1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)32 static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34 {
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63 }
64
65 /*
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
68 */
try_get_folio(struct page * page,int refs)69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 struct folio *folio;
72
73 retry:
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 return NULL;
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 return NULL;
79
80 /*
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
88 */
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
92 goto retry;
93 }
94
95 return folio;
96 }
97
98 /**
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
103 *
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106 *
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
110 *
111 * FOLL_GET: folio's refcount will be incremented by @refs.
112 *
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
115 *
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
118 *
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
123 */
try_grab_folio(struct page * page,int refs,unsigned int flags)124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 if (flags & FOLL_GET)
127 return try_get_folio(page, refs);
128 else if (flags & FOLL_PIN) {
129 struct folio *folio;
130
131 /*
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
134 * path.
135 */
136 if (unlikely((flags & FOLL_LONGTERM) &&
137 !is_longterm_pinnable_page(page)))
138 return NULL;
139
140 /*
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
143 */
144 folio = try_get_folio(page, refs);
145 if (!folio)
146 return NULL;
147
148 /*
149 * When pinning a large folio, use an exact count to track it.
150 *
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
153 * is pinned. That's why the refcount from the earlier
154 * try_get_folio() is left intact.
155 */
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
158 else
159 folio_ref_add(folio,
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
161 /*
162 * Adjust the pincount before re-checking the PTE for changes.
163 * This is essentially a smp_mb() and is paired with a memory
164 * barrier in page_try_share_anon_rmap().
165 */
166 smp_mb__after_atomic();
167
168 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
169
170 return folio;
171 }
172
173 WARN_ON_ONCE(1);
174 return NULL;
175 }
176
gup_put_folio(struct folio * folio,int refs,unsigned int flags)177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
178 {
179 if (flags & FOLL_PIN) {
180 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 if (folio_test_large(folio))
182 atomic_sub(refs, folio_pincount_ptr(folio));
183 else
184 refs *= GUP_PIN_COUNTING_BIAS;
185 }
186
187 if (!put_devmap_managed_page_refs(&folio->page, refs))
188 folio_put_refs(folio, refs);
189 }
190
191 /**
192 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193 * @page: pointer to page to be grabbed
194 * @flags: gup flags: these are the FOLL_* flag values.
195 *
196 * This might not do anything at all, depending on the flags argument.
197 *
198 * "grab" names in this file mean, "look at flags to decide whether to use
199 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
200 *
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202 * time. Cases: please see the try_grab_folio() documentation, with
203 * "refs=1".
204 *
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
208 */
try_grab_page(struct page * page,unsigned int flags)209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 struct folio *folio = page_folio(page);
212
213 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
214 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
215 return false;
216
217 if (flags & FOLL_GET)
218 folio_ref_inc(folio);
219 else if (flags & FOLL_PIN) {
220 /*
221 * Similar to try_grab_folio(): be sure to *also*
222 * increment the normal page refcount field at least once,
223 * so that the page really is pinned.
224 */
225 if (folio_test_large(folio)) {
226 folio_ref_add(folio, 1);
227 atomic_add(1, folio_pincount_ptr(folio));
228 } else {
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 }
231
232 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
233 }
234
235 return true;
236 }
237
238 /**
239 * unpin_user_page() - release a dma-pinned page
240 * @page: pointer to page to be released
241 *
242 * Pages that were pinned via pin_user_pages*() must be released via either
243 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244 * that such pages can be separately tracked and uniquely handled. In
245 * particular, interactions with RDMA and filesystems need special handling.
246 */
unpin_user_page(struct page * page)247 void unpin_user_page(struct page *page)
248 {
249 sanity_check_pinned_pages(&page, 1);
250 gup_put_folio(page_folio(page), 1, FOLL_PIN);
251 }
252 EXPORT_SYMBOL(unpin_user_page);
253
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)254 static inline struct folio *gup_folio_range_next(struct page *start,
255 unsigned long npages, unsigned long i, unsigned int *ntails)
256 {
257 struct page *next = nth_page(start, i);
258 struct folio *folio = page_folio(next);
259 unsigned int nr = 1;
260
261 if (folio_test_large(folio))
262 nr = min_t(unsigned int, npages - i,
263 folio_nr_pages(folio) - folio_page_idx(folio, next));
264
265 *ntails = nr;
266 return folio;
267 }
268
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)269 static inline struct folio *gup_folio_next(struct page **list,
270 unsigned long npages, unsigned long i, unsigned int *ntails)
271 {
272 struct folio *folio = page_folio(list[i]);
273 unsigned int nr;
274
275 for (nr = i + 1; nr < npages; nr++) {
276 if (page_folio(list[nr]) != folio)
277 break;
278 }
279
280 *ntails = nr - i;
281 return folio;
282 }
283
284 /**
285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286 * @pages: array of pages to be maybe marked dirty, and definitely released.
287 * @npages: number of pages in the @pages array.
288 * @make_dirty: whether to mark the pages dirty
289 *
290 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291 * variants called on that page.
292 *
293 * For each page in the @pages array, make that page (or its head page, if a
294 * compound page) dirty, if @make_dirty is true, and if the page was previously
295 * listed as clean. In any case, releases all pages using unpin_user_page(),
296 * possibly via unpin_user_pages(), for the non-dirty case.
297 *
298 * Please see the unpin_user_page() documentation for details.
299 *
300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301 * required, then the caller should a) verify that this is really correct,
302 * because _lock() is usually required, and b) hand code it:
303 * set_page_dirty_lock(), unpin_user_page().
304 *
305 */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 bool make_dirty)
308 {
309 unsigned long i;
310 struct folio *folio;
311 unsigned int nr;
312
313 if (!make_dirty) {
314 unpin_user_pages(pages, npages);
315 return;
316 }
317
318 sanity_check_pinned_pages(pages, npages);
319 for (i = 0; i < npages; i += nr) {
320 folio = gup_folio_next(pages, npages, i, &nr);
321 /*
322 * Checking PageDirty at this point may race with
323 * clear_page_dirty_for_io(), but that's OK. Two key
324 * cases:
325 *
326 * 1) This code sees the page as already dirty, so it
327 * skips the call to set_page_dirty(). That could happen
328 * because clear_page_dirty_for_io() called
329 * page_mkclean(), followed by set_page_dirty().
330 * However, now the page is going to get written back,
331 * which meets the original intention of setting it
332 * dirty, so all is well: clear_page_dirty_for_io() goes
333 * on to call TestClearPageDirty(), and write the page
334 * back.
335 *
336 * 2) This code sees the page as clean, so it calls
337 * set_page_dirty(). The page stays dirty, despite being
338 * written back, so it gets written back again in the
339 * next writeback cycle. This is harmless.
340 */
341 if (!folio_test_dirty(folio)) {
342 folio_lock(folio);
343 folio_mark_dirty(folio);
344 folio_unlock(folio);
345 }
346 gup_put_folio(folio, nr, FOLL_PIN);
347 }
348 }
349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
350
351 /**
352 * unpin_user_page_range_dirty_lock() - release and optionally dirty
353 * gup-pinned page range
354 *
355 * @page: the starting page of a range maybe marked dirty, and definitely released.
356 * @npages: number of consecutive pages to release.
357 * @make_dirty: whether to mark the pages dirty
358 *
359 * "gup-pinned page range" refers to a range of pages that has had one of the
360 * pin_user_pages() variants called on that page.
361 *
362 * For the page ranges defined by [page .. page+npages], make that range (or
363 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364 * page range was previously listed as clean.
365 *
366 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367 * required, then the caller should a) verify that this is really correct,
368 * because _lock() is usually required, and b) hand code it:
369 * set_page_dirty_lock(), unpin_user_page().
370 *
371 */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
373 bool make_dirty)
374 {
375 unsigned long i;
376 struct folio *folio;
377 unsigned int nr;
378
379 for (i = 0; i < npages; i += nr) {
380 folio = gup_folio_range_next(page, npages, i, &nr);
381 if (make_dirty && !folio_test_dirty(folio)) {
382 folio_lock(folio);
383 folio_mark_dirty(folio);
384 folio_unlock(folio);
385 }
386 gup_put_folio(folio, nr, FOLL_PIN);
387 }
388 }
389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
390
unpin_user_pages_lockless(struct page ** pages,unsigned long npages)391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
392 {
393 unsigned long i;
394 struct folio *folio;
395 unsigned int nr;
396
397 /*
398 * Don't perform any sanity checks because we might have raced with
399 * fork() and some anonymous pages might now actually be shared --
400 * which is why we're unpinning after all.
401 */
402 for (i = 0; i < npages; i += nr) {
403 folio = gup_folio_next(pages, npages, i, &nr);
404 gup_put_folio(folio, nr, FOLL_PIN);
405 }
406 }
407
408 /**
409 * unpin_user_pages() - release an array of gup-pinned pages.
410 * @pages: array of pages to be marked dirty and released.
411 * @npages: number of pages in the @pages array.
412 *
413 * For each page in the @pages array, release the page using unpin_user_page().
414 *
415 * Please see the unpin_user_page() documentation for details.
416 */
unpin_user_pages(struct page ** pages,unsigned long npages)417 void unpin_user_pages(struct page **pages, unsigned long npages)
418 {
419 unsigned long i;
420 struct folio *folio;
421 unsigned int nr;
422
423 /*
424 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 * leaving them pinned), but probably not. More likely, gup/pup returned
426 * a hard -ERRNO error to the caller, who erroneously passed it here.
427 */
428 if (WARN_ON(IS_ERR_VALUE(npages)))
429 return;
430
431 sanity_check_pinned_pages(pages, npages);
432 for (i = 0; i < npages; i += nr) {
433 folio = gup_folio_next(pages, npages, i, &nr);
434 gup_put_folio(folio, nr, FOLL_PIN);
435 }
436 }
437 EXPORT_SYMBOL(unpin_user_pages);
438
439 /*
440 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
442 * cache bouncing on large SMP machines for concurrent pinned gups.
443 */
mm_set_has_pinned_flag(unsigned long * mm_flags)444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
445 {
446 if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 set_bit(MMF_HAS_PINNED, mm_flags);
448 }
449
450 #ifdef CONFIG_MMU
no_page_table(struct vm_area_struct * vma,unsigned int flags)451 static struct page *no_page_table(struct vm_area_struct *vma,
452 unsigned int flags)
453 {
454 /*
455 * When core dumping an enormous anonymous area that nobody
456 * has touched so far, we don't want to allocate unnecessary pages or
457 * page tables. Return error instead of NULL to skip handle_mm_fault,
458 * then get_dump_page() will return NULL to leave a hole in the dump.
459 * But we can only make this optimization where a hole would surely
460 * be zero-filled if handle_mm_fault() actually did handle it.
461 */
462 if ((flags & FOLL_DUMP) &&
463 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
464 return ERR_PTR(-EFAULT);
465 return NULL;
466 }
467
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 pte_t *pte, unsigned int flags)
470 {
471 if (flags & FOLL_TOUCH) {
472 pte_t entry = *pte;
473
474 if (flags & FOLL_WRITE)
475 entry = pte_mkdirty(entry);
476 entry = pte_mkyoung(entry);
477
478 if (!pte_same(*pte, entry)) {
479 set_pte_at(vma->vm_mm, address, pte, entry);
480 update_mmu_cache(vma, address, pte);
481 }
482 }
483
484 /* Proper page table entry exists, but no corresponding struct page */
485 return -EEXIST;
486 }
487
488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)489 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 struct vm_area_struct *vma,
491 unsigned int flags)
492 {
493 /* If the pte is writable, we can write to the page. */
494 if (pte_write(pte))
495 return true;
496
497 /* Maybe FOLL_FORCE is set to override it? */
498 if (!(flags & FOLL_FORCE))
499 return false;
500
501 /* But FOLL_FORCE has no effect on shared mappings */
502 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
503 return false;
504
505 /* ... or read-only private ones */
506 if (!(vma->vm_flags & VM_MAYWRITE))
507 return false;
508
509 /* ... or already writable ones that just need to take a write fault */
510 if (vma->vm_flags & VM_WRITE)
511 return false;
512
513 /*
514 * See can_change_pte_writable(): we broke COW and could map the page
515 * writable if we have an exclusive anonymous page ...
516 */
517 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
518 return false;
519
520 /* ... and a write-fault isn't required for other reasons. */
521 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
522 return false;
523 return !userfaultfd_pte_wp(vma, pte);
524 }
525
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)526 static struct page *follow_page_pte(struct vm_area_struct *vma,
527 unsigned long address, pmd_t *pmd, unsigned int flags,
528 struct dev_pagemap **pgmap)
529 {
530 struct mm_struct *mm = vma->vm_mm;
531 struct page *page;
532 spinlock_t *ptl;
533 pte_t *ptep, pte;
534 int ret;
535
536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 (FOLL_PIN | FOLL_GET)))
539 return ERR_PTR(-EINVAL);
540
541 /*
542 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
543 * ARM64 architecture.
544 */
545 if (is_vm_hugetlb_page(vma)) {
546 page = follow_huge_pmd_pte(vma, address, flags);
547 if (page)
548 return page;
549 return no_page_table(vma, flags);
550 }
551
552 retry:
553 if (unlikely(pmd_bad(*pmd)))
554 return no_page_table(vma, flags);
555
556 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
557 pte = *ptep;
558 if (!pte_present(pte)) {
559 swp_entry_t entry;
560 /*
561 * KSM's break_ksm() relies upon recognizing a ksm page
562 * even while it is being migrated, so for that case we
563 * need migration_entry_wait().
564 */
565 if (likely(!(flags & FOLL_MIGRATION)))
566 goto no_page;
567 if (pte_none(pte))
568 goto no_page;
569 entry = pte_to_swp_entry(pte);
570 if (!is_migration_entry(entry))
571 goto no_page;
572 pte_unmap_unlock(ptep, ptl);
573 migration_entry_wait(mm, pmd, address);
574 goto retry;
575 }
576 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
577 goto no_page;
578
579 page = vm_normal_page(vma, address, pte);
580
581 /*
582 * We only care about anon pages in can_follow_write_pte() and don't
583 * have to worry about pte_devmap() because they are never anon.
584 */
585 if ((flags & FOLL_WRITE) &&
586 !can_follow_write_pte(pte, page, vma, flags)) {
587 page = NULL;
588 goto out;
589 }
590
591 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
592 /*
593 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
594 * case since they are only valid while holding the pgmap
595 * reference.
596 */
597 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
598 if (*pgmap)
599 page = pte_page(pte);
600 else
601 goto no_page;
602 } else if (unlikely(!page)) {
603 if (flags & FOLL_DUMP) {
604 /* Avoid special (like zero) pages in core dumps */
605 page = ERR_PTR(-EFAULT);
606 goto out;
607 }
608
609 if (is_zero_pfn(pte_pfn(pte))) {
610 page = pte_page(pte);
611 } else {
612 ret = follow_pfn_pte(vma, address, ptep, flags);
613 page = ERR_PTR(ret);
614 goto out;
615 }
616 }
617
618 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
619 page = ERR_PTR(-EMLINK);
620 goto out;
621 }
622
623 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
624 !PageAnonExclusive(page), page);
625
626 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
627 if (unlikely(!try_grab_page(page, flags))) {
628 page = ERR_PTR(-ENOMEM);
629 goto out;
630 }
631 /*
632 * We need to make the page accessible if and only if we are going
633 * to access its content (the FOLL_PIN case). Please see
634 * Documentation/core-api/pin_user_pages.rst for details.
635 */
636 if (flags & FOLL_PIN) {
637 ret = arch_make_page_accessible(page);
638 if (ret) {
639 unpin_user_page(page);
640 page = ERR_PTR(ret);
641 goto out;
642 }
643 }
644 if (flags & FOLL_TOUCH) {
645 if ((flags & FOLL_WRITE) &&
646 !pte_dirty(pte) && !PageDirty(page))
647 set_page_dirty(page);
648 /*
649 * pte_mkyoung() would be more correct here, but atomic care
650 * is needed to avoid losing the dirty bit: it is easier to use
651 * mark_page_accessed().
652 */
653 mark_page_accessed(page);
654 }
655 out:
656 pte_unmap_unlock(ptep, ptl);
657 return page;
658 no_page:
659 pte_unmap_unlock(ptep, ptl);
660 if (!pte_none(pte))
661 return NULL;
662 return no_page_table(vma, flags);
663 }
664
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)665 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
666 unsigned long address, pud_t *pudp,
667 unsigned int flags,
668 struct follow_page_context *ctx)
669 {
670 pmd_t *pmd, pmdval;
671 spinlock_t *ptl;
672 struct page *page;
673 struct mm_struct *mm = vma->vm_mm;
674
675 pmd = pmd_offset(pudp, address);
676 /*
677 * The READ_ONCE() will stabilize the pmdval in a register or
678 * on the stack so that it will stop changing under the code.
679 */
680 pmdval = READ_ONCE(*pmd);
681 if (pmd_none(pmdval))
682 return no_page_table(vma, flags);
683 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
684 page = follow_huge_pmd_pte(vma, address, flags);
685 if (page)
686 return page;
687 return no_page_table(vma, flags);
688 }
689 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
690 page = follow_huge_pd(vma, address,
691 __hugepd(pmd_val(pmdval)), flags,
692 PMD_SHIFT);
693 if (page)
694 return page;
695 return no_page_table(vma, flags);
696 }
697 retry:
698 if (!pmd_present(pmdval)) {
699 /*
700 * Should never reach here, if thp migration is not supported;
701 * Otherwise, it must be a thp migration entry.
702 */
703 VM_BUG_ON(!thp_migration_supported() ||
704 !is_pmd_migration_entry(pmdval));
705
706 if (likely(!(flags & FOLL_MIGRATION)))
707 return no_page_table(vma, flags);
708
709 pmd_migration_entry_wait(mm, pmd);
710 pmdval = READ_ONCE(*pmd);
711 /*
712 * MADV_DONTNEED may convert the pmd to null because
713 * mmap_lock is held in read mode
714 */
715 if (pmd_none(pmdval))
716 return no_page_table(vma, flags);
717 goto retry;
718 }
719 if (pmd_devmap(pmdval)) {
720 ptl = pmd_lock(mm, pmd);
721 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
722 spin_unlock(ptl);
723 if (page)
724 return page;
725 }
726 if (likely(!pmd_trans_huge(pmdval)))
727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728
729 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
730 return no_page_table(vma, flags);
731
732 retry_locked:
733 ptl = pmd_lock(mm, pmd);
734 if (unlikely(pmd_none(*pmd))) {
735 spin_unlock(ptl);
736 return no_page_table(vma, flags);
737 }
738 if (unlikely(!pmd_present(*pmd))) {
739 spin_unlock(ptl);
740 if (likely(!(flags & FOLL_MIGRATION)))
741 return no_page_table(vma, flags);
742 pmd_migration_entry_wait(mm, pmd);
743 goto retry_locked;
744 }
745 if (unlikely(!pmd_trans_huge(*pmd))) {
746 spin_unlock(ptl);
747 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
748 }
749 if (flags & FOLL_SPLIT_PMD) {
750 int ret;
751 page = pmd_page(*pmd);
752 if (is_huge_zero_page(page)) {
753 spin_unlock(ptl);
754 ret = 0;
755 split_huge_pmd(vma, pmd, address);
756 if (pmd_trans_unstable(pmd))
757 ret = -EBUSY;
758 } else {
759 spin_unlock(ptl);
760 split_huge_pmd(vma, pmd, address);
761 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
762 }
763
764 return ret ? ERR_PTR(ret) :
765 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
766 }
767 page = follow_trans_huge_pmd(vma, address, pmd, flags);
768 spin_unlock(ptl);
769 ctx->page_mask = HPAGE_PMD_NR - 1;
770 return page;
771 }
772
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)773 static struct page *follow_pud_mask(struct vm_area_struct *vma,
774 unsigned long address, p4d_t *p4dp,
775 unsigned int flags,
776 struct follow_page_context *ctx)
777 {
778 pud_t *pud;
779 spinlock_t *ptl;
780 struct page *page;
781 struct mm_struct *mm = vma->vm_mm;
782
783 pud = pud_offset(p4dp, address);
784 if (pud_none(*pud))
785 return no_page_table(vma, flags);
786 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
787 page = follow_huge_pud(mm, address, pud, flags);
788 if (page)
789 return page;
790 return no_page_table(vma, flags);
791 }
792 if (is_hugepd(__hugepd(pud_val(*pud)))) {
793 page = follow_huge_pd(vma, address,
794 __hugepd(pud_val(*pud)), flags,
795 PUD_SHIFT);
796 if (page)
797 return page;
798 return no_page_table(vma, flags);
799 }
800 if (pud_devmap(*pud)) {
801 ptl = pud_lock(mm, pud);
802 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
803 spin_unlock(ptl);
804 if (page)
805 return page;
806 }
807 if (unlikely(pud_bad(*pud)))
808 return no_page_table(vma, flags);
809
810 return follow_pmd_mask(vma, address, pud, flags, ctx);
811 }
812
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)813 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
814 unsigned long address, pgd_t *pgdp,
815 unsigned int flags,
816 struct follow_page_context *ctx)
817 {
818 p4d_t *p4d;
819 struct page *page;
820
821 p4d = p4d_offset(pgdp, address);
822 if (p4d_none(*p4d))
823 return no_page_table(vma, flags);
824 BUILD_BUG_ON(p4d_huge(*p4d));
825 if (unlikely(p4d_bad(*p4d)))
826 return no_page_table(vma, flags);
827
828 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
829 page = follow_huge_pd(vma, address,
830 __hugepd(p4d_val(*p4d)), flags,
831 P4D_SHIFT);
832 if (page)
833 return page;
834 return no_page_table(vma, flags);
835 }
836 return follow_pud_mask(vma, address, p4d, flags, ctx);
837 }
838
839 /**
840 * follow_page_mask - look up a page descriptor from a user-virtual address
841 * @vma: vm_area_struct mapping @address
842 * @address: virtual address to look up
843 * @flags: flags modifying lookup behaviour
844 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
845 * pointer to output page_mask
846 *
847 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
848 *
849 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
850 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
851 *
852 * When getting an anonymous page and the caller has to trigger unsharing
853 * of a shared anonymous page first, -EMLINK is returned. The caller should
854 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
855 * relevant with FOLL_PIN and !FOLL_WRITE.
856 *
857 * On output, the @ctx->page_mask is set according to the size of the page.
858 *
859 * Return: the mapped (struct page *), %NULL if no mapping exists, or
860 * an error pointer if there is a mapping to something not represented
861 * by a page descriptor (see also vm_normal_page()).
862 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)863 static struct page *follow_page_mask(struct vm_area_struct *vma,
864 unsigned long address, unsigned int flags,
865 struct follow_page_context *ctx)
866 {
867 pgd_t *pgd;
868 struct page *page;
869 struct mm_struct *mm = vma->vm_mm;
870
871 ctx->page_mask = 0;
872
873 /* make this handle hugepd */
874 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
875 if (!IS_ERR(page)) {
876 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
877 return page;
878 }
879
880 pgd = pgd_offset(mm, address);
881
882 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
883 return no_page_table(vma, flags);
884
885 if (pgd_huge(*pgd)) {
886 page = follow_huge_pgd(mm, address, pgd, flags);
887 if (page)
888 return page;
889 return no_page_table(vma, flags);
890 }
891 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
892 page = follow_huge_pd(vma, address,
893 __hugepd(pgd_val(*pgd)), flags,
894 PGDIR_SHIFT);
895 if (page)
896 return page;
897 return no_page_table(vma, flags);
898 }
899
900 return follow_p4d_mask(vma, address, pgd, flags, ctx);
901 }
902
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)903 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904 unsigned int foll_flags)
905 {
906 struct follow_page_context ctx = { NULL };
907 struct page *page;
908
909 if (vma_is_secretmem(vma))
910 return NULL;
911
912 if (foll_flags & FOLL_PIN)
913 return NULL;
914
915 page = follow_page_mask(vma, address, foll_flags, &ctx);
916 if (ctx.pgmap)
917 put_dev_pagemap(ctx.pgmap);
918 return page;
919 }
920
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)921 static int get_gate_page(struct mm_struct *mm, unsigned long address,
922 unsigned int gup_flags, struct vm_area_struct **vma,
923 struct page **page)
924 {
925 pgd_t *pgd;
926 p4d_t *p4d;
927 pud_t *pud;
928 pmd_t *pmd;
929 pte_t *pte;
930 int ret = -EFAULT;
931
932 /* user gate pages are read-only */
933 if (gup_flags & FOLL_WRITE)
934 return -EFAULT;
935 if (address > TASK_SIZE)
936 pgd = pgd_offset_k(address);
937 else
938 pgd = pgd_offset_gate(mm, address);
939 if (pgd_none(*pgd))
940 return -EFAULT;
941 p4d = p4d_offset(pgd, address);
942 if (p4d_none(*p4d))
943 return -EFAULT;
944 pud = pud_offset(p4d, address);
945 if (pud_none(*pud))
946 return -EFAULT;
947 pmd = pmd_offset(pud, address);
948 if (!pmd_present(*pmd))
949 return -EFAULT;
950 VM_BUG_ON(pmd_trans_huge(*pmd));
951 pte = pte_offset_map(pmd, address);
952 if (pte_none(*pte))
953 goto unmap;
954 *vma = get_gate_vma(mm);
955 if (!page)
956 goto out;
957 *page = vm_normal_page(*vma, address, *pte);
958 if (!*page) {
959 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
960 goto unmap;
961 *page = pte_page(*pte);
962 }
963 if (unlikely(!try_grab_page(*page, gup_flags))) {
964 ret = -ENOMEM;
965 goto unmap;
966 }
967 out:
968 ret = 0;
969 unmap:
970 pte_unmap(pte);
971 return ret;
972 }
973
974 /*
975 * mmap_lock must be held on entry. If @locked != NULL and *@flags
976 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
977 * is, *@locked will be set to 0 and -EBUSY returned.
978 */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int * flags,bool unshare,int * locked)979 static int faultin_page(struct vm_area_struct *vma,
980 unsigned long address, unsigned int *flags, bool unshare,
981 int *locked)
982 {
983 unsigned int fault_flags = 0;
984 vm_fault_t ret;
985
986 if (*flags & FOLL_NOFAULT)
987 return -EFAULT;
988 if (*flags & FOLL_WRITE)
989 fault_flags |= FAULT_FLAG_WRITE;
990 if (*flags & FOLL_REMOTE)
991 fault_flags |= FAULT_FLAG_REMOTE;
992 if (locked)
993 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
994 if (*flags & FOLL_NOWAIT)
995 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
996 if (*flags & FOLL_TRIED) {
997 /*
998 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
999 * can co-exist
1000 */
1001 fault_flags |= FAULT_FLAG_TRIED;
1002 }
1003 if (unshare) {
1004 fault_flags |= FAULT_FLAG_UNSHARE;
1005 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1006 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1007 }
1008
1009 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1010
1011 if (ret & VM_FAULT_COMPLETED) {
1012 /*
1013 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1014 * mmap lock in the page fault handler. Sanity check this.
1015 */
1016 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1017 if (locked)
1018 *locked = 0;
1019 /*
1020 * We should do the same as VM_FAULT_RETRY, but let's not
1021 * return -EBUSY since that's not reflecting the reality of
1022 * what has happened - we've just fully completed a page
1023 * fault, with the mmap lock released. Use -EAGAIN to show
1024 * that we want to take the mmap lock _again_.
1025 */
1026 return -EAGAIN;
1027 }
1028
1029 if (ret & VM_FAULT_ERROR) {
1030 int err = vm_fault_to_errno(ret, *flags);
1031
1032 if (err)
1033 return err;
1034 BUG();
1035 }
1036
1037 if (ret & VM_FAULT_RETRY) {
1038 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1039 *locked = 0;
1040 return -EBUSY;
1041 }
1042
1043 return 0;
1044 }
1045
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1046 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1047 {
1048 vm_flags_t vm_flags = vma->vm_flags;
1049 int write = (gup_flags & FOLL_WRITE);
1050 int foreign = (gup_flags & FOLL_REMOTE);
1051
1052 if (vm_flags & (VM_IO | VM_PFNMAP))
1053 return -EFAULT;
1054
1055 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1056 return -EFAULT;
1057
1058 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1059 return -EOPNOTSUPP;
1060
1061 if (vma_is_secretmem(vma))
1062 return -EFAULT;
1063
1064 if (write) {
1065 if (!(vm_flags & VM_WRITE)) {
1066 if (!(gup_flags & FOLL_FORCE))
1067 return -EFAULT;
1068 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1069 if (is_vm_hugetlb_page(vma))
1070 return -EFAULT;
1071 /*
1072 * We used to let the write,force case do COW in a
1073 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1074 * set a breakpoint in a read-only mapping of an
1075 * executable, without corrupting the file (yet only
1076 * when that file had been opened for writing!).
1077 * Anon pages in shared mappings are surprising: now
1078 * just reject it.
1079 */
1080 if (!is_cow_mapping(vm_flags))
1081 return -EFAULT;
1082 }
1083 } else if (!(vm_flags & VM_READ)) {
1084 if (!(gup_flags & FOLL_FORCE))
1085 return -EFAULT;
1086 /*
1087 * Is there actually any vma we can reach here which does not
1088 * have VM_MAYREAD set?
1089 */
1090 if (!(vm_flags & VM_MAYREAD))
1091 return -EFAULT;
1092 }
1093 /*
1094 * gups are always data accesses, not instruction
1095 * fetches, so execute=false here
1096 */
1097 if (!arch_vma_access_permitted(vma, write, false, foreign))
1098 return -EFAULT;
1099 return 0;
1100 }
1101
1102 /**
1103 * __get_user_pages() - pin user pages in memory
1104 * @mm: mm_struct of target mm
1105 * @start: starting user address
1106 * @nr_pages: number of pages from start to pin
1107 * @gup_flags: flags modifying pin behaviour
1108 * @pages: array that receives pointers to the pages pinned.
1109 * Should be at least nr_pages long. Or NULL, if caller
1110 * only intends to ensure the pages are faulted in.
1111 * @vmas: array of pointers to vmas corresponding to each page.
1112 * Or NULL if the caller does not require them.
1113 * @locked: whether we're still with the mmap_lock held
1114 *
1115 * Returns either number of pages pinned (which may be less than the
1116 * number requested), or an error. Details about the return value:
1117 *
1118 * -- If nr_pages is 0, returns 0.
1119 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1120 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1121 * pages pinned. Again, this may be less than nr_pages.
1122 * -- 0 return value is possible when the fault would need to be retried.
1123 *
1124 * The caller is responsible for releasing returned @pages, via put_page().
1125 *
1126 * @vmas are valid only as long as mmap_lock is held.
1127 *
1128 * Must be called with mmap_lock held. It may be released. See below.
1129 *
1130 * __get_user_pages walks a process's page tables and takes a reference to
1131 * each struct page that each user address corresponds to at a given
1132 * instant. That is, it takes the page that would be accessed if a user
1133 * thread accesses the given user virtual address at that instant.
1134 *
1135 * This does not guarantee that the page exists in the user mappings when
1136 * __get_user_pages returns, and there may even be a completely different
1137 * page there in some cases (eg. if mmapped pagecache has been invalidated
1138 * and subsequently re faulted). However it does guarantee that the page
1139 * won't be freed completely. And mostly callers simply care that the page
1140 * contains data that was valid *at some point in time*. Typically, an IO
1141 * or similar operation cannot guarantee anything stronger anyway because
1142 * locks can't be held over the syscall boundary.
1143 *
1144 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1145 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1146 * appropriate) must be called after the page is finished with, and
1147 * before put_page is called.
1148 *
1149 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1150 * released by an up_read(). That can happen if @gup_flags does not
1151 * have FOLL_NOWAIT.
1152 *
1153 * A caller using such a combination of @locked and @gup_flags
1154 * must therefore hold the mmap_lock for reading only, and recognize
1155 * when it's been released. Otherwise, it must be held for either
1156 * reading or writing and will not be released.
1157 *
1158 * In most cases, get_user_pages or get_user_pages_fast should be used
1159 * instead of __get_user_pages. __get_user_pages should be used only if
1160 * you need some special @gup_flags.
1161 */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1162 static long __get_user_pages(struct mm_struct *mm,
1163 unsigned long start, unsigned long nr_pages,
1164 unsigned int gup_flags, struct page **pages,
1165 struct vm_area_struct **vmas, int *locked)
1166 {
1167 long ret = 0, i = 0;
1168 struct vm_area_struct *vma = NULL;
1169 struct follow_page_context ctx = { NULL };
1170
1171 if (!nr_pages)
1172 return 0;
1173
1174 start = untagged_addr(start);
1175
1176 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1177
1178 do {
1179 struct page *page;
1180 unsigned int foll_flags = gup_flags;
1181 unsigned int page_increm;
1182
1183 /* first iteration or cross vma bound */
1184 if (!vma || start >= vma->vm_end) {
1185 vma = find_extend_vma(mm, start);
1186 if (!vma && in_gate_area(mm, start)) {
1187 ret = get_gate_page(mm, start & PAGE_MASK,
1188 gup_flags, &vma,
1189 pages ? &pages[i] : NULL);
1190 if (ret)
1191 goto out;
1192 ctx.page_mask = 0;
1193 goto next_page;
1194 }
1195
1196 if (!vma) {
1197 ret = -EFAULT;
1198 goto out;
1199 }
1200 ret = check_vma_flags(vma, gup_flags);
1201 if (ret)
1202 goto out;
1203
1204 if (is_vm_hugetlb_page(vma)) {
1205 i = follow_hugetlb_page(mm, vma, pages, vmas,
1206 &start, &nr_pages, i,
1207 gup_flags, locked);
1208 if (locked && *locked == 0) {
1209 /*
1210 * We've got a VM_FAULT_RETRY
1211 * and we've lost mmap_lock.
1212 * We must stop here.
1213 */
1214 BUG_ON(gup_flags & FOLL_NOWAIT);
1215 goto out;
1216 }
1217 continue;
1218 }
1219 }
1220 retry:
1221 /*
1222 * If we have a pending SIGKILL, don't keep faulting pages and
1223 * potentially allocating memory.
1224 */
1225 if (fatal_signal_pending(current)) {
1226 ret = -EINTR;
1227 goto out;
1228 }
1229 cond_resched();
1230
1231 page = follow_page_mask(vma, start, foll_flags, &ctx);
1232 if (!page || PTR_ERR(page) == -EMLINK) {
1233 ret = faultin_page(vma, start, &foll_flags,
1234 PTR_ERR(page) == -EMLINK, locked);
1235 switch (ret) {
1236 case 0:
1237 goto retry;
1238 case -EBUSY:
1239 case -EAGAIN:
1240 ret = 0;
1241 fallthrough;
1242 case -EFAULT:
1243 case -ENOMEM:
1244 case -EHWPOISON:
1245 goto out;
1246 }
1247 BUG();
1248 } else if (PTR_ERR(page) == -EEXIST) {
1249 /*
1250 * Proper page table entry exists, but no corresponding
1251 * struct page. If the caller expects **pages to be
1252 * filled in, bail out now, because that can't be done
1253 * for this page.
1254 */
1255 if (pages) {
1256 ret = PTR_ERR(page);
1257 goto out;
1258 }
1259
1260 goto next_page;
1261 } else if (IS_ERR(page)) {
1262 ret = PTR_ERR(page);
1263 goto out;
1264 }
1265 if (pages) {
1266 pages[i] = page;
1267 flush_anon_page(vma, page, start);
1268 flush_dcache_page(page);
1269 ctx.page_mask = 0;
1270 }
1271 next_page:
1272 if (vmas) {
1273 vmas[i] = vma;
1274 ctx.page_mask = 0;
1275 }
1276 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1277 if (page_increm > nr_pages)
1278 page_increm = nr_pages;
1279 i += page_increm;
1280 start += page_increm * PAGE_SIZE;
1281 nr_pages -= page_increm;
1282 } while (nr_pages);
1283 out:
1284 if (ctx.pgmap)
1285 put_dev_pagemap(ctx.pgmap);
1286 return i ? i : ret;
1287 }
1288
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1289 static bool vma_permits_fault(struct vm_area_struct *vma,
1290 unsigned int fault_flags)
1291 {
1292 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1293 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1294 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1295
1296 if (!(vm_flags & vma->vm_flags))
1297 return false;
1298
1299 /*
1300 * The architecture might have a hardware protection
1301 * mechanism other than read/write that can deny access.
1302 *
1303 * gup always represents data access, not instruction
1304 * fetches, so execute=false here:
1305 */
1306 if (!arch_vma_access_permitted(vma, write, false, foreign))
1307 return false;
1308
1309 return true;
1310 }
1311
1312 /**
1313 * fixup_user_fault() - manually resolve a user page fault
1314 * @mm: mm_struct of target mm
1315 * @address: user address
1316 * @fault_flags:flags to pass down to handle_mm_fault()
1317 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1318 * does not allow retry. If NULL, the caller must guarantee
1319 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1320 *
1321 * This is meant to be called in the specific scenario where for locking reasons
1322 * we try to access user memory in atomic context (within a pagefault_disable()
1323 * section), this returns -EFAULT, and we want to resolve the user fault before
1324 * trying again.
1325 *
1326 * Typically this is meant to be used by the futex code.
1327 *
1328 * The main difference with get_user_pages() is that this function will
1329 * unconditionally call handle_mm_fault() which will in turn perform all the
1330 * necessary SW fixup of the dirty and young bits in the PTE, while
1331 * get_user_pages() only guarantees to update these in the struct page.
1332 *
1333 * This is important for some architectures where those bits also gate the
1334 * access permission to the page because they are maintained in software. On
1335 * such architectures, gup() will not be enough to make a subsequent access
1336 * succeed.
1337 *
1338 * This function will not return with an unlocked mmap_lock. So it has not the
1339 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1340 */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1341 int fixup_user_fault(struct mm_struct *mm,
1342 unsigned long address, unsigned int fault_flags,
1343 bool *unlocked)
1344 {
1345 struct vm_area_struct *vma;
1346 vm_fault_t ret;
1347
1348 address = untagged_addr(address);
1349
1350 if (unlocked)
1351 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1352
1353 retry:
1354 vma = find_extend_vma(mm, address);
1355 if (!vma || address < vma->vm_start)
1356 return -EFAULT;
1357
1358 if (!vma_permits_fault(vma, fault_flags))
1359 return -EFAULT;
1360
1361 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1362 fatal_signal_pending(current))
1363 return -EINTR;
1364
1365 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1366
1367 if (ret & VM_FAULT_COMPLETED) {
1368 /*
1369 * NOTE: it's a pity that we need to retake the lock here
1370 * to pair with the unlock() in the callers. Ideally we
1371 * could tell the callers so they do not need to unlock.
1372 */
1373 mmap_read_lock(mm);
1374 *unlocked = true;
1375 return 0;
1376 }
1377
1378 if (ret & VM_FAULT_ERROR) {
1379 int err = vm_fault_to_errno(ret, 0);
1380
1381 if (err)
1382 return err;
1383 BUG();
1384 }
1385
1386 if (ret & VM_FAULT_RETRY) {
1387 mmap_read_lock(mm);
1388 *unlocked = true;
1389 fault_flags |= FAULT_FLAG_TRIED;
1390 goto retry;
1391 }
1392
1393 return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(fixup_user_fault);
1396
1397 /*
1398 * Please note that this function, unlike __get_user_pages will not
1399 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1400 */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int flags)1401 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1402 unsigned long start,
1403 unsigned long nr_pages,
1404 struct page **pages,
1405 struct vm_area_struct **vmas,
1406 int *locked,
1407 unsigned int flags)
1408 {
1409 long ret, pages_done;
1410 bool lock_dropped;
1411
1412 if (locked) {
1413 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1414 BUG_ON(vmas);
1415 /* check caller initialized locked */
1416 BUG_ON(*locked != 1);
1417 }
1418
1419 if (flags & FOLL_PIN)
1420 mm_set_has_pinned_flag(&mm->flags);
1421
1422 /*
1423 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1424 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1425 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1426 * for FOLL_GET, not for the newer FOLL_PIN.
1427 *
1428 * FOLL_PIN always expects pages to be non-null, but no need to assert
1429 * that here, as any failures will be obvious enough.
1430 */
1431 if (pages && !(flags & FOLL_PIN))
1432 flags |= FOLL_GET;
1433
1434 pages_done = 0;
1435 lock_dropped = false;
1436 for (;;) {
1437 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1438 vmas, locked);
1439 if (!locked)
1440 /* VM_FAULT_RETRY couldn't trigger, bypass */
1441 return ret;
1442
1443 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1444 if (!*locked) {
1445 BUG_ON(ret < 0);
1446 BUG_ON(ret >= nr_pages);
1447 }
1448
1449 if (ret > 0) {
1450 nr_pages -= ret;
1451 pages_done += ret;
1452 if (!nr_pages)
1453 break;
1454 }
1455 if (*locked) {
1456 /*
1457 * VM_FAULT_RETRY didn't trigger or it was a
1458 * FOLL_NOWAIT.
1459 */
1460 if (!pages_done)
1461 pages_done = ret;
1462 break;
1463 }
1464 /*
1465 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1466 * For the prefault case (!pages) we only update counts.
1467 */
1468 if (likely(pages))
1469 pages += ret;
1470 start += ret << PAGE_SHIFT;
1471 lock_dropped = true;
1472
1473 retry:
1474 /*
1475 * Repeat on the address that fired VM_FAULT_RETRY
1476 * with both FAULT_FLAG_ALLOW_RETRY and
1477 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1478 * by fatal signals, so we need to check it before we
1479 * start trying again otherwise it can loop forever.
1480 */
1481
1482 if (fatal_signal_pending(current)) {
1483 if (!pages_done)
1484 pages_done = -EINTR;
1485 break;
1486 }
1487
1488 ret = mmap_read_lock_killable(mm);
1489 if (ret) {
1490 BUG_ON(ret > 0);
1491 if (!pages_done)
1492 pages_done = ret;
1493 break;
1494 }
1495
1496 *locked = 1;
1497 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1498 pages, NULL, locked);
1499 if (!*locked) {
1500 /* Continue to retry until we succeeded */
1501 BUG_ON(ret != 0);
1502 goto retry;
1503 }
1504 if (ret != 1) {
1505 BUG_ON(ret > 1);
1506 if (!pages_done)
1507 pages_done = ret;
1508 break;
1509 }
1510 nr_pages--;
1511 pages_done++;
1512 if (!nr_pages)
1513 break;
1514 if (likely(pages))
1515 pages++;
1516 start += PAGE_SIZE;
1517 }
1518 if (lock_dropped && *locked) {
1519 /*
1520 * We must let the caller know we temporarily dropped the lock
1521 * and so the critical section protected by it was lost.
1522 */
1523 mmap_read_unlock(mm);
1524 *locked = 0;
1525 }
1526 return pages_done;
1527 }
1528
1529 /**
1530 * populate_vma_page_range() - populate a range of pages in the vma.
1531 * @vma: target vma
1532 * @start: start address
1533 * @end: end address
1534 * @locked: whether the mmap_lock is still held
1535 *
1536 * This takes care of mlocking the pages too if VM_LOCKED is set.
1537 *
1538 * Return either number of pages pinned in the vma, or a negative error
1539 * code on error.
1540 *
1541 * vma->vm_mm->mmap_lock must be held.
1542 *
1543 * If @locked is NULL, it may be held for read or write and will
1544 * be unperturbed.
1545 *
1546 * If @locked is non-NULL, it must held for read only and may be
1547 * released. If it's released, *@locked will be set to 0.
1548 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1549 long populate_vma_page_range(struct vm_area_struct *vma,
1550 unsigned long start, unsigned long end, int *locked)
1551 {
1552 struct mm_struct *mm = vma->vm_mm;
1553 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1554 int gup_flags;
1555 long ret;
1556
1557 VM_BUG_ON(!PAGE_ALIGNED(start));
1558 VM_BUG_ON(!PAGE_ALIGNED(end));
1559 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1560 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1561 mmap_assert_locked(mm);
1562
1563 /*
1564 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1565 * faultin_page() to break COW, so it has no work to do here.
1566 */
1567 if (vma->vm_flags & VM_LOCKONFAULT)
1568 return nr_pages;
1569
1570 gup_flags = FOLL_TOUCH;
1571 /*
1572 * We want to touch writable mappings with a write fault in order
1573 * to break COW, except for shared mappings because these don't COW
1574 * and we would not want to dirty them for nothing.
1575 */
1576 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1577 gup_flags |= FOLL_WRITE;
1578
1579 /*
1580 * We want mlock to succeed for regions that have any permissions
1581 * other than PROT_NONE.
1582 */
1583 if (vma_is_accessible(vma))
1584 gup_flags |= FOLL_FORCE;
1585
1586 /*
1587 * We made sure addr is within a VMA, so the following will
1588 * not result in a stack expansion that recurses back here.
1589 */
1590 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1591 NULL, NULL, locked);
1592 lru_add_drain();
1593 return ret;
1594 }
1595
1596 /*
1597 * faultin_vma_page_range() - populate (prefault) page tables inside the
1598 * given VMA range readable/writable
1599 *
1600 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1601 *
1602 * @vma: target vma
1603 * @start: start address
1604 * @end: end address
1605 * @write: whether to prefault readable or writable
1606 * @locked: whether the mmap_lock is still held
1607 *
1608 * Returns either number of processed pages in the vma, or a negative error
1609 * code on error (see __get_user_pages()).
1610 *
1611 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1612 * covered by the VMA.
1613 *
1614 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1615 *
1616 * If @locked is non-NULL, it must held for read only and may be released. If
1617 * it's released, *@locked will be set to 0.
1618 */
faultin_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool write,int * locked)1619 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1620 unsigned long end, bool write, int *locked)
1621 {
1622 struct mm_struct *mm = vma->vm_mm;
1623 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1624 int gup_flags;
1625 long ret;
1626
1627 VM_BUG_ON(!PAGE_ALIGNED(start));
1628 VM_BUG_ON(!PAGE_ALIGNED(end));
1629 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1630 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1631 mmap_assert_locked(mm);
1632
1633 /*
1634 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1635 * the page dirty with FOLL_WRITE -- which doesn't make a
1636 * difference with !FOLL_FORCE, because the page is writable
1637 * in the page table.
1638 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1639 * a poisoned page.
1640 * !FOLL_FORCE: Require proper access permissions.
1641 */
1642 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1643 if (write)
1644 gup_flags |= FOLL_WRITE;
1645
1646 /*
1647 * We want to report -EINVAL instead of -EFAULT for any permission
1648 * problems or incompatible mappings.
1649 */
1650 if (check_vma_flags(vma, gup_flags))
1651 return -EINVAL;
1652
1653 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1654 NULL, NULL, locked);
1655 lru_add_drain();
1656 return ret;
1657 }
1658
1659 /*
1660 * __mm_populate - populate and/or mlock pages within a range of address space.
1661 *
1662 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1663 * flags. VMAs must be already marked with the desired vm_flags, and
1664 * mmap_lock must not be held.
1665 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1666 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1667 {
1668 struct mm_struct *mm = current->mm;
1669 unsigned long end, nstart, nend;
1670 struct vm_area_struct *vma = NULL;
1671 int locked = 0;
1672 long ret = 0;
1673
1674 end = start + len;
1675
1676 for (nstart = start; nstart < end; nstart = nend) {
1677 /*
1678 * We want to fault in pages for [nstart; end) address range.
1679 * Find first corresponding VMA.
1680 */
1681 if (!locked) {
1682 locked = 1;
1683 mmap_read_lock(mm);
1684 vma = find_vma_intersection(mm, nstart, end);
1685 } else if (nstart >= vma->vm_end)
1686 vma = find_vma_intersection(mm, vma->vm_end, end);
1687
1688 if (!vma)
1689 break;
1690 /*
1691 * Set [nstart; nend) to intersection of desired address
1692 * range with the first VMA. Also, skip undesirable VMA types.
1693 */
1694 nend = min(end, vma->vm_end);
1695 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1696 continue;
1697 if (nstart < vma->vm_start)
1698 nstart = vma->vm_start;
1699 /*
1700 * Now fault in a range of pages. populate_vma_page_range()
1701 * double checks the vma flags, so that it won't mlock pages
1702 * if the vma was already munlocked.
1703 */
1704 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1705 if (ret < 0) {
1706 if (ignore_errors) {
1707 ret = 0;
1708 continue; /* continue at next VMA */
1709 }
1710 break;
1711 }
1712 nend = nstart + ret * PAGE_SIZE;
1713 ret = 0;
1714 }
1715 if (locked)
1716 mmap_read_unlock(mm);
1717 return ret; /* 0 or negative error code */
1718 }
1719 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int foll_flags)1720 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1721 unsigned long nr_pages, struct page **pages,
1722 struct vm_area_struct **vmas, int *locked,
1723 unsigned int foll_flags)
1724 {
1725 struct vm_area_struct *vma;
1726 unsigned long vm_flags;
1727 long i;
1728
1729 /* calculate required read or write permissions.
1730 * If FOLL_FORCE is set, we only require the "MAY" flags.
1731 */
1732 vm_flags = (foll_flags & FOLL_WRITE) ?
1733 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1734 vm_flags &= (foll_flags & FOLL_FORCE) ?
1735 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1736
1737 for (i = 0; i < nr_pages; i++) {
1738 vma = find_vma(mm, start);
1739 if (!vma)
1740 goto finish_or_fault;
1741
1742 /* protect what we can, including chardevs */
1743 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1744 !(vm_flags & vma->vm_flags))
1745 goto finish_or_fault;
1746
1747 if (pages) {
1748 pages[i] = virt_to_page((void *)start);
1749 if (pages[i])
1750 get_page(pages[i]);
1751 }
1752 if (vmas)
1753 vmas[i] = vma;
1754 start = (start + PAGE_SIZE) & PAGE_MASK;
1755 }
1756
1757 return i;
1758
1759 finish_or_fault:
1760 return i ? : -EFAULT;
1761 }
1762 #endif /* !CONFIG_MMU */
1763
1764 /**
1765 * fault_in_writeable - fault in userspace address range for writing
1766 * @uaddr: start of address range
1767 * @size: size of address range
1768 *
1769 * Returns the number of bytes not faulted in (like copy_to_user() and
1770 * copy_from_user()).
1771 */
fault_in_writeable(char __user * uaddr,size_t size)1772 size_t fault_in_writeable(char __user *uaddr, size_t size)
1773 {
1774 char __user *start = uaddr, *end;
1775
1776 if (unlikely(size == 0))
1777 return 0;
1778 if (!user_write_access_begin(uaddr, size))
1779 return size;
1780 if (!PAGE_ALIGNED(uaddr)) {
1781 unsafe_put_user(0, uaddr, out);
1782 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1783 }
1784 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1785 if (unlikely(end < start))
1786 end = NULL;
1787 while (uaddr != end) {
1788 unsafe_put_user(0, uaddr, out);
1789 uaddr += PAGE_SIZE;
1790 }
1791
1792 out:
1793 user_write_access_end();
1794 if (size > uaddr - start)
1795 return size - (uaddr - start);
1796 return 0;
1797 }
1798 EXPORT_SYMBOL(fault_in_writeable);
1799
1800 /**
1801 * fault_in_subpage_writeable - fault in an address range for writing
1802 * @uaddr: start of address range
1803 * @size: size of address range
1804 *
1805 * Fault in a user address range for writing while checking for permissions at
1806 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1807 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1808 *
1809 * Returns the number of bytes not faulted in (like copy_to_user() and
1810 * copy_from_user()).
1811 */
fault_in_subpage_writeable(char __user * uaddr,size_t size)1812 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1813 {
1814 size_t faulted_in;
1815
1816 /*
1817 * Attempt faulting in at page granularity first for page table
1818 * permission checking. The arch-specific probe_subpage_writeable()
1819 * functions may not check for this.
1820 */
1821 faulted_in = size - fault_in_writeable(uaddr, size);
1822 if (faulted_in)
1823 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1824
1825 return size - faulted_in;
1826 }
1827 EXPORT_SYMBOL(fault_in_subpage_writeable);
1828
1829 /*
1830 * fault_in_safe_writeable - fault in an address range for writing
1831 * @uaddr: start of address range
1832 * @size: length of address range
1833 *
1834 * Faults in an address range for writing. This is primarily useful when we
1835 * already know that some or all of the pages in the address range aren't in
1836 * memory.
1837 *
1838 * Unlike fault_in_writeable(), this function is non-destructive.
1839 *
1840 * Note that we don't pin or otherwise hold the pages referenced that we fault
1841 * in. There's no guarantee that they'll stay in memory for any duration of
1842 * time.
1843 *
1844 * Returns the number of bytes not faulted in, like copy_to_user() and
1845 * copy_from_user().
1846 */
fault_in_safe_writeable(const char __user * uaddr,size_t size)1847 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1848 {
1849 unsigned long start = (unsigned long)uaddr, end;
1850 struct mm_struct *mm = current->mm;
1851 bool unlocked = false;
1852
1853 if (unlikely(size == 0))
1854 return 0;
1855 end = PAGE_ALIGN(start + size);
1856 if (end < start)
1857 end = 0;
1858
1859 mmap_read_lock(mm);
1860 do {
1861 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1862 break;
1863 start = (start + PAGE_SIZE) & PAGE_MASK;
1864 } while (start != end);
1865 mmap_read_unlock(mm);
1866
1867 if (size > (unsigned long)uaddr - start)
1868 return size - ((unsigned long)uaddr - start);
1869 return 0;
1870 }
1871 EXPORT_SYMBOL(fault_in_safe_writeable);
1872
1873 /**
1874 * fault_in_readable - fault in userspace address range for reading
1875 * @uaddr: start of user address range
1876 * @size: size of user address range
1877 *
1878 * Returns the number of bytes not faulted in (like copy_to_user() and
1879 * copy_from_user()).
1880 */
fault_in_readable(const char __user * uaddr,size_t size)1881 size_t fault_in_readable(const char __user *uaddr, size_t size)
1882 {
1883 const char __user *start = uaddr, *end;
1884 volatile char c;
1885
1886 if (unlikely(size == 0))
1887 return 0;
1888 if (!user_read_access_begin(uaddr, size))
1889 return size;
1890 if (!PAGE_ALIGNED(uaddr)) {
1891 unsafe_get_user(c, uaddr, out);
1892 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1893 }
1894 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1895 if (unlikely(end < start))
1896 end = NULL;
1897 while (uaddr != end) {
1898 unsafe_get_user(c, uaddr, out);
1899 uaddr += PAGE_SIZE;
1900 }
1901
1902 out:
1903 user_read_access_end();
1904 (void)c;
1905 if (size > uaddr - start)
1906 return size - (uaddr - start);
1907 return 0;
1908 }
1909 EXPORT_SYMBOL(fault_in_readable);
1910
1911 /**
1912 * get_dump_page() - pin user page in memory while writing it to core dump
1913 * @addr: user address
1914 *
1915 * Returns struct page pointer of user page pinned for dump,
1916 * to be freed afterwards by put_page().
1917 *
1918 * Returns NULL on any kind of failure - a hole must then be inserted into
1919 * the corefile, to preserve alignment with its headers; and also returns
1920 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1921 * allowing a hole to be left in the corefile to save disk space.
1922 *
1923 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1924 */
1925 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1926 struct page *get_dump_page(unsigned long addr)
1927 {
1928 struct mm_struct *mm = current->mm;
1929 struct page *page;
1930 int locked = 1;
1931 int ret;
1932
1933 if (mmap_read_lock_killable(mm))
1934 return NULL;
1935 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1936 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1937 if (locked)
1938 mmap_read_unlock(mm);
1939 return (ret == 1) ? page : NULL;
1940 }
1941 #endif /* CONFIG_ELF_CORE */
1942
1943 #ifdef CONFIG_MIGRATION
1944 /*
1945 * Returns the number of collected pages. Return value is always >= 0.
1946 */
collect_longterm_unpinnable_pages(struct list_head * movable_page_list,unsigned long nr_pages,struct page ** pages)1947 static unsigned long collect_longterm_unpinnable_pages(
1948 struct list_head *movable_page_list,
1949 unsigned long nr_pages,
1950 struct page **pages)
1951 {
1952 unsigned long i, collected = 0;
1953 struct folio *prev_folio = NULL;
1954 bool drain_allow = true;
1955
1956 for (i = 0; i < nr_pages; i++) {
1957 struct folio *folio = page_folio(pages[i]);
1958
1959 if (folio == prev_folio)
1960 continue;
1961 prev_folio = folio;
1962
1963 if (folio_is_longterm_pinnable(folio))
1964 continue;
1965
1966 collected++;
1967
1968 if (folio_is_device_coherent(folio))
1969 continue;
1970
1971 if (folio_test_hugetlb(folio)) {
1972 isolate_hugetlb(&folio->page, movable_page_list);
1973 continue;
1974 }
1975
1976 if (!folio_test_lru(folio) && drain_allow) {
1977 lru_add_drain_all();
1978 drain_allow = false;
1979 }
1980
1981 if (!folio_isolate_lru(folio))
1982 continue;
1983
1984 list_add_tail(&folio->lru, movable_page_list);
1985 node_stat_mod_folio(folio,
1986 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1987 folio_nr_pages(folio));
1988 }
1989
1990 return collected;
1991 }
1992
1993 /*
1994 * Unpins all pages and migrates device coherent pages and movable_page_list.
1995 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1996 * (or partial success).
1997 */
migrate_longterm_unpinnable_pages(struct list_head * movable_page_list,unsigned long nr_pages,struct page ** pages)1998 static int migrate_longterm_unpinnable_pages(
1999 struct list_head *movable_page_list,
2000 unsigned long nr_pages,
2001 struct page **pages)
2002 {
2003 int ret;
2004 unsigned long i;
2005
2006 for (i = 0; i < nr_pages; i++) {
2007 struct folio *folio = page_folio(pages[i]);
2008
2009 if (folio_is_device_coherent(folio)) {
2010 /*
2011 * Migration will fail if the page is pinned, so convert
2012 * the pin on the source page to a normal reference.
2013 */
2014 pages[i] = NULL;
2015 folio_get(folio);
2016 gup_put_folio(folio, 1, FOLL_PIN);
2017
2018 if (migrate_device_coherent_page(&folio->page)) {
2019 ret = -EBUSY;
2020 goto err;
2021 }
2022
2023 continue;
2024 }
2025
2026 /*
2027 * We can't migrate pages with unexpected references, so drop
2028 * the reference obtained by __get_user_pages_locked().
2029 * Migrating pages have been added to movable_page_list after
2030 * calling folio_isolate_lru() which takes a reference so the
2031 * page won't be freed if it's migrating.
2032 */
2033 unpin_user_page(pages[i]);
2034 pages[i] = NULL;
2035 }
2036
2037 if (!list_empty(movable_page_list)) {
2038 struct migration_target_control mtc = {
2039 .nid = NUMA_NO_NODE,
2040 .gfp_mask = GFP_USER | __GFP_NOWARN,
2041 };
2042
2043 if (migrate_pages(movable_page_list, alloc_migration_target,
2044 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2045 MR_LONGTERM_PIN, NULL)) {
2046 ret = -ENOMEM;
2047 goto err;
2048 }
2049 }
2050
2051 putback_movable_pages(movable_page_list);
2052
2053 return -EAGAIN;
2054
2055 err:
2056 for (i = 0; i < nr_pages; i++)
2057 if (pages[i])
2058 unpin_user_page(pages[i]);
2059 putback_movable_pages(movable_page_list);
2060
2061 return ret;
2062 }
2063
2064 /*
2065 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2066 * pages in the range are required to be pinned via FOLL_PIN, before calling
2067 * this routine.
2068 *
2069 * If any pages in the range are not allowed to be pinned, then this routine
2070 * will migrate those pages away, unpin all the pages in the range and return
2071 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2072 * call this routine again.
2073 *
2074 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2075 * The caller should give up, and propagate the error back up the call stack.
2076 *
2077 * If everything is OK and all pages in the range are allowed to be pinned, then
2078 * this routine leaves all pages pinned and returns zero for success.
2079 */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2080 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2081 struct page **pages)
2082 {
2083 unsigned long collected;
2084 LIST_HEAD(movable_page_list);
2085
2086 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2087 nr_pages, pages);
2088 if (!collected)
2089 return 0;
2090
2091 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2092 pages);
2093 }
2094 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2095 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2096 struct page **pages)
2097 {
2098 return 0;
2099 }
2100 #endif /* CONFIG_MIGRATION */
2101
2102 /*
2103 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2104 * allows us to process the FOLL_LONGTERM flag.
2105 */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)2106 static long __gup_longterm_locked(struct mm_struct *mm,
2107 unsigned long start,
2108 unsigned long nr_pages,
2109 struct page **pages,
2110 struct vm_area_struct **vmas,
2111 unsigned int gup_flags)
2112 {
2113 unsigned int flags;
2114 long rc, nr_pinned_pages;
2115
2116 if (!(gup_flags & FOLL_LONGTERM))
2117 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2118 NULL, gup_flags);
2119
2120 /*
2121 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2122 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2123 * correct to unconditionally call check_and_migrate_movable_pages()
2124 * which assumes pages have been pinned via FOLL_PIN.
2125 *
2126 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2127 */
2128 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2129 return -EINVAL;
2130 flags = memalloc_pin_save();
2131 do {
2132 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2133 pages, vmas, NULL,
2134 gup_flags);
2135 if (nr_pinned_pages <= 0) {
2136 rc = nr_pinned_pages;
2137 break;
2138 }
2139 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2140 } while (rc == -EAGAIN);
2141 memalloc_pin_restore(flags);
2142
2143 return rc ? rc : nr_pinned_pages;
2144 }
2145
is_valid_gup_flags(unsigned int gup_flags)2146 static bool is_valid_gup_flags(unsigned int gup_flags)
2147 {
2148 /*
2149 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2150 * never directly by the caller, so enforce that with an assertion:
2151 */
2152 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2153 return false;
2154 /*
2155 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2156 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2157 * FOLL_PIN.
2158 */
2159 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2160 return false;
2161
2162 return true;
2163 }
2164
2165 #ifdef CONFIG_MMU
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2166 static long __get_user_pages_remote(struct mm_struct *mm,
2167 unsigned long start, unsigned long nr_pages,
2168 unsigned int gup_flags, struct page **pages,
2169 struct vm_area_struct **vmas, int *locked)
2170 {
2171 /*
2172 * Parts of FOLL_LONGTERM behavior are incompatible with
2173 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2174 * vmas. However, this only comes up if locked is set, and there are
2175 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2176 * allow what we can.
2177 */
2178 if (gup_flags & FOLL_LONGTERM) {
2179 if (WARN_ON_ONCE(locked))
2180 return -EINVAL;
2181 /*
2182 * This will check the vmas (even if our vmas arg is NULL)
2183 * and return -ENOTSUPP if DAX isn't allowed in this case:
2184 */
2185 return __gup_longterm_locked(mm, start, nr_pages, pages,
2186 vmas, gup_flags | FOLL_TOUCH |
2187 FOLL_REMOTE);
2188 }
2189
2190 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2191 locked,
2192 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2193 }
2194
2195 /**
2196 * get_user_pages_remote() - pin user pages in memory
2197 * @mm: mm_struct of target mm
2198 * @start: starting user address
2199 * @nr_pages: number of pages from start to pin
2200 * @gup_flags: flags modifying lookup behaviour
2201 * @pages: array that receives pointers to the pages pinned.
2202 * Should be at least nr_pages long. Or NULL, if caller
2203 * only intends to ensure the pages are faulted in.
2204 * @vmas: array of pointers to vmas corresponding to each page.
2205 * Or NULL if the caller does not require them.
2206 * @locked: pointer to lock flag indicating whether lock is held and
2207 * subsequently whether VM_FAULT_RETRY functionality can be
2208 * utilised. Lock must initially be held.
2209 *
2210 * Returns either number of pages pinned (which may be less than the
2211 * number requested), or an error. Details about the return value:
2212 *
2213 * -- If nr_pages is 0, returns 0.
2214 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2215 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2216 * pages pinned. Again, this may be less than nr_pages.
2217 *
2218 * The caller is responsible for releasing returned @pages, via put_page().
2219 *
2220 * @vmas are valid only as long as mmap_lock is held.
2221 *
2222 * Must be called with mmap_lock held for read or write.
2223 *
2224 * get_user_pages_remote walks a process's page tables and takes a reference
2225 * to each struct page that each user address corresponds to at a given
2226 * instant. That is, it takes the page that would be accessed if a user
2227 * thread accesses the given user virtual address at that instant.
2228 *
2229 * This does not guarantee that the page exists in the user mappings when
2230 * get_user_pages_remote returns, and there may even be a completely different
2231 * page there in some cases (eg. if mmapped pagecache has been invalidated
2232 * and subsequently re faulted). However it does guarantee that the page
2233 * won't be freed completely. And mostly callers simply care that the page
2234 * contains data that was valid *at some point in time*. Typically, an IO
2235 * or similar operation cannot guarantee anything stronger anyway because
2236 * locks can't be held over the syscall boundary.
2237 *
2238 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2239 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2240 * be called after the page is finished with, and before put_page is called.
2241 *
2242 * get_user_pages_remote is typically used for fewer-copy IO operations,
2243 * to get a handle on the memory by some means other than accesses
2244 * via the user virtual addresses. The pages may be submitted for
2245 * DMA to devices or accessed via their kernel linear mapping (via the
2246 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2247 *
2248 * See also get_user_pages_fast, for performance critical applications.
2249 *
2250 * get_user_pages_remote should be phased out in favor of
2251 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2252 * should use get_user_pages_remote because it cannot pass
2253 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2254 */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2255 long get_user_pages_remote(struct mm_struct *mm,
2256 unsigned long start, unsigned long nr_pages,
2257 unsigned int gup_flags, struct page **pages,
2258 struct vm_area_struct **vmas, int *locked)
2259 {
2260 if (!is_valid_gup_flags(gup_flags))
2261 return -EINVAL;
2262
2263 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2264 pages, vmas, locked);
2265 }
2266 EXPORT_SYMBOL(get_user_pages_remote);
2267
2268 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2269 long get_user_pages_remote(struct mm_struct *mm,
2270 unsigned long start, unsigned long nr_pages,
2271 unsigned int gup_flags, struct page **pages,
2272 struct vm_area_struct **vmas, int *locked)
2273 {
2274 return 0;
2275 }
2276
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2277 static long __get_user_pages_remote(struct mm_struct *mm,
2278 unsigned long start, unsigned long nr_pages,
2279 unsigned int gup_flags, struct page **pages,
2280 struct vm_area_struct **vmas, int *locked)
2281 {
2282 return 0;
2283 }
2284 #endif /* !CONFIG_MMU */
2285
2286 /**
2287 * get_user_pages() - pin user pages in memory
2288 * @start: starting user address
2289 * @nr_pages: number of pages from start to pin
2290 * @gup_flags: flags modifying lookup behaviour
2291 * @pages: array that receives pointers to the pages pinned.
2292 * Should be at least nr_pages long. Or NULL, if caller
2293 * only intends to ensure the pages are faulted in.
2294 * @vmas: array of pointers to vmas corresponding to each page.
2295 * Or NULL if the caller does not require them.
2296 *
2297 * This is the same as get_user_pages_remote(), just with a less-flexible
2298 * calling convention where we assume that the mm being operated on belongs to
2299 * the current task, and doesn't allow passing of a locked parameter. We also
2300 * obviously don't pass FOLL_REMOTE in here.
2301 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)2302 long get_user_pages(unsigned long start, unsigned long nr_pages,
2303 unsigned int gup_flags, struct page **pages,
2304 struct vm_area_struct **vmas)
2305 {
2306 if (!is_valid_gup_flags(gup_flags))
2307 return -EINVAL;
2308
2309 return __gup_longterm_locked(current->mm, start, nr_pages,
2310 pages, vmas, gup_flags | FOLL_TOUCH);
2311 }
2312 EXPORT_SYMBOL(get_user_pages);
2313
2314 /*
2315 * get_user_pages_unlocked() is suitable to replace the form:
2316 *
2317 * mmap_read_lock(mm);
2318 * get_user_pages(mm, ..., pages, NULL);
2319 * mmap_read_unlock(mm);
2320 *
2321 * with:
2322 *
2323 * get_user_pages_unlocked(mm, ..., pages);
2324 *
2325 * It is functionally equivalent to get_user_pages_fast so
2326 * get_user_pages_fast should be used instead if specific gup_flags
2327 * (e.g. FOLL_FORCE) are not required.
2328 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2329 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2330 struct page **pages, unsigned int gup_flags)
2331 {
2332 struct mm_struct *mm = current->mm;
2333 int locked = 1;
2334 long ret;
2335
2336 /*
2337 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2338 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2339 * vmas. As there are no users of this flag in this call we simply
2340 * disallow this option for now.
2341 */
2342 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2343 return -EINVAL;
2344
2345 mmap_read_lock(mm);
2346 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2347 &locked, gup_flags | FOLL_TOUCH);
2348 if (locked)
2349 mmap_read_unlock(mm);
2350 return ret;
2351 }
2352 EXPORT_SYMBOL(get_user_pages_unlocked);
2353
2354 /*
2355 * Fast GUP
2356 *
2357 * get_user_pages_fast attempts to pin user pages by walking the page
2358 * tables directly and avoids taking locks. Thus the walker needs to be
2359 * protected from page table pages being freed from under it, and should
2360 * block any THP splits.
2361 *
2362 * One way to achieve this is to have the walker disable interrupts, and
2363 * rely on IPIs from the TLB flushing code blocking before the page table
2364 * pages are freed. This is unsuitable for architectures that do not need
2365 * to broadcast an IPI when invalidating TLBs.
2366 *
2367 * Another way to achieve this is to batch up page table containing pages
2368 * belonging to more than one mm_user, then rcu_sched a callback to free those
2369 * pages. Disabling interrupts will allow the fast_gup walker to both block
2370 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2371 * (which is a relatively rare event). The code below adopts this strategy.
2372 *
2373 * Before activating this code, please be aware that the following assumptions
2374 * are currently made:
2375 *
2376 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2377 * free pages containing page tables or TLB flushing requires IPI broadcast.
2378 *
2379 * *) ptes can be read atomically by the architecture.
2380 *
2381 * *) access_ok is sufficient to validate userspace address ranges.
2382 *
2383 * The last two assumptions can be relaxed by the addition of helper functions.
2384 *
2385 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2386 */
2387 #ifdef CONFIG_HAVE_FAST_GUP
2388
undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2389 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2390 unsigned int flags,
2391 struct page **pages)
2392 {
2393 while ((*nr) - nr_start) {
2394 struct page *page = pages[--(*nr)];
2395
2396 ClearPageReferenced(page);
2397 if (flags & FOLL_PIN)
2398 unpin_user_page(page);
2399 else
2400 put_page(page);
2401 }
2402 }
2403
2404 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2405 /*
2406 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2407 * operations.
2408 *
2409 * To pin the page, fast-gup needs to do below in order:
2410 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2411 *
2412 * For the rest of pgtable operations where pgtable updates can be racy
2413 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2414 * is pinned.
2415 *
2416 * Above will work for all pte-level operations, including THP split.
2417 *
2418 * For THP collapse, it's a bit more complicated because fast-gup may be
2419 * walking a pgtable page that is being freed (pte is still valid but pmd
2420 * can be cleared already). To avoid race in such condition, we need to
2421 * also check pmd here to make sure pmd doesn't change (corresponds to
2422 * pmdp_collapse_flush() in the THP collapse code path).
2423 */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2424 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2425 unsigned long end, unsigned int flags,
2426 struct page **pages, int *nr)
2427 {
2428 struct dev_pagemap *pgmap = NULL;
2429 int nr_start = *nr, ret = 0;
2430 pte_t *ptep, *ptem;
2431
2432 ptem = ptep = pte_offset_map(&pmd, addr);
2433 do {
2434 pte_t pte = ptep_get_lockless(ptep);
2435 struct page *page;
2436 struct folio *folio;
2437
2438 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2439 goto pte_unmap;
2440
2441 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2442 goto pte_unmap;
2443
2444 if (pte_devmap(pte)) {
2445 if (unlikely(flags & FOLL_LONGTERM))
2446 goto pte_unmap;
2447
2448 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2449 if (unlikely(!pgmap)) {
2450 undo_dev_pagemap(nr, nr_start, flags, pages);
2451 goto pte_unmap;
2452 }
2453 } else if (pte_special(pte))
2454 goto pte_unmap;
2455
2456 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2457 page = pte_page(pte);
2458
2459 folio = try_grab_folio(page, 1, flags);
2460 if (!folio)
2461 goto pte_unmap;
2462
2463 if (unlikely(page_is_secretmem(page))) {
2464 gup_put_folio(folio, 1, flags);
2465 goto pte_unmap;
2466 }
2467
2468 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2469 unlikely(pte_val(pte) != pte_val(*ptep))) {
2470 gup_put_folio(folio, 1, flags);
2471 goto pte_unmap;
2472 }
2473
2474 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2475 gup_put_folio(folio, 1, flags);
2476 goto pte_unmap;
2477 }
2478
2479 /*
2480 * We need to make the page accessible if and only if we are
2481 * going to access its content (the FOLL_PIN case). Please
2482 * see Documentation/core-api/pin_user_pages.rst for
2483 * details.
2484 */
2485 if (flags & FOLL_PIN) {
2486 ret = arch_make_page_accessible(page);
2487 if (ret) {
2488 gup_put_folio(folio, 1, flags);
2489 goto pte_unmap;
2490 }
2491 }
2492 folio_set_referenced(folio);
2493 pages[*nr] = page;
2494 (*nr)++;
2495 } while (ptep++, addr += PAGE_SIZE, addr != end);
2496
2497 ret = 1;
2498
2499 pte_unmap:
2500 if (pgmap)
2501 put_dev_pagemap(pgmap);
2502 pte_unmap(ptem);
2503 return ret;
2504 }
2505 #else
2506
2507 /*
2508 * If we can't determine whether or not a pte is special, then fail immediately
2509 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2510 * to be special.
2511 *
2512 * For a futex to be placed on a THP tail page, get_futex_key requires a
2513 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2514 * useful to have gup_huge_pmd even if we can't operate on ptes.
2515 */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2516 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2517 unsigned long end, unsigned int flags,
2518 struct page **pages, int *nr)
2519 {
2520 return 0;
2521 }
2522 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2523
2524 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2525 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2526 unsigned long end, unsigned int flags,
2527 struct page **pages, int *nr)
2528 {
2529 int nr_start = *nr;
2530 struct dev_pagemap *pgmap = NULL;
2531
2532 do {
2533 struct page *page = pfn_to_page(pfn);
2534
2535 pgmap = get_dev_pagemap(pfn, pgmap);
2536 if (unlikely(!pgmap)) {
2537 undo_dev_pagemap(nr, nr_start, flags, pages);
2538 break;
2539 }
2540 SetPageReferenced(page);
2541 pages[*nr] = page;
2542 if (unlikely(!try_grab_page(page, flags))) {
2543 undo_dev_pagemap(nr, nr_start, flags, pages);
2544 break;
2545 }
2546 (*nr)++;
2547 pfn++;
2548 } while (addr += PAGE_SIZE, addr != end);
2549
2550 put_dev_pagemap(pgmap);
2551 return addr == end;
2552 }
2553
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2554 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2555 unsigned long end, unsigned int flags,
2556 struct page **pages, int *nr)
2557 {
2558 unsigned long fault_pfn;
2559 int nr_start = *nr;
2560
2561 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2562 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2563 return 0;
2564
2565 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2566 undo_dev_pagemap(nr, nr_start, flags, pages);
2567 return 0;
2568 }
2569 return 1;
2570 }
2571
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2572 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2573 unsigned long end, unsigned int flags,
2574 struct page **pages, int *nr)
2575 {
2576 unsigned long fault_pfn;
2577 int nr_start = *nr;
2578
2579 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2580 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2581 return 0;
2582
2583 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2584 undo_dev_pagemap(nr, nr_start, flags, pages);
2585 return 0;
2586 }
2587 return 1;
2588 }
2589 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2590 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2591 unsigned long end, unsigned int flags,
2592 struct page **pages, int *nr)
2593 {
2594 BUILD_BUG();
2595 return 0;
2596 }
2597
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2598 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2599 unsigned long end, unsigned int flags,
2600 struct page **pages, int *nr)
2601 {
2602 BUILD_BUG();
2603 return 0;
2604 }
2605 #endif
2606
record_subpages(struct page * page,unsigned long addr,unsigned long end,struct page ** pages)2607 static int record_subpages(struct page *page, unsigned long addr,
2608 unsigned long end, struct page **pages)
2609 {
2610 int nr;
2611
2612 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2613 pages[nr] = nth_page(page, nr);
2614
2615 return nr;
2616 }
2617
2618 #ifdef CONFIG_ARCH_HAS_HUGEPD
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)2619 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2620 unsigned long sz)
2621 {
2622 unsigned long __boundary = (addr + sz) & ~(sz-1);
2623 return (__boundary - 1 < end - 1) ? __boundary : end;
2624 }
2625
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2626 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2627 unsigned long end, unsigned int flags,
2628 struct page **pages, int *nr)
2629 {
2630 unsigned long pte_end;
2631 struct page *page;
2632 struct folio *folio;
2633 pte_t pte;
2634 int refs;
2635
2636 pte_end = (addr + sz) & ~(sz-1);
2637 if (pte_end < end)
2638 end = pte_end;
2639
2640 pte = huge_ptep_get(ptep);
2641
2642 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2643 return 0;
2644
2645 /* hugepages are never "special" */
2646 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2647
2648 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2649 refs = record_subpages(page, addr, end, pages + *nr);
2650
2651 folio = try_grab_folio(page, refs, flags);
2652 if (!folio)
2653 return 0;
2654
2655 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2656 gup_put_folio(folio, refs, flags);
2657 return 0;
2658 }
2659
2660 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2661 gup_put_folio(folio, refs, flags);
2662 return 0;
2663 }
2664
2665 *nr += refs;
2666 folio_set_referenced(folio);
2667 return 1;
2668 }
2669
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2670 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2671 unsigned int pdshift, unsigned long end, unsigned int flags,
2672 struct page **pages, int *nr)
2673 {
2674 pte_t *ptep;
2675 unsigned long sz = 1UL << hugepd_shift(hugepd);
2676 unsigned long next;
2677
2678 ptep = hugepte_offset(hugepd, addr, pdshift);
2679 do {
2680 next = hugepte_addr_end(addr, end, sz);
2681 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2682 return 0;
2683 } while (ptep++, addr = next, addr != end);
2684
2685 return 1;
2686 }
2687 #else
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2688 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2689 unsigned int pdshift, unsigned long end, unsigned int flags,
2690 struct page **pages, int *nr)
2691 {
2692 return 0;
2693 }
2694 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2695
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2696 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2697 unsigned long end, unsigned int flags,
2698 struct page **pages, int *nr)
2699 {
2700 struct page *page;
2701 struct folio *folio;
2702 int refs;
2703
2704 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2705 return 0;
2706
2707 if (pmd_devmap(orig)) {
2708 if (unlikely(flags & FOLL_LONGTERM))
2709 return 0;
2710 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2711 pages, nr);
2712 }
2713
2714 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2715 refs = record_subpages(page, addr, end, pages + *nr);
2716
2717 folio = try_grab_folio(page, refs, flags);
2718 if (!folio)
2719 return 0;
2720
2721 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2722 gup_put_folio(folio, refs, flags);
2723 return 0;
2724 }
2725
2726 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2727 gup_put_folio(folio, refs, flags);
2728 return 0;
2729 }
2730
2731 *nr += refs;
2732 folio_set_referenced(folio);
2733 return 1;
2734 }
2735
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2736 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2737 unsigned long end, unsigned int flags,
2738 struct page **pages, int *nr)
2739 {
2740 struct page *page;
2741 struct folio *folio;
2742 int refs;
2743
2744 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2745 return 0;
2746
2747 if (pud_devmap(orig)) {
2748 if (unlikely(flags & FOLL_LONGTERM))
2749 return 0;
2750 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2751 pages, nr);
2752 }
2753
2754 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2755 refs = record_subpages(page, addr, end, pages + *nr);
2756
2757 folio = try_grab_folio(page, refs, flags);
2758 if (!folio)
2759 return 0;
2760
2761 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2762 gup_put_folio(folio, refs, flags);
2763 return 0;
2764 }
2765
2766 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2767 gup_put_folio(folio, refs, flags);
2768 return 0;
2769 }
2770
2771 *nr += refs;
2772 folio_set_referenced(folio);
2773 return 1;
2774 }
2775
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2776 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2777 unsigned long end, unsigned int flags,
2778 struct page **pages, int *nr)
2779 {
2780 int refs;
2781 struct page *page;
2782 struct folio *folio;
2783
2784 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2785 return 0;
2786
2787 BUILD_BUG_ON(pgd_devmap(orig));
2788
2789 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2790 refs = record_subpages(page, addr, end, pages + *nr);
2791
2792 folio = try_grab_folio(page, refs, flags);
2793 if (!folio)
2794 return 0;
2795
2796 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2797 gup_put_folio(folio, refs, flags);
2798 return 0;
2799 }
2800
2801 *nr += refs;
2802 folio_set_referenced(folio);
2803 return 1;
2804 }
2805
gup_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2806 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2807 unsigned int flags, struct page **pages, int *nr)
2808 {
2809 unsigned long next;
2810 pmd_t *pmdp;
2811
2812 pmdp = pmd_offset_lockless(pudp, pud, addr);
2813 do {
2814 pmd_t pmd = READ_ONCE(*pmdp);
2815
2816 next = pmd_addr_end(addr, end);
2817 if (!pmd_present(pmd))
2818 return 0;
2819
2820 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2821 pmd_devmap(pmd))) {
2822 if (pmd_protnone(pmd) &&
2823 !gup_can_follow_protnone(flags))
2824 return 0;
2825
2826 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2827 pages, nr))
2828 return 0;
2829
2830 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2831 /*
2832 * architecture have different format for hugetlbfs
2833 * pmd format and THP pmd format
2834 */
2835 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2836 PMD_SHIFT, next, flags, pages, nr))
2837 return 0;
2838 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2839 return 0;
2840 } while (pmdp++, addr = next, addr != end);
2841
2842 return 1;
2843 }
2844
gup_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2845 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2846 unsigned int flags, struct page **pages, int *nr)
2847 {
2848 unsigned long next;
2849 pud_t *pudp;
2850
2851 pudp = pud_offset_lockless(p4dp, p4d, addr);
2852 do {
2853 pud_t pud = READ_ONCE(*pudp);
2854
2855 next = pud_addr_end(addr, end);
2856 if (unlikely(!pud_present(pud)))
2857 return 0;
2858 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2859 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2860 pages, nr))
2861 return 0;
2862 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2863 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2864 PUD_SHIFT, next, flags, pages, nr))
2865 return 0;
2866 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2867 return 0;
2868 } while (pudp++, addr = next, addr != end);
2869
2870 return 1;
2871 }
2872
gup_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2873 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2874 unsigned int flags, struct page **pages, int *nr)
2875 {
2876 unsigned long next;
2877 p4d_t *p4dp;
2878
2879 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2880 do {
2881 p4d_t p4d = READ_ONCE(*p4dp);
2882
2883 next = p4d_addr_end(addr, end);
2884 if (p4d_none(p4d))
2885 return 0;
2886 BUILD_BUG_ON(p4d_huge(p4d));
2887 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2888 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2889 P4D_SHIFT, next, flags, pages, nr))
2890 return 0;
2891 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2892 return 0;
2893 } while (p4dp++, addr = next, addr != end);
2894
2895 return 1;
2896 }
2897
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2898 static void gup_pgd_range(unsigned long addr, unsigned long end,
2899 unsigned int flags, struct page **pages, int *nr)
2900 {
2901 unsigned long next;
2902 pgd_t *pgdp;
2903
2904 pgdp = pgd_offset(current->mm, addr);
2905 do {
2906 pgd_t pgd = READ_ONCE(*pgdp);
2907
2908 next = pgd_addr_end(addr, end);
2909 if (pgd_none(pgd))
2910 return;
2911 if (unlikely(pgd_huge(pgd))) {
2912 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2913 pages, nr))
2914 return;
2915 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2916 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2917 PGDIR_SHIFT, next, flags, pages, nr))
2918 return;
2919 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2920 return;
2921 } while (pgdp++, addr = next, addr != end);
2922 }
2923 #else
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2924 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2925 unsigned int flags, struct page **pages, int *nr)
2926 {
2927 }
2928 #endif /* CONFIG_HAVE_FAST_GUP */
2929
2930 #ifndef gup_fast_permitted
2931 /*
2932 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2933 * we need to fall back to the slow version:
2934 */
gup_fast_permitted(unsigned long start,unsigned long end)2935 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2936 {
2937 return true;
2938 }
2939 #endif
2940
__gup_longterm_unlocked(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2941 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2942 unsigned int gup_flags, struct page **pages)
2943 {
2944 int ret;
2945
2946 /*
2947 * FIXME: FOLL_LONGTERM does not work with
2948 * get_user_pages_unlocked() (see comments in that function)
2949 */
2950 if (gup_flags & FOLL_LONGTERM) {
2951 mmap_read_lock(current->mm);
2952 ret = __gup_longterm_locked(current->mm,
2953 start, nr_pages,
2954 pages, NULL, gup_flags);
2955 mmap_read_unlock(current->mm);
2956 } else {
2957 ret = get_user_pages_unlocked(start, nr_pages,
2958 pages, gup_flags);
2959 }
2960
2961 return ret;
2962 }
2963
lockless_pages_from_mm(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)2964 static unsigned long lockless_pages_from_mm(unsigned long start,
2965 unsigned long end,
2966 unsigned int gup_flags,
2967 struct page **pages)
2968 {
2969 unsigned long flags;
2970 int nr_pinned = 0;
2971 unsigned seq;
2972
2973 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2974 !gup_fast_permitted(start, end))
2975 return 0;
2976
2977 if (gup_flags & FOLL_PIN) {
2978 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2979 if (seq & 1)
2980 return 0;
2981 }
2982
2983 /*
2984 * Disable interrupts. The nested form is used, in order to allow full,
2985 * general purpose use of this routine.
2986 *
2987 * With interrupts disabled, we block page table pages from being freed
2988 * from under us. See struct mmu_table_batch comments in
2989 * include/asm-generic/tlb.h for more details.
2990 *
2991 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2992 * that come from THPs splitting.
2993 */
2994 local_irq_save(flags);
2995 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2996 local_irq_restore(flags);
2997
2998 /*
2999 * When pinning pages for DMA there could be a concurrent write protect
3000 * from fork() via copy_page_range(), in this case always fail fast GUP.
3001 */
3002 if (gup_flags & FOLL_PIN) {
3003 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3004 unpin_user_pages_lockless(pages, nr_pinned);
3005 return 0;
3006 } else {
3007 sanity_check_pinned_pages(pages, nr_pinned);
3008 }
3009 }
3010 return nr_pinned;
3011 }
3012
internal_get_user_pages_fast(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3013 static int internal_get_user_pages_fast(unsigned long start,
3014 unsigned long nr_pages,
3015 unsigned int gup_flags,
3016 struct page **pages)
3017 {
3018 unsigned long len, end;
3019 unsigned long nr_pinned;
3020 int ret;
3021
3022 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3023 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3024 FOLL_FAST_ONLY | FOLL_NOFAULT)))
3025 return -EINVAL;
3026
3027 if (gup_flags & FOLL_PIN)
3028 mm_set_has_pinned_flag(¤t->mm->flags);
3029
3030 if (!(gup_flags & FOLL_FAST_ONLY))
3031 might_lock_read(¤t->mm->mmap_lock);
3032
3033 start = untagged_addr(start) & PAGE_MASK;
3034 len = nr_pages << PAGE_SHIFT;
3035 if (check_add_overflow(start, len, &end))
3036 return 0;
3037 if (unlikely(!access_ok((void __user *)start, len)))
3038 return -EFAULT;
3039
3040 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3041 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3042 return nr_pinned;
3043
3044 /* Slow path: try to get the remaining pages with get_user_pages */
3045 start += nr_pinned << PAGE_SHIFT;
3046 pages += nr_pinned;
3047 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3048 pages);
3049 if (ret < 0) {
3050 /*
3051 * The caller has to unpin the pages we already pinned so
3052 * returning -errno is not an option
3053 */
3054 if (nr_pinned)
3055 return nr_pinned;
3056 return ret;
3057 }
3058 return ret + nr_pinned;
3059 }
3060
3061 /**
3062 * get_user_pages_fast_only() - pin user pages in memory
3063 * @start: starting user address
3064 * @nr_pages: number of pages from start to pin
3065 * @gup_flags: flags modifying pin behaviour
3066 * @pages: array that receives pointers to the pages pinned.
3067 * Should be at least nr_pages long.
3068 *
3069 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3070 * the regular GUP.
3071 * Note a difference with get_user_pages_fast: this always returns the
3072 * number of pages pinned, 0 if no pages were pinned.
3073 *
3074 * If the architecture does not support this function, simply return with no
3075 * pages pinned.
3076 *
3077 * Careful, careful! COW breaking can go either way, so a non-write
3078 * access can get ambiguous page results. If you call this function without
3079 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3080 */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3081 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3082 unsigned int gup_flags, struct page **pages)
3083 {
3084 int nr_pinned;
3085 /*
3086 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3087 * because gup fast is always a "pin with a +1 page refcount" request.
3088 *
3089 * FOLL_FAST_ONLY is required in order to match the API description of
3090 * this routine: no fall back to regular ("slow") GUP.
3091 */
3092 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3093
3094 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3095 pages);
3096
3097 /*
3098 * As specified in the API description above, this routine is not
3099 * allowed to return negative values. However, the common core
3100 * routine internal_get_user_pages_fast() *can* return -errno.
3101 * Therefore, correct for that here:
3102 */
3103 if (nr_pinned < 0)
3104 nr_pinned = 0;
3105
3106 return nr_pinned;
3107 }
3108 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3109
3110 /**
3111 * get_user_pages_fast() - pin user pages in memory
3112 * @start: starting user address
3113 * @nr_pages: number of pages from start to pin
3114 * @gup_flags: flags modifying pin behaviour
3115 * @pages: array that receives pointers to the pages pinned.
3116 * Should be at least nr_pages long.
3117 *
3118 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3119 * If not successful, it will fall back to taking the lock and
3120 * calling get_user_pages().
3121 *
3122 * Returns number of pages pinned. This may be fewer than the number requested.
3123 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3124 * -errno.
3125 */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3126 int get_user_pages_fast(unsigned long start, int nr_pages,
3127 unsigned int gup_flags, struct page **pages)
3128 {
3129 if (!is_valid_gup_flags(gup_flags))
3130 return -EINVAL;
3131
3132 /*
3133 * The caller may or may not have explicitly set FOLL_GET; either way is
3134 * OK. However, internally (within mm/gup.c), gup fast variants must set
3135 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3136 * request.
3137 */
3138 gup_flags |= FOLL_GET;
3139 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3140 }
3141 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3142
3143 /**
3144 * pin_user_pages_fast() - pin user pages in memory without taking locks
3145 *
3146 * @start: starting user address
3147 * @nr_pages: number of pages from start to pin
3148 * @gup_flags: flags modifying pin behaviour
3149 * @pages: array that receives pointers to the pages pinned.
3150 * Should be at least nr_pages long.
3151 *
3152 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3153 * get_user_pages_fast() for documentation on the function arguments, because
3154 * the arguments here are identical.
3155 *
3156 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3157 * see Documentation/core-api/pin_user_pages.rst for further details.
3158 */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3159 int pin_user_pages_fast(unsigned long start, int nr_pages,
3160 unsigned int gup_flags, struct page **pages)
3161 {
3162 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3163 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3164 return -EINVAL;
3165
3166 if (WARN_ON_ONCE(!pages))
3167 return -EINVAL;
3168
3169 gup_flags |= FOLL_PIN;
3170 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3171 }
3172 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3173
3174 /*
3175 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3176 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3177 *
3178 * The API rules are the same, too: no negative values may be returned.
3179 */
pin_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3180 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3181 unsigned int gup_flags, struct page **pages)
3182 {
3183 int nr_pinned;
3184
3185 /*
3186 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3187 * rules require returning 0, rather than -errno:
3188 */
3189 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3190 return 0;
3191
3192 if (WARN_ON_ONCE(!pages))
3193 return 0;
3194 /*
3195 * FOLL_FAST_ONLY is required in order to match the API description of
3196 * this routine: no fall back to regular ("slow") GUP.
3197 */
3198 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3199 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3200 pages);
3201 /*
3202 * This routine is not allowed to return negative values. However,
3203 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3204 * correct for that here:
3205 */
3206 if (nr_pinned < 0)
3207 nr_pinned = 0;
3208
3209 return nr_pinned;
3210 }
3211 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3212
3213 /**
3214 * pin_user_pages_remote() - pin pages of a remote process
3215 *
3216 * @mm: mm_struct of target mm
3217 * @start: starting user address
3218 * @nr_pages: number of pages from start to pin
3219 * @gup_flags: flags modifying lookup behaviour
3220 * @pages: array that receives pointers to the pages pinned.
3221 * Should be at least nr_pages long.
3222 * @vmas: array of pointers to vmas corresponding to each page.
3223 * Or NULL if the caller does not require them.
3224 * @locked: pointer to lock flag indicating whether lock is held and
3225 * subsequently whether VM_FAULT_RETRY functionality can be
3226 * utilised. Lock must initially be held.
3227 *
3228 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3229 * get_user_pages_remote() for documentation on the function arguments, because
3230 * the arguments here are identical.
3231 *
3232 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3233 * see Documentation/core-api/pin_user_pages.rst for details.
3234 */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)3235 long pin_user_pages_remote(struct mm_struct *mm,
3236 unsigned long start, unsigned long nr_pages,
3237 unsigned int gup_flags, struct page **pages,
3238 struct vm_area_struct **vmas, int *locked)
3239 {
3240 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3241 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3242 return -EINVAL;
3243
3244 if (WARN_ON_ONCE(!pages))
3245 return -EINVAL;
3246
3247 gup_flags |= FOLL_PIN;
3248 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3249 pages, vmas, locked);
3250 }
3251 EXPORT_SYMBOL(pin_user_pages_remote);
3252
3253 /**
3254 * pin_user_pages() - pin user pages in memory for use by other devices
3255 *
3256 * @start: starting user address
3257 * @nr_pages: number of pages from start to pin
3258 * @gup_flags: flags modifying lookup behaviour
3259 * @pages: array that receives pointers to the pages pinned.
3260 * Should be at least nr_pages long.
3261 * @vmas: array of pointers to vmas corresponding to each page.
3262 * Or NULL if the caller does not require them.
3263 *
3264 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3265 * FOLL_PIN is set.
3266 *
3267 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3268 * see Documentation/core-api/pin_user_pages.rst for details.
3269 */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)3270 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3271 unsigned int gup_flags, struct page **pages,
3272 struct vm_area_struct **vmas)
3273 {
3274 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3275 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3276 return -EINVAL;
3277
3278 if (WARN_ON_ONCE(!pages))
3279 return -EINVAL;
3280
3281 gup_flags |= FOLL_PIN;
3282 return __gup_longterm_locked(current->mm, start, nr_pages,
3283 pages, vmas, gup_flags);
3284 }
3285 EXPORT_SYMBOL(pin_user_pages);
3286
3287 /*
3288 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3289 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3290 * FOLL_PIN and rejects FOLL_GET.
3291 */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3292 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3293 struct page **pages, unsigned int gup_flags)
3294 {
3295 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3296 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3297 return -EINVAL;
3298
3299 if (WARN_ON_ONCE(!pages))
3300 return -EINVAL;
3301
3302 gup_flags |= FOLL_PIN;
3303 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3304 }
3305 EXPORT_SYMBOL(pin_user_pages_unlocked);
3306