1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73 static struct kmem_cache *inode_cachep __read_mostly;
74
get_nr_inodes(void)75 static long get_nr_inodes(void)
76 {
77 int i;
78 long sum = 0;
79 for_each_possible_cpu(i)
80 sum += per_cpu(nr_inodes, i);
81 return sum < 0 ? 0 : sum;
82 }
83
get_nr_inodes_unused(void)84 static inline long get_nr_inodes_unused(void)
85 {
86 int i;
87 long sum = 0;
88 for_each_possible_cpu(i)
89 sum += per_cpu(nr_unused, i);
90 return sum < 0 ? 0 : sum;
91 }
92
get_nr_dirty_inodes(void)93 long get_nr_dirty_inodes(void)
94 {
95 /* not actually dirty inodes, but a wild approximation */
96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 return nr_dirty > 0 ? nr_dirty : 0;
98 }
99
100 /*
101 * Handle nr_inode sysctl
102 */
103 #ifdef CONFIG_SYSCTL
104 /*
105 * Statistics gathering..
106 */
107 static struct inodes_stat_t inodes_stat;
108
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116
117 static struct ctl_table inodes_sysctls[] = {
118 {
119 .procname = "inode-nr",
120 .data = &inodes_stat,
121 .maxlen = 2*sizeof(long),
122 .mode = 0444,
123 .proc_handler = proc_nr_inodes,
124 },
125 {
126 .procname = "inode-state",
127 .data = &inodes_stat,
128 .maxlen = 7*sizeof(long),
129 .mode = 0444,
130 .proc_handler = proc_nr_inodes,
131 },
132 { }
133 };
134
init_fs_inode_sysctls(void)135 static int __init init_fs_inode_sysctls(void)
136 {
137 register_sysctl_init("fs", inodes_sysctls);
138 return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142
no_open(struct inode * inode,struct file * file)143 static int no_open(struct inode *inode, struct file *file)
144 {
145 return -ENXIO;
146 }
147
148 /**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
inode_init_always(struct super_block * sb,struct inode * inode)156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 static const struct inode_operations empty_iops;
159 static const struct file_operations no_open_fops = {.open = no_open};
160 struct address_space *const mapping = &inode->i_data;
161
162 inode->i_sb = sb;
163 inode->i_blkbits = sb->s_blocksize_bits;
164 inode->i_flags = 0;
165 atomic64_set(&inode->i_sequence, 0);
166 atomic_set(&inode->i_count, 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &no_open_fops;
169 inode->i_ino = 0;
170 inode->__i_nlink = 1;
171 inode->i_opflags = 0;
172 if (sb->s_xattr)
173 inode->i_opflags |= IOP_XATTR;
174 i_uid_write(inode, 0);
175 i_gid_write(inode, 0);
176 atomic_set(&inode->i_writecount, 0);
177 inode->i_size = 0;
178 inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 inode->i_blocks = 0;
180 inode->i_bytes = 0;
181 inode->i_generation = 0;
182 inode->i_pipe = NULL;
183 inode->i_cdev = NULL;
184 inode->i_link = NULL;
185 inode->i_dir_seq = 0;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189 #ifdef CONFIG_CGROUP_WRITEBACK
190 inode->i_wb_frn_winner = 0;
191 inode->i_wb_frn_avg_time = 0;
192 inode->i_wb_frn_history = 0;
193 #endif
194
195 spin_lock_init(&inode->i_lock);
196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197
198 init_rwsem(&inode->i_rwsem);
199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200
201 atomic_set(&inode->i_dio_count, 0);
202
203 mapping->a_ops = &empty_aops;
204 mapping->host = inode;
205 mapping->flags = 0;
206 mapping->wb_err = 0;
207 atomic_set(&mapping->i_mmap_writable, 0);
208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 atomic_set(&mapping->nr_thps, 0);
210 #endif
211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 mapping->private_data = NULL;
213 mapping->writeback_index = 0;
214 init_rwsem(&mapping->invalidate_lock);
215 lockdep_set_class_and_name(&mapping->invalidate_lock,
216 &sb->s_type->invalidate_lock_key,
217 "mapping.invalidate_lock");
218 inode->i_private = NULL;
219 inode->i_mapping = mapping;
220 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
221 #ifdef CONFIG_FS_POSIX_ACL
222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223 #endif
224
225 #ifdef CONFIG_FSNOTIFY
226 inode->i_fsnotify_mask = 0;
227 #endif
228 inode->i_flctx = NULL;
229
230 if (unlikely(security_inode_alloc(inode)))
231 return -ENOMEM;
232 this_cpu_inc(nr_inodes);
233
234 return 0;
235 }
236 EXPORT_SYMBOL(inode_init_always);
237
free_inode_nonrcu(struct inode * inode)238 void free_inode_nonrcu(struct inode *inode)
239 {
240 kmem_cache_free(inode_cachep, inode);
241 }
242 EXPORT_SYMBOL(free_inode_nonrcu);
243
i_callback(struct rcu_head * head)244 static void i_callback(struct rcu_head *head)
245 {
246 struct inode *inode = container_of(head, struct inode, i_rcu);
247 if (inode->free_inode)
248 inode->free_inode(inode);
249 else
250 free_inode_nonrcu(inode);
251 }
252
alloc_inode(struct super_block * sb)253 static struct inode *alloc_inode(struct super_block *sb)
254 {
255 const struct super_operations *ops = sb->s_op;
256 struct inode *inode;
257
258 if (ops->alloc_inode)
259 inode = ops->alloc_inode(sb);
260 else
261 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
262
263 if (!inode)
264 return NULL;
265
266 if (unlikely(inode_init_always(sb, inode))) {
267 if (ops->destroy_inode) {
268 ops->destroy_inode(inode);
269 if (!ops->free_inode)
270 return NULL;
271 }
272 inode->free_inode = ops->free_inode;
273 i_callback(&inode->i_rcu);
274 return NULL;
275 }
276
277 return inode;
278 }
279
__destroy_inode(struct inode * inode)280 void __destroy_inode(struct inode *inode)
281 {
282 BUG_ON(inode_has_buffers(inode));
283 inode_detach_wb(inode);
284 security_inode_free(inode);
285 fsnotify_inode_delete(inode);
286 locks_free_lock_context(inode);
287 if (!inode->i_nlink) {
288 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
289 atomic_long_dec(&inode->i_sb->s_remove_count);
290 }
291
292 #ifdef CONFIG_FS_POSIX_ACL
293 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
294 posix_acl_release(inode->i_acl);
295 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
296 posix_acl_release(inode->i_default_acl);
297 #endif
298 this_cpu_dec(nr_inodes);
299 }
300 EXPORT_SYMBOL(__destroy_inode);
301
destroy_inode(struct inode * inode)302 static void destroy_inode(struct inode *inode)
303 {
304 const struct super_operations *ops = inode->i_sb->s_op;
305
306 BUG_ON(!list_empty(&inode->i_lru));
307 __destroy_inode(inode);
308 if (ops->destroy_inode) {
309 ops->destroy_inode(inode);
310 if (!ops->free_inode)
311 return;
312 }
313 inode->free_inode = ops->free_inode;
314 call_rcu(&inode->i_rcu, i_callback);
315 }
316
317 /**
318 * drop_nlink - directly drop an inode's link count
319 * @inode: inode
320 *
321 * This is a low-level filesystem helper to replace any
322 * direct filesystem manipulation of i_nlink. In cases
323 * where we are attempting to track writes to the
324 * filesystem, a decrement to zero means an imminent
325 * write when the file is truncated and actually unlinked
326 * on the filesystem.
327 */
drop_nlink(struct inode * inode)328 void drop_nlink(struct inode *inode)
329 {
330 WARN_ON(inode->i_nlink == 0);
331 inode->__i_nlink--;
332 if (!inode->i_nlink)
333 atomic_long_inc(&inode->i_sb->s_remove_count);
334 }
335 EXPORT_SYMBOL(drop_nlink);
336
337 /**
338 * clear_nlink - directly zero an inode's link count
339 * @inode: inode
340 *
341 * This is a low-level filesystem helper to replace any
342 * direct filesystem manipulation of i_nlink. See
343 * drop_nlink() for why we care about i_nlink hitting zero.
344 */
clear_nlink(struct inode * inode)345 void clear_nlink(struct inode *inode)
346 {
347 if (inode->i_nlink) {
348 inode->__i_nlink = 0;
349 atomic_long_inc(&inode->i_sb->s_remove_count);
350 }
351 }
352 EXPORT_SYMBOL(clear_nlink);
353
354 /**
355 * set_nlink - directly set an inode's link count
356 * @inode: inode
357 * @nlink: new nlink (should be non-zero)
358 *
359 * This is a low-level filesystem helper to replace any
360 * direct filesystem manipulation of i_nlink.
361 */
set_nlink(struct inode * inode,unsigned int nlink)362 void set_nlink(struct inode *inode, unsigned int nlink)
363 {
364 if (!nlink) {
365 clear_nlink(inode);
366 } else {
367 /* Yes, some filesystems do change nlink from zero to one */
368 if (inode->i_nlink == 0)
369 atomic_long_dec(&inode->i_sb->s_remove_count);
370
371 inode->__i_nlink = nlink;
372 }
373 }
374 EXPORT_SYMBOL(set_nlink);
375
376 /**
377 * inc_nlink - directly increment an inode's link count
378 * @inode: inode
379 *
380 * This is a low-level filesystem helper to replace any
381 * direct filesystem manipulation of i_nlink. Currently,
382 * it is only here for parity with dec_nlink().
383 */
inc_nlink(struct inode * inode)384 void inc_nlink(struct inode *inode)
385 {
386 if (unlikely(inode->i_nlink == 0)) {
387 WARN_ON(!(inode->i_state & I_LINKABLE));
388 atomic_long_dec(&inode->i_sb->s_remove_count);
389 }
390
391 inode->__i_nlink++;
392 }
393 EXPORT_SYMBOL(inc_nlink);
394
__address_space_init_once(struct address_space * mapping)395 static void __address_space_init_once(struct address_space *mapping)
396 {
397 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
398 init_rwsem(&mapping->i_mmap_rwsem);
399 INIT_LIST_HEAD(&mapping->private_list);
400 spin_lock_init(&mapping->private_lock);
401 mapping->i_mmap = RB_ROOT_CACHED;
402 }
403
address_space_init_once(struct address_space * mapping)404 void address_space_init_once(struct address_space *mapping)
405 {
406 memset(mapping, 0, sizeof(*mapping));
407 __address_space_init_once(mapping);
408 }
409 EXPORT_SYMBOL(address_space_init_once);
410
411 /*
412 * These are initializations that only need to be done
413 * once, because the fields are idempotent across use
414 * of the inode, so let the slab aware of that.
415 */
inode_init_once(struct inode * inode)416 void inode_init_once(struct inode *inode)
417 {
418 memset(inode, 0, sizeof(*inode));
419 INIT_HLIST_NODE(&inode->i_hash);
420 INIT_LIST_HEAD(&inode->i_devices);
421 INIT_LIST_HEAD(&inode->i_io_list);
422 INIT_LIST_HEAD(&inode->i_wb_list);
423 INIT_LIST_HEAD(&inode->i_lru);
424 INIT_LIST_HEAD(&inode->i_sb_list);
425 __address_space_init_once(&inode->i_data);
426 i_size_ordered_init(inode);
427 }
428 EXPORT_SYMBOL(inode_init_once);
429
init_once(void * foo)430 static void init_once(void *foo)
431 {
432 struct inode *inode = (struct inode *) foo;
433
434 inode_init_once(inode);
435 }
436
437 /*
438 * inode->i_lock must be held
439 */
__iget(struct inode * inode)440 void __iget(struct inode *inode)
441 {
442 atomic_inc(&inode->i_count);
443 }
444
445 /*
446 * get additional reference to inode; caller must already hold one.
447 */
ihold(struct inode * inode)448 void ihold(struct inode *inode)
449 {
450 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
451 }
452 EXPORT_SYMBOL(ihold);
453
__inode_add_lru(struct inode * inode,bool rotate)454 static void __inode_add_lru(struct inode *inode, bool rotate)
455 {
456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
457 return;
458 if (atomic_read(&inode->i_count))
459 return;
460 if (!(inode->i_sb->s_flags & SB_ACTIVE))
461 return;
462 if (!mapping_shrinkable(&inode->i_data))
463 return;
464
465 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
466 this_cpu_inc(nr_unused);
467 else if (rotate)
468 inode->i_state |= I_REFERENCED;
469 }
470
471 /*
472 * Add inode to LRU if needed (inode is unused and clean).
473 *
474 * Needs inode->i_lock held.
475 */
inode_add_lru(struct inode * inode)476 void inode_add_lru(struct inode *inode)
477 {
478 __inode_add_lru(inode, false);
479 }
480
inode_lru_list_del(struct inode * inode)481 static void inode_lru_list_del(struct inode *inode)
482 {
483 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
484 this_cpu_dec(nr_unused);
485 }
486
487 /**
488 * inode_sb_list_add - add inode to the superblock list of inodes
489 * @inode: inode to add
490 */
inode_sb_list_add(struct inode * inode)491 void inode_sb_list_add(struct inode *inode)
492 {
493 spin_lock(&inode->i_sb->s_inode_list_lock);
494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
495 spin_unlock(&inode->i_sb->s_inode_list_lock);
496 }
497 EXPORT_SYMBOL_GPL(inode_sb_list_add);
498
inode_sb_list_del(struct inode * inode)499 static inline void inode_sb_list_del(struct inode *inode)
500 {
501 if (!list_empty(&inode->i_sb_list)) {
502 spin_lock(&inode->i_sb->s_inode_list_lock);
503 list_del_init(&inode->i_sb_list);
504 spin_unlock(&inode->i_sb->s_inode_list_lock);
505 }
506 }
507
hash(struct super_block * sb,unsigned long hashval)508 static unsigned long hash(struct super_block *sb, unsigned long hashval)
509 {
510 unsigned long tmp;
511
512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
513 L1_CACHE_BYTES;
514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
515 return tmp & i_hash_mask;
516 }
517
518 /**
519 * __insert_inode_hash - hash an inode
520 * @inode: unhashed inode
521 * @hashval: unsigned long value used to locate this object in the
522 * inode_hashtable.
523 *
524 * Add an inode to the inode hash for this superblock.
525 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)526 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
527 {
528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
529
530 spin_lock(&inode_hash_lock);
531 spin_lock(&inode->i_lock);
532 hlist_add_head_rcu(&inode->i_hash, b);
533 spin_unlock(&inode->i_lock);
534 spin_unlock(&inode_hash_lock);
535 }
536 EXPORT_SYMBOL(__insert_inode_hash);
537
538 /**
539 * __remove_inode_hash - remove an inode from the hash
540 * @inode: inode to unhash
541 *
542 * Remove an inode from the superblock.
543 */
__remove_inode_hash(struct inode * inode)544 void __remove_inode_hash(struct inode *inode)
545 {
546 spin_lock(&inode_hash_lock);
547 spin_lock(&inode->i_lock);
548 hlist_del_init_rcu(&inode->i_hash);
549 spin_unlock(&inode->i_lock);
550 spin_unlock(&inode_hash_lock);
551 }
552 EXPORT_SYMBOL(__remove_inode_hash);
553
dump_mapping(const struct address_space * mapping)554 void dump_mapping(const struct address_space *mapping)
555 {
556 struct inode *host;
557 const struct address_space_operations *a_ops;
558 struct hlist_node *dentry_first;
559 struct dentry *dentry_ptr;
560 struct dentry dentry;
561 unsigned long ino;
562
563 /*
564 * If mapping is an invalid pointer, we don't want to crash
565 * accessing it, so probe everything depending on it carefully.
566 */
567 if (get_kernel_nofault(host, &mapping->host) ||
568 get_kernel_nofault(a_ops, &mapping->a_ops)) {
569 pr_warn("invalid mapping:%px\n", mapping);
570 return;
571 }
572
573 if (!host) {
574 pr_warn("aops:%ps\n", a_ops);
575 return;
576 }
577
578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
579 get_kernel_nofault(ino, &host->i_ino)) {
580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
581 return;
582 }
583
584 if (!dentry_first) {
585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
586 return;
587 }
588
589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
590 if (get_kernel_nofault(dentry, dentry_ptr)) {
591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
592 a_ops, ino, dentry_ptr);
593 return;
594 }
595
596 /*
597 * if dentry is corrupted, the %pd handler may still crash,
598 * but it's unlikely that we reach here with a corrupt mapping
599 */
600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
601 }
602
clear_inode(struct inode * inode)603 void clear_inode(struct inode *inode)
604 {
605 /*
606 * We have to cycle the i_pages lock here because reclaim can be in the
607 * process of removing the last page (in __filemap_remove_folio())
608 * and we must not free the mapping under it.
609 */
610 xa_lock_irq(&inode->i_data.i_pages);
611 BUG_ON(inode->i_data.nrpages);
612 /*
613 * Almost always, mapping_empty(&inode->i_data) here; but there are
614 * two known and long-standing ways in which nodes may get left behind
615 * (when deep radix-tree node allocation failed partway; or when THP
616 * collapse_file() failed). Until those two known cases are cleaned up,
617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
618 * nor even WARN_ON(!mapping_empty).
619 */
620 xa_unlock_irq(&inode->i_data.i_pages);
621 BUG_ON(!list_empty(&inode->i_data.private_list));
622 BUG_ON(!(inode->i_state & I_FREEING));
623 BUG_ON(inode->i_state & I_CLEAR);
624 BUG_ON(!list_empty(&inode->i_wb_list));
625 /* don't need i_lock here, no concurrent mods to i_state */
626 inode->i_state = I_FREEING | I_CLEAR;
627 }
628 EXPORT_SYMBOL(clear_inode);
629
630 /*
631 * Free the inode passed in, removing it from the lists it is still connected
632 * to. We remove any pages still attached to the inode and wait for any IO that
633 * is still in progress before finally destroying the inode.
634 *
635 * An inode must already be marked I_FREEING so that we avoid the inode being
636 * moved back onto lists if we race with other code that manipulates the lists
637 * (e.g. writeback_single_inode). The caller is responsible for setting this.
638 *
639 * An inode must already be removed from the LRU list before being evicted from
640 * the cache. This should occur atomically with setting the I_FREEING state
641 * flag, so no inodes here should ever be on the LRU when being evicted.
642 */
evict(struct inode * inode)643 static void evict(struct inode *inode)
644 {
645 const struct super_operations *op = inode->i_sb->s_op;
646
647 BUG_ON(!(inode->i_state & I_FREEING));
648 BUG_ON(!list_empty(&inode->i_lru));
649
650 if (!list_empty(&inode->i_io_list))
651 inode_io_list_del(inode);
652
653 inode_sb_list_del(inode);
654
655 /*
656 * Wait for flusher thread to be done with the inode so that filesystem
657 * does not start destroying it while writeback is still running. Since
658 * the inode has I_FREEING set, flusher thread won't start new work on
659 * the inode. We just have to wait for running writeback to finish.
660 */
661 inode_wait_for_writeback(inode);
662
663 if (op->evict_inode) {
664 op->evict_inode(inode);
665 } else {
666 truncate_inode_pages_final(&inode->i_data);
667 clear_inode(inode);
668 }
669 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
670 cd_forget(inode);
671
672 remove_inode_hash(inode);
673
674 spin_lock(&inode->i_lock);
675 wake_up_bit(&inode->i_state, __I_NEW);
676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
677 spin_unlock(&inode->i_lock);
678
679 destroy_inode(inode);
680 }
681
682 /*
683 * dispose_list - dispose of the contents of a local list
684 * @head: the head of the list to free
685 *
686 * Dispose-list gets a local list with local inodes in it, so it doesn't
687 * need to worry about list corruption and SMP locks.
688 */
dispose_list(struct list_head * head)689 static void dispose_list(struct list_head *head)
690 {
691 while (!list_empty(head)) {
692 struct inode *inode;
693
694 inode = list_first_entry(head, struct inode, i_lru);
695 list_del_init(&inode->i_lru);
696
697 evict(inode);
698 cond_resched();
699 }
700 }
701
702 /**
703 * evict_inodes - evict all evictable inodes for a superblock
704 * @sb: superblock to operate on
705 *
706 * Make sure that no inodes with zero refcount are retained. This is
707 * called by superblock shutdown after having SB_ACTIVE flag removed,
708 * so any inode reaching zero refcount during or after that call will
709 * be immediately evicted.
710 */
evict_inodes(struct super_block * sb)711 void evict_inodes(struct super_block *sb)
712 {
713 struct inode *inode, *next;
714 LIST_HEAD(dispose);
715
716 again:
717 spin_lock(&sb->s_inode_list_lock);
718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
719 if (atomic_read(&inode->i_count))
720 continue;
721
722 spin_lock(&inode->i_lock);
723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
724 spin_unlock(&inode->i_lock);
725 continue;
726 }
727
728 inode->i_state |= I_FREEING;
729 inode_lru_list_del(inode);
730 spin_unlock(&inode->i_lock);
731 list_add(&inode->i_lru, &dispose);
732
733 /*
734 * We can have a ton of inodes to evict at unmount time given
735 * enough memory, check to see if we need to go to sleep for a
736 * bit so we don't livelock.
737 */
738 if (need_resched()) {
739 spin_unlock(&sb->s_inode_list_lock);
740 cond_resched();
741 dispose_list(&dispose);
742 goto again;
743 }
744 }
745 spin_unlock(&sb->s_inode_list_lock);
746
747 dispose_list(&dispose);
748 }
749 EXPORT_SYMBOL_GPL(evict_inodes);
750
751 /**
752 * invalidate_inodes - attempt to free all inodes on a superblock
753 * @sb: superblock to operate on
754 * @kill_dirty: flag to guide handling of dirty inodes
755 *
756 * Attempts to free all inodes for a given superblock. If there were any
757 * busy inodes return a non-zero value, else zero.
758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
759 * them as busy.
760 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)761 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
762 {
763 int busy = 0;
764 struct inode *inode, *next;
765 LIST_HEAD(dispose);
766
767 again:
768 spin_lock(&sb->s_inode_list_lock);
769 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
770 spin_lock(&inode->i_lock);
771 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
772 spin_unlock(&inode->i_lock);
773 continue;
774 }
775 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
776 spin_unlock(&inode->i_lock);
777 busy = 1;
778 continue;
779 }
780 if (atomic_read(&inode->i_count)) {
781 spin_unlock(&inode->i_lock);
782 busy = 1;
783 continue;
784 }
785
786 inode->i_state |= I_FREEING;
787 inode_lru_list_del(inode);
788 spin_unlock(&inode->i_lock);
789 list_add(&inode->i_lru, &dispose);
790 if (need_resched()) {
791 spin_unlock(&sb->s_inode_list_lock);
792 cond_resched();
793 dispose_list(&dispose);
794 goto again;
795 }
796 }
797 spin_unlock(&sb->s_inode_list_lock);
798
799 dispose_list(&dispose);
800
801 return busy;
802 }
803
804 /*
805 * Isolate the inode from the LRU in preparation for freeing it.
806 *
807 * If the inode has the I_REFERENCED flag set, then it means that it has been
808 * used recently - the flag is set in iput_final(). When we encounter such an
809 * inode, clear the flag and move it to the back of the LRU so it gets another
810 * pass through the LRU before it gets reclaimed. This is necessary because of
811 * the fact we are doing lazy LRU updates to minimise lock contention so the
812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
813 * with this flag set because they are the inodes that are out of order.
814 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)815 static enum lru_status inode_lru_isolate(struct list_head *item,
816 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
817 {
818 struct list_head *freeable = arg;
819 struct inode *inode = container_of(item, struct inode, i_lru);
820
821 /*
822 * We are inverting the lru lock/inode->i_lock here, so use a
823 * trylock. If we fail to get the lock, just skip it.
824 */
825 if (!spin_trylock(&inode->i_lock))
826 return LRU_SKIP;
827
828 /*
829 * Inodes can get referenced, redirtied, or repopulated while
830 * they're already on the LRU, and this can make them
831 * unreclaimable for a while. Remove them lazily here; iput,
832 * sync, or the last page cache deletion will requeue them.
833 */
834 if (atomic_read(&inode->i_count) ||
835 (inode->i_state & ~I_REFERENCED) ||
836 !mapping_shrinkable(&inode->i_data)) {
837 list_lru_isolate(lru, &inode->i_lru);
838 spin_unlock(&inode->i_lock);
839 this_cpu_dec(nr_unused);
840 return LRU_REMOVED;
841 }
842
843 /* Recently referenced inodes get one more pass */
844 if (inode->i_state & I_REFERENCED) {
845 inode->i_state &= ~I_REFERENCED;
846 spin_unlock(&inode->i_lock);
847 return LRU_ROTATE;
848 }
849
850 /*
851 * On highmem systems, mapping_shrinkable() permits dropping
852 * page cache in order to free up struct inodes: lowmem might
853 * be under pressure before the cache inside the highmem zone.
854 */
855 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
856 __iget(inode);
857 spin_unlock(&inode->i_lock);
858 spin_unlock(lru_lock);
859 if (remove_inode_buffers(inode)) {
860 unsigned long reap;
861 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
862 if (current_is_kswapd())
863 __count_vm_events(KSWAPD_INODESTEAL, reap);
864 else
865 __count_vm_events(PGINODESTEAL, reap);
866 if (current->reclaim_state)
867 current->reclaim_state->reclaimed_slab += reap;
868 }
869 iput(inode);
870 spin_lock(lru_lock);
871 return LRU_RETRY;
872 }
873
874 WARN_ON(inode->i_state & I_NEW);
875 inode->i_state |= I_FREEING;
876 list_lru_isolate_move(lru, &inode->i_lru, freeable);
877 spin_unlock(&inode->i_lock);
878
879 this_cpu_dec(nr_unused);
880 return LRU_REMOVED;
881 }
882
883 /*
884 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
885 * This is called from the superblock shrinker function with a number of inodes
886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
887 * then are freed outside inode_lock by dispose_list().
888 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)889 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
890 {
891 LIST_HEAD(freeable);
892 long freed;
893
894 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
895 inode_lru_isolate, &freeable);
896 dispose_list(&freeable);
897 return freed;
898 }
899
900 static void __wait_on_freeing_inode(struct inode *inode);
901 /*
902 * Called with the inode lock held.
903 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)904 static struct inode *find_inode(struct super_block *sb,
905 struct hlist_head *head,
906 int (*test)(struct inode *, void *),
907 void *data)
908 {
909 struct inode *inode = NULL;
910
911 repeat:
912 hlist_for_each_entry(inode, head, i_hash) {
913 if (inode->i_sb != sb)
914 continue;
915 if (!test(inode, data))
916 continue;
917 spin_lock(&inode->i_lock);
918 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
919 __wait_on_freeing_inode(inode);
920 goto repeat;
921 }
922 if (unlikely(inode->i_state & I_CREATING)) {
923 spin_unlock(&inode->i_lock);
924 return ERR_PTR(-ESTALE);
925 }
926 __iget(inode);
927 spin_unlock(&inode->i_lock);
928 return inode;
929 }
930 return NULL;
931 }
932
933 /*
934 * find_inode_fast is the fast path version of find_inode, see the comment at
935 * iget_locked for details.
936 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)937 static struct inode *find_inode_fast(struct super_block *sb,
938 struct hlist_head *head, unsigned long ino)
939 {
940 struct inode *inode = NULL;
941
942 repeat:
943 hlist_for_each_entry(inode, head, i_hash) {
944 if (inode->i_ino != ino)
945 continue;
946 if (inode->i_sb != sb)
947 continue;
948 spin_lock(&inode->i_lock);
949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
950 __wait_on_freeing_inode(inode);
951 goto repeat;
952 }
953 if (unlikely(inode->i_state & I_CREATING)) {
954 spin_unlock(&inode->i_lock);
955 return ERR_PTR(-ESTALE);
956 }
957 __iget(inode);
958 spin_unlock(&inode->i_lock);
959 return inode;
960 }
961 return NULL;
962 }
963
964 /*
965 * Each cpu owns a range of LAST_INO_BATCH numbers.
966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
967 * to renew the exhausted range.
968 *
969 * This does not significantly increase overflow rate because every CPU can
970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
973 * overflow rate by 2x, which does not seem too significant.
974 *
975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
976 * error if st_ino won't fit in target struct field. Use 32bit counter
977 * here to attempt to avoid that.
978 */
979 #define LAST_INO_BATCH 1024
980 static DEFINE_PER_CPU(unsigned int, last_ino);
981
get_next_ino(void)982 unsigned int get_next_ino(void)
983 {
984 unsigned int *p = &get_cpu_var(last_ino);
985 unsigned int res = *p;
986
987 #ifdef CONFIG_SMP
988 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
989 static atomic_t shared_last_ino;
990 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
991
992 res = next - LAST_INO_BATCH;
993 }
994 #endif
995
996 res++;
997 /* get_next_ino should not provide a 0 inode number */
998 if (unlikely(!res))
999 res++;
1000 *p = res;
1001 put_cpu_var(last_ino);
1002 return res;
1003 }
1004 EXPORT_SYMBOL(get_next_ino);
1005
1006 /**
1007 * new_inode_pseudo - obtain an inode
1008 * @sb: superblock
1009 *
1010 * Allocates a new inode for given superblock.
1011 * Inode wont be chained in superblock s_inodes list
1012 * This means :
1013 * - fs can't be unmount
1014 * - quotas, fsnotify, writeback can't work
1015 */
new_inode_pseudo(struct super_block * sb)1016 struct inode *new_inode_pseudo(struct super_block *sb)
1017 {
1018 struct inode *inode = alloc_inode(sb);
1019
1020 if (inode) {
1021 spin_lock(&inode->i_lock);
1022 inode->i_state = 0;
1023 spin_unlock(&inode->i_lock);
1024 }
1025 return inode;
1026 }
1027
1028 /**
1029 * new_inode - obtain an inode
1030 * @sb: superblock
1031 *
1032 * Allocates a new inode for given superblock. The default gfp_mask
1033 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1034 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1035 * for the page cache are not reclaimable or migratable,
1036 * mapping_set_gfp_mask() must be called with suitable flags on the
1037 * newly created inode's mapping
1038 *
1039 */
new_inode(struct super_block * sb)1040 struct inode *new_inode(struct super_block *sb)
1041 {
1042 struct inode *inode;
1043
1044 spin_lock_prefetch(&sb->s_inode_list_lock);
1045
1046 inode = new_inode_pseudo(sb);
1047 if (inode)
1048 inode_sb_list_add(inode);
1049 return inode;
1050 }
1051 EXPORT_SYMBOL(new_inode);
1052
1053 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1054 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1055 {
1056 if (S_ISDIR(inode->i_mode)) {
1057 struct file_system_type *type = inode->i_sb->s_type;
1058
1059 /* Set new key only if filesystem hasn't already changed it */
1060 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1061 /*
1062 * ensure nobody is actually holding i_mutex
1063 */
1064 // mutex_destroy(&inode->i_mutex);
1065 init_rwsem(&inode->i_rwsem);
1066 lockdep_set_class(&inode->i_rwsem,
1067 &type->i_mutex_dir_key);
1068 }
1069 }
1070 }
1071 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1072 #endif
1073
1074 /**
1075 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1076 * @inode: new inode to unlock
1077 *
1078 * Called when the inode is fully initialised to clear the new state of the
1079 * inode and wake up anyone waiting for the inode to finish initialisation.
1080 */
unlock_new_inode(struct inode * inode)1081 void unlock_new_inode(struct inode *inode)
1082 {
1083 lockdep_annotate_inode_mutex_key(inode);
1084 spin_lock(&inode->i_lock);
1085 WARN_ON(!(inode->i_state & I_NEW));
1086 inode->i_state &= ~I_NEW & ~I_CREATING;
1087 smp_mb();
1088 wake_up_bit(&inode->i_state, __I_NEW);
1089 spin_unlock(&inode->i_lock);
1090 }
1091 EXPORT_SYMBOL(unlock_new_inode);
1092
discard_new_inode(struct inode * inode)1093 void discard_new_inode(struct inode *inode)
1094 {
1095 lockdep_annotate_inode_mutex_key(inode);
1096 spin_lock(&inode->i_lock);
1097 WARN_ON(!(inode->i_state & I_NEW));
1098 inode->i_state &= ~I_NEW;
1099 smp_mb();
1100 wake_up_bit(&inode->i_state, __I_NEW);
1101 spin_unlock(&inode->i_lock);
1102 iput(inode);
1103 }
1104 EXPORT_SYMBOL(discard_new_inode);
1105
1106 /**
1107 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1108 *
1109 * Lock any non-NULL argument that is not a directory.
1110 * Zero, one or two objects may be locked by this function.
1111 *
1112 * @inode1: first inode to lock
1113 * @inode2: second inode to lock
1114 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1115 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1116 {
1117 if (inode1 > inode2)
1118 swap(inode1, inode2);
1119
1120 if (inode1 && !S_ISDIR(inode1->i_mode))
1121 inode_lock(inode1);
1122 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1123 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1124 }
1125 EXPORT_SYMBOL(lock_two_nondirectories);
1126
1127 /**
1128 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1129 * @inode1: first inode to unlock
1130 * @inode2: second inode to unlock
1131 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1132 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1133 {
1134 if (inode1 && !S_ISDIR(inode1->i_mode))
1135 inode_unlock(inode1);
1136 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1137 inode_unlock(inode2);
1138 }
1139 EXPORT_SYMBOL(unlock_two_nondirectories);
1140
1141 /**
1142 * inode_insert5 - obtain an inode from a mounted file system
1143 * @inode: pre-allocated inode to use for insert to cache
1144 * @hashval: hash value (usually inode number) to get
1145 * @test: callback used for comparisons between inodes
1146 * @set: callback used to initialize a new struct inode
1147 * @data: opaque data pointer to pass to @test and @set
1148 *
1149 * Search for the inode specified by @hashval and @data in the inode cache,
1150 * and if present it is return it with an increased reference count. This is
1151 * a variant of iget5_locked() for callers that don't want to fail on memory
1152 * allocation of inode.
1153 *
1154 * If the inode is not in cache, insert the pre-allocated inode to cache and
1155 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1156 * to fill it in before unlocking it via unlock_new_inode().
1157 *
1158 * Note both @test and @set are called with the inode_hash_lock held, so can't
1159 * sleep.
1160 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1161 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1162 int (*test)(struct inode *, void *),
1163 int (*set)(struct inode *, void *), void *data)
1164 {
1165 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1166 struct inode *old;
1167
1168 again:
1169 spin_lock(&inode_hash_lock);
1170 old = find_inode(inode->i_sb, head, test, data);
1171 if (unlikely(old)) {
1172 /*
1173 * Uhhuh, somebody else created the same inode under us.
1174 * Use the old inode instead of the preallocated one.
1175 */
1176 spin_unlock(&inode_hash_lock);
1177 if (IS_ERR(old))
1178 return NULL;
1179 wait_on_inode(old);
1180 if (unlikely(inode_unhashed(old))) {
1181 iput(old);
1182 goto again;
1183 }
1184 return old;
1185 }
1186
1187 if (set && unlikely(set(inode, data))) {
1188 inode = NULL;
1189 goto unlock;
1190 }
1191
1192 /*
1193 * Return the locked inode with I_NEW set, the
1194 * caller is responsible for filling in the contents
1195 */
1196 spin_lock(&inode->i_lock);
1197 inode->i_state |= I_NEW;
1198 hlist_add_head_rcu(&inode->i_hash, head);
1199 spin_unlock(&inode->i_lock);
1200
1201 /*
1202 * Add inode to the sb list if it's not already. It has I_NEW at this
1203 * point, so it should be safe to test i_sb_list locklessly.
1204 */
1205 if (list_empty(&inode->i_sb_list))
1206 inode_sb_list_add(inode);
1207 unlock:
1208 spin_unlock(&inode_hash_lock);
1209
1210 return inode;
1211 }
1212 EXPORT_SYMBOL(inode_insert5);
1213
1214 /**
1215 * iget5_locked - obtain an inode from a mounted file system
1216 * @sb: super block of file system
1217 * @hashval: hash value (usually inode number) to get
1218 * @test: callback used for comparisons between inodes
1219 * @set: callback used to initialize a new struct inode
1220 * @data: opaque data pointer to pass to @test and @set
1221 *
1222 * Search for the inode specified by @hashval and @data in the inode cache,
1223 * and if present it is return it with an increased reference count. This is
1224 * a generalized version of iget_locked() for file systems where the inode
1225 * number is not sufficient for unique identification of an inode.
1226 *
1227 * If the inode is not in cache, allocate a new inode and return it locked,
1228 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1229 * before unlocking it via unlock_new_inode().
1230 *
1231 * Note both @test and @set are called with the inode_hash_lock held, so can't
1232 * sleep.
1233 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1234 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1235 int (*test)(struct inode *, void *),
1236 int (*set)(struct inode *, void *), void *data)
1237 {
1238 struct inode *inode = ilookup5(sb, hashval, test, data);
1239
1240 if (!inode) {
1241 struct inode *new = alloc_inode(sb);
1242
1243 if (new) {
1244 new->i_state = 0;
1245 inode = inode_insert5(new, hashval, test, set, data);
1246 if (unlikely(inode != new))
1247 destroy_inode(new);
1248 }
1249 }
1250 return inode;
1251 }
1252 EXPORT_SYMBOL(iget5_locked);
1253
1254 /**
1255 * iget_locked - obtain an inode from a mounted file system
1256 * @sb: super block of file system
1257 * @ino: inode number to get
1258 *
1259 * Search for the inode specified by @ino in the inode cache and if present
1260 * return it with an increased reference count. This is for file systems
1261 * where the inode number is sufficient for unique identification of an inode.
1262 *
1263 * If the inode is not in cache, allocate a new inode and return it locked,
1264 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1265 * before unlocking it via unlock_new_inode().
1266 */
iget_locked(struct super_block * sb,unsigned long ino)1267 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1268 {
1269 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270 struct inode *inode;
1271 again:
1272 spin_lock(&inode_hash_lock);
1273 inode = find_inode_fast(sb, head, ino);
1274 spin_unlock(&inode_hash_lock);
1275 if (inode) {
1276 if (IS_ERR(inode))
1277 return NULL;
1278 wait_on_inode(inode);
1279 if (unlikely(inode_unhashed(inode))) {
1280 iput(inode);
1281 goto again;
1282 }
1283 return inode;
1284 }
1285
1286 inode = alloc_inode(sb);
1287 if (inode) {
1288 struct inode *old;
1289
1290 spin_lock(&inode_hash_lock);
1291 /* We released the lock, so.. */
1292 old = find_inode_fast(sb, head, ino);
1293 if (!old) {
1294 inode->i_ino = ino;
1295 spin_lock(&inode->i_lock);
1296 inode->i_state = I_NEW;
1297 hlist_add_head_rcu(&inode->i_hash, head);
1298 spin_unlock(&inode->i_lock);
1299 inode_sb_list_add(inode);
1300 spin_unlock(&inode_hash_lock);
1301
1302 /* Return the locked inode with I_NEW set, the
1303 * caller is responsible for filling in the contents
1304 */
1305 return inode;
1306 }
1307
1308 /*
1309 * Uhhuh, somebody else created the same inode under
1310 * us. Use the old inode instead of the one we just
1311 * allocated.
1312 */
1313 spin_unlock(&inode_hash_lock);
1314 destroy_inode(inode);
1315 if (IS_ERR(old))
1316 return NULL;
1317 inode = old;
1318 wait_on_inode(inode);
1319 if (unlikely(inode_unhashed(inode))) {
1320 iput(inode);
1321 goto again;
1322 }
1323 }
1324 return inode;
1325 }
1326 EXPORT_SYMBOL(iget_locked);
1327
1328 /*
1329 * search the inode cache for a matching inode number.
1330 * If we find one, then the inode number we are trying to
1331 * allocate is not unique and so we should not use it.
1332 *
1333 * Returns 1 if the inode number is unique, 0 if it is not.
1334 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1335 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1336 {
1337 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1338 struct inode *inode;
1339
1340 hlist_for_each_entry_rcu(inode, b, i_hash) {
1341 if (inode->i_ino == ino && inode->i_sb == sb)
1342 return 0;
1343 }
1344 return 1;
1345 }
1346
1347 /**
1348 * iunique - get a unique inode number
1349 * @sb: superblock
1350 * @max_reserved: highest reserved inode number
1351 *
1352 * Obtain an inode number that is unique on the system for a given
1353 * superblock. This is used by file systems that have no natural
1354 * permanent inode numbering system. An inode number is returned that
1355 * is higher than the reserved limit but unique.
1356 *
1357 * BUGS:
1358 * With a large number of inodes live on the file system this function
1359 * currently becomes quite slow.
1360 */
iunique(struct super_block * sb,ino_t max_reserved)1361 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1362 {
1363 /*
1364 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1365 * error if st_ino won't fit in target struct field. Use 32bit counter
1366 * here to attempt to avoid that.
1367 */
1368 static DEFINE_SPINLOCK(iunique_lock);
1369 static unsigned int counter;
1370 ino_t res;
1371
1372 rcu_read_lock();
1373 spin_lock(&iunique_lock);
1374 do {
1375 if (counter <= max_reserved)
1376 counter = max_reserved + 1;
1377 res = counter++;
1378 } while (!test_inode_iunique(sb, res));
1379 spin_unlock(&iunique_lock);
1380 rcu_read_unlock();
1381
1382 return res;
1383 }
1384 EXPORT_SYMBOL(iunique);
1385
igrab(struct inode * inode)1386 struct inode *igrab(struct inode *inode)
1387 {
1388 spin_lock(&inode->i_lock);
1389 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1390 __iget(inode);
1391 spin_unlock(&inode->i_lock);
1392 } else {
1393 spin_unlock(&inode->i_lock);
1394 /*
1395 * Handle the case where s_op->clear_inode is not been
1396 * called yet, and somebody is calling igrab
1397 * while the inode is getting freed.
1398 */
1399 inode = NULL;
1400 }
1401 return inode;
1402 }
1403 EXPORT_SYMBOL(igrab);
1404
1405 /**
1406 * ilookup5_nowait - search for an inode in the inode cache
1407 * @sb: super block of file system to search
1408 * @hashval: hash value (usually inode number) to search for
1409 * @test: callback used for comparisons between inodes
1410 * @data: opaque data pointer to pass to @test
1411 *
1412 * Search for the inode specified by @hashval and @data in the inode cache.
1413 * If the inode is in the cache, the inode is returned with an incremented
1414 * reference count.
1415 *
1416 * Note: I_NEW is not waited upon so you have to be very careful what you do
1417 * with the returned inode. You probably should be using ilookup5() instead.
1418 *
1419 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1420 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1421 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1422 int (*test)(struct inode *, void *), void *data)
1423 {
1424 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1425 struct inode *inode;
1426
1427 spin_lock(&inode_hash_lock);
1428 inode = find_inode(sb, head, test, data);
1429 spin_unlock(&inode_hash_lock);
1430
1431 return IS_ERR(inode) ? NULL : inode;
1432 }
1433 EXPORT_SYMBOL(ilookup5_nowait);
1434
1435 /**
1436 * ilookup5 - search for an inode in the inode cache
1437 * @sb: super block of file system to search
1438 * @hashval: hash value (usually inode number) to search for
1439 * @test: callback used for comparisons between inodes
1440 * @data: opaque data pointer to pass to @test
1441 *
1442 * Search for the inode specified by @hashval and @data in the inode cache,
1443 * and if the inode is in the cache, return the inode with an incremented
1444 * reference count. Waits on I_NEW before returning the inode.
1445 * returned with an incremented reference count.
1446 *
1447 * This is a generalized version of ilookup() for file systems where the
1448 * inode number is not sufficient for unique identification of an inode.
1449 *
1450 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1451 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1452 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1453 int (*test)(struct inode *, void *), void *data)
1454 {
1455 struct inode *inode;
1456 again:
1457 inode = ilookup5_nowait(sb, hashval, test, data);
1458 if (inode) {
1459 wait_on_inode(inode);
1460 if (unlikely(inode_unhashed(inode))) {
1461 iput(inode);
1462 goto again;
1463 }
1464 }
1465 return inode;
1466 }
1467 EXPORT_SYMBOL(ilookup5);
1468
1469 /**
1470 * ilookup - search for an inode in the inode cache
1471 * @sb: super block of file system to search
1472 * @ino: inode number to search for
1473 *
1474 * Search for the inode @ino in the inode cache, and if the inode is in the
1475 * cache, the inode is returned with an incremented reference count.
1476 */
ilookup(struct super_block * sb,unsigned long ino)1477 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1478 {
1479 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1480 struct inode *inode;
1481 again:
1482 spin_lock(&inode_hash_lock);
1483 inode = find_inode_fast(sb, head, ino);
1484 spin_unlock(&inode_hash_lock);
1485
1486 if (inode) {
1487 if (IS_ERR(inode))
1488 return NULL;
1489 wait_on_inode(inode);
1490 if (unlikely(inode_unhashed(inode))) {
1491 iput(inode);
1492 goto again;
1493 }
1494 }
1495 return inode;
1496 }
1497 EXPORT_SYMBOL(ilookup);
1498
1499 /**
1500 * find_inode_nowait - find an inode in the inode cache
1501 * @sb: super block of file system to search
1502 * @hashval: hash value (usually inode number) to search for
1503 * @match: callback used for comparisons between inodes
1504 * @data: opaque data pointer to pass to @match
1505 *
1506 * Search for the inode specified by @hashval and @data in the inode
1507 * cache, where the helper function @match will return 0 if the inode
1508 * does not match, 1 if the inode does match, and -1 if the search
1509 * should be stopped. The @match function must be responsible for
1510 * taking the i_lock spin_lock and checking i_state for an inode being
1511 * freed or being initialized, and incrementing the reference count
1512 * before returning 1. It also must not sleep, since it is called with
1513 * the inode_hash_lock spinlock held.
1514 *
1515 * This is a even more generalized version of ilookup5() when the
1516 * function must never block --- find_inode() can block in
1517 * __wait_on_freeing_inode() --- or when the caller can not increment
1518 * the reference count because the resulting iput() might cause an
1519 * inode eviction. The tradeoff is that the @match funtion must be
1520 * very carefully implemented.
1521 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1522 struct inode *find_inode_nowait(struct super_block *sb,
1523 unsigned long hashval,
1524 int (*match)(struct inode *, unsigned long,
1525 void *),
1526 void *data)
1527 {
1528 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1529 struct inode *inode, *ret_inode = NULL;
1530 int mval;
1531
1532 spin_lock(&inode_hash_lock);
1533 hlist_for_each_entry(inode, head, i_hash) {
1534 if (inode->i_sb != sb)
1535 continue;
1536 mval = match(inode, hashval, data);
1537 if (mval == 0)
1538 continue;
1539 if (mval == 1)
1540 ret_inode = inode;
1541 goto out;
1542 }
1543 out:
1544 spin_unlock(&inode_hash_lock);
1545 return ret_inode;
1546 }
1547 EXPORT_SYMBOL(find_inode_nowait);
1548
1549 /**
1550 * find_inode_rcu - find an inode in the inode cache
1551 * @sb: Super block of file system to search
1552 * @hashval: Key to hash
1553 * @test: Function to test match on an inode
1554 * @data: Data for test function
1555 *
1556 * Search for the inode specified by @hashval and @data in the inode cache,
1557 * where the helper function @test will return 0 if the inode does not match
1558 * and 1 if it does. The @test function must be responsible for taking the
1559 * i_lock spin_lock and checking i_state for an inode being freed or being
1560 * initialized.
1561 *
1562 * If successful, this will return the inode for which the @test function
1563 * returned 1 and NULL otherwise.
1564 *
1565 * The @test function is not permitted to take a ref on any inode presented.
1566 * It is also not permitted to sleep.
1567 *
1568 * The caller must hold the RCU read lock.
1569 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1570 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1571 int (*test)(struct inode *, void *), void *data)
1572 {
1573 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1574 struct inode *inode;
1575
1576 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1577 "suspicious find_inode_rcu() usage");
1578
1579 hlist_for_each_entry_rcu(inode, head, i_hash) {
1580 if (inode->i_sb == sb &&
1581 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1582 test(inode, data))
1583 return inode;
1584 }
1585 return NULL;
1586 }
1587 EXPORT_SYMBOL(find_inode_rcu);
1588
1589 /**
1590 * find_inode_by_ino_rcu - Find an inode in the inode cache
1591 * @sb: Super block of file system to search
1592 * @ino: The inode number to match
1593 *
1594 * Search for the inode specified by @hashval and @data in the inode cache,
1595 * where the helper function @test will return 0 if the inode does not match
1596 * and 1 if it does. The @test function must be responsible for taking the
1597 * i_lock spin_lock and checking i_state for an inode being freed or being
1598 * initialized.
1599 *
1600 * If successful, this will return the inode for which the @test function
1601 * returned 1 and NULL otherwise.
1602 *
1603 * The @test function is not permitted to take a ref on any inode presented.
1604 * It is also not permitted to sleep.
1605 *
1606 * The caller must hold the RCU read lock.
1607 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1608 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1609 unsigned long ino)
1610 {
1611 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1612 struct inode *inode;
1613
1614 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1615 "suspicious find_inode_by_ino_rcu() usage");
1616
1617 hlist_for_each_entry_rcu(inode, head, i_hash) {
1618 if (inode->i_ino == ino &&
1619 inode->i_sb == sb &&
1620 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1621 return inode;
1622 }
1623 return NULL;
1624 }
1625 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1626
insert_inode_locked(struct inode * inode)1627 int insert_inode_locked(struct inode *inode)
1628 {
1629 struct super_block *sb = inode->i_sb;
1630 ino_t ino = inode->i_ino;
1631 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1632
1633 while (1) {
1634 struct inode *old = NULL;
1635 spin_lock(&inode_hash_lock);
1636 hlist_for_each_entry(old, head, i_hash) {
1637 if (old->i_ino != ino)
1638 continue;
1639 if (old->i_sb != sb)
1640 continue;
1641 spin_lock(&old->i_lock);
1642 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1643 spin_unlock(&old->i_lock);
1644 continue;
1645 }
1646 break;
1647 }
1648 if (likely(!old)) {
1649 spin_lock(&inode->i_lock);
1650 inode->i_state |= I_NEW | I_CREATING;
1651 hlist_add_head_rcu(&inode->i_hash, head);
1652 spin_unlock(&inode->i_lock);
1653 spin_unlock(&inode_hash_lock);
1654 return 0;
1655 }
1656 if (unlikely(old->i_state & I_CREATING)) {
1657 spin_unlock(&old->i_lock);
1658 spin_unlock(&inode_hash_lock);
1659 return -EBUSY;
1660 }
1661 __iget(old);
1662 spin_unlock(&old->i_lock);
1663 spin_unlock(&inode_hash_lock);
1664 wait_on_inode(old);
1665 if (unlikely(!inode_unhashed(old))) {
1666 iput(old);
1667 return -EBUSY;
1668 }
1669 iput(old);
1670 }
1671 }
1672 EXPORT_SYMBOL(insert_inode_locked);
1673
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1674 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1675 int (*test)(struct inode *, void *), void *data)
1676 {
1677 struct inode *old;
1678
1679 inode->i_state |= I_CREATING;
1680 old = inode_insert5(inode, hashval, test, NULL, data);
1681
1682 if (old != inode) {
1683 iput(old);
1684 return -EBUSY;
1685 }
1686 return 0;
1687 }
1688 EXPORT_SYMBOL(insert_inode_locked4);
1689
1690
generic_delete_inode(struct inode * inode)1691 int generic_delete_inode(struct inode *inode)
1692 {
1693 return 1;
1694 }
1695 EXPORT_SYMBOL(generic_delete_inode);
1696
1697 /*
1698 * Called when we're dropping the last reference
1699 * to an inode.
1700 *
1701 * Call the FS "drop_inode()" function, defaulting to
1702 * the legacy UNIX filesystem behaviour. If it tells
1703 * us to evict inode, do so. Otherwise, retain inode
1704 * in cache if fs is alive, sync and evict if fs is
1705 * shutting down.
1706 */
iput_final(struct inode * inode)1707 static void iput_final(struct inode *inode)
1708 {
1709 struct super_block *sb = inode->i_sb;
1710 const struct super_operations *op = inode->i_sb->s_op;
1711 unsigned long state;
1712 int drop;
1713
1714 WARN_ON(inode->i_state & I_NEW);
1715
1716 if (op->drop_inode)
1717 drop = op->drop_inode(inode);
1718 else
1719 drop = generic_drop_inode(inode);
1720
1721 if (!drop &&
1722 !(inode->i_state & I_DONTCACHE) &&
1723 (sb->s_flags & SB_ACTIVE)) {
1724 __inode_add_lru(inode, true);
1725 spin_unlock(&inode->i_lock);
1726 return;
1727 }
1728
1729 state = inode->i_state;
1730 if (!drop) {
1731 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1732 spin_unlock(&inode->i_lock);
1733
1734 write_inode_now(inode, 1);
1735
1736 spin_lock(&inode->i_lock);
1737 state = inode->i_state;
1738 WARN_ON(state & I_NEW);
1739 state &= ~I_WILL_FREE;
1740 }
1741
1742 WRITE_ONCE(inode->i_state, state | I_FREEING);
1743 if (!list_empty(&inode->i_lru))
1744 inode_lru_list_del(inode);
1745 spin_unlock(&inode->i_lock);
1746
1747 evict(inode);
1748 }
1749
1750 /**
1751 * iput - put an inode
1752 * @inode: inode to put
1753 *
1754 * Puts an inode, dropping its usage count. If the inode use count hits
1755 * zero, the inode is then freed and may also be destroyed.
1756 *
1757 * Consequently, iput() can sleep.
1758 */
iput(struct inode * inode)1759 void iput(struct inode *inode)
1760 {
1761 if (!inode)
1762 return;
1763 BUG_ON(inode->i_state & I_CLEAR);
1764 retry:
1765 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1766 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1767 atomic_inc(&inode->i_count);
1768 spin_unlock(&inode->i_lock);
1769 trace_writeback_lazytime_iput(inode);
1770 mark_inode_dirty_sync(inode);
1771 goto retry;
1772 }
1773 iput_final(inode);
1774 }
1775 }
1776 EXPORT_SYMBOL(iput);
1777
1778 #ifdef CONFIG_BLOCK
1779 /**
1780 * bmap - find a block number in a file
1781 * @inode: inode owning the block number being requested
1782 * @block: pointer containing the block to find
1783 *
1784 * Replaces the value in ``*block`` with the block number on the device holding
1785 * corresponding to the requested block number in the file.
1786 * That is, asked for block 4 of inode 1 the function will replace the
1787 * 4 in ``*block``, with disk block relative to the disk start that holds that
1788 * block of the file.
1789 *
1790 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1791 * hole, returns 0 and ``*block`` is also set to 0.
1792 */
bmap(struct inode * inode,sector_t * block)1793 int bmap(struct inode *inode, sector_t *block)
1794 {
1795 if (!inode->i_mapping->a_ops->bmap)
1796 return -EINVAL;
1797
1798 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1799 return 0;
1800 }
1801 EXPORT_SYMBOL(bmap);
1802 #endif
1803
1804 /*
1805 * With relative atime, only update atime if the previous atime is
1806 * earlier than either the ctime or mtime or if at least a day has
1807 * passed since the last atime update.
1808 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1809 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1810 struct timespec64 now)
1811 {
1812
1813 if (!(mnt->mnt_flags & MNT_RELATIME))
1814 return 1;
1815 /*
1816 * Is mtime younger than atime? If yes, update atime:
1817 */
1818 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1819 return 1;
1820 /*
1821 * Is ctime younger than atime? If yes, update atime:
1822 */
1823 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1824 return 1;
1825
1826 /*
1827 * Is the previous atime value older than a day? If yes,
1828 * update atime:
1829 */
1830 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1831 return 1;
1832 /*
1833 * Good, we can skip the atime update:
1834 */
1835 return 0;
1836 }
1837
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1838 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1839 {
1840 int dirty_flags = 0;
1841
1842 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1843 if (flags & S_ATIME)
1844 inode->i_atime = *time;
1845 if (flags & S_CTIME)
1846 inode->i_ctime = *time;
1847 if (flags & S_MTIME)
1848 inode->i_mtime = *time;
1849
1850 if (inode->i_sb->s_flags & SB_LAZYTIME)
1851 dirty_flags |= I_DIRTY_TIME;
1852 else
1853 dirty_flags |= I_DIRTY_SYNC;
1854 }
1855
1856 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1857 dirty_flags |= I_DIRTY_SYNC;
1858
1859 __mark_inode_dirty(inode, dirty_flags);
1860 return 0;
1861 }
1862 EXPORT_SYMBOL(generic_update_time);
1863
1864 /*
1865 * This does the actual work of updating an inodes time or version. Must have
1866 * had called mnt_want_write() before calling this.
1867 */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1868 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1869 {
1870 if (inode->i_op->update_time)
1871 return inode->i_op->update_time(inode, time, flags);
1872 return generic_update_time(inode, time, flags);
1873 }
1874 EXPORT_SYMBOL(inode_update_time);
1875
1876 /**
1877 * atime_needs_update - update the access time
1878 * @path: the &struct path to update
1879 * @inode: inode to update
1880 *
1881 * Update the accessed time on an inode and mark it for writeback.
1882 * This function automatically handles read only file systems and media,
1883 * as well as the "noatime" flag and inode specific "noatime" markers.
1884 */
atime_needs_update(const struct path * path,struct inode * inode)1885 bool atime_needs_update(const struct path *path, struct inode *inode)
1886 {
1887 struct vfsmount *mnt = path->mnt;
1888 struct timespec64 now;
1889
1890 if (inode->i_flags & S_NOATIME)
1891 return false;
1892
1893 /* Atime updates will likely cause i_uid and i_gid to be written
1894 * back improprely if their true value is unknown to the vfs.
1895 */
1896 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1897 return false;
1898
1899 if (IS_NOATIME(inode))
1900 return false;
1901 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1902 return false;
1903
1904 if (mnt->mnt_flags & MNT_NOATIME)
1905 return false;
1906 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1907 return false;
1908
1909 now = current_time(inode);
1910
1911 if (!relatime_need_update(mnt, inode, now))
1912 return false;
1913
1914 if (timespec64_equal(&inode->i_atime, &now))
1915 return false;
1916
1917 return true;
1918 }
1919
touch_atime(const struct path * path)1920 void touch_atime(const struct path *path)
1921 {
1922 struct vfsmount *mnt = path->mnt;
1923 struct inode *inode = d_inode(path->dentry);
1924 struct timespec64 now;
1925
1926 if (!atime_needs_update(path, inode))
1927 return;
1928
1929 if (!sb_start_write_trylock(inode->i_sb))
1930 return;
1931
1932 if (__mnt_want_write(mnt) != 0)
1933 goto skip_update;
1934 /*
1935 * File systems can error out when updating inodes if they need to
1936 * allocate new space to modify an inode (such is the case for
1937 * Btrfs), but since we touch atime while walking down the path we
1938 * really don't care if we failed to update the atime of the file,
1939 * so just ignore the return value.
1940 * We may also fail on filesystems that have the ability to make parts
1941 * of the fs read only, e.g. subvolumes in Btrfs.
1942 */
1943 now = current_time(inode);
1944 inode_update_time(inode, &now, S_ATIME);
1945 __mnt_drop_write(mnt);
1946 skip_update:
1947 sb_end_write(inode->i_sb);
1948 }
1949 EXPORT_SYMBOL(touch_atime);
1950
1951 /*
1952 * The logic we want is
1953 *
1954 * if suid or (sgid and xgrp)
1955 * remove privs
1956 */
should_remove_suid(struct dentry * dentry)1957 int should_remove_suid(struct dentry *dentry)
1958 {
1959 umode_t mode = d_inode(dentry)->i_mode;
1960 int kill = 0;
1961
1962 /* suid always must be killed */
1963 if (unlikely(mode & S_ISUID))
1964 kill = ATTR_KILL_SUID;
1965
1966 /*
1967 * sgid without any exec bits is just a mandatory locking mark; leave
1968 * it alone. If some exec bits are set, it's a real sgid; kill it.
1969 */
1970 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1971 kill |= ATTR_KILL_SGID;
1972
1973 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1974 return kill;
1975
1976 return 0;
1977 }
1978 EXPORT_SYMBOL(should_remove_suid);
1979
1980 /*
1981 * Return mask of changes for notify_change() that need to be done as a
1982 * response to write or truncate. Return 0 if nothing has to be changed.
1983 * Negative value on error (change should be denied).
1984 */
dentry_needs_remove_privs(struct dentry * dentry)1985 int dentry_needs_remove_privs(struct dentry *dentry)
1986 {
1987 struct inode *inode = d_inode(dentry);
1988 int mask = 0;
1989 int ret;
1990
1991 if (IS_NOSEC(inode))
1992 return 0;
1993
1994 mask = should_remove_suid(dentry);
1995 ret = security_inode_need_killpriv(dentry);
1996 if (ret < 0)
1997 return ret;
1998 if (ret)
1999 mask |= ATTR_KILL_PRIV;
2000 return mask;
2001 }
2002
__remove_privs(struct user_namespace * mnt_userns,struct dentry * dentry,int kill)2003 static int __remove_privs(struct user_namespace *mnt_userns,
2004 struct dentry *dentry, int kill)
2005 {
2006 struct iattr newattrs;
2007
2008 newattrs.ia_valid = ATTR_FORCE | kill;
2009 /*
2010 * Note we call this on write, so notify_change will not
2011 * encounter any conflicting delegations:
2012 */
2013 return notify_change(mnt_userns, dentry, &newattrs, NULL);
2014 }
2015
__file_remove_privs(struct file * file,unsigned int flags)2016 static int __file_remove_privs(struct file *file, unsigned int flags)
2017 {
2018 struct dentry *dentry = file_dentry(file);
2019 struct inode *inode = file_inode(file);
2020 int error = 0;
2021 int kill;
2022
2023 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2024 return 0;
2025
2026 kill = dentry_needs_remove_privs(dentry);
2027 if (kill < 0)
2028 return kill;
2029
2030 if (kill) {
2031 if (flags & IOCB_NOWAIT)
2032 return -EAGAIN;
2033
2034 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2035 }
2036
2037 if (!error)
2038 inode_has_no_xattr(inode);
2039 return error;
2040 }
2041
2042 /**
2043 * file_remove_privs - remove special file privileges (suid, capabilities)
2044 * @file: file to remove privileges from
2045 *
2046 * When file is modified by a write or truncation ensure that special
2047 * file privileges are removed.
2048 *
2049 * Return: 0 on success, negative errno on failure.
2050 */
file_remove_privs(struct file * file)2051 int file_remove_privs(struct file *file)
2052 {
2053 return __file_remove_privs(file, 0);
2054 }
2055 EXPORT_SYMBOL(file_remove_privs);
2056
inode_needs_update_time(struct inode * inode,struct timespec64 * now)2057 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2058 {
2059 int sync_it = 0;
2060
2061 /* First try to exhaust all avenues to not sync */
2062 if (IS_NOCMTIME(inode))
2063 return 0;
2064
2065 if (!timespec64_equal(&inode->i_mtime, now))
2066 sync_it = S_MTIME;
2067
2068 if (!timespec64_equal(&inode->i_ctime, now))
2069 sync_it |= S_CTIME;
2070
2071 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2072 sync_it |= S_VERSION;
2073
2074 if (!sync_it)
2075 return 0;
2076
2077 return sync_it;
2078 }
2079
__file_update_time(struct file * file,struct timespec64 * now,int sync_mode)2080 static int __file_update_time(struct file *file, struct timespec64 *now,
2081 int sync_mode)
2082 {
2083 int ret = 0;
2084 struct inode *inode = file_inode(file);
2085
2086 /* try to update time settings */
2087 if (!__mnt_want_write_file(file)) {
2088 ret = inode_update_time(inode, now, sync_mode);
2089 __mnt_drop_write_file(file);
2090 }
2091
2092 return ret;
2093 }
2094
2095 /**
2096 * file_update_time - update mtime and ctime time
2097 * @file: file accessed
2098 *
2099 * Update the mtime and ctime members of an inode and mark the inode for
2100 * writeback. Note that this function is meant exclusively for usage in
2101 * the file write path of filesystems, and filesystems may choose to
2102 * explicitly ignore updates via this function with the _NOCMTIME inode
2103 * flag, e.g. for network filesystem where these imestamps are handled
2104 * by the server. This can return an error for file systems who need to
2105 * allocate space in order to update an inode.
2106 *
2107 * Return: 0 on success, negative errno on failure.
2108 */
file_update_time(struct file * file)2109 int file_update_time(struct file *file)
2110 {
2111 int ret;
2112 struct inode *inode = file_inode(file);
2113 struct timespec64 now = current_time(inode);
2114
2115 ret = inode_needs_update_time(inode, &now);
2116 if (ret <= 0)
2117 return ret;
2118
2119 return __file_update_time(file, &now, ret);
2120 }
2121 EXPORT_SYMBOL(file_update_time);
2122
2123 /**
2124 * file_modified_flags - handle mandated vfs changes when modifying a file
2125 * @file: file that was modified
2126 * @flags: kiocb flags
2127 *
2128 * When file has been modified ensure that special
2129 * file privileges are removed and time settings are updated.
2130 *
2131 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2132 * time settings will not be updated. It will return -EAGAIN.
2133 *
2134 * Context: Caller must hold the file's inode lock.
2135 *
2136 * Return: 0 on success, negative errno on failure.
2137 */
file_modified_flags(struct file * file,int flags)2138 static int file_modified_flags(struct file *file, int flags)
2139 {
2140 int ret;
2141 struct inode *inode = file_inode(file);
2142 struct timespec64 now = current_time(inode);
2143
2144 /*
2145 * Clear the security bits if the process is not being run by root.
2146 * This keeps people from modifying setuid and setgid binaries.
2147 */
2148 ret = __file_remove_privs(file, flags);
2149 if (ret)
2150 return ret;
2151
2152 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2153 return 0;
2154
2155 ret = inode_needs_update_time(inode, &now);
2156 if (ret <= 0)
2157 return ret;
2158 if (flags & IOCB_NOWAIT)
2159 return -EAGAIN;
2160
2161 return __file_update_time(file, &now, ret);
2162 }
2163
2164 /**
2165 * file_modified - handle mandated vfs changes when modifying a file
2166 * @file: file that was modified
2167 *
2168 * When file has been modified ensure that special
2169 * file privileges are removed and time settings are updated.
2170 *
2171 * Context: Caller must hold the file's inode lock.
2172 *
2173 * Return: 0 on success, negative errno on failure.
2174 */
file_modified(struct file * file)2175 int file_modified(struct file *file)
2176 {
2177 return file_modified_flags(file, 0);
2178 }
2179 EXPORT_SYMBOL(file_modified);
2180
2181 /**
2182 * kiocb_modified - handle mandated vfs changes when modifying a file
2183 * @iocb: iocb that was modified
2184 *
2185 * When file has been modified ensure that special
2186 * file privileges are removed and time settings are updated.
2187 *
2188 * Context: Caller must hold the file's inode lock.
2189 *
2190 * Return: 0 on success, negative errno on failure.
2191 */
kiocb_modified(struct kiocb * iocb)2192 int kiocb_modified(struct kiocb *iocb)
2193 {
2194 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2195 }
2196 EXPORT_SYMBOL_GPL(kiocb_modified);
2197
inode_needs_sync(struct inode * inode)2198 int inode_needs_sync(struct inode *inode)
2199 {
2200 if (IS_SYNC(inode))
2201 return 1;
2202 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2203 return 1;
2204 return 0;
2205 }
2206 EXPORT_SYMBOL(inode_needs_sync);
2207
2208 /*
2209 * If we try to find an inode in the inode hash while it is being
2210 * deleted, we have to wait until the filesystem completes its
2211 * deletion before reporting that it isn't found. This function waits
2212 * until the deletion _might_ have completed. Callers are responsible
2213 * to recheck inode state.
2214 *
2215 * It doesn't matter if I_NEW is not set initially, a call to
2216 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2217 * will DTRT.
2218 */
__wait_on_freeing_inode(struct inode * inode)2219 static void __wait_on_freeing_inode(struct inode *inode)
2220 {
2221 wait_queue_head_t *wq;
2222 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2223 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2224 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2225 spin_unlock(&inode->i_lock);
2226 spin_unlock(&inode_hash_lock);
2227 schedule();
2228 finish_wait(wq, &wait.wq_entry);
2229 spin_lock(&inode_hash_lock);
2230 }
2231
2232 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2233 static int __init set_ihash_entries(char *str)
2234 {
2235 if (!str)
2236 return 0;
2237 ihash_entries = simple_strtoul(str, &str, 0);
2238 return 1;
2239 }
2240 __setup("ihash_entries=", set_ihash_entries);
2241
2242 /*
2243 * Initialize the waitqueues and inode hash table.
2244 */
inode_init_early(void)2245 void __init inode_init_early(void)
2246 {
2247 /* If hashes are distributed across NUMA nodes, defer
2248 * hash allocation until vmalloc space is available.
2249 */
2250 if (hashdist)
2251 return;
2252
2253 inode_hashtable =
2254 alloc_large_system_hash("Inode-cache",
2255 sizeof(struct hlist_head),
2256 ihash_entries,
2257 14,
2258 HASH_EARLY | HASH_ZERO,
2259 &i_hash_shift,
2260 &i_hash_mask,
2261 0,
2262 0);
2263 }
2264
inode_init(void)2265 void __init inode_init(void)
2266 {
2267 /* inode slab cache */
2268 inode_cachep = kmem_cache_create("inode_cache",
2269 sizeof(struct inode),
2270 0,
2271 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2272 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2273 init_once);
2274
2275 /* Hash may have been set up in inode_init_early */
2276 if (!hashdist)
2277 return;
2278
2279 inode_hashtable =
2280 alloc_large_system_hash("Inode-cache",
2281 sizeof(struct hlist_head),
2282 ihash_entries,
2283 14,
2284 HASH_ZERO,
2285 &i_hash_shift,
2286 &i_hash_mask,
2287 0,
2288 0);
2289 }
2290
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2291 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2292 {
2293 inode->i_mode = mode;
2294 if (S_ISCHR(mode)) {
2295 inode->i_fop = &def_chr_fops;
2296 inode->i_rdev = rdev;
2297 } else if (S_ISBLK(mode)) {
2298 inode->i_fop = &def_blk_fops;
2299 inode->i_rdev = rdev;
2300 } else if (S_ISFIFO(mode))
2301 inode->i_fop = &pipefifo_fops;
2302 else if (S_ISSOCK(mode))
2303 ; /* leave it no_open_fops */
2304 else
2305 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2306 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2307 inode->i_ino);
2308 }
2309 EXPORT_SYMBOL(init_special_inode);
2310
2311 /**
2312 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2313 * @mnt_userns: User namespace of the mount the inode was created from
2314 * @inode: New inode
2315 * @dir: Directory inode
2316 * @mode: mode of the new inode
2317 *
2318 * If the inode has been created through an idmapped mount the user namespace of
2319 * the vfsmount must be passed through @mnt_userns. This function will then take
2320 * care to map the inode according to @mnt_userns before checking permissions
2321 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2322 * checking is to be performed on the raw inode simply passs init_user_ns.
2323 */
inode_init_owner(struct user_namespace * mnt_userns,struct inode * inode,const struct inode * dir,umode_t mode)2324 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2325 const struct inode *dir, umode_t mode)
2326 {
2327 inode_fsuid_set(inode, mnt_userns);
2328 if (dir && dir->i_mode & S_ISGID) {
2329 inode->i_gid = dir->i_gid;
2330
2331 /* Directories are special, and always inherit S_ISGID */
2332 if (S_ISDIR(mode))
2333 mode |= S_ISGID;
2334 } else
2335 inode_fsgid_set(inode, mnt_userns);
2336 inode->i_mode = mode;
2337 }
2338 EXPORT_SYMBOL(inode_init_owner);
2339
2340 /**
2341 * inode_owner_or_capable - check current task permissions to inode
2342 * @mnt_userns: user namespace of the mount the inode was found from
2343 * @inode: inode being checked
2344 *
2345 * Return true if current either has CAP_FOWNER in a namespace with the
2346 * inode owner uid mapped, or owns the file.
2347 *
2348 * If the inode has been found through an idmapped mount the user namespace of
2349 * the vfsmount must be passed through @mnt_userns. This function will then take
2350 * care to map the inode according to @mnt_userns before checking permissions.
2351 * On non-idmapped mounts or if permission checking is to be performed on the
2352 * raw inode simply passs init_user_ns.
2353 */
inode_owner_or_capable(struct user_namespace * mnt_userns,const struct inode * inode)2354 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2355 const struct inode *inode)
2356 {
2357 kuid_t i_uid;
2358 struct user_namespace *ns;
2359
2360 i_uid = i_uid_into_mnt(mnt_userns, inode);
2361 if (uid_eq(current_fsuid(), i_uid))
2362 return true;
2363
2364 ns = current_user_ns();
2365 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2366 return true;
2367 return false;
2368 }
2369 EXPORT_SYMBOL(inode_owner_or_capable);
2370
2371 /*
2372 * Direct i/o helper functions
2373 */
__inode_dio_wait(struct inode * inode)2374 static void __inode_dio_wait(struct inode *inode)
2375 {
2376 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2377 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2378
2379 do {
2380 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2381 if (atomic_read(&inode->i_dio_count))
2382 schedule();
2383 } while (atomic_read(&inode->i_dio_count));
2384 finish_wait(wq, &q.wq_entry);
2385 }
2386
2387 /**
2388 * inode_dio_wait - wait for outstanding DIO requests to finish
2389 * @inode: inode to wait for
2390 *
2391 * Waits for all pending direct I/O requests to finish so that we can
2392 * proceed with a truncate or equivalent operation.
2393 *
2394 * Must be called under a lock that serializes taking new references
2395 * to i_dio_count, usually by inode->i_mutex.
2396 */
inode_dio_wait(struct inode * inode)2397 void inode_dio_wait(struct inode *inode)
2398 {
2399 if (atomic_read(&inode->i_dio_count))
2400 __inode_dio_wait(inode);
2401 }
2402 EXPORT_SYMBOL(inode_dio_wait);
2403
2404 /*
2405 * inode_set_flags - atomically set some inode flags
2406 *
2407 * Note: the caller should be holding i_mutex, or else be sure that
2408 * they have exclusive access to the inode structure (i.e., while the
2409 * inode is being instantiated). The reason for the cmpxchg() loop
2410 * --- which wouldn't be necessary if all code paths which modify
2411 * i_flags actually followed this rule, is that there is at least one
2412 * code path which doesn't today so we use cmpxchg() out of an abundance
2413 * of caution.
2414 *
2415 * In the long run, i_mutex is overkill, and we should probably look
2416 * at using the i_lock spinlock to protect i_flags, and then make sure
2417 * it is so documented in include/linux/fs.h and that all code follows
2418 * the locking convention!!
2419 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2420 void inode_set_flags(struct inode *inode, unsigned int flags,
2421 unsigned int mask)
2422 {
2423 WARN_ON_ONCE(flags & ~mask);
2424 set_mask_bits(&inode->i_flags, mask, flags);
2425 }
2426 EXPORT_SYMBOL(inode_set_flags);
2427
inode_nohighmem(struct inode * inode)2428 void inode_nohighmem(struct inode *inode)
2429 {
2430 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2431 }
2432 EXPORT_SYMBOL(inode_nohighmem);
2433
2434 /**
2435 * timestamp_truncate - Truncate timespec to a granularity
2436 * @t: Timespec
2437 * @inode: inode being updated
2438 *
2439 * Truncate a timespec to the granularity supported by the fs
2440 * containing the inode. Always rounds down. gran must
2441 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2442 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2443 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2444 {
2445 struct super_block *sb = inode->i_sb;
2446 unsigned int gran = sb->s_time_gran;
2447
2448 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2449 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2450 t.tv_nsec = 0;
2451
2452 /* Avoid division in the common cases 1 ns and 1 s. */
2453 if (gran == 1)
2454 ; /* nothing */
2455 else if (gran == NSEC_PER_SEC)
2456 t.tv_nsec = 0;
2457 else if (gran > 1 && gran < NSEC_PER_SEC)
2458 t.tv_nsec -= t.tv_nsec % gran;
2459 else
2460 WARN(1, "invalid file time granularity: %u", gran);
2461 return t;
2462 }
2463 EXPORT_SYMBOL(timestamp_truncate);
2464
2465 /**
2466 * current_time - Return FS time
2467 * @inode: inode.
2468 *
2469 * Return the current time truncated to the time granularity supported by
2470 * the fs.
2471 *
2472 * Note that inode and inode->sb cannot be NULL.
2473 * Otherwise, the function warns and returns time without truncation.
2474 */
current_time(struct inode * inode)2475 struct timespec64 current_time(struct inode *inode)
2476 {
2477 struct timespec64 now;
2478
2479 ktime_get_coarse_real_ts64(&now);
2480
2481 if (unlikely(!inode->i_sb)) {
2482 WARN(1, "current_time() called with uninitialized super_block in the inode");
2483 return now;
2484 }
2485
2486 return timestamp_truncate(now, inode);
2487 }
2488 EXPORT_SYMBOL(current_time);
2489
2490 /**
2491 * mode_strip_sgid - handle the sgid bit for non-directories
2492 * @mnt_userns: User namespace of the mount the inode was created from
2493 * @dir: parent directory inode
2494 * @mode: mode of the file to be created in @dir
2495 *
2496 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2497 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2498 * either in the group of the parent directory or they have CAP_FSETID
2499 * in their user namespace and are privileged over the parent directory.
2500 * In all other cases, strip the S_ISGID bit from @mode.
2501 *
2502 * Return: the new mode to use for the file
2503 */
mode_strip_sgid(struct user_namespace * mnt_userns,const struct inode * dir,umode_t mode)2504 umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2505 const struct inode *dir, umode_t mode)
2506 {
2507 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2508 return mode;
2509 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2510 return mode;
2511 if (in_group_p(i_gid_into_mnt(mnt_userns, dir)))
2512 return mode;
2513 if (capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2514 return mode;
2515
2516 return mode & ~S_ISGID;
2517 }
2518 EXPORT_SYMBOL(mode_strip_sgid);
2519