  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367  * required, then the caller should a) verify that this is really correct,
368  * because _lock() is usually required, and b) hand code it:
369  * set_page_dirty_lock(), unpin_user_page().
370  *
371  */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
373 				      bool make_dirty)
374 {
375 	unsigned long i;
376 	struct folio *folio;
377 	unsigned int nr;
378 
379 	for (i = 0; i < npages; i += nr) {
380 		folio = gup_folio_range_next(page, npages, i, &nr);
381 		if (make_dirty && !folio_test_dirty(folio)) {
382 			folio_lock(folio);
383 			folio_mark_dirty(folio);
384 			folio_unlock(folio);
385 		}
386 		gup_put_folio(folio, nr, FOLL_PIN);
387 	}
388 }
389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
390 
unpin_user_pages_lockless(struct page ** pages,unsigned long npages)391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
392 {
393 	unsigned long i;
394 	struct folio *folio;
395 	unsigned int nr;
396 
397 	/*
398 	 * Don't perform any sanity checks because we might have raced with
399 	 * fork() and some anonymous pages might now actually be shared --
400 	 * which is why we're unpinning after all.
401 	 */
402 	for (i = 0; i < npages; i += nr) {
403 		folio = gup_folio_next(pages, npages, i, &nr);
404 		gup_put_folio(folio, nr, FOLL_PIN);
405 	}
406 }
407 
408 /**
409  * unpin_user_pages() - release an array of gup-pinned pages.
410  * @pages:  array of pages to be marked dirty and released.
411  * @npages: number of pages in the @pages array.
412  *
413  * For each page in the @pages array, release the page using unpin_user_page().
414  *
415  * Please see the unpin_user_page() documentation for details.
416  */
unpin_user_pages(struct page ** pages,unsigned long npages)417 void unpin_user_pages(struct page **pages, unsigned long npages)
418 {
419 	unsigned long i;
420 	struct folio *folio;
421 	unsigned int nr;
422 
423 	/*
424 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 	 * leaving them pinned), but probably not. More likely, gup/pup returned
426 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
427 	 */
428 	if (WARN_ON(IS_ERR_VALUE(npages)))
429 		return;
430 
431 	sanity_check_pinned_pages(pages, npages);
432 	for (i = 0; i < npages; i += nr) {
433 		folio = gup_folio_next(pages, npages, i, &nr);
434 		gup_put_folio(folio, nr, FOLL_PIN);
435 	}
436 }
437 EXPORT_SYMBOL(unpin_user_pages);
438 
439 /*
440  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
442  * cache bouncing on large SMP machines for concurrent pinned gups.
443  */
mm_set_has_pinned_flag(unsigned long * mm_flags)444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
445 {
446 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 		set_bit(MMF_HAS_PINNED, mm_flags);
448 }
449 
450 #ifdef CONFIG_MMU
no_page_table(struct vm_area_struct * vma,unsigned int flags)451 static struct page *no_page_table(struct vm_area_struct *vma,
452 		unsigned int flags)
453 {
454 	/*
455 	 * When core dumping an enormous anonymous area that nobody
456 	 * has touched so far, we don't want to allocate unnecessary pages or
457 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
458 	 * then get_dump_page() will return NULL to leave a hole in the dump.
459 	 * But we can only make this optimization where a hole would surely
460 	 * be zero-filled if handle_mm_fault() actually did handle it.
461 	 */
462 	if ((flags & FOLL_DUMP) &&
463 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
464 		return ERR_PTR(-EFAULT);
465 	return NULL;
466 }
467 
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 		pte_t *pte, unsigned int flags)
470 {
471 	if (flags & FOLL_TOUCH) {
472 		pte_t entry = *pte;
473 
474 		if (flags & FOLL_WRITE)
475 			entry = pte_mkdirty(entry);
476 		entry = pte_mkyoung(entry);
477 
478 		if (!pte_same(*pte, entry)) {
479 			set_pte_at(vma->vm_mm, address, pte, entry);
480 			update_mmu_cache(vma, address, pte);
481 		}
482 	}
483 
484 	/* Proper page table entry exists, but no corresponding struct page */
485 	return -EEXIST;
486 }
487 
488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)489 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 					struct vm_area_struct *vma,
491 					unsigned int flags)
492 {
493 	/* If the pte is writable, we can write to the page. */
494 	if (pte_write(pte))
495 		return true;
496 
497 	/* Maybe FOLL_FORCE is set to override it? */
498 	if (!(flags & FOLL_FORCE))
499 		return false;
500 
501 	/* But FOLL_FORCE has no effect on shared mappings */
502 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
503 		return false;
504 
505 	/* ... or read-only private ones */
506 	if (!(vma->vm_flags & VM_MAYWRITE))
507 		return false;
508 
509 	/* ... or already writable ones that just need to take a write fault */
510 	if (vma->vm_flags & VM_WRITE)
511 		return false;
512 
513 	/*
514 	 * See can_change_pte_writable(): we broke COW and could map the page
515 	 * writable if we have an exclusive anonymous page ...
516 	 */
517 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
518 		return false;
519 
520 	/* ... and a write-fault isn't required for other reasons. */
521 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
522 		return false;
523 	return !userfaultfd_pte_wp(vma, pte);
524 }
525 
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)526 static struct page *follow_page_pte(struct vm_area_struct *vma,
527 		unsigned long address, pmd_t *pmd, unsigned int flags,
528 		struct dev_pagemap **pgmap)
529 {
530 	struct mm_struct *mm = vma->vm_mm;
531 	struct page *page;
532 	spinlock_t *ptl;
533 	pte_t *ptep, pte;
534 	int ret;
535 
536 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 			 (FOLL_PIN | FOLL_GET)))
539 		return ERR_PTR(-EINVAL);
540 
541 	/*
542 	 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
543 	 * ARM64 architecture.
544 	 */
545 	if (is_vm_hugetlb_page(vma)) {
546 		page = follow_huge_pmd_pte(vma, address, flags);
547 		if (page)
548 			return page;
549 		return no_page_table(vma, flags);
550 	}
551 
552 retry:
553 	if (unlikely(pmd_bad(*pmd)))
554 		return no_page_table(vma, flags);
555 
556 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
557 	pte = *ptep;
558 	if (!pte_present(pte)) {
559 		swp_entry_t entry;
560 		/*
561 		 * KSM's break_ksm() relies upon recognizing a ksm page
562 		 * even while it is being migrated, so for that case we
563 		 * need migration_entry_wait().
564 		 */
565 		if (likely(!(flags & FOLL_MIGRATION)))
566 			goto no_page;
567 		if (pte_none(pte))
568 			goto no_page;
569 		entry = pte_to_swp_entry(pte);
570 		if (!is_migration_entry(entry))
571 			goto no_page;
572 		pte_unmap_unlock(ptep, ptl);
573 		migration_entry_wait(mm, pmd, address);
574 		goto retry;
575 	}
576 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
577 		goto no_page;
578 
579 	page = vm_normal_page(vma, address, pte);
580 
581 	/*
582 	 * We only care about anon pages in can_follow_write_pte() and don't
583 	 * have to worry about pte_devmap() because they are never anon.
584 	 */
585 	if ((flags & FOLL_WRITE) &&
586 	    !can_follow_write_pte(pte, page, vma, flags)) {
587 		page = NULL;
588 		goto out;
589 	}
590 
591 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
592 		/*
593 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
594 		 * case since they are only valid while holding the pgmap
595 		 * reference.
596 		 */
597 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
598 		if (*pgmap)
599 			page = pte_page(pte);
600 		else
601 			goto no_page;
602 	} else if (unlikely(!page)) {
603 		if (flags & FOLL_DUMP) {
604 			/* Avoid special (like zero) pages in core dumps */
605 			page = ERR_PTR(-EFAULT);
606 			goto out;
607 		}
608 
609 		if (is_zero_pfn(pte_pfn(pte))) {
610 			page = pte_page(pte);
611 		} else {
612 			ret = follow_pfn_pte(vma, address, ptep, flags);
613 			page = ERR_PTR(ret);
614 			goto out;
615 		}
616 	}
617 
618 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
619 		page = ERR_PTR(-EMLINK);
620 		goto out;
621 	}
622 
623 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
624 		       !PageAnonExclusive(page), page);
625 
626 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
627 	if (unlikely(!try_grab_page(page, flags))) {
628 		page = ERR_PTR(-ENOMEM);
629 		goto out;
630 	}
631 	/*
632 	 * We need to make the page accessible if and only if we are going
633 	 * to access its content (the FOLL_PIN case).  Please see
634 	 * Documentation/core-api/pin_user_pages.rst for details.
635 	 */
636 	if (flags & FOLL_PIN) {
637 		ret = arch_make_page_accessible(page);
638 		if (ret) {
639 			unpin_user_page(page);
640 			page = ERR_PTR(ret);
641 			goto out;
642 		}
643 	}
644 	if (flags & FOLL_TOUCH) {
645 		if ((flags & FOLL_WRITE) &&
646 		    !pte_dirty(pte) && !PageDirty(page))
647 			set_page_dirty(page);
648 		/*
649 		 * pte_mkyoung() would be more correct here, but atomic care
650 		 * is needed to avoid losing the dirty bit: it is easier to use
651 		 * mark_page_accessed().
652 		 */
653 		mark_page_accessed(page);
654 	}
655 out:
656 	pte_unmap_unlock(ptep, ptl);
657 	return page;
658 no_page:
659 	pte_unmap_unlock(ptep, ptl);
660 	if (!pte_none(pte))
661 		return NULL;
662 	return no_page_table(vma, flags);
663 }
664 
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)665 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
666 				    unsigned long address, pud_t *pudp,
667 				    unsigned int flags,
668 				    struct follow_page_context *ctx)
669 {
670 	pmd_t *pmd, pmdval;
671 	spinlock_t *ptl;
672 	struct page *page;
673 	struct mm_struct *mm = vma->vm_mm;
674 
675 	pmd = pmd_offset(pudp, address);
676 	/*
677 	 * The READ_ONCE() will stabilize the pmdval in a register or
678 	 * on the stack so that it will stop changing under the code.
679 	 */
680 	pmdval = READ_ONCE(*pmd);
681 	if (pmd_none(pmdval))
682 		return no_page_table(vma, flags);
683 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
684 		page = follow_huge_pmd_pte(vma, address, flags);
685 		if (page)
686 			return page;
687 		return no_page_table(vma, flags);
688 	}
689 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
690 		page = follow_huge_pd(vma, address,
691 				      __hugepd(pmd_val(pmdval)), flags,
692 				      PMD_SHIFT);
693 		if (page)
694 			return page;
695 		return no_page_table(vma, flags);
696 	}
697 retry:
698 	if (!pmd_present(pmdval)) {
699 		/*
700 		 * Should never reach here, if thp migration is not supported;
701 		 * Otherwise, it must be a thp migration entry.
702 		 */
703 		VM_BUG_ON(!thp_migration_supported() ||
704 				  !is_pmd_migration_entry(pmdval));
705 
706 		if (likely(!(flags & FOLL_MIGRATION)))
707 			return no_page_table(vma, flags);
708 
709 		pmd_migration_entry_wait(mm, pmd);
710 		pmdval = READ_ONCE(*pmd);
711 		/*
712 		 * MADV_DONTNEED may convert the pmd to null because
713 		 * mmap_lock is held in read mode
714 		 */
715 		if (pmd_none(pmdval))
716 			return no_page_table(vma, flags);
717 		goto retry;
718 	}
719 	if (pmd_devmap(pmdval)) {
720 		ptl = pmd_lock(mm, pmd);
721 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
722 		spin_unlock(ptl);
723 		if (page)
724 			return page;
725 	}
726 	if (likely(!pmd_trans_huge(pmdval)))
727 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728 
729 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
730 		return no_page_table(vma, flags);
731 
732 retry_locked:
733 	ptl = pmd_lock(mm, pmd);
734 	if (unlikely(pmd_none(*pmd))) {
735 		spin_unlock(ptl);
736 		return no_page_table(vma, flags);
737 	}
738 	if (unlikely(!pmd_present(*pmd))) {
739 		spin_unlock(ptl);
740 		if (likely(!(flags & FOLL_MIGRATION)))
741 			return no_page_table(vma, flags);
742 		pmd_migration_entry_wait(mm, pmd);
743 		goto retry_locked;
744 	}
745 	if (unlikely(!pmd_trans_huge(*pmd))) {
746 		spin_unlock(ptl);
747 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
748 	}
749 	if (flags & FOLL_SPLIT_PMD) {
750 		int ret;
751 		page = pmd_page(*pmd);
752 		if (is_huge_zero_page(page)) {
753 			spin_unlock(ptl);
754 			ret = 0;
755 			split_huge_pmd(vma, pmd, address);
756 			if (pmd_trans_unstable(pmd))
757 				ret = -EBUSY;
758 		} else {
759 			spin_unlock(ptl);
760 			split_huge_pmd(vma, pmd, address);
761 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
762 		}
763 
764 		return ret ? ERR_PTR(ret) :
765 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
766 	}
767 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
768 	spin_unlock(ptl);
769 	ctx->page_mask = HPAGE_PMD_NR - 1;
770 	return page;
771 }
772 
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)773 static struct page *follow_pud_mask(struct vm_area_struct *vma,
774 				    unsigned long address, p4d_t *p4dp,
775 				    unsigned int flags,
776 				    struct follow_page_context *ctx)
777 {
778 	pud_t *pud;
779 	spinlock_t *ptl;
780 	struct page *page;
781 	struct mm_struct *mm = vma->vm_mm;
782 
783 	pud = pud_offset(p4dp, address);
784 	if (pud_none(*pud))
785 		return no_page_table(vma, flags);
786 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
787 		page = follow_huge_pud(mm, address, pud, flags);
788 		if (page)
789 			return page;
790 		return no_page_table(vma, flags);
791 	}
792 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
793 		page = follow_huge_pd(vma, address,
794 				      __hugepd(pud_val(*pud)), flags,
795 				      PUD_SHIFT);
796 		if (page)
797 			return page;
798 		return no_page_table(vma, flags);
799 	}
800 	if (pud_devmap(*pud)) {
801 		ptl = pud_lock(mm, pud);
802 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
803 		spin_unlock(ptl);
804 		if (page)
805 			return page;
806 	}
807 	if (unlikely(pud_bad(*pud)))
808 		return no_page_table(vma, flags);
809 
810 	return follow_pmd_mask(vma, address, pud, flags, ctx);
811 }
812 
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)813 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
814 				    unsigned long address, pgd_t *pgdp,
815 				    unsigned int flags,
816 				    struct follow_page_context *ctx)
817 {
818 	p4d_t *p4d;
819 	struct page *page;
820 
821 	p4d = p4d_offset(pgdp, address);
822 	if (p4d_none(*p4d))
823 		return no_page_table(vma, flags);
824 	BUILD_BUG_ON(p4d_huge(*p4d));
825 	if (unlikely(p4d_bad(*p4d)))
826 		return no_page_table(vma, flags);
827 
828 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
829 		page = follow_huge_pd(vma, address,
830 				      __hugepd(p4d_val(*p4d)), flags,
831 				      P4D_SHIFT);
832 		if (page)
833 			return page;
834 		return no_page_table(vma, flags);
835 	}
836 	return follow_pud_mask(vma, address, p4d, flags, ctx);
837 }
838 
839 /**
840  * follow_page_mask - look up a page descriptor from a user-virtual address
841  * @vma: vm_area_struct mapping @address
842  * @address: virtual address to look up
843  * @flags: flags modifying lookup behaviour
844  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
845  *       pointer to output page_mask
846  *
847  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
848  *
849  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
850  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
851  *
852  * When getting an anonymous page and the caller has to trigger unsharing
853  * of a shared anonymous page first, -EMLINK is returned. The caller should
854  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
855  * relevant with FOLL_PIN and !FOLL_WRITE.
856  *
857  * On output, the @ctx->page_mask is set according to the size of the page.
858  *
859  * Return: the mapped (struct page *), %NULL if no mapping exists, or
860  * an error pointer if there is a mapping to something not represented
861  * by a page descriptor (see also vm_normal_page()).
862  */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)863 static struct page *follow_page_mask(struct vm_area_struct *vma,
864 			      unsigned long address, unsigned int flags,
865 			      struct follow_page_context *ctx)
866 {
867 	pgd_t *pgd;
868 	struct page *page;
869 	struct mm_struct *mm = vma->vm_mm;
870 
871 	ctx->page_mask = 0;
872 
873 	/* make this handle hugepd */
874 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
875 	if (!IS_ERR(page)) {
876 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
877 		return page;
878 	}
879 
880 	pgd = pgd_offset(mm, address);
881 
882 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
883 		return no_page_table(vma, flags);
884 
885 	if (pgd_huge(*pgd)) {
886 		page = follow_huge_pgd(mm, address, pgd, flags);
887 		if (page)
888 			return page;
889 		return no_page_table(vma, flags);
890 	}
891 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
892 		page = follow_huge_pd(vma, address,
893 				      __hugepd(pgd_val(*pgd)), flags,
894 				      PGDIR_SHIFT);
895 		if (page)
896 			return page;
897 		return no_page_table(vma, flags);
898 	}
899 
900 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
901 }
902 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)903 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904 			 unsigned int foll_flags)
905 {
906 	struct follow_page_context ctx = { NULL };
907 	struct page *page;
908 
909 	if (vma_is_secretmem(vma))
910 		return NULL;
911 
912 	if (foll_flags & FOLL_PIN)
913 		return NULL;
914 
915 	page = follow_page_mask(vma, address, foll_flags, &ctx);
916 	if (ctx.pgmap)
917 		put_dev_pagemap(ctx.pgmap);
918 	return page;
919 }
920 
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)921 static int get_gate_page(struct mm_struct *mm, unsigned long address,
922 		unsigned int gup_flags, struct vm_area_struct **vma,
923 		struct page **page)
924 {
925 	pgd_t *pgd;
926 	p4d_t *p4d;
927 	pud_t *pud;
928 	pmd_t *pmd;
929 	pte_t *pte;
930 	int ret = -EFAULT;
931 
932 	/* user gate pages are read-only */
933 	if (gup_flags & FOLL_WRITE)
934 		return -EFAULT;
935 	if (address > TASK_SIZE)
936 		pgd = pgd_offset_k(address);
937 	else
938 		pgd = pgd_offset_gate(mm, address);
939 	if (pgd_none(*pgd))
940 		return -EFAULT;
941 	p4d = p4d_offset(pgd, address);
942 	if (p4d_none(*p4d))
943 		return -EFAULT;
944 	pud = pud_offset(p4d, address);
945 	if (pud_none(*pud))
946 		return -EFAULT;
947 	pmd = pmd_offset(pud, address);
948 	if (!pmd_present(*pmd))
949 		return -EFAULT;
950 	VM_BUG_ON(pmd_trans_huge(*pmd));
951 	pte = pte_offset_map(pmd, address);
952 	if (pte_none(*pte))
953 		goto unmap;
954 	*vma = get_gate_vma(mm);
955 	if (!page)
956 		goto out;
957 	*page = vm_normal_page(*vma, address, *pte);
958 	if (!*page) {
959 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
960 			goto unmap;
961 		*page = pte_page(*pte);
962 	}
963 	if (unlikely(!try_grab_page(*page, gup_flags))) {
964 		ret = -ENOMEM;
965 		goto unmap;
966 	}
967 out:
968 	ret = 0;
969 unmap:
970 	pte_unmap(pte);
971 	return ret;
972 }
973 
974 /*
975  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
976  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
977  * is, *@locked will be set to 0 and -EBUSY returned.
978  */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int * flags,bool unshare,int * locked)979 static int faultin_page(struct vm_area_struct *vma,
980 		unsigned long address, unsigned int *flags, bool unshare,
981 		int *locked)
982 {
983 	unsigned int fault_flags = 0;
984 	vm_fault_t ret;
985 
986 	if (*flags & FOLL_NOFAULT)
987 		return -EFAULT;
988 	if (*flags & FOLL_WRITE)
989 		fault_flags |= FAULT_FLAG_WRITE;
990 	if (*flags & FOLL_REMOTE)
991 		fault_flags |= FAULT_FLAG_REMOTE;
992 	if (locked)
993 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
994 	if (*flags & FOLL_NOWAIT)
995 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
996 	if (*flags & FOLL_TRIED) {
997 		/*
998 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
999 		 * can co-exist
1000 		 */
1001 		fault_flags |= FAULT_FLAG_TRIED;
1002 	}
1003 	if (unshare) {
1004 		fault_flags |= FAULT_FLAG_UNSHARE;
1005 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1006 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1007 	}
1008 
1009 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1010 
1011 	if (ret & VM_FAULT_COMPLETED) {
1012 		/*
1013 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1014 		 * mmap lock in the page fault handler. Sanity check this.
1015 		 */
1016 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1017 		if (locked)
1018 			*locked = 0;
1019 		/*
1020 		 * We should do the same as VM_FAULT_RETRY, but let's not
1021 		 * return -EBUSY since that's not reflecting the reality of
1022 		 * what has happened - we've just fully completed a page
1023 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1024 		 * that we want to take the mmap lock _again_.
1025 		 */
1026 		return -EAGAIN;
1027 	}
1028 
1029 	if (ret & VM_FAULT_ERROR) {
1030 		int err = vm_fault_to_errno(ret, *flags);
1031 
1032 		if (err)
1033 			return err;
1034 		BUG();
1035 	}
1036 
1037 	if (ret & VM_FAULT_RETRY) {
1038 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1039 			*locked = 0;
1040 		return -EBUSY;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1046 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1047 {
1048 	vm_flags_t vm_flags = vma->vm_flags;
1049 	int write = (gup_flags & FOLL_WRITE);
1050 	int foreign = (gup_flags & FOLL_REMOTE);
1051 
1052 	if (vm_flags & (VM_IO | VM_PFNMAP))
1053 		return -EFAULT;
1054 
1055 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1056 		return -EFAULT;
1057 
1058 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1059 		return -EOPNOTSUPP;
1060 
1061 	if (vma_is_secretmem(vma))
1062 		return -EFAULT;
1063 
1064 	if (write) {
1065 		if (!(vm_flags & VM_WRITE)) {
1066 			if (!(gup_flags & FOLL_FORCE))
1067 				return -EFAULT;
1068 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1069 			if (is_vm_hugetlb_page(vma))
1070 				return -EFAULT;
1071 			/*
1072 			 * We used to let the write,force case do COW in a
1073 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1074 			 * set a breakpoint in a read-only mapping of an
1075 			 * executable, without corrupting the file (yet only
1076 			 * when that file had been opened for writing!).
1077 			 * Anon pages in shared mappings are surprising: now
1078 			 * just reject it.
1079 			 */
1080 			if (!is_cow_mapping(vm_flags))
1081 				return -EFAULT;
1082 		}
1083 	} else if (!(vm_flags & VM_READ)) {
1084 		if (!(gup_flags & FOLL_FORCE))
1085 			return -EFAULT;
1086 		/*
1087 		 * Is there actually any vma we can reach here which does not
1088 		 * have VM_MAYREAD set?
1089 		 */
1090 		if (!(vm_flags & VM_MAYREAD))
1091 			return -EFAULT;
1092 	}
1093 	/*
1094 	 * gups are always data accesses, not instruction
1095 	 * fetches, so execute=false here
1096 	 */
1097 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1098 		return -EFAULT;
1099 	return 0;
1100 }
1101 
1102 /**
1103  * __get_user_pages() - pin user pages in memory
1104  * @mm:		mm_struct of target mm
1105  * @start:	starting user address
1106  * @nr_pages:	number of pages from start to pin
1107  * @gup_flags:	flags modifying pin behaviour
1108  * @pages:	array that receives pointers to the pages pinned.
1109  *		Should be at least nr_pages long. Or NULL, if caller
1110  *		only intends to ensure the pages are faulted in.
1111  * @vmas:	array of pointers to vmas corresponding to each page.
1112  *		Or NULL if the caller does not require them.
1113  * @locked:     whether we're still with the mmap_lock held
1114  *
1115  * Returns either number of pages pinned (which may be less than the
1116  * number requested), or an error. Details about the return value:
1117  *
1118  * -- If nr_pages is 0, returns 0.
1119  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1120  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1121  *    pages pinned. Again, this may be less than nr_pages.
1122  * -- 0 return value is possible when the fault would need to be retried.
1123  *
1124  * The caller is responsible for releasing returned @pages, via put_page().
1125  *
1126  * @vmas are valid only as long as mmap_lock is held.
1127  *
1128  * Must be called with mmap_lock held.  It may be released.  See below.
1129  *
1130  * __get_user_pages walks a process's page tables and takes a reference to
1131  * each struct page that each user address corresponds to at a given
1132  * instant. That is, it takes the page that would be accessed if a user
1133  * thread accesses the given user virtual address at that instant.
1134  *
1135  * This does not guarantee that the page exists in the user mappings when
1136  * __get_user_pages returns, and there may even be a completely different
1137  * page there in some cases (eg. if mmapped pagecache has been invalidated
1138  * and subsequently re faulted). However it does guarantee that the page
1139  * won't be freed completely. And mostly callers simply care that the page
1140  * contains data that was valid *at some point in time*. Typically, an IO
1141  * or similar operation cannot guarantee anything stronger anyway because
1142  * locks can't be held over the syscall boundary.
1143  *
1144  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1145  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1146  * appropriate) must be called after the page is finished with, and
1147  * before put_page is called.
1148  *
1149  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1150  * released by an up_read().  That can happen if @gup_flags does not
1151  * have FOLL_NOWAIT.
1152  *
1153  * A caller using such a combination of @locked and @gup_flags
1154  * must therefore hold the mmap_lock for reading only, and recognize
1155  * when it's been released.  Otherwise, it must be held for either
1156  * reading or writing and will not be released.
1157  *
1158  * In most cases, get_user_pages or get_user_pages_fast should be used
1159  * instead of __get_user_pages. __get_user_pages should be used only if
1160  * you need some special @gup_flags.
1161  */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1162 static long __get_user_pages(struct mm_struct *mm,
1163 		unsigned long start, unsigned long nr_pages,
1164 		unsigned int gup_flags, struct page **pages,
1165 		struct vm_area_struct **vmas, int *locked)
1166 {
1167 	long ret = 0, i = 0;
1168 	struct vm_area_struct *vma = NULL;
1169 	struct follow_page_context ctx = { NULL };
1170 
1171 	if (!nr_pages)
1172 		return 0;
1173 
1174 	start = untagged_addr(start);
1175 
1176 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1177 
1178 	do {
1179 		struct page *page;
1180 		unsigned int foll_flags = gup_flags;
1181 		unsigned int page_increm;
1182 
1183 		/* first iteration or cross vma bound */
1184 		if (!vma || start >= vma->vm_end) {
1185 			vma = find_extend_vma(mm, start);
1186 			if (!vma && in_gate_area(mm, start)) {
1187 				ret = get_gate_page(mm, start & PAGE_MASK,
1188 						gup_flags, &vma,
1189 						pages ? &pages[i] : NULL);
1190 				if (ret)
1191 					goto out;
1192 				ctx.page_mask = 0;
1193 				goto next_page;
1194 			}
1195 
1196 			if (!vma) {
1197 				ret = -EFAULT;
1198 				goto out;
1199 			}
1200 			ret = check_vma_flags(vma, gup_flags);
1201 			if (ret)
1202 				goto out;
1203 
1204 			if (is_vm_hugetlb_page(vma)) {
1205 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1206 						&start, &nr_pages, i,
1207 						gup_flags, locked);
1208 				if (locked && *locked == 0) {
1209 					/*
1210 					 * We've got a VM_FAULT_RETRY
1211 					 * and we've lost mmap_lock.
1212 					 * We must stop here.
1213 					 */
1214 					BUG_ON(gup_flags & FOLL_NOWAIT);
1215 					goto out;
1216 				}
1217 				continue;
1218 			}
1219 		}
1220 retry:
1221 		/*
1222 		 * If we have a pending SIGKILL, don't keep faulting pages and
1223 		 * potentially allocating memory.
1224 		 */
1225 		if (fatal_signal_pending(current)) {
1226 			ret = -EINTR;
1227 			goto out;
1228 		}
1229 		cond_resched();
1230 
1231 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1232 		if (!page || PTR_ERR(page) == -EMLINK) {
1233 			ret = faultin_page(vma, start, &foll_flags,
1234 					   PTR_ERR(page) == -EMLINK, locked);
1235 			switch (ret) {
1236 			case 0:
1237 				goto retry;
1238 			case -EBUSY:
1239 			case -EAGAIN:
1240 				ret = 0;
1241 				fallthrough;
1242 			case -EFAULT:
1243 			case -ENOMEM:
1244 			case -EHWPOISON:
1245 				goto out;
1246 			}
1247 			BUG();
1248 		} else if (PTR_ERR(page) == -EEXIST) {
1249 			/*
1250 			 * Proper page table entry exists, but no corresponding
1251 			 * struct page. If the caller expects **pages to be
1252 			 * filled in, bail out now, because that can't be done
1253 			 * for this page.
1254 			 */
1255 			if (pages) {
1256 				ret = PTR_ERR(page);
1257 				goto out;
1258 			}
1259 
1260 			goto next_page;
1261 		} else if (IS_ERR(page)) {
1262 			ret = PTR_ERR(page);
1263 			goto out;
1264 		}
1265 		if (pages) {
1266 			pages[i] = page;
1267 			flush_anon_page(vma, page, start);
1268 			flush_dcache_page(page);
1269 			ctx.page_mask = 0;
1270 		}
1271 next_page:
1272 		if (vmas) {
1273 			vmas[i] = vma;
1274 			ctx.page_mask = 0;
1275 		}
1276 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1277 		if (page_increm > nr_pages)
1278 			page_increm = nr_pages;
1279 		i += page_increm;
1280 		start += page_increm * PAGE_SIZE;
1281 		nr_pages -= page_increm;
1282 	} while (nr_pages);
1283 out:
1284 	if (ctx.pgmap)
1285 		put_dev_pagemap(ctx.pgmap);
1286 	return i ? i : ret;
1287 }
1288 
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1289 static bool vma_permits_fault(struct vm_area_struct *vma,
1290 			      unsigned int fault_flags)
1291 {
1292 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1293 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1294 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1295 
1296 	if (!(vm_flags & vma->vm_flags))
1297 		return false;
1298 
1299 	/*
1300 	 * The architecture might have a hardware protection
1301 	 * mechanism other than read/write that can deny access.
1302 	 *
1303 	 * gup always represents data access, not instruction
1304 	 * fetches, so execute=false here:
1305 	 */
1306 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1307 		return false;
1308 
1309 	return true;
1310 }
1311 
1312 /**
1313  * fixup_user_fault() - manually resolve a user page fault
1314  * @mm:		mm_struct of target mm
1315  * @address:	user address
1316  * @fault_flags:flags to pass down to handle_mm_fault()
1317  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1318  *		does not allow retry. If NULL, the caller must guarantee
1319  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1320  *
1321  * This is meant to be called in the specific scenario where for locking reasons
1322  * we try to access user memory in atomic context (within a pagefault_disable()
1323  * section), this returns -EFAULT, and we want to resolve the user fault before
1324  * trying again.
1325  *
1326  * Typically this is meant to be used by the futex code.
1327  *
1328  * The main difference with get_user_pages() is that this function will
1329  * unconditionally call handle_mm_fault() which will in turn perform all the
1330  * necessary SW fixup of the dirty and young bits in the PTE, while
1331  * get_user_pages() only guarantees to update these in the struct page.
1332  *
1333  * This is important for some architectures where those bits also gate the
1334  * access permission to the page because they are maintained in software.  On
1335  * such architectures, gup() will not be enough to make a subsequent access
1336  * succeed.
1337  *
1338  * This function will not return with an unlocked mmap_lock. So it has not the
1339  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1340  */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1341 int fixup_user_fault(struct mm_struct *mm,
1342 		     unsigned long address, unsigned int fault_flags,
1343 		     bool *unlocked)
1344 {
1345 	struct vm_area_struct *vma;
1346 	vm_fault_t ret;
1347 
1348 	address = untagged_addr(address);
1349 
1350 	if (unlocked)
1351 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1352 
1353 retry:
1354 	vma = find_extend_vma(mm, address);
1355 	if (!vma || address < vma->vm_start)
1356 		return -EFAULT;
1357 
1358 	if (!vma_permits_fault(vma, fault_flags))
1359 		return -EFAULT;
1360 
1361 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1362 	    fatal_signal_pending(current))
1363 		return -EINTR;
1364 
1365 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1366 
1367 	if (ret & VM_FAULT_COMPLETED) {
1368 		/*
1369 		 * NOTE: it's a pity that we need to retake the lock here
1370 		 * to pair with the unlock() in the callers. Ideally we
1371 		 * could tell the callers so they do not need to unlock.
1372 		 */
1373 		mmap_read_lock(mm);
1374 		*unlocked = true;
1375 		return 0;
1376 	}
1377 
1378 	if (ret & VM_FAULT_ERROR) {
1379 		int err = vm_fault_to_errno(ret, 0);
1380 
1381 		if (err)
1382 			return err;
1383 		BUG();
1384 	}
1385 
1386 	if (ret & VM_FAULT_RETRY) {
1387 		mmap_read_lock(mm);
1388 		*unlocked = true;
1389 		fault_flags |= FAULT_FLAG_TRIED;
1390 		goto retry;
1391 	}
1392 
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(fixup_user_fault);
1396 
1397 /*
1398  * Please note that this function, unlike __get_user_pages will not
1399  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1400  */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int flags)1401 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1402 						unsigned long start,
1403 						unsigned long nr_pages,
1404 						struct page **pages,
1405 						struct vm_area_struct **vmas,
1406 						int *locked,
1407 						unsigned int flags)
1408 {
1409 	long ret, pages_done;
1410 	bool lock_dropped;
1411 
1412 	if (locked) {
1413 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1414 		BUG_ON(vmas);
1415 		/* check caller initialized locked */
1416 		BUG_ON(*locked != 1);
1417 	}
1418 
1419 	if (flags & FOLL_PIN)
1420 		mm_set_has_pinned_flag(&mm->flags);
1421 
1422 	/*
1423 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1424 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1425 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1426 	 * for FOLL_GET, not for the newer FOLL_PIN.
1427 	 *
1428 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1429 	 * that here, as any failures will be obvious enough.
1430 	 */
1431 	if (pages && !(flags & FOLL_PIN))
1432 		flags |= FOLL_GET;
1433 
1434 	pages_done = 0;
1435 	lock_dropped = false;
1436 	for (;;) {
1437 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1438 				       vmas, locked);
1439 		if (!locked)
1440 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1441 			return ret;
1442 
1443 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1444 		if (!*locked) {
1445 			BUG_ON(ret < 0);
1446 			BUG_ON(ret >= nr_pages);
1447 		}
1448 
1449 		if (ret > 0) {
1450 			nr_pages -= ret;
1451 			pages_done += ret;
1452 			if (!nr_pages)
1453 				break;
1454 		}
1455 		if (*locked) {
1456 			/*
1457 			 * VM_FAULT_RETRY didn't trigger or it was a
1458 			 * FOLL_NOWAIT.
1459 			 */
1460 			if (!pages_done)
1461 				pages_done = ret;
1462 			break;
1463 		}
1464 		/*
1465 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1466 		 * For the prefault case (!pages) we only update counts.
1467 		 */
1468 		if (likely(pages))
1469 			pages += ret;
1470 		start += ret << PAGE_SHIFT;
1471 		lock_dropped = true;
1472 
1473 retry:
1474 		/*
1475 		 * Repeat on the address that fired VM_FAULT_RETRY
1476 		 * with both FAULT_FLAG_ALLOW_RETRY and
1477 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1478 		 * by fatal signals, so we need to check it before we
1479 		 * start trying again otherwise it can loop forever.
1480 		 */
1481 
1482 		if (fatal_signal_pending(current)) {
1483 			if (!pages_done)
1484 				pages_done = -EINTR;
1485 			break;
1486 		}
1487 
1488 		ret = mmap_read_lock_killable(mm);
1489 		if (ret) {
1490 			BUG_ON(ret > 0);
1491 			if (!pages_done)
1492 				pages_done = ret;
1493 			break;
1494 		}
1495 
1496 		*locked = 1;
1497 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1498 				       pages, NULL, locked);
1499 		if (!*locked) {
1500 			/* Continue to retry until we succeeded */
1501 			BUG_ON(ret != 0);
1502 			goto retry;
1503 		}
1504 		if (ret != 1) {
1505 			BUG_ON(ret > 1);
1506 			if (!pages_done)
1507 				pages_done = ret;
1508 			break;
1509 		}
1510 		nr_pages--;
1511 		pages_done++;
1512 		if (!nr_pages)
1513 			break;
1514 		if (likely(pages))
1515 			pages++;
1516 		start += PAGE_SIZE;
1517 	}
1518 	if (lock_dropped && *locked) {
1519 		/*
1520 		 * We must let the caller know we temporarily dropped the lock
1521 		 * and so the critical section protected by it was lost.
1522 		 */
1523 		mmap_read_unlock(mm);
1524 		*locked = 0;
1525 	}
1526 	return pages_done;
1527 }
1528 
1529 /**
1530  * populate_vma_page_range() -  populate a range of pages in the vma.
1531  * @vma:   target vma
1532  * @start: start address
1533  * @end:   end address
1534  * @locked: whether the mmap_lock is still held
1535  *
1536  * This takes care of mlocking the pages too if VM_LOCKED is set.
1537  *
1538  * Return either number of pages pinned in the vma, or a negative error
1539  * code on error.
1540  *
1541  * vma->vm_mm->mmap_lock must be held.
1542  *
1543  * If @locked is NULL, it may be held for read or write and will
1544  * be unperturbed.
1545  *
1546  * If @locked is non-NULL, it must held for read only and may be
1547  * released.  If it's released, *@locked will be set to 0.
1548  */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1549 long populate_vma_page_range(struct vm_area_struct *vma,
1550 		unsigned long start, unsigned long end, int *locked)
1551 {
1552 	struct mm_struct *mm = vma->vm_mm;
1553 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1554 	int gup_flags;
1555 	long ret;
1556 
1557 	VM_BUG_ON(!PAGE_ALIGNED(start));
1558 	VM_BUG_ON(!PAGE_ALIGNED(end));
1559 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1560 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1561 	mmap_assert_locked(mm);
1562 
1563 	/*
1564 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1565 	 * faultin_page() to break COW, so it has no work to do here.
1566 	 */
1567 	if (vma->vm_flags & VM_LOCKONFAULT)
1568 		return nr_pages;
1569 
1570 	gup_flags = FOLL_TOUCH;
1571 	/*
1572 	 * We want to touch writable mappings with a write fault in order
1573 	 * to break COW, except for shared mappings because these don't COW
1574 	 * and we would not want to dirty them for nothing.
1575 	 */
1576 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1577 		gup_flags |= FOLL_WRITE;
1578 
1579 	/*
1580 	 * We want mlock to succeed for regions that have any permissions
1581 	 * other than PROT_NONE.
1582 	 */
1583 	if (vma_is_accessible(vma))
1584 		gup_flags |= FOLL_FORCE;
1585 
1586 	/*
1587 	 * We made sure addr is within a VMA, so the following will
1588 	 * not result in a stack expansion that recurses back here.
1589 	 */
1590 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1591 				NULL, NULL, locked);
1592 	lru_add_drain();
1593 	return ret;
1594 }
1595 
1596 /*
1597  * faultin_vma_page_range() - populate (prefault) page tables inside the
1598  *			      given VMA range readable/writable
1599  *
1600  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1601  *
1602  * @vma: target vma
1603  * @start: start address
1604  * @end: end address
1605  * @write: whether to prefault readable or writable
1606  * @locked: whether the mmap_lock is still held
1607  *
1608  * Returns either number of processed pages in the vma, or a negative error
1609  * code on error (see __get_user_pages()).
1610  *
1611  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1612  * covered by the VMA.
1613  *
1614  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1615  *
1616  * If @locked is non-NULL, it must held for read only and may be released.  If
1617  * it's released, *@locked will be set to 0.
1618  */
faultin_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool write,int * locked)1619 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1620 			    unsigned long end, bool write, int *locked)
1621 {
1622 	struct mm_struct *mm = vma->vm_mm;
1623 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1624 	int gup_flags;
1625 	long ret;
1626 
1627 	VM_BUG_ON(!PAGE_ALIGNED(start));
1628 	VM_BUG_ON(!PAGE_ALIGNED(end));
1629 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1630 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1631 	mmap_assert_locked(mm);
1632 
1633 	/*
1634 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1635 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1636 	 *	       difference with !FOLL_FORCE, because the page is writable
1637 	 *	       in the page table.
1638 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1639 	 *		  a poisoned page.
1640 	 * !FOLL_FORCE: Require proper access permissions.
1641 	 */
1642 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1643 	if (write)
1644 		gup_flags |= FOLL_WRITE;
1645 
1646 	/*
1647 	 * We want to report -EINVAL instead of -EFAULT for any permission
1648 	 * problems or incompatible mappings.
1649 	 */
1650 	if (check_vma_flags(vma, gup_flags))
1651 		return -EINVAL;
1652 
1653 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1654 				NULL, NULL, locked);
1655 	lru_add_drain();
1656 	return ret;
1657 }
1658 
1659 /*
1660  * __mm_populate - populate and/or mlock pages within a range of address space.
1661  *
1662  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1663  * flags. VMAs must be already marked with the desired vm_flags, and
1664  * mmap_lock must not be held.
1665  */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1666 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1667 {
1668 	struct mm_struct *mm = current->mm;
1669 	unsigned long end, nstart, nend;
1670 	struct vm_area_struct *vma = NULL;
1671 	int locked = 0;
1672 	long ret = 0;
1673 
1674 	end = start + len;
1675 
1676 	for (nstart = start; nstart < end; nstart = nend) {
1677 		/*
1678 		 * We want to fault in pages for [nstart; end) address range.
1679 		 * Find first corresponding VMA.
1680 		 */
1681 		if (!locked) {
1682 			locked = 1;
1683 			mmap_read_lock(mm);
1684 			vma = find_vma_intersection(mm, nstart, end);
1685 		} else if (nstart >= vma->vm_end)
1686 			vma = find_vma_intersection(mm, vma->vm_end, end);
1687 
1688 		if (!vma)
1689 			break;
1690 		/*
1691 		 * Set [nstart; nend) to intersection of desired address
1692 		 * range with the first VMA. Also, skip undesirable VMA types.
1693 		 */
1694 		nend = min(end, vma->vm_end);
1695 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1696 			continue;
1697 		if (nstart < vma->vm_start)
1698 			nstart = vma->vm_start;
1699 		/*
1700 		 * Now fault in a range of pages. populate_vma_page_range()
1701 		 * double checks the vma flags, so that it won't mlock pages
1702 		 * if the vma was already munlocked.
1703 		 */
1704 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1705 		if (ret < 0) {
1706 			if (ignore_errors) {
1707 				ret = 0;
1708 				continue;	/* continue at next VMA */
1709 			}
1710 			break;
1711 		}
1712 		nend = nstart + ret * PAGE_SIZE;
1713 		ret = 0;
1714 	}
1715 	if (locked)
1716 		mmap_read_unlock(mm);
1717 	return ret;	/* 0 or negative error code */
1718 }
1719 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int foll_flags)1720 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1721 		unsigned long nr_pages, struct page **pages,
1722 		struct vm_area_struct **vmas, int *locked,
1723 		unsigned int foll_flags)
1724 {
1725 	struct vm_area_struct *vma;
1726 	unsigned long vm_flags;
1727 	long i;
1728 
1729 	/* calculate required read or write permissions.
1730 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1731 	 */
1732 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1733 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1734 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1735 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1736 
1737 	for (i = 0; i < nr_pages; i++) {
1738 		vma = find_vma(mm, start);
1739 		if (!vma)
1740 			goto finish_or_fault;
1741 
1742 		/* protect what we can, including chardevs */
1743 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1744 		    !(vm_flags & vma->vm_flags))
1745 			goto finish_or_fault;
1746 
1747 		if (pages) {
1748 			pages[i] = virt_to_page((void *)start);
1749 			if (pages[i])
1750 				get_page(pages[i]);
1751 		}
1752 		if (vmas)
1753 			vmas[i] = vma;
1754 		start = (start + PAGE_SIZE) & PAGE_MASK;
1755 	}
1756 
1757 	return i;
1758 
1759 finish_or_fault:
1760 	return i ? : -EFAULT;
1761 }
1762 #endif /* !CONFIG_MMU */
1763 
1764 /**
1765  * fault_in_writeable - fault in userspace address range for writing
1766  * @uaddr: start of address range
1767  * @size: size of address range
1768  *
1769  * Returns the number of bytes not faulted in (like copy_to_user() and
1770  * copy_from_user()).
1771  */
fault_in_writeable(char __user * uaddr,size_t size)1772 size_t fault_in_writeable(char __user *uaddr, size_t size)
1773 {
1774 	char __user *start = uaddr, *end;
1775 
1776 	if (unlikely(size == 0))
1777 		return 0;
1778 	if (!user_write_access_begin(uaddr, size))
1779 		return size;
1780 	if (!PAGE_ALIGNED(uaddr)) {
1781 		unsafe_put_user(0, uaddr, out);
1782 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1783 	}
1784 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1785 	if (unlikely(end < start))
1786 		end = NULL;
1787 	while (uaddr != end) {
1788 		unsafe_put_user(0, uaddr, out);
1789 		uaddr += PAGE_SIZE;
1790 	}
1791 
1792 out:
1793 	user_write_access_end();
1794 	if (size > uaddr - start)
1795 		return size - (uaddr - start);
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL(fault_in_writeable);
1799 
1800 /**
1801  * fault_in_subpage_writeable - fault in an address range for writing
1802  * @uaddr: start of address range
1803  * @size: size of address range
1804  *
1805  * Fault in a user address range for writing while checking for permissions at
1806  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1807  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1808  *
1809  * Returns the number of bytes not faulted in (like copy_to_user() and
1810  * copy_from_user()).
1811  */
fault_in_subpage_writeable(char __user * uaddr,size_t size)1812 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1813 {
1814 	size_t faulted_in;
1815 
1816 	/*
1817 	 * Attempt faulting in at page granularity first for page table
1818 	 * permission checking. The arch-specific probe_subpage_writeable()
1819 	 * functions may not check for this.
1820 	 */
1821 	faulted_in = size - fault_in_writeable(uaddr, size);
1822 	if (faulted_in)
1823 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1824 
1825 	return size - faulted_in;
1826 }
1827 EXPORT_SYMBOL(fault_in_subpage_writeable);
1828 
1829 /*
1830  * fault_in_safe_writeable - fault in an address range for writing
1831  * @uaddr: start of address range
1832  * @size: length of address range
1833  *
1834  * Faults in an address range for writing.  This is primarily useful when we
1835  * already know that some or all of the pages in the address range aren't in
1836  * memory.
1837  *
1838  * Unlike fault_in_writeable(), this function is non-destructive.
1839  *
1840  * Note that we don't pin or otherwise hold the pages referenced that we fault
1841  * in.  There's no guarantee that they'll stay in memory for any duration of
1842  * time.
1843  *
1844  * Returns the number of bytes not faulted in, like copy_to_user() and
1845  * copy_from_user().
1846  */
fault_in_safe_writeable(const char __user * uaddr,size_t size)1847 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1848 {
1849 	unsigned long start = (unsigned long)uaddr, end;
1850 	struct mm_struct *mm = current->mm;
1851 	bool unlocked = false;
1852 
1853 	if (unlikely(size == 0))
1854 		return 0;
1855 	end = PAGE_ALIGN(start + size);
1856 	if (end < start)
1857 		end = 0;
1858 
1859 	mmap_read_lock(mm);
1860 	do {
1861 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1862 			break;
1863 		start = (start + PAGE_SIZE) & PAGE_MASK;
1864 	} while (start != end);
1865 	mmap_read_unlock(mm);
1866 
1867 	if (size > (unsigned long)uaddr - start)
1868 		return size - ((unsigned long)uaddr - start);
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL(fault_in_safe_writeable);
1872 
1873 /**
1874  * fault_in_readable - fault in userspace address range for reading
1875  * @uaddr: start of user address range
1876  * @size: size of user address range
1877  *
1878  * Returns the number of bytes not faulted in (like copy_to_user() and
1879  * copy_from_user()).
1880  */
fault_in_readable(const char __user * uaddr,size_t size)1881 size_t fault_in_readable(const char __user *uaddr, size_t size)
1882 {
1883 	const char __user *start = uaddr, *end;
1884 	volatile char c;
1885 
1886 	if (unlikely(size == 0))
1887 		return 0;
1888 	if (!user_read_access_begin(uaddr, size))
1889 		return size;
1890 	if (!PAGE_ALIGNED(uaddr)) {
1891 		unsafe_get_user(c, uaddr, out);
1892 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1893 	}
1894 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1895 	if (unlikely(end < start))
1896 		end = NULL;
1897 	while (uaddr != end) {
1898 		unsafe_get_user(c, uaddr, out);
1899 		uaddr += PAGE_SIZE;
1900 	}
1901 
1902 out:
1903 	user_read_access_end();
1904 	(void)c;
1905 	if (size > uaddr - start)
1906 		return size - (uaddr - start);
1907 	return 0;
1908 }
1909 EXPORT_SYMBOL(fault_in_readable);
1910 
1911 /**
1912  * get_dump_page() - pin user page in memory while writing it to core dump
1913  * @addr: user address
1914  *
1915  * Returns struct page pointer of user page pinned for dump,
1916  * to be freed afterwards by put_page().
1917  *
1918  * Returns NULL on any kind of failure - a hole must then be inserted into
1919  * the corefile, to preserve alignment with its headers; and also returns
1920  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1921  * allowing a hole to be left in the corefile to save disk space.
1922  *
1923  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1924  */
1925 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1926 struct page *get_dump_page(unsigned long addr)
1927 {
1928 	struct mm_struct *mm = current->mm;
1929 	struct page *page;
1930 	int locked = 1;
1931 	int ret;
1932 
1933 	if (mmap_read_lock_killable(mm))
1934 		return NULL;
1935 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1936 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1937 	if (locked)
1938 		mmap_read_unlock(mm);
1939 	return (ret == 1) ? page : NULL;
1940 }
1941 #endif /* CONFIG_ELF_CORE */
1942 
1943 #ifdef CONFIG_MIGRATION
1944 /*
1945  * Returns the number of collected pages. Return value is always >= 0.
1946  */
collect_longterm_unpinnable_pages(struct list_head * movable_page_list,unsigned long nr_pages,struct page ** pages)1947 static unsigned long collect_longterm_unpinnable_pages(
1948 					struct list_head *movable_page_list,
1949 					unsigned long nr_pages,
1950 					struct page **pages)
1951 {
1952 	unsigned long i, collected = 0;
1953 	struct folio *prev_folio = NULL;
1954 	bool drain_allow = true;
1955 
1956 	for (i = 0; i < nr_pages; i++) {
1957 		struct folio *folio = page_folio(pages[i]);
1958 
1959 		if (folio == prev_folio)
1960 			continue;
1961 		prev_folio = folio;
1962 
1963 		if (folio_is_longterm_pinnable(folio))
1964 			continue;
1965 
1966 		collected++;
1967 
1968 		if (folio_is_device_coherent(folio))
1969 			continue;
1970 
1971 		if (folio_test_hugetlb(folio)) {
1972 			isolate_hugetlb(&folio->page, movable_page_list);
1973 			continue;
1974 		}
1975 
1976 		if (!folio_test_lru(folio) && drain_allow) {
1977 			lru_add_drain_all();
1978 			drain_allow = false;
1979 		}
1980 
1981 		if (!folio_isolate_lru(folio))
1982 			continue;
1983 
1984 		list_add_tail(&folio->lru, movable_page_list);
1985 		node_stat_mod_folio(folio,
1986 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1987 				    folio_nr_pages(folio));
1988 	}
1989 
1990 	return collected;
1991 }
1992 
1993 /*
1994  * Unpins all pages and migrates device coherent pages and movable_page_list.
1995  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1996  * (or partial success).
1997  */
migrate_longterm_unpinnable_pages(struct list_head * movable_page_list,unsigned long nr_pages,struct page ** pages)1998 static int migrate_longterm_unpinnable_pages(
1999 					struct list_head *movable_page_list,
2000 					unsigned long nr_pages,
2001 					struct page **pages)
2002 {
2003 	int ret;
2004 	unsigned long i;
2005 
2006 	for (i = 0; i < nr_pages; i++) {
2007 		struct folio *folio = page_folio(pages[i]);
2008 
2009 		if (folio_is_device_coherent(folio)) {
2010 			/*
2011 			 * Migration will fail if the page is pinned, so convert
2012 			 * the pin on the source page to a normal reference.
2013 			 */
2014 			pages[i] = NULL;
2015 			folio_get(folio);
2016 			gup_put_folio(folio, 1, FOLL_PIN);
2017 
2018 			if (migrate_device_coherent_page(&folio->page)) {
2019 				ret = -EBUSY;
2020 				goto err;
2021 			}
2022 
2023 			continue;
2024 		}
2025 
2026 		/*
2027 		 * We can't migrate pages with unexpected references, so drop
2028 		 * the reference obtained by __get_user_pages_locked().
2029 		 * Migrating pages have been added to movable_page_list after
2030 		 * calling folio_isolate_lru() which takes a reference so the
2031 		 * page won't be freed if it's migrating.
2032 		 */
2033 		unpin_user_page(pages[i]);
2034 		pages[i] = NULL;
2035 	}
2036 
2037 	if (!list_empty(movable_page_list)) {
2038 		struct migration_target_control mtc = {
2039 			.nid = NUMA_NO_NODE,
2040 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2041 		};
2042 
2043 		if (migrate_pages(movable_page_list, alloc_migration_target,
2044 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2045 				  MR_LONGTERM_PIN, NULL)) {
2046 			ret = -ENOMEM;
2047 			goto err;
2048 		}
2049 	}
2050 
2051 	putback_movable_pages(movable_page_list);
2052 
2053 	return -EAGAIN;
2054 
2055 err:
2056 	for (i = 0; i < nr_pages; i++)
2057 		if (pages[i])
2058 			unpin_user_page(pages[i]);
2059 	putback_movable_pages(movable_page_list);
2060 
2061 	return ret;
2062 }
2063 
2064 /*
2065  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2066  * pages in the range are required to be pinned via FOLL_PIN, before calling
2067  * this routine.
2068  *
2069  * If any pages in the range are not allowed to be pinned, then this routine
2070  * will migrate those pages away, unpin all the pages in the range and return
2071  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2072  * call this routine again.
2073  *
2074  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2075  * The caller should give up, and propagate the error back up the call stack.
2076  *
2077  * If everything is OK and all pages in the range are allowed to be pinned, then
2078  * this routine leaves all pages pinned and returns zero for success.
2079  */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2080 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2081 					    struct page **pages)
2082 {
2083 	unsigned long collected;
2084 	LIST_HEAD(movable_page_list);
2085 
2086 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2087 						nr_pages, pages);
2088 	if (!collected)
2089 		return 0;
2090 
2091 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2092 						pages);
2093 }
2094 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2095 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2096 					    struct page **pages)
2097 {
2098 	return 0;
2099 }
2100 #endif /* CONFIG_MIGRATION */
2101 
2102 /*
2103  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2104  * allows us to process the FOLL_LONGTERM flag.
2105  */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)2106 static long __gup_longterm_locked(struct mm_struct *mm,
2107 				  unsigned long start,
2108 				  unsigned long nr_pages,
2109 				  struct page **pages,
2110 				  struct vm_area_struct **vmas,
2111 				  unsigned int gup_flags)
2112 {
2113 	unsigned int flags;
2114 	long rc, nr_pinned_pages;
2115 
2116 	if (!(gup_flags & FOLL_LONGTERM))
2117 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2118 					       NULL, gup_flags);
2119 
2120 	/*
2121 	 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2122 	 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2123 	 * correct to unconditionally call check_and_migrate_movable_pages()
2124 	 * which assumes pages have been pinned via FOLL_PIN.
2125 	 *
2126 	 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2127 	 */
2128 	if (WARN_ON(!(gup_flags & FOLL_PIN)))
2129 		return -EINVAL;
2130 	flags = memalloc_pin_save();
2131 	do {
2132 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2133 							  pages, vmas, NULL,
2134 							  gup_flags);
2135 		if (nr_pinned_pages <= 0) {
2136 			rc = nr_pinned_pages;
2137 			break;
2138 		}
2139 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2140 	} while (rc == -EAGAIN);
2141 	memalloc_pin_restore(flags);
2142 
2143 	return rc ? rc : nr_pinned_pages;
2144 }
2145 
is_valid_gup_flags(unsigned int gup_flags)2146 static bool is_valid_gup_flags(unsigned int gup_flags)
2147 {
2148 	/*
2149 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2150 	 * never directly by the caller, so enforce that with an assertion:
2151 	 */
2152 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2153 		return false;
2154 	/*
2155 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2156 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2157 	 * FOLL_PIN.
2158 	 */
2159 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2160 		return false;
2161 
2162 	return true;
2163 }
2164 
2165 #ifdef CONFIG_MMU
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2166 static long __get_user_pages_remote(struct mm_struct *mm,
2167 				    unsigned long start, unsigned long nr_pages,
2168 				    unsigned int gup_flags, struct page **pages,
2169 				    struct vm_area_struct **vmas, int *locked)
2170 {
2171 	/*
2172 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2173 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2174 	 * vmas. However, this only comes up if locked is set, and there are
2175 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2176 	 * allow what we can.
2177 	 */
2178 	if (gup_flags & FOLL_LONGTERM) {
2179 		if (WARN_ON_ONCE(locked))
2180 			return -EINVAL;
2181 		/*
2182 		 * This will check the vmas (even if our vmas arg is NULL)
2183 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2184 		 */
2185 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2186 					     vmas, gup_flags | FOLL_TOUCH |
2187 					     FOLL_REMOTE);
2188 	}
2189 
2190 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2191 				       locked,
2192 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2193 }
2194 
2195 /**
2196  * get_user_pages_remote() - pin user pages in memory
2197  * @mm:		mm_struct of target mm
2198  * @start:	starting user address
2199  * @nr_pages:	number of pages from start to pin
2200  * @gup_flags:	flags modifying lookup behaviour
2201  * @pages:	array that receives pointers to the pages pinned.
2202  *		Should be at least nr_pages long. Or NULL, if caller
2203  *		only intends to ensure the pages are faulted in.
2204  * @vmas:	array of pointers to vmas corresponding to each page.
2205  *		Or NULL if the caller does not require them.
2206  * @locked:	pointer to lock flag indicating whether lock is held and
2207  *		subsequently whether VM_FAULT_RETRY functionality can be
2208  *		utilised. Lock must initially be held.
2209  *
2210  * Returns either number of pages pinned (which may be less than the
2211  * number requested), or an error. Details about the return value:
2212  *
2213  * -- If nr_pages is 0, returns 0.
2214  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2215  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2216  *    pages pinned. Again, this may be less than nr_pages.
2217  *
2218  * The caller is responsible for releasing returned @pages, via put_page().
2219  *
2220  * @vmas are valid only as long as mmap_lock is held.
2221  *
2222  * Must be called with mmap_lock held for read or write.
2223  *
2224  * get_user_pages_remote walks a process's page tables and takes a reference
2225  * to each struct page that each user address corresponds to at a given
2226  * instant. That is, it takes the page that would be accessed if a user
2227  * thread accesses the given user virtual address at that instant.
2228  *
2229  * This does not guarantee that the page exists in the user mappings when
2230  * get_user_pages_remote returns, and there may even be a completely different
2231  * page there in some cases (eg. if mmapped pagecache has been invalidated
2232  * and subsequently re faulted). However it does guarantee that the page
2233  * won't be freed completely. And mostly callers simply care that the page
2234  * contains data that was valid *at some point in time*. Typically, an IO
2235  * or similar operation cannot guarantee anything stronger anyway because
2236  * locks can't be held over the syscall boundary.
2237  *
2238  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2239  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2240  * be called after the page is finished with, and before put_page is called.
2241  *
2242  * get_user_pages_remote is typically used for fewer-copy IO operations,
2243  * to get a handle on the memory by some means other than accesses
2244  * via the user virtual addresses. The pages may be submitted for
2245  * DMA to devices or accessed via their kernel linear mapping (via the
2246  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2247  *
2248  * See also get_user_pages_fast, for performance critical applications.
2249  *
2250  * get_user_pages_remote should be phased out in favor of
2251  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2252  * should use get_user_pages_remote because it cannot pass
2253  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2254  */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2255 long get_user_pages_remote(struct mm_struct *mm,
2256 		unsigned long start, unsigned long nr_pages,
2257 		unsigned int gup_flags, struct page **pages,
2258 		struct vm_area_struct **vmas, int *locked)
2259 {
2260 	if (!is_valid_gup_flags(gup_flags))
2261 		return -EINVAL;
2262 
2263 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2264 				       pages, vmas, locked);
2265 }
2266 EXPORT_SYMBOL(get_user_pages_remote);
2267 
2268 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2269 long get_user_pages_remote(struct mm_struct *mm,
2270 			   unsigned long start, unsigned long nr_pages,
2271 			   unsigned int gup_flags, struct page **pages,
2272 			   struct vm_area_struct **vmas, int *locked)
2273 {
2274 	return 0;
2275 }
2276 
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2277 static long __get_user_pages_remote(struct mm_struct *mm,
2278 				    unsigned long start, unsigned long nr_pages,
2279 				    unsigned int gup_flags, struct page **pages,
2280 				    struct vm_area_struct **vmas, int *locked)
2281 {
2282 	return 0;
2283 }
2284 #endif /* !CONFIG_MMU */
2285 
2286 /**
2287  * get_user_pages() - pin user pages in memory
2288  * @start:      starting user address
2289  * @nr_pages:   number of pages from start to pin
2290  * @gup_flags:  flags modifying lookup behaviour
2291  * @pages:      array that receives pointers to the pages pinned.
2292  *              Should be at least nr_pages long. Or NULL, if caller
2293  *              only intends to ensure the pages are faulted in.
2294  * @vmas:       array of pointers to vmas corresponding to each page.
2295  *              Or NULL if the caller does not require them.
2296  *
2297  * This is the same as get_user_pages_remote(), just with a less-flexible
2298  * calling convention where we assume that the mm being operated on belongs to
2299  * the current task, and doesn't allow passing of a locked parameter.  We also
2300  * obviously don't pass FOLL_REMOTE in here.
2301  */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)2302 long get_user_pages(unsigned long start, unsigned long nr_pages,
2303 		unsigned int gup_flags, struct page **pages,
2304 		struct vm_area_struct **vmas)
2305 {
2306 	if (!is_valid_gup_flags(gup_flags))
2307 		return -EINVAL;
2308 
2309 	return __gup_longterm_locked(current->mm, start, nr_pages,
2310 				     pages, vmas, gup_flags | FOLL_TOUCH);
2311 }
2312 EXPORT_SYMBOL(get_user_pages);
2313 
2314 /*
2315  * get_user_pages_unlocked() is suitable to replace the form:
2316  *
2317  *      mmap_read_lock(mm);
2318  *      get_user_pages(mm, ..., pages, NULL);
2319  *      mmap_read_unlock(mm);
2320  *
2321  *  with:
2322  *
2323  *      get_user_pages_unlocked(mm, ..., pages);
2324  *
2325  * It is functionally equivalent to get_user_pages_fast so
2326  * get_user_pages_fast should be used instead if specific gup_flags
2327  * (e.g. FOLL_FORCE) are not required.
2328  */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2329 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2330 			     struct page **pages, unsigned int gup_flags)
2331 {
2332 	struct mm_struct *mm = current->mm;
2333 	int locked = 1;
2334 	long ret;
2335 
2336 	/*
2337 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2338 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2339 	 * vmas.  As there are no users of this flag in this call we simply
2340 	 * disallow this option for now.
2341 	 */
2342 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2343 		return -EINVAL;
2344 
2345 	mmap_read_lock(mm);
2346 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2347 				      &locked, gup_flags | FOLL_TOUCH);
2348 	if (locked)
2349 		mmap_read_unlock(mm);
2350 	return ret;
2351 }
2352 EXPORT_SYMBOL(get_user_pages_unlocked);
2353 
2354 /*
2355  * Fast GUP
2356  *
2357  * get_user_pages_fast attempts to pin user pages by walking the page
2358  * tables directly and avoids taking locks. Thus the walker needs to be
2359  * protected from page table pages being freed from under it, and should
2360  * block any THP splits.
2361  *
2362  * One way to achieve this is to have the walker disable interrupts, and
2363  * rely on IPIs from the TLB flushing code blocking before the page table
2364  * pages are freed. This is unsuitable for architectures that do not need
2365  * to broadcast an IPI when invalidating TLBs.
2366  *
2367  * Another way to achieve this is to batch up page table containing pages
2368  * belonging to more than one mm_user, then rcu_sched a callback to free those
2369  * pages. Disabling interrupts will allow the fast_gup walker to both block
2370  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2371  * (which is a relatively rare event). The code below adopts this strategy.
2372  *
2373  * Before activating this code, please be aware that the following assumptions
2374  * are currently made:
2375  *
2376  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2377  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2378  *
2379  *  *) ptes can be read atomically by the architecture.
2380  *
2381  *  *) access_ok is sufficient to validate userspace address ranges.
2382  *
2383  * The last two assumptions can be relaxed by the addition of helper functions.
2384  *
2385  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2386  */
2387 #ifdef CONFIG_HAVE_FAST_GUP
2388 
undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2389 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2390 					    unsigned int flags,
2391 					    struct page **pages)
2392 {
2393 	while ((*nr) - nr_start) {
2394 		struct page *page = pages[--(*nr)];
2395 
2396 		ClearPageReferenced(page);
2397 		if (flags & FOLL_PIN)
2398 			unpin_user_page(page);
2399 		else
2400 			put_page(page);
2401 	}
2402 }
2403 
2404 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2405 /*
2406  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2407  * operations.
2408  *
2409  * To pin the page, fast-gup needs to do below in order:
2410  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2411  *
2412  * For the rest of pgtable operations where pgtable updates can be racy
2413  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2414  * is pinned.
2415  *
2416  * Above will work for all pte-level operations, including THP split.
2417  *
2418  * For THP collapse, it's a bit more complicated because fast-gup may be
2419  * walking a pgtable page that is being freed (pte is still valid but pmd
2420  * can be cleared already).  To avoid race in such condition, we need to
2421  * also check pmd here to make sure pmd doesn't change (corresponds to
2422  * pmdp_collapse_flush() in the THP collapse code path).
2423  */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2424 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2425 			 unsigned long end, unsigned int flags,
2426 			 struct page **pages, int *nr)
2427 {
2428 	struct dev_pagemap *pgmap = NULL;
2429 	int nr_start = *nr, ret = 0;
2430 	pte_t *ptep, *ptem;
2431 
2432 	ptem = ptep = pte_offset_map(&pmd, addr);
2433 	do {
2434 		pte_t pte = ptep_get_lockless(ptep);
2435 		struct page *page;
2436 		struct folio *folio;
2437 
2438 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2439 			goto pte_unmap;
2440 
2441 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2442 			goto pte_unmap;
2443 
2444 		if (pte_devmap(pte)) {
2445 			if (unlikely(flags & FOLL_LONGTERM))
2446 				goto pte_unmap;
2447 
2448 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2449 			if (unlikely(!pgmap)) {
2450 				undo_dev_pagemap(nr, nr_start, flags, pages);
2451 				goto pte_unmap;
2452 			}
2453 		} else if (pte_special(pte))
2454 			goto pte_unmap;
2455 
2456 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2457 		page = pte_page(pte);
2458 
2459 		folio = try_grab_folio(page, 1, flags);
2460 		if (!folio)
2461 			goto pte_unmap;
2462 
2463 		if (unlikely(page_is_secretmem(page))) {
2464 			gup_put_folio(folio, 1, flags);
2465 			goto pte_unmap;
2466 		}
2467 
2468 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2469 		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2470 			gup_put_folio(folio, 1, flags);
2471 			goto pte_unmap;
2472 		}
2473 
2474 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2475 			gup_put_folio(folio, 1, flags);
2476 			goto pte_unmap;
2477 		}
2478 
2479 		/*
2480 		 * We need to make the page accessible if and only if we are
2481 		 * going to access its content (the FOLL_PIN case).  Please
2482 		 * see Documentation/core-api/pin_user_pages.rst for
2483 		 * details.
2484 		 */
2485 		if (flags & FOLL_PIN) {
2486 			ret = arch_make_page_accessible(page);
2487 			if (ret) {
2488 				gup_put_folio(folio, 1, flags);
2489 				goto pte_unmap;
2490 			}
2491 		}
2492 		folio_set_referenced(folio);
2493 		pages[*nr] = page;
2494 		(*nr)++;
2495 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2496 
2497 	ret = 1;
2498 
2499 pte_unmap:
2500 	if (pgmap)
2501 		put_dev_pagemap(pgmap);
2502 	pte_unmap(ptem);
2503 	return ret;
2504 }
2505 #else
2506 
2507 /*
2508  * If we can't determine whether or not a pte is special, then fail immediately
2509  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2510  * to be special.
2511  *
2512  * For a futex to be placed on a THP tail page, get_futex_key requires a
2513  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2514  * useful to have gup_huge_pmd even if we can't operate on ptes.
2515  */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2516 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2517 			 unsigned long end, unsigned int flags,
2518 			 struct page **pages, int *nr)
2519 {
2520 	return 0;
2521 }
2522 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2523 
2524 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2525 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2526 			     unsigned long end, unsigned int flags,
2527 			     struct page **pages, int *nr)
2528 {
2529 	int nr_start = *nr;
2530 	struct dev_pagemap *pgmap = NULL;
2531 
2532 	do {
2533 		struct page *page = pfn_to_page(pfn);
2534 
2535 		pgmap = get_dev_pagemap(pfn, pgmap);
2536 		if (unlikely(!pgmap)) {
2537 			undo_dev_pagemap(nr, nr_start, flags, pages);
2538 			break;
2539 		}
2540 		SetPageReferenced(page);
2541 		pages[*nr] = page;
2542 		if (unlikely(!try_grab_page(page, flags))) {
2543 			undo_dev_pagemap(nr, nr_start, flags, pages);
2544 			break;
2545 		}
2546 		(*nr)++;
2547 		pfn++;
2548 	} while (addr += PAGE_SIZE, addr != end);
2549 
2550 	put_dev_pagemap(pgmap);
2551 	return addr == end;
2552 }
2553 
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2554 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2555 				 unsigned long end, unsigned int flags,
2556 				 struct page **pages, int *nr)
2557 {
2558 	unsigned long fault_pfn;
2559 	int nr_start = *nr;
2560 
2561 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2562 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2563 		return 0;
2564 
2565 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2566 		undo_dev_pagemap(nr, nr_start, flags, pages);
2567 		return 0;
2568 	}
2569 	return 1;
2570 }
2571 
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2572 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2573 				 unsigned long end, unsigned int flags,
2574 				 struct page **pages, int *nr)
2575 {
2576 	unsigned long fault_pfn;
2577 	int nr_start = *nr;
2578 
2579 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2580 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2581 		return 0;
2582 
2583 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2584 		undo_dev_pagemap(nr, nr_start, flags, pages);
2585 		return 0;
2586 	}
2587 	return 1;
2588 }
2589 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2590 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2591 				 unsigned long end, unsigned int flags,
2592 				 struct page **pages, int *nr)
2593 {
2594 	BUILD_BUG();
2595 	return 0;
2596 }
2597 
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2598 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2599 				 unsigned long end, unsigned int flags,
2600 				 struct page **pages, int *nr)
2601 {
2602 	BUILD_BUG();
2603 	return 0;
2604 }
2605 #endif
2606 
record_subpages(struct page * page,unsigned long addr,unsigned long end,struct page ** pages)2607 static int record_subpages(struct page *page, unsigned long addr,
2608 			   unsigned long end, struct page **pages)
2609 {
2610 	int nr;
2611 
2612 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2613 		pages[nr] = nth_page(page, nr);
2614 
2615 	return nr;
2616 }
2617 
2618 #ifdef CONFIG_ARCH_HAS_HUGEPD
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)2619 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2620 				      unsigned long sz)
2621 {
2622 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2623 	return (__boundary - 1 < end - 1) ? __boundary : end;
2624 }
2625 
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2626 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2627 		       unsigned long end, unsigned int flags,
2628 		       struct page **pages, int *nr)
2629 {
2630 	unsigned long pte_end;
2631 	struct page *page;
2632 	struct folio *folio;
2633 	pte_t pte;
2634 	int refs;
2635 
2636 	pte_end = (addr + sz) & ~(sz-1);
2637 	if (pte_end < end)
2638 		end = pte_end;
2639 
2640 	pte = huge_ptep_get(ptep);
2641 
2642 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2643 		return 0;
2644 
2645 	/* hugepages are never "special" */
2646 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2647 
2648 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2649 	refs = record_subpages(page, addr, end, pages + *nr);
2650 
2651 	folio = try_grab_folio(page, refs, flags);
2652 	if (!folio)
2653 		return 0;
2654 
2655 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2656 		gup_put_folio(folio, refs, flags);
2657 		return 0;
2658 	}
2659 
2660 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2661 		gup_put_folio(folio, refs, flags);
2662 		return 0;
2663 	}
2664 
2665 	*nr += refs;
2666 	folio_set_referenced(folio);
2667 	return 1;
2668 }
2669 
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2670 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2671 		unsigned int pdshift, unsigned long end, unsigned int flags,
2672 		struct page **pages, int *nr)
2673 {
2674 	pte_t *ptep;
2675 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2676 	unsigned long next;
2677 
2678 	ptep = hugepte_offset(hugepd, addr, pdshift);
2679 	do {
2680 		next = hugepte_addr_end(addr, end, sz);
2681 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2682 			return 0;
2683 	} while (ptep++, addr = next, addr != end);
2684 
2685 	return 1;
2686 }
2687 #else
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2688 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2689 		unsigned int pdshift, unsigned long end, unsigned int flags,
2690 		struct page **pages, int *nr)
2691 {
2692 	return 0;
2693 }
2694 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2695 
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2696 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2697 			unsigned long end, unsigned int flags,
2698 			struct page **pages, int *nr)
2699 {
2700 	struct page *page;
2701 	struct folio *folio;
2702 	int refs;
2703 
2704 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2705 		return 0;
2706 
2707 	if (pmd_devmap(orig)) {
2708 		if (unlikely(flags & FOLL_LONGTERM))
2709 			return 0;
2710 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2711 					     pages, nr);
2712 	}
2713 
2714 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2715 	refs = record_subpages(page, addr, end, pages + *nr);
2716 
2717 	folio = try_grab_folio(page, refs, flags);
2718 	if (!folio)
2719 		return 0;
2720 
2721 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2722 		gup_put_folio(folio, refs, flags);
2723 		return 0;
2724 	}
2725 
2726 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2727 		gup_put_folio(folio, refs, flags);
2728 		return 0;
2729 	}
2730 
2731 	*nr += refs;
2732 	folio_set_referenced(folio);
2733 	return 1;
2734 }
2735 
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2736 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2737 			unsigned long end, unsigned int flags,
2738 			struct page **pages, int *nr)
2739 {
2740 	struct page *page;
2741 	struct folio *folio;
2742 	int refs;
2743 
2744 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2745 		return 0;
2746 
2747 	if (pud_devmap(orig)) {
2748 		if (unlikely(flags & FOLL_LONGTERM))
2749 			return 0;
2750 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2751 					     pages, nr);
2752 	}
2753 
2754 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2755 	refs = record_subpages(page, addr, end, pages + *nr);
2756 
2757 	folio = try_grab_folio(page, refs, flags);
2758 	if (!folio)
2759 		return 0;
2760 
2761 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2762 		gup_put_folio(folio, refs, flags);
2763 		return 0;
2764 	}
2765 
2766 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2767 		gup_put_folio(folio, refs, flags);
2768 		return 0;
2769 	}
2770 
2771 	*nr += refs;
2772 	folio_set_referenced(folio);
2773 	return 1;
2774 }
2775 
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2776 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2777 			unsigned long end, unsigned int flags,
2778 			struct page **pages, int *nr)
2779 {
2780 	int refs;
2781 	struct page *page;
2782 	struct folio *folio;
2783 
2784 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2785 		return 0;
2786 
2787 	BUILD_BUG_ON(pgd_devmap(orig));
2788 
2789 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2790 	refs = record_subpages(page, addr, end, pages + *nr);
2791 
2792 	folio = try_grab_folio(page, refs, flags);
2793 	if (!folio)
2794 		return 0;
2795 
2796 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2797 		gup_put_folio(folio, refs, flags);
2798 		return 0;
2799 	}
2800 
2801 	*nr += refs;
2802 	folio_set_referenced(folio);
2803 	return 1;
2804 }
2805 
gup_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2806 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2807 		unsigned int flags, struct page **pages, int *nr)
2808 {
2809 	unsigned long next;
2810 	pmd_t *pmdp;
2811 
2812 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2813 	do {
2814 		pmd_t pmd = READ_ONCE(*pmdp);
2815 
2816 		next = pmd_addr_end(addr, end);
2817 		if (!pmd_present(pmd))
2818 			return 0;
2819 
2820 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2821 			     pmd_devmap(pmd))) {
2822 			if (pmd_protnone(pmd) &&
2823 			    !gup_can_follow_protnone(flags))
2824 				return 0;
2825 
2826 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2827 				pages, nr))
2828 				return 0;
2829 
2830 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2831 			/*
2832 			 * architecture have different format for hugetlbfs
2833 			 * pmd format and THP pmd format
2834 			 */
2835 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2836 					 PMD_SHIFT, next, flags, pages, nr))
2837 				return 0;
2838 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2839 			return 0;
2840 	} while (pmdp++, addr = next, addr != end);
2841 
2842 	return 1;
2843 }
2844 
gup_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2845 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2846 			 unsigned int flags, struct page **pages, int *nr)
2847 {
2848 	unsigned long next;
2849 	pud_t *pudp;
2850 
2851 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2852 	do {
2853 		pud_t pud = READ_ONCE(*pudp);
2854 
2855 		next = pud_addr_end(addr, end);
2856 		if (unlikely(!pud_present(pud)))
2857 			return 0;
2858 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2859 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2860 					  pages, nr))
2861 				return 0;
2862 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2863 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2864 					 PUD_SHIFT, next, flags, pages, nr))
2865 				return 0;
2866 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2867 			return 0;
2868 	} while (pudp++, addr = next, addr != end);
2869 
2870 	return 1;
2871 }
2872 
gup_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2873 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2874 			 unsigned int flags, struct page **pages, int *nr)
2875 {
2876 	unsigned long next;
2877 	p4d_t *p4dp;
2878 
2879 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2880 	do {
2881 		p4d_t p4d = READ_ONCE(*p4dp);
2882 
2883 		next = p4d_addr_end(addr, end);
2884 		if (p4d_none(p4d))
2885 			return 0;
2886 		BUILD_BUG_ON(p4d_huge(p4d));
2887 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2888 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2889 					 P4D_SHIFT, next, flags, pages, nr))
2890 				return 0;
2891 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2892 			return 0;
2893 	} while (p4dp++, addr = next, addr != end);
2894 
2895 	return 1;
2896 }
2897 
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2898 static void gup_pgd_range(unsigned long addr, unsigned long end,
2899 		unsigned int flags, struct page **pages, int *nr)
2900 {
2901 	unsigned long next;
2902 	pgd_t *pgdp;
2903 
2904 	pgdp = pgd_offset(current->mm, addr);
2905 	do {
2906 		pgd_t pgd = READ_ONCE(*pgdp);
2907 
2908 		next = pgd_addr_end(addr, end);
2909 		if (pgd_none(pgd))
2910 			return;
2911 		if (unlikely(pgd_huge(pgd))) {
2912 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2913 					  pages, nr))
2914 				return;
2915 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2916 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2917 					 PGDIR_SHIFT, next, flags, pages, nr))
2918 				return;
2919 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2920 			return;
2921 	} while (pgdp++, addr = next, addr != end);
2922 }
2923 #else
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2924 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2925 		unsigned int flags, struct page **pages, int *nr)
2926 {
2927 }
2928 #endif /* CONFIG_HAVE_FAST_GUP */
2929 
2930 #ifndef gup_fast_permitted
2931 /*
2932  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2933  * we need to fall back to the slow version:
2934  */
gup_fast_permitted(unsigned long start,unsigned long end)2935 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2936 {
2937 	return true;
2938 }
2939 #endif
2940 
__gup_longterm_unlocked(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2941 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2942 				   unsigned int gup_flags, struct page **pages)
2943 {
2944 	int ret;
2945 
2946 	/*
2947 	 * FIXME: FOLL_LONGTERM does not work with
2948 	 * get_user_pages_unlocked() (see comments in that function)
2949 	 */
2950 	if (gup_flags & FOLL_LONGTERM) {
2951 		mmap_read_lock(current->mm);
2952 		ret = __gup_longterm_locked(current->mm,
2953 					    start, nr_pages,
2954 					    pages, NULL, gup_flags);
2955 		mmap_read_unlock(current->mm);
2956 	} else {
2957 		ret = get_user_pages_unlocked(start, nr_pages,
2958 					      pages, gup_flags);
2959 	}
2960 
2961 	return ret;
2962 }
2963 
lockless_pages_from_mm(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)2964 static unsigned long lockless_pages_from_mm(unsigned long start,
2965 					    unsigned long end,
2966 					    unsigned int gup_flags,
2967 					    struct page **pages)
2968 {
2969 	unsigned long flags;
2970 	int nr_pinned = 0;
2971 	unsigned seq;
2972 
2973 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2974 	    !gup_fast_permitted(start, end))
2975 		return 0;
2976 
2977 	if (gup_flags & FOLL_PIN) {
2978 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2979 		if (seq & 1)
2980 			return 0;
2981 	}
2982 
2983 	/*
2984 	 * Disable interrupts. The nested form is used, in order to allow full,
2985 	 * general purpose use of this routine.
2986 	 *
2987 	 * With interrupts disabled, we block page table pages from being freed
2988 	 * from under us. See struct mmu_table_batch comments in
2989 	 * include/asm-generic/tlb.h for more details.
2990 	 *
2991 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2992 	 * that come from THPs splitting.
2993 	 */
2994 	local_irq_save(flags);
2995 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2996 	local_irq_restore(flags);
2997 
2998 	/*
2999 	 * When pinning pages for DMA there could be a concurrent write protect
3000 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3001 	 */
3002 	if (gup_flags & FOLL_PIN) {
3003 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3004 			unpin_user_pages_lockless(pages, nr_pinned);
3005 			return 0;
3006 		} else {
3007 			sanity_check_pinned_pages(pages, nr_pinned);
3008 		}
3009 	}
3010 	return nr_pinned;
3011 }
3012 
internal_get_user_pages_fast(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3013 static int internal_get_user_pages_fast(unsigned long start,
3014 					unsigned long nr_pages,
3015 					unsigned int gup_flags,
3016 					struct page **pages)
3017 {
3018 	unsigned long len, end;
3019 	unsigned long nr_pinned;
3020 	int ret;
3021 
3022 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3023 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3024 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
3025 		return -EINVAL;
3026 
3027 	if (gup_flags & FOLL_PIN)
3028 		mm_set_has_pinned_flag(&current->mm->flags);
3029 
3030 	if (!(gup_flags & FOLL_FAST_ONLY))
3031 		might_lock_read(&current->mm->mmap_lock);
3032 
3033 	start = untagged_addr(start) & PAGE_MASK;
3034 	len = nr_pages << PAGE_SHIFT;
3035 	if (check_add_overflow(start, len, &end))
3036 		return 0;
3037 	if (unlikely(!access_ok((void __user *)start, len)))
3038 		return -EFAULT;
3039 
3040 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3041 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3042 		return nr_pinned;
3043 
3044 	/* Slow path: try to get the remaining pages with get_user_pages */
3045 	start += nr_pinned << PAGE_SHIFT;
3046 	pages += nr_pinned;
3047 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3048 				      pages);
3049 	if (ret < 0) {
3050 		/*
3051 		 * The caller has to unpin the pages we already pinned so
3052 		 * returning -errno is not an option
3053 		 */
3054 		if (nr_pinned)
3055 			return nr_pinned;
3056 		return ret;
3057 	}
3058 	return ret + nr_pinned;
3059 }
3060 
3061 /**
3062  * get_user_pages_fast_only() - pin user pages in memory
3063  * @start:      starting user address
3064  * @nr_pages:   number of pages from start to pin
3065  * @gup_flags:  flags modifying pin behaviour
3066  * @pages:      array that receives pointers to the pages pinned.
3067  *              Should be at least nr_pages long.
3068  *
3069  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3070  * the regular GUP.
3071  * Note a difference with get_user_pages_fast: this always returns the
3072  * number of pages pinned, 0 if no pages were pinned.
3073  *
3074  * If the architecture does not support this function, simply return with no
3075  * pages pinned.
3076  *
3077  * Careful, careful! COW breaking can go either way, so a non-write
3078  * access can get ambiguous page results. If you call this function without
3079  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3080  */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3081 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3082 			     unsigned int gup_flags, struct page **pages)
3083 {
3084 	int nr_pinned;
3085 	/*
3086 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3087 	 * because gup fast is always a "pin with a +1 page refcount" request.
3088 	 *
3089 	 * FOLL_FAST_ONLY is required in order to match the API description of
3090 	 * this routine: no fall back to regular ("slow") GUP.
3091 	 */
3092 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3093 
3094 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3095 						 pages);
3096 
3097 	/*
3098 	 * As specified in the API description above, this routine is not
3099 	 * allowed to return negative values. However, the common core
3100 	 * routine internal_get_user_pages_fast() *can* return -errno.
3101 	 * Therefore, correct for that here:
3102 	 */
3103 	if (nr_pinned < 0)
3104 		nr_pinned = 0;
3105 
3106 	return nr_pinned;
3107 }
3108 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3109 
3110 /**
3111  * get_user_pages_fast() - pin user pages in memory
3112  * @start:      starting user address
3113  * @nr_pages:   number of pages from start to pin
3114  * @gup_flags:  flags modifying pin behaviour
3115  * @pages:      array that receives pointers to the pages pinned.
3116  *              Should be at least nr_pages long.
3117  *
3118  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3119  * If not successful, it will fall back to taking the lock and
3120  * calling get_user_pages().
3121  *
3122  * Returns number of pages pinned. This may be fewer than the number requested.
3123  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3124  * -errno.
3125  */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3126 int get_user_pages_fast(unsigned long start, int nr_pages,
3127 			unsigned int gup_flags, struct page **pages)
3128 {
3129 	if (!is_valid_gup_flags(gup_flags))
3130 		return -EINVAL;
3131 
3132 	/*
3133 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3134 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3135 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3136 	 * request.
3137 	 */
3138 	gup_flags |= FOLL_GET;
3139 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3140 }
3141 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3142 
3143 /**
3144  * pin_user_pages_fast() - pin user pages in memory without taking locks
3145  *
3146  * @start:      starting user address
3147  * @nr_pages:   number of pages from start to pin
3148  * @gup_flags:  flags modifying pin behaviour
3149  * @pages:      array that receives pointers to the pages pinned.
3150  *              Should be at least nr_pages long.
3151  *
3152  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3153  * get_user_pages_fast() for documentation on the function arguments, because
3154  * the arguments here are identical.
3155  *
3156  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3157  * see Documentation/core-api/pin_user_pages.rst for further details.
3158  */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3159 int pin_user_pages_fast(unsigned long start, int nr_pages,
3160 			unsigned int gup_flags, struct page **pages)
3161 {
3162 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3163 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3164 		return -EINVAL;
3165 
3166 	if (WARN_ON_ONCE(!pages))
3167 		return -EINVAL;
3168 
3169 	gup_flags |= FOLL_PIN;
3170 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3171 }
3172 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3173 
3174 /*
3175  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3176  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3177  *
3178  * The API rules are the same, too: no negative values may be returned.
3179  */
pin_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3180 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3181 			     unsigned int gup_flags, struct page **pages)
3182 {
3183 	int nr_pinned;
3184 
3185 	/*
3186 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3187 	 * rules require returning 0, rather than -errno:
3188 	 */
3189 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3190 		return 0;
3191 
3192 	if (WARN_ON_ONCE(!pages))
3193 		return 0;
3194 	/*
3195 	 * FOLL_FAST_ONLY is required in order to match the API description of
3196 	 * this routine: no fall back to regular ("slow") GUP.
3197 	 */
3198 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3199 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3200 						 pages);
3201 	/*
3202 	 * This routine is not allowed to return negative values. However,
3203 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3204 	 * correct for that here:
3205 	 */
3206 	if (nr_pinned < 0)
3207 		nr_pinned = 0;
3208 
3209 	return nr_pinned;
3210 }
3211 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3212 
3213 /**
3214  * pin_user_pages_remote() - pin pages of a remote process
3215  *
3216  * @mm:		mm_struct of target mm
3217  * @start:	starting user address
3218  * @nr_pages:	number of pages from start to pin
3219  * @gup_flags:	flags modifying lookup behaviour
3220  * @pages:	array that receives pointers to the pages pinned.
3221  *		Should be at least nr_pages long.
3222  * @vmas:	array of pointers to vmas corresponding to each page.
3223  *		Or NULL if the caller does not require them.
3224  * @locked:	pointer to lock flag indicating whether lock is held and
3225  *		subsequently whether VM_FAULT_RETRY functionality can be
3226  *		utilised. Lock must initially be held.
3227  *
3228  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3229  * get_user_pages_remote() for documentation on the function arguments, because
3230  * the arguments here are identical.
3231  *
3232  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3233  * see Documentation/core-api/pin_user_pages.rst for details.
3234  */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)3235 long pin_user_pages_remote(struct mm_struct *mm,
3236 			   unsigned long start, unsigned long nr_pages,
3237 			   unsigned int gup_flags, struct page **pages,
3238 			   struct vm_area_struct **vmas, int *locked)
3239 {
3240 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3241 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3242 		return -EINVAL;
3243 
3244 	if (WARN_ON_ONCE(!pages))
3245 		return -EINVAL;
3246 
3247 	gup_flags |= FOLL_PIN;
3248 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3249 				       pages, vmas, locked);
3250 }
3251 EXPORT_SYMBOL(pin_user_pages_remote);
3252 
3253 /**
3254  * pin_user_pages() - pin user pages in memory for use by other devices
3255  *
3256  * @start:	starting user address
3257  * @nr_pages:	number of pages from start to pin
3258  * @gup_flags:	flags modifying lookup behaviour
3259  * @pages:	array that receives pointers to the pages pinned.
3260  *		Should be at least nr_pages long.
3261  * @vmas:	array of pointers to vmas corresponding to each page.
3262  *		Or NULL if the caller does not require them.
3263  *
3264  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3265  * FOLL_PIN is set.
3266  *
3267  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3268  * see Documentation/core-api/pin_user_pages.rst for details.
3269  */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)3270 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3271 		    unsigned int gup_flags, struct page **pages,
3272 		    struct vm_area_struct **vmas)
3273 {
3274 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3275 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3276 		return -EINVAL;
3277 
3278 	if (WARN_ON_ONCE(!pages))
3279 		return -EINVAL;
3280 
3281 	gup_flags |= FOLL_PIN;
3282 	return __gup_longterm_locked(current->mm, start, nr_pages,
3283 				     pages, vmas, gup_flags);
3284 }
3285 EXPORT_SYMBOL(pin_user_pages);
3286 
3287 /*
3288  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3289  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3290  * FOLL_PIN and rejects FOLL_GET.
3291  */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3292 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3293 			     struct page **pages, unsigned int gup_flags)
3294 {
3295 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3296 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3297 		return -EINVAL;
3298 
3299 	if (WARN_ON_ONCE(!pages))
3300 		return -EINVAL;
3301 
3302 	gup_flags |= FOLL_PIN;
3303 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3304 }
3305 EXPORT_SYMBOL(pin_user_pages_unlocked);
3306