1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4  *                        Steven J. Hill <sjhill@realitydiluted.com>
5  *		          Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Info:
8  *	Contains standard defines and IDs for NAND flash devices
9  *
10  * Changelog:
11  *	See git changelog.
12  */
13 #ifndef __LINUX_MTD_RAWNAND_H
14 #define __LINUX_MTD_RAWNAND_H
15 
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/flashchip.h>
19 #include <linux/mtd/bbm.h>
20 #include <linux/mtd/jedec.h>
21 #include <linux/mtd/onfi.h>
22 #include <linux/mutex.h>
23 #include <linux/of.h>
24 #include <linux/types.h>
25 
26 struct nand_chip;
27 struct gpio_desc;
28 
29 /* The maximum number of NAND chips in an array */
30 #define NAND_MAX_CHIPS		8
31 
32 /*
33  * Constants for hardware specific CLE/ALE/NCE function
34  *
35  * These are bits which can be or'ed to set/clear multiple
36  * bits in one go.
37  */
38 /* Select the chip by setting nCE to low */
39 #define NAND_NCE		0x01
40 /* Select the command latch by setting CLE to high */
41 #define NAND_CLE		0x02
42 /* Select the address latch by setting ALE to high */
43 #define NAND_ALE		0x04
44 
45 #define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
46 #define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
47 #define NAND_CTRL_CHANGE	0x80
48 
49 /*
50  * Standard NAND flash commands
51  */
52 #define NAND_CMD_READ0		0
53 #define NAND_CMD_READ1		1
54 #define NAND_CMD_RNDOUT		5
55 #define NAND_CMD_PAGEPROG	0x10
56 #define NAND_CMD_READOOB	0x50
57 #define NAND_CMD_ERASE1		0x60
58 #define NAND_CMD_STATUS		0x70
59 #define NAND_CMD_SEQIN		0x80
60 #define NAND_CMD_RNDIN		0x85
61 #define NAND_CMD_READID		0x90
62 #define NAND_CMD_ERASE2		0xd0
63 #define NAND_CMD_PARAM		0xec
64 #define NAND_CMD_GET_FEATURES	0xee
65 #define NAND_CMD_SET_FEATURES	0xef
66 #define NAND_CMD_RESET		0xff
67 
68 /* Extended commands for large page devices */
69 #define NAND_CMD_READSTART	0x30
70 #define NAND_CMD_RNDOUTSTART	0xE0
71 #define NAND_CMD_CACHEDPROG	0x15
72 
73 #define NAND_CMD_NONE		-1
74 
75 /* Status bits */
76 #define NAND_STATUS_FAIL	0x01
77 #define NAND_STATUS_FAIL_N1	0x02
78 #define NAND_STATUS_TRUE_READY	0x20
79 #define NAND_STATUS_READY	0x40
80 #define NAND_STATUS_WP		0x80
81 
82 #define NAND_DATA_IFACE_CHECK_ONLY	-1
83 
84 /*
85  * Constants for Hardware ECC
86  */
87 /* Reset Hardware ECC for read */
88 #define NAND_ECC_READ		0
89 /* Reset Hardware ECC for write */
90 #define NAND_ECC_WRITE		1
91 /* Enable Hardware ECC before syndrome is read back from flash */
92 #define NAND_ECC_READSYN	2
93 
94 /*
95  * Enable generic NAND 'page erased' check. This check is only done when
96  * ecc.correct() returns -EBADMSG.
97  * Set this flag if your implementation does not fix bitflips in erased
98  * pages and you want to rely on the default implementation.
99  */
100 #define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
101 
102 /*
103  * Option constants for bizarre disfunctionality and real
104  * features.
105  */
106 
107 /* Buswidth is 16 bit */
108 #define NAND_BUSWIDTH_16	BIT(1)
109 
110 /*
111  * When using software implementation of Hamming, we can specify which byte
112  * ordering should be used.
113  */
114 #define NAND_ECC_SOFT_HAMMING_SM_ORDER	BIT(2)
115 
116 /* Chip has cache program function */
117 #define NAND_CACHEPRG		BIT(3)
118 /* Options valid for Samsung large page devices */
119 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
120 
121 /*
122  * Chip requires ready check on read (for auto-incremented sequential read).
123  * True only for small page devices; large page devices do not support
124  * autoincrement.
125  */
126 #define NAND_NEED_READRDY	BIT(8)
127 
128 /* Chip does not allow subpage writes */
129 #define NAND_NO_SUBPAGE_WRITE	BIT(9)
130 
131 /* Device is one of 'new' xD cards that expose fake nand command set */
132 #define NAND_BROKEN_XD		BIT(10)
133 
134 /* Device behaves just like nand, but is readonly */
135 #define NAND_ROM		BIT(11)
136 
137 /* Device supports subpage reads */
138 #define NAND_SUBPAGE_READ	BIT(12)
139 /* Macros to identify the above */
140 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
141 
142 /*
143  * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
144  * patterns.
145  */
146 #define NAND_NEED_SCRAMBLING	BIT(13)
147 
148 /* Device needs 3rd row address cycle */
149 #define NAND_ROW_ADDR_3		BIT(14)
150 
151 /* Non chip related options */
152 /* This option skips the bbt scan during initialization. */
153 #define NAND_SKIP_BBTSCAN	BIT(16)
154 /* Chip may not exist, so silence any errors in scan */
155 #define NAND_SCAN_SILENT_NODEV	BIT(18)
156 
157 /*
158  * Autodetect nand buswidth with readid/onfi.
159  * This suppose the driver will configure the hardware in 8 bits mode
160  * when calling nand_scan_ident, and update its configuration
161  * before calling nand_scan_tail.
162  */
163 #define NAND_BUSWIDTH_AUTO      BIT(19)
164 
165 /*
166  * This option could be defined by controller drivers to protect against
167  * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
168  */
169 #define NAND_USES_DMA		BIT(20)
170 
171 /*
172  * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
173  * on the default ->cmdfunc() implementation, you may want to let the core
174  * handle the tCCS delay which is required when a column change (RNDIN or
175  * RNDOUT) is requested.
176  * If your controller already takes care of this delay, you don't need to set
177  * this flag.
178  */
179 #define NAND_WAIT_TCCS		BIT(21)
180 
181 /*
182  * Whether the NAND chip is a boot medium. Drivers might use this information
183  * to select ECC algorithms supported by the boot ROM or similar restrictions.
184  */
185 #define NAND_IS_BOOT_MEDIUM	BIT(22)
186 
187 /*
188  * Do not try to tweak the timings at runtime. This is needed when the
189  * controller initializes the timings on itself or when it relies on
190  * configuration done by the bootloader.
191  */
192 #define NAND_KEEP_TIMINGS	BIT(23)
193 
194 /*
195  * There are different places where the manufacturer stores the factory bad
196  * block markers.
197  *
198  * Position within the block: Each of these pages needs to be checked for a
199  * bad block marking pattern.
200  */
201 #define NAND_BBM_FIRSTPAGE	BIT(24)
202 #define NAND_BBM_SECONDPAGE	BIT(25)
203 #define NAND_BBM_LASTPAGE	BIT(26)
204 
205 /*
206  * Some controllers with pipelined ECC engines override the BBM marker with
207  * data or ECC bytes, thus making bad block detection through bad block marker
208  * impossible. Let's flag those chips so the core knows it shouldn't check the
209  * BBM and consider all blocks good.
210  */
211 #define NAND_NO_BBM_QUIRK	BIT(27)
212 
213 /* Cell info constants */
214 #define NAND_CI_CHIPNR_MSK	0x03
215 #define NAND_CI_CELLTYPE_MSK	0x0C
216 #define NAND_CI_CELLTYPE_SHIFT	2
217 
218 /* Position within the OOB data of the page */
219 #define NAND_BBM_POS_SMALL		5
220 #define NAND_BBM_POS_LARGE		0
221 
222 /**
223  * struct nand_parameters - NAND generic parameters from the parameter page
224  * @model: Model name
225  * @supports_set_get_features: The NAND chip supports setting/getting features
226  * @set_feature_list: Bitmap of features that can be set
227  * @get_feature_list: Bitmap of features that can be get
228  * @onfi: ONFI specific parameters
229  */
230 struct nand_parameters {
231 	/* Generic parameters */
232 	const char *model;
233 	bool supports_set_get_features;
234 	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
235 	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
236 
237 	/* ONFI parameters */
238 	struct onfi_params *onfi;
239 };
240 
241 /* The maximum expected count of bytes in the NAND ID sequence */
242 #define NAND_MAX_ID_LEN 8
243 
244 /**
245  * struct nand_id - NAND id structure
246  * @data: buffer containing the id bytes.
247  * @len: ID length.
248  */
249 struct nand_id {
250 	u8 data[NAND_MAX_ID_LEN];
251 	int len;
252 };
253 
254 /**
255  * struct nand_ecc_step_info - ECC step information of ECC engine
256  * @stepsize: data bytes per ECC step
257  * @strengths: array of supported strengths
258  * @nstrengths: number of supported strengths
259  */
260 struct nand_ecc_step_info {
261 	int stepsize;
262 	const int *strengths;
263 	int nstrengths;
264 };
265 
266 /**
267  * struct nand_ecc_caps - capability of ECC engine
268  * @stepinfos: array of ECC step information
269  * @nstepinfos: number of ECC step information
270  * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
271  */
272 struct nand_ecc_caps {
273 	const struct nand_ecc_step_info *stepinfos;
274 	int nstepinfos;
275 	int (*calc_ecc_bytes)(int step_size, int strength);
276 };
277 
278 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
279 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
280 static const int __name##_strengths[] = { __VA_ARGS__ };	\
281 static const struct nand_ecc_step_info __name##_stepinfo = {	\
282 	.stepsize = __step,					\
283 	.strengths = __name##_strengths,			\
284 	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
285 };								\
286 static const struct nand_ecc_caps __name = {			\
287 	.stepinfos = &__name##_stepinfo,			\
288 	.nstepinfos = 1,					\
289 	.calc_ecc_bytes = __calc,				\
290 }
291 
292 /**
293  * struct nand_ecc_ctrl - Control structure for ECC
294  * @engine_type: ECC engine type
295  * @placement:	OOB bytes placement
296  * @algo:	ECC algorithm
297  * @steps:	number of ECC steps per page
298  * @size:	data bytes per ECC step
299  * @bytes:	ECC bytes per step
300  * @strength:	max number of correctible bits per ECC step
301  * @total:	total number of ECC bytes per page
302  * @prepad:	padding information for syndrome based ECC generators
303  * @postpad:	padding information for syndrome based ECC generators
304  * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
305  * @calc_buf:	buffer for calculated ECC, size is oobsize.
306  * @code_buf:	buffer for ECC read from flash, size is oobsize.
307  * @hwctl:	function to control hardware ECC generator. Must only
308  *		be provided if an hardware ECC is available
309  * @calculate:	function for ECC calculation or readback from ECC hardware
310  * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
311  *		Should return a positive number representing the number of
312  *		corrected bitflips, -EBADMSG if the number of bitflips exceed
313  *		ECC strength, or any other error code if the error is not
314  *		directly related to correction.
315  *		If -EBADMSG is returned the input buffers should be left
316  *		untouched.
317  * @read_page_raw:	function to read a raw page without ECC. This function
318  *			should hide the specific layout used by the ECC
319  *			controller and always return contiguous in-band and
320  *			out-of-band data even if they're not stored
321  *			contiguously on the NAND chip (e.g.
322  *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
323  *			out-of-band data).
324  * @write_page_raw:	function to write a raw page without ECC. This function
325  *			should hide the specific layout used by the ECC
326  *			controller and consider the passed data as contiguous
327  *			in-band and out-of-band data. ECC controller is
328  *			responsible for doing the appropriate transformations
329  *			to adapt to its specific layout (e.g.
330  *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
331  *			out-of-band data).
332  * @read_page:	function to read a page according to the ECC generator
333  *		requirements; returns maximum number of bitflips corrected in
334  *		any single ECC step, -EIO hw error
335  * @read_subpage:	function to read parts of the page covered by ECC;
336  *			returns same as read_page()
337  * @write_subpage:	function to write parts of the page covered by ECC.
338  * @write_page:	function to write a page according to the ECC generator
339  *		requirements.
340  * @write_oob_raw:	function to write chip OOB data without ECC
341  * @read_oob_raw:	function to read chip OOB data without ECC
342  * @read_oob:	function to read chip OOB data
343  * @write_oob:	function to write chip OOB data
344  */
345 struct nand_ecc_ctrl {
346 	enum nand_ecc_engine_type engine_type;
347 	enum nand_ecc_placement placement;
348 	enum nand_ecc_algo algo;
349 	int steps;
350 	int size;
351 	int bytes;
352 	int total;
353 	int strength;
354 	int prepad;
355 	int postpad;
356 	unsigned int options;
357 	u8 *calc_buf;
358 	u8 *code_buf;
359 	void (*hwctl)(struct nand_chip *chip, int mode);
360 	int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
361 			 uint8_t *ecc_code);
362 	int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
363 		       uint8_t *calc_ecc);
364 	int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
365 			     int oob_required, int page);
366 	int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
367 			      int oob_required, int page);
368 	int (*read_page)(struct nand_chip *chip, uint8_t *buf,
369 			 int oob_required, int page);
370 	int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
371 			    uint32_t len, uint8_t *buf, int page);
372 	int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
373 			     uint32_t data_len, const uint8_t *data_buf,
374 			     int oob_required, int page);
375 	int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
376 			  int oob_required, int page);
377 	int (*write_oob_raw)(struct nand_chip *chip, int page);
378 	int (*read_oob_raw)(struct nand_chip *chip, int page);
379 	int (*read_oob)(struct nand_chip *chip, int page);
380 	int (*write_oob)(struct nand_chip *chip, int page);
381 };
382 
383 /**
384  * struct nand_sdr_timings - SDR NAND chip timings
385  *
386  * This struct defines the timing requirements of a SDR NAND chip.
387  * These information can be found in every NAND datasheets and the timings
388  * meaning are described in the ONFI specifications:
389  * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf
390  * (chapter 4.15 Timing Parameters)
391  *
392  * All these timings are expressed in picoseconds.
393  *
394  * @tBERS_max: Block erase time
395  * @tCCS_min: Change column setup time
396  * @tPROG_max: Page program time
397  * @tR_max: Page read time
398  * @tALH_min: ALE hold time
399  * @tADL_min: ALE to data loading time
400  * @tALS_min: ALE setup time
401  * @tAR_min: ALE to RE# delay
402  * @tCEA_max: CE# access time
403  * @tCEH_min: CE# high hold time
404  * @tCH_min:  CE# hold time
405  * @tCHZ_max: CE# high to output hi-Z
406  * @tCLH_min: CLE hold time
407  * @tCLR_min: CLE to RE# delay
408  * @tCLS_min: CLE setup time
409  * @tCOH_min: CE# high to output hold
410  * @tCS_min: CE# setup time
411  * @tDH_min: Data hold time
412  * @tDS_min: Data setup time
413  * @tFEAT_max: Busy time for Set Features and Get Features
414  * @tIR_min: Output hi-Z to RE# low
415  * @tITC_max: Interface and Timing Mode Change time
416  * @tRC_min: RE# cycle time
417  * @tREA_max: RE# access time
418  * @tREH_min: RE# high hold time
419  * @tRHOH_min: RE# high to output hold
420  * @tRHW_min: RE# high to WE# low
421  * @tRHZ_max: RE# high to output hi-Z
422  * @tRLOH_min: RE# low to output hold
423  * @tRP_min: RE# pulse width
424  * @tRR_min: Ready to RE# low (data only)
425  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
426  *	      rising edge of R/B#.
427  * @tWB_max: WE# high to SR[6] low
428  * @tWC_min: WE# cycle time
429  * @tWH_min: WE# high hold time
430  * @tWHR_min: WE# high to RE# low
431  * @tWP_min: WE# pulse width
432  * @tWW_min: WP# transition to WE# low
433  */
434 struct nand_sdr_timings {
435 	u64 tBERS_max;
436 	u32 tCCS_min;
437 	u64 tPROG_max;
438 	u64 tR_max;
439 	u32 tALH_min;
440 	u32 tADL_min;
441 	u32 tALS_min;
442 	u32 tAR_min;
443 	u32 tCEA_max;
444 	u32 tCEH_min;
445 	u32 tCH_min;
446 	u32 tCHZ_max;
447 	u32 tCLH_min;
448 	u32 tCLR_min;
449 	u32 tCLS_min;
450 	u32 tCOH_min;
451 	u32 tCS_min;
452 	u32 tDH_min;
453 	u32 tDS_min;
454 	u32 tFEAT_max;
455 	u32 tIR_min;
456 	u32 tITC_max;
457 	u32 tRC_min;
458 	u32 tREA_max;
459 	u32 tREH_min;
460 	u32 tRHOH_min;
461 	u32 tRHW_min;
462 	u32 tRHZ_max;
463 	u32 tRLOH_min;
464 	u32 tRP_min;
465 	u32 tRR_min;
466 	u64 tRST_max;
467 	u32 tWB_max;
468 	u32 tWC_min;
469 	u32 tWH_min;
470 	u32 tWHR_min;
471 	u32 tWP_min;
472 	u32 tWW_min;
473 };
474 
475 /**
476  * struct nand_nvddr_timings - NV-DDR NAND chip timings
477  *
478  * This struct defines the timing requirements of a NV-DDR NAND data interface.
479  * These information can be found in every NAND datasheets and the timings
480  * meaning are described in the ONFI specifications:
481  * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf
482  * (chapter 4.18.2 NV-DDR)
483  *
484  * All these timings are expressed in picoseconds.
485  *
486  * @tBERS_max: Block erase time
487  * @tCCS_min: Change column setup time
488  * @tPROG_max: Page program time
489  * @tR_max: Page read time
490  * @tAC_min: Access window of DQ[7:0] from CLK
491  * @tAC_max: Access window of DQ[7:0] from CLK
492  * @tADL_min: ALE to data loading time
493  * @tCAD_min: Command, Address, Data delay
494  * @tCAH_min: Command/Address DQ hold time
495  * @tCALH_min: W/R_n, CLE and ALE hold time
496  * @tCALS_min: W/R_n, CLE and ALE setup time
497  * @tCAS_min: Command/address DQ setup time
498  * @tCEH_min: CE# high hold time
499  * @tCH_min:  CE# hold time
500  * @tCK_min: Average clock cycle time
501  * @tCS_min: CE# setup time
502  * @tDH_min: Data hold time
503  * @tDQSCK_min: Start of the access window of DQS from CLK
504  * @tDQSCK_max: End of the access window of DQS from CLK
505  * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device
506  * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device
507  * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device
508  * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access
509  * @tDS_min: Data setup time
510  * @tDSC_min: DQS cycle time
511  * @tFEAT_max: Busy time for Set Features and Get Features
512  * @tITC_max: Interface and Timing Mode Change time
513  * @tQHS_max: Data hold skew factor
514  * @tRHW_min: Data output cycle to command, address, or data input cycle
515  * @tRR_min: Ready to RE# low (data only)
516  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
517  *	      rising edge of R/B#.
518  * @tWB_max: WE# high to SR[6] low
519  * @tWHR_min: WE# high to RE# low
520  * @tWRCK_min: W/R_n low to data output cycle
521  * @tWW_min: WP# transition to WE# low
522  */
523 struct nand_nvddr_timings {
524 	u64 tBERS_max;
525 	u32 tCCS_min;
526 	u64 tPROG_max;
527 	u64 tR_max;
528 	u32 tAC_min;
529 	u32 tAC_max;
530 	u32 tADL_min;
531 	u32 tCAD_min;
532 	u32 tCAH_min;
533 	u32 tCALH_min;
534 	u32 tCALS_min;
535 	u32 tCAS_min;
536 	u32 tCEH_min;
537 	u32 tCH_min;
538 	u32 tCK_min;
539 	u32 tCS_min;
540 	u32 tDH_min;
541 	u32 tDQSCK_min;
542 	u32 tDQSCK_max;
543 	u32 tDQSD_min;
544 	u32 tDQSD_max;
545 	u32 tDQSHZ_max;
546 	u32 tDQSQ_max;
547 	u32 tDS_min;
548 	u32 tDSC_min;
549 	u32 tFEAT_max;
550 	u32 tITC_max;
551 	u32 tQHS_max;
552 	u32 tRHW_min;
553 	u32 tRR_min;
554 	u32 tRST_max;
555 	u32 tWB_max;
556 	u32 tWHR_min;
557 	u32 tWRCK_min;
558 	u32 tWW_min;
559 };
560 
561 /*
562  * While timings related to the data interface itself are mostly different
563  * between SDR and NV-DDR, timings related to the internal chip behavior are
564  * common. IOW, the following entries which describe the internal delays have
565  * the same definition and are shared in both SDR and NV-DDR timing structures:
566  * - tADL_min
567  * - tBERS_max
568  * - tCCS_min
569  * - tFEAT_max
570  * - tPROG_max
571  * - tR_max
572  * - tRR_min
573  * - tRST_max
574  * - tWB_max
575  *
576  * The below macros return the value of a given timing, no matter the interface.
577  */
578 #define NAND_COMMON_TIMING_PS(conf, timing_name)		\
579 	nand_interface_is_sdr(conf) ?				\
580 		nand_get_sdr_timings(conf)->timing_name :	\
581 		nand_get_nvddr_timings(conf)->timing_name
582 
583 #define NAND_COMMON_TIMING_MS(conf, timing_name) \
584 	PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
585 
586 #define NAND_COMMON_TIMING_NS(conf, timing_name) \
587 	PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
588 
589 /**
590  * enum nand_interface_type - NAND interface type
591  * @NAND_SDR_IFACE:	Single Data Rate interface
592  * @NAND_NVDDR_IFACE:	Double Data Rate interface
593  */
594 enum nand_interface_type {
595 	NAND_SDR_IFACE,
596 	NAND_NVDDR_IFACE,
597 };
598 
599 /**
600  * struct nand_interface_config - NAND interface timing
601  * @type:	 type of the timing
602  * @timings:	 The timing information
603  * @timings.mode: Timing mode as defined in the specification
604  * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
605  * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE.
606  */
607 struct nand_interface_config {
608 	enum nand_interface_type type;
609 	struct nand_timings {
610 		unsigned int mode;
611 		union {
612 			struct nand_sdr_timings sdr;
613 			struct nand_nvddr_timings nvddr;
614 		};
615 	} timings;
616 };
617 
618 /**
619  * nand_interface_is_sdr - get the interface type
620  * @conf:	The data interface
621  */
nand_interface_is_sdr(const struct nand_interface_config * conf)622 static bool nand_interface_is_sdr(const struct nand_interface_config *conf)
623 {
624 	return conf->type == NAND_SDR_IFACE;
625 }
626 
627 /**
628  * nand_interface_is_nvddr - get the interface type
629  * @conf:	The data interface
630  */
nand_interface_is_nvddr(const struct nand_interface_config * conf)631 static bool nand_interface_is_nvddr(const struct nand_interface_config *conf)
632 {
633 	return conf->type == NAND_NVDDR_IFACE;
634 }
635 
636 /**
637  * nand_get_sdr_timings - get SDR timing from data interface
638  * @conf:	The data interface
639  */
640 static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_interface_config * conf)641 nand_get_sdr_timings(const struct nand_interface_config *conf)
642 {
643 	if (!nand_interface_is_sdr(conf))
644 		return ERR_PTR(-EINVAL);
645 
646 	return &conf->timings.sdr;
647 }
648 
649 /**
650  * nand_get_nvddr_timings - get NV-DDR timing from data interface
651  * @conf:	The data interface
652  */
653 static inline const struct nand_nvddr_timings *
nand_get_nvddr_timings(const struct nand_interface_config * conf)654 nand_get_nvddr_timings(const struct nand_interface_config *conf)
655 {
656 	if (!nand_interface_is_nvddr(conf))
657 		return ERR_PTR(-EINVAL);
658 
659 	return &conf->timings.nvddr;
660 }
661 
662 /**
663  * struct nand_op_cmd_instr - Definition of a command instruction
664  * @opcode: the command to issue in one cycle
665  */
666 struct nand_op_cmd_instr {
667 	u8 opcode;
668 };
669 
670 /**
671  * struct nand_op_addr_instr - Definition of an address instruction
672  * @naddrs: length of the @addrs array
673  * @addrs: array containing the address cycles to issue
674  */
675 struct nand_op_addr_instr {
676 	unsigned int naddrs;
677 	const u8 *addrs;
678 };
679 
680 /**
681  * struct nand_op_data_instr - Definition of a data instruction
682  * @len: number of data bytes to move
683  * @buf: buffer to fill
684  * @buf.in: buffer to fill when reading from the NAND chip
685  * @buf.out: buffer to read from when writing to the NAND chip
686  * @force_8bit: force 8-bit access
687  *
688  * Please note that "in" and "out" are inverted from the ONFI specification
689  * and are from the controller perspective, so a "in" is a read from the NAND
690  * chip while a "out" is a write to the NAND chip.
691  */
692 struct nand_op_data_instr {
693 	unsigned int len;
694 	union {
695 		void *in;
696 		const void *out;
697 	} buf;
698 	bool force_8bit;
699 };
700 
701 /**
702  * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
703  * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
704  */
705 struct nand_op_waitrdy_instr {
706 	unsigned int timeout_ms;
707 };
708 
709 /**
710  * enum nand_op_instr_type - Definition of all instruction types
711  * @NAND_OP_CMD_INSTR: command instruction
712  * @NAND_OP_ADDR_INSTR: address instruction
713  * @NAND_OP_DATA_IN_INSTR: data in instruction
714  * @NAND_OP_DATA_OUT_INSTR: data out instruction
715  * @NAND_OP_WAITRDY_INSTR: wait ready instruction
716  */
717 enum nand_op_instr_type {
718 	NAND_OP_CMD_INSTR,
719 	NAND_OP_ADDR_INSTR,
720 	NAND_OP_DATA_IN_INSTR,
721 	NAND_OP_DATA_OUT_INSTR,
722 	NAND_OP_WAITRDY_INSTR,
723 };
724 
725 /**
726  * struct nand_op_instr - Instruction object
727  * @type: the instruction type
728  * @ctx:  extra data associated to the instruction. You'll have to use the
729  *        appropriate element depending on @type
730  * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
731  * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
732  * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
733  *	      or %NAND_OP_DATA_OUT_INSTR
734  * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
735  * @delay_ns: delay the controller should apply after the instruction has been
736  *	      issued on the bus. Most modern controllers have internal timings
737  *	      control logic, and in this case, the controller driver can ignore
738  *	      this field.
739  */
740 struct nand_op_instr {
741 	enum nand_op_instr_type type;
742 	union {
743 		struct nand_op_cmd_instr cmd;
744 		struct nand_op_addr_instr addr;
745 		struct nand_op_data_instr data;
746 		struct nand_op_waitrdy_instr waitrdy;
747 	} ctx;
748 	unsigned int delay_ns;
749 };
750 
751 /*
752  * Special handling must be done for the WAITRDY timeout parameter as it usually
753  * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
754  * tBERS (during an erase) which all of them are u64 values that cannot be
755  * divided by usual kernel macros and must be handled with the special
756  * DIV_ROUND_UP_ULL() macro.
757  *
758  * Cast to type of dividend is needed here to guarantee that the result won't
759  * be an unsigned long long when the dividend is an unsigned long (or smaller),
760  * which is what the compiler does when it sees ternary operator with 2
761  * different return types (picks the largest type to make sure there's no
762  * loss).
763  */
764 #define __DIVIDE(dividend, divisor) ({						\
765 	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
766 			       DIV_ROUND_UP(dividend, divisor) :		\
767 			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
768 	})
769 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
770 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
771 
772 #define NAND_OP_CMD(id, ns)						\
773 	{								\
774 		.type = NAND_OP_CMD_INSTR,				\
775 		.ctx.cmd.opcode = id,					\
776 		.delay_ns = ns,						\
777 	}
778 
779 #define NAND_OP_ADDR(ncycles, cycles, ns)				\
780 	{								\
781 		.type = NAND_OP_ADDR_INSTR,				\
782 		.ctx.addr = {						\
783 			.naddrs = ncycles,				\
784 			.addrs = cycles,				\
785 		},							\
786 		.delay_ns = ns,						\
787 	}
788 
789 #define NAND_OP_DATA_IN(l, b, ns)					\
790 	{								\
791 		.type = NAND_OP_DATA_IN_INSTR,				\
792 		.ctx.data = {						\
793 			.len = l,					\
794 			.buf.in = b,					\
795 			.force_8bit = false,				\
796 		},							\
797 		.delay_ns = ns,						\
798 	}
799 
800 #define NAND_OP_DATA_OUT(l, b, ns)					\
801 	{								\
802 		.type = NAND_OP_DATA_OUT_INSTR,				\
803 		.ctx.data = {						\
804 			.len = l,					\
805 			.buf.out = b,					\
806 			.force_8bit = false,				\
807 		},							\
808 		.delay_ns = ns,						\
809 	}
810 
811 #define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
812 	{								\
813 		.type = NAND_OP_DATA_IN_INSTR,				\
814 		.ctx.data = {						\
815 			.len = l,					\
816 			.buf.in = b,					\
817 			.force_8bit = true,				\
818 		},							\
819 		.delay_ns = ns,						\
820 	}
821 
822 #define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
823 	{								\
824 		.type = NAND_OP_DATA_OUT_INSTR,				\
825 		.ctx.data = {						\
826 			.len = l,					\
827 			.buf.out = b,					\
828 			.force_8bit = true,				\
829 		},							\
830 		.delay_ns = ns,						\
831 	}
832 
833 #define NAND_OP_WAIT_RDY(tout_ms, ns)					\
834 	{								\
835 		.type = NAND_OP_WAITRDY_INSTR,				\
836 		.ctx.waitrdy.timeout_ms = tout_ms,			\
837 		.delay_ns = ns,						\
838 	}
839 
840 /**
841  * struct nand_subop - a sub operation
842  * @cs: the CS line to select for this NAND sub-operation
843  * @instrs: array of instructions
844  * @ninstrs: length of the @instrs array
845  * @first_instr_start_off: offset to start from for the first instruction
846  *			   of the sub-operation
847  * @last_instr_end_off: offset to end at (excluded) for the last instruction
848  *			of the sub-operation
849  *
850  * Both @first_instr_start_off and @last_instr_end_off only apply to data or
851  * address instructions.
852  *
853  * When an operation cannot be handled as is by the NAND controller, it will
854  * be split by the parser into sub-operations which will be passed to the
855  * controller driver.
856  */
857 struct nand_subop {
858 	unsigned int cs;
859 	const struct nand_op_instr *instrs;
860 	unsigned int ninstrs;
861 	unsigned int first_instr_start_off;
862 	unsigned int last_instr_end_off;
863 };
864 
865 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
866 					   unsigned int op_id);
867 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
868 					 unsigned int op_id);
869 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
870 					   unsigned int op_id);
871 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
872 				     unsigned int op_id);
873 
874 /**
875  * struct nand_op_parser_addr_constraints - Constraints for address instructions
876  * @maxcycles: maximum number of address cycles the controller can issue in a
877  *	       single step
878  */
879 struct nand_op_parser_addr_constraints {
880 	unsigned int maxcycles;
881 };
882 
883 /**
884  * struct nand_op_parser_data_constraints - Constraints for data instructions
885  * @maxlen: maximum data length that the controller can handle in a single step
886  */
887 struct nand_op_parser_data_constraints {
888 	unsigned int maxlen;
889 };
890 
891 /**
892  * struct nand_op_parser_pattern_elem - One element of a pattern
893  * @type: the instructuction type
894  * @optional: whether this element of the pattern is optional or mandatory
895  * @ctx: address or data constraint
896  * @ctx.addr: address constraint (number of cycles)
897  * @ctx.data: data constraint (data length)
898  */
899 struct nand_op_parser_pattern_elem {
900 	enum nand_op_instr_type type;
901 	bool optional;
902 	union {
903 		struct nand_op_parser_addr_constraints addr;
904 		struct nand_op_parser_data_constraints data;
905 	} ctx;
906 };
907 
908 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
909 	{							\
910 		.type = NAND_OP_CMD_INSTR,			\
911 		.optional = _opt,				\
912 	}
913 
914 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
915 	{							\
916 		.type = NAND_OP_ADDR_INSTR,			\
917 		.optional = _opt,				\
918 		.ctx.addr.maxcycles = _maxcycles,		\
919 	}
920 
921 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
922 	{							\
923 		.type = NAND_OP_DATA_IN_INSTR,			\
924 		.optional = _opt,				\
925 		.ctx.data.maxlen = _maxlen,			\
926 	}
927 
928 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
929 	{							\
930 		.type = NAND_OP_DATA_OUT_INSTR,			\
931 		.optional = _opt,				\
932 		.ctx.data.maxlen = _maxlen,			\
933 	}
934 
935 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
936 	{							\
937 		.type = NAND_OP_WAITRDY_INSTR,			\
938 		.optional = _opt,				\
939 	}
940 
941 /**
942  * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
943  * @elems: array of pattern elements
944  * @nelems: number of pattern elements in @elems array
945  * @exec: the function that will issue a sub-operation
946  *
947  * A pattern is a list of elements, each element reprensenting one instruction
948  * with its constraints. The pattern itself is used by the core to match NAND
949  * chip operation with NAND controller operations.
950  * Once a match between a NAND controller operation pattern and a NAND chip
951  * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
952  * hook is called so that the controller driver can issue the operation on the
953  * bus.
954  *
955  * Controller drivers should declare as many patterns as they support and pass
956  * this list of patterns (created with the help of the following macro) to
957  * the nand_op_parser_exec_op() helper.
958  */
959 struct nand_op_parser_pattern {
960 	const struct nand_op_parser_pattern_elem *elems;
961 	unsigned int nelems;
962 	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
963 };
964 
965 #define NAND_OP_PARSER_PATTERN(_exec, ...)							\
966 	{											\
967 		.exec = _exec,									\
968 		.elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
969 		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
970 			  sizeof(struct nand_op_parser_pattern_elem),				\
971 	}
972 
973 /**
974  * struct nand_op_parser - NAND controller operation parser descriptor
975  * @patterns: array of supported patterns
976  * @npatterns: length of the @patterns array
977  *
978  * The parser descriptor is just an array of supported patterns which will be
979  * iterated by nand_op_parser_exec_op() everytime it tries to execute an
980  * NAND operation (or tries to determine if a specific operation is supported).
981  *
982  * It is worth mentioning that patterns will be tested in their declaration
983  * order, and the first match will be taken, so it's important to order patterns
984  * appropriately so that simple/inefficient patterns are placed at the end of
985  * the list. Usually, this is where you put single instruction patterns.
986  */
987 struct nand_op_parser {
988 	const struct nand_op_parser_pattern *patterns;
989 	unsigned int npatterns;
990 };
991 
992 #define NAND_OP_PARSER(...)									\
993 	{											\
994 		.patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },		\
995 		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
996 			     sizeof(struct nand_op_parser_pattern),				\
997 	}
998 
999 /**
1000  * struct nand_operation - NAND operation descriptor
1001  * @cs: the CS line to select for this NAND operation
1002  * @instrs: array of instructions to execute
1003  * @ninstrs: length of the @instrs array
1004  *
1005  * The actual operation structure that will be passed to chip->exec_op().
1006  */
1007 struct nand_operation {
1008 	unsigned int cs;
1009 	const struct nand_op_instr *instrs;
1010 	unsigned int ninstrs;
1011 };
1012 
1013 #define NAND_OPERATION(_cs, _instrs)				\
1014 	{							\
1015 		.cs = _cs,					\
1016 		.instrs = _instrs,				\
1017 		.ninstrs = ARRAY_SIZE(_instrs),			\
1018 	}
1019 
1020 int nand_op_parser_exec_op(struct nand_chip *chip,
1021 			   const struct nand_op_parser *parser,
1022 			   const struct nand_operation *op, bool check_only);
1023 
nand_op_trace(const char * prefix,const struct nand_op_instr * instr)1024 static inline void nand_op_trace(const char *prefix,
1025 				 const struct nand_op_instr *instr)
1026 {
1027 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
1028 	switch (instr->type) {
1029 	case NAND_OP_CMD_INSTR:
1030 		pr_debug("%sCMD      [0x%02x]\n", prefix,
1031 			 instr->ctx.cmd.opcode);
1032 		break;
1033 	case NAND_OP_ADDR_INSTR:
1034 		pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
1035 			 instr->ctx.addr.naddrs,
1036 			 instr->ctx.addr.naddrs < 64 ?
1037 			 instr->ctx.addr.naddrs : 64,
1038 			 instr->ctx.addr.addrs);
1039 		break;
1040 	case NAND_OP_DATA_IN_INSTR:
1041 		pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
1042 			 instr->ctx.data.len,
1043 			 instr->ctx.data.force_8bit ?
1044 			 ", force 8-bit" : "");
1045 		break;
1046 	case NAND_OP_DATA_OUT_INSTR:
1047 		pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
1048 			 instr->ctx.data.len,
1049 			 instr->ctx.data.force_8bit ?
1050 			 ", force 8-bit" : "");
1051 		break;
1052 	case NAND_OP_WAITRDY_INSTR:
1053 		pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
1054 			 instr->ctx.waitrdy.timeout_ms);
1055 		break;
1056 	}
1057 #endif
1058 }
1059 
1060 /**
1061  * struct nand_controller_ops - Controller operations
1062  *
1063  * @attach_chip: this method is called after the NAND detection phase after
1064  *		 flash ID and MTD fields such as erase size, page size and OOB
1065  *		 size have been set up. ECC requirements are available if
1066  *		 provided by the NAND chip or device tree. Typically used to
1067  *		 choose the appropriate ECC configuration and allocate
1068  *		 associated resources.
1069  *		 This hook is optional.
1070  * @detach_chip: free all resources allocated/claimed in
1071  *		 nand_controller_ops->attach_chip().
1072  *		 This hook is optional.
1073  * @exec_op:	 controller specific method to execute NAND operations.
1074  *		 This method replaces chip->legacy.cmdfunc(),
1075  *		 chip->legacy.{read,write}_{buf,byte,word}(),
1076  *		 chip->legacy.dev_ready() and chip->legacy.waifunc().
1077  * @setup_interface: setup the data interface and timing. If chipnr is set to
1078  *		     %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
1079  *		     should not be applied but only checked.
1080  *		     This hook is optional.
1081  */
1082 struct nand_controller_ops {
1083 	int (*attach_chip)(struct nand_chip *chip);
1084 	void (*detach_chip)(struct nand_chip *chip);
1085 	int (*exec_op)(struct nand_chip *chip,
1086 		       const struct nand_operation *op,
1087 		       bool check_only);
1088 	int (*setup_interface)(struct nand_chip *chip, int chipnr,
1089 			       const struct nand_interface_config *conf);
1090 };
1091 
1092 /**
1093  * struct nand_controller - Structure used to describe a NAND controller
1094  *
1095  * @lock:		lock used to serialize accesses to the NAND controller
1096  * @ops:		NAND controller operations.
1097  */
1098 struct nand_controller {
1099 	struct mutex lock;
1100 	const struct nand_controller_ops *ops;
1101 };
1102 
nand_controller_init(struct nand_controller * nfc)1103 static inline void nand_controller_init(struct nand_controller *nfc)
1104 {
1105 	mutex_init(&nfc->lock);
1106 }
1107 
1108 /**
1109  * struct nand_legacy - NAND chip legacy fields/hooks
1110  * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
1111  * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
1112  * @select_chip: select/deselect a specific target/die
1113  * @read_byte: read one byte from the chip
1114  * @write_byte: write a single byte to the chip on the low 8 I/O lines
1115  * @write_buf: write data from the buffer to the chip
1116  * @read_buf: read data from the chip into the buffer
1117  * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
1118  *	      to write command and address
1119  * @cmdfunc: hardware specific function for writing commands to the chip.
1120  * @dev_ready: hardware specific function for accessing device ready/busy line.
1121  *	       If set to NULL no access to ready/busy is available and the
1122  *	       ready/busy information is read from the chip status register.
1123  * @waitfunc: hardware specific function for wait on ready.
1124  * @block_bad: check if a block is bad, using OOB markers
1125  * @block_markbad: mark a block bad
1126  * @set_features: set the NAND chip features
1127  * @get_features: get the NAND chip features
1128  * @chip_delay: chip dependent delay for transferring data from array to read
1129  *		regs (tR).
1130  * @dummy_controller: dummy controller implementation for drivers that can
1131  *		      only control a single chip
1132  *
1133  * If you look at this structure you're already wrong. These fields/hooks are
1134  * all deprecated.
1135  */
1136 struct nand_legacy {
1137 	void __iomem *IO_ADDR_R;
1138 	void __iomem *IO_ADDR_W;
1139 	void (*select_chip)(struct nand_chip *chip, int cs);
1140 	u8 (*read_byte)(struct nand_chip *chip);
1141 	void (*write_byte)(struct nand_chip *chip, u8 byte);
1142 	void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
1143 	void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
1144 	void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
1145 	void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1146 			int page_addr);
1147 	int (*dev_ready)(struct nand_chip *chip);
1148 	int (*waitfunc)(struct nand_chip *chip);
1149 	int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1150 	int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1151 	int (*set_features)(struct nand_chip *chip, int feature_addr,
1152 			    u8 *subfeature_para);
1153 	int (*get_features)(struct nand_chip *chip, int feature_addr,
1154 			    u8 *subfeature_para);
1155 	int chip_delay;
1156 	struct nand_controller dummy_controller;
1157 };
1158 
1159 /**
1160  * struct nand_chip_ops - NAND chip operations
1161  * @suspend: Suspend operation
1162  * @resume: Resume operation
1163  * @lock_area: Lock operation
1164  * @unlock_area: Unlock operation
1165  * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
1166  * @choose_interface_config: Choose the best interface configuration
1167  */
1168 struct nand_chip_ops {
1169 	int (*suspend)(struct nand_chip *chip);
1170 	void (*resume)(struct nand_chip *chip);
1171 	int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1172 	int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1173 	int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1174 	int (*choose_interface_config)(struct nand_chip *chip,
1175 				       struct nand_interface_config *iface);
1176 };
1177 
1178 /**
1179  * struct nand_manufacturer - NAND manufacturer structure
1180  * @desc: The manufacturer description
1181  * @priv: Private information for the manufacturer driver
1182  */
1183 struct nand_manufacturer {
1184 	const struct nand_manufacturer_desc *desc;
1185 	void *priv;
1186 };
1187 
1188 /**
1189  * struct nand_secure_region - NAND secure region structure
1190  * @offset: Offset of the start of the secure region
1191  * @size: Size of the secure region
1192  */
1193 struct nand_secure_region {
1194 	u64 offset;
1195 	u64 size;
1196 };
1197 
1198 /**
1199  * struct nand_chip - NAND Private Flash Chip Data
1200  * @base: Inherit from the generic NAND device
1201  * @id: Holds NAND ID
1202  * @parameters: Holds generic parameters under an easily readable form
1203  * @manufacturer: Manufacturer information
1204  * @ops: NAND chip operations
1205  * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
1206  *          to use any of these fields/hooks, and if you're modifying an
1207  *          existing driver that is using those fields/hooks, you should
1208  *          consider reworking the driver and avoid using them.
1209  * @options: Various chip options. They can partly be set to inform nand_scan
1210  *           about special functionality. See the defines for further
1211  *           explanation.
1212  * @current_interface_config: The currently used NAND interface configuration
1213  * @best_interface_config: The best NAND interface configuration which fits both
1214  *                         the NAND chip and NAND controller constraints. If
1215  *                         unset, the default reset interface configuration must
1216  *                         be used.
1217  * @bbt_erase_shift: Number of address bits in a bbt entry
1218  * @bbt_options: Bad block table specific options. All options used here must
1219  *               come from bbm.h. By default, these options will be copied to
1220  *               the appropriate nand_bbt_descr's.
1221  * @badblockpos: Bad block marker position in the oob area
1222  * @badblockbits: Minimum number of set bits in a good block's bad block marker
1223  *                position; i.e., BBM = 11110111b is good when badblockbits = 7
1224  * @bbt_td: Bad block table descriptor for flash lookup
1225  * @bbt_md: Bad block table mirror descriptor
1226  * @badblock_pattern: Bad block scan pattern used for initial bad block scan
1227  * @bbt: Bad block table pointer
1228  * @page_shift: Number of address bits in a page (column address bits)
1229  * @phys_erase_shift: Number of address bits in a physical eraseblock
1230  * @chip_shift: Number of address bits in one chip
1231  * @pagemask: Page number mask = number of (pages / chip) - 1
1232  * @subpagesize: Holds the subpagesize
1233  * @data_buf: Buffer for data, size is (page size + oobsize)
1234  * @oob_poi: pointer on the OOB area covered by data_buf
1235  * @pagecache: Structure containing page cache related fields
1236  * @pagecache.bitflips: Number of bitflips of the cached page
1237  * @pagecache.page: Page number currently in the cache. -1 means no page is
1238  *                  currently cached
1239  * @buf_align: Minimum buffer alignment required by a platform
1240  * @lock: Lock protecting the suspended field. Also used to serialize accesses
1241  *        to the NAND device
1242  * @suspended: Set to 1 when the device is suspended, 0 when it's not
1243  * @resume_wq: wait queue to sleep if rawnand is in suspended state.
1244  * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
1245  *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
1246  *          NAND Controller drivers should not modify this value, but they're
1247  *          allowed to read it.
1248  * @read_retries: The number of read retry modes supported
1249  * @secure_regions: Structure containing the secure regions info
1250  * @nr_secure_regions: Number of secure regions
1251  * @controller: The hardware controller	structure which is shared among multiple
1252  *              independent devices
1253  * @ecc: The ECC controller structure
1254  * @priv: Chip private data
1255  */
1256 struct nand_chip {
1257 	struct nand_device base;
1258 	struct nand_id id;
1259 	struct nand_parameters parameters;
1260 	struct nand_manufacturer manufacturer;
1261 	struct nand_chip_ops ops;
1262 	struct nand_legacy legacy;
1263 	unsigned int options;
1264 
1265 	/* Data interface */
1266 	const struct nand_interface_config *current_interface_config;
1267 	struct nand_interface_config *best_interface_config;
1268 
1269 	/* Bad block information */
1270 	unsigned int bbt_erase_shift;
1271 	unsigned int bbt_options;
1272 	unsigned int badblockpos;
1273 	unsigned int badblockbits;
1274 	struct nand_bbt_descr *bbt_td;
1275 	struct nand_bbt_descr *bbt_md;
1276 	struct nand_bbt_descr *badblock_pattern;
1277 	u8 *bbt;
1278 
1279 	/* Device internal layout */
1280 	unsigned int page_shift;
1281 	unsigned int phys_erase_shift;
1282 	unsigned int chip_shift;
1283 	unsigned int pagemask;
1284 	unsigned int subpagesize;
1285 
1286 	/* Buffers */
1287 	u8 *data_buf;
1288 	u8 *oob_poi;
1289 	struct {
1290 		unsigned int bitflips;
1291 		int page;
1292 	} pagecache;
1293 	unsigned long buf_align;
1294 
1295 	/* Internals */
1296 	struct mutex lock;
1297 	unsigned int suspended : 1;
1298 	wait_queue_head_t resume_wq;
1299 	int cur_cs;
1300 	int read_retries;
1301 	struct nand_secure_region *secure_regions;
1302 	u8 nr_secure_regions;
1303 
1304 	/* Externals */
1305 	struct nand_controller *controller;
1306 	struct nand_ecc_ctrl ecc;
1307 	void *priv;
1308 };
1309 
mtd_to_nand(struct mtd_info * mtd)1310 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1311 {
1312 	return container_of(mtd, struct nand_chip, base.mtd);
1313 }
1314 
nand_to_mtd(struct nand_chip * chip)1315 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1316 {
1317 	return &chip->base.mtd;
1318 }
1319 
nand_get_controller_data(struct nand_chip * chip)1320 static inline void *nand_get_controller_data(struct nand_chip *chip)
1321 {
1322 	return chip->priv;
1323 }
1324 
nand_set_controller_data(struct nand_chip * chip,void * priv)1325 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1326 {
1327 	chip->priv = priv;
1328 }
1329 
nand_set_manufacturer_data(struct nand_chip * chip,void * priv)1330 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1331 					      void *priv)
1332 {
1333 	chip->manufacturer.priv = priv;
1334 }
1335 
nand_get_manufacturer_data(struct nand_chip * chip)1336 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1337 {
1338 	return chip->manufacturer.priv;
1339 }
1340 
nand_set_flash_node(struct nand_chip * chip,struct device_node * np)1341 static inline void nand_set_flash_node(struct nand_chip *chip,
1342 				       struct device_node *np)
1343 {
1344 	mtd_set_of_node(nand_to_mtd(chip), np);
1345 }
1346 
nand_get_flash_node(struct nand_chip * chip)1347 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1348 {
1349 	return mtd_get_of_node(nand_to_mtd(chip));
1350 }
1351 
1352 /**
1353  * nand_get_interface_config - Retrieve the current interface configuration
1354  *                             of a NAND chip
1355  * @chip: The NAND chip
1356  */
1357 static inline const struct nand_interface_config *
nand_get_interface_config(struct nand_chip * chip)1358 nand_get_interface_config(struct nand_chip *chip)
1359 {
1360 	return chip->current_interface_config;
1361 }
1362 
1363 /*
1364  * A helper for defining older NAND chips where the second ID byte fully
1365  * defined the chip, including the geometry (chip size, eraseblock size, page
1366  * size). All these chips have 512 bytes NAND page size.
1367  */
1368 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1369 	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1370 	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1371 
1372 /*
1373  * A helper for defining newer chips which report their page size and
1374  * eraseblock size via the extended ID bytes.
1375  *
1376  * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1377  * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1378  * device ID now only represented a particular total chip size (and voltage,
1379  * buswidth), and the page size, eraseblock size, and OOB size could vary while
1380  * using the same device ID.
1381  */
1382 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1383 	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1384 	  .options = (opts) }
1385 
1386 #define NAND_ECC_INFO(_strength, _step)	\
1387 			{ .strength_ds = (_strength), .step_ds = (_step) }
1388 #define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
1389 #define NAND_ECC_STEP(type)		((type)->ecc.step_ds)
1390 
1391 /**
1392  * struct nand_flash_dev - NAND Flash Device ID Structure
1393  * @name: a human-readable name of the NAND chip
1394  * @dev_id: the device ID (the second byte of the full chip ID array)
1395  * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
1396  *          memory address as ``id[0]``)
1397  * @dev_id: device ID part of the full chip ID array (refers the same memory
1398  *          address as ``id[1]``)
1399  * @id: full device ID array
1400  * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1401  *            well as the eraseblock size) is determined from the extended NAND
1402  *            chip ID array)
1403  * @chipsize: total chip size in MiB
1404  * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1405  * @options: stores various chip bit options
1406  * @id_len: The valid length of the @id.
1407  * @oobsize: OOB size
1408  * @ecc: ECC correctability and step information from the datasheet.
1409  * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1410  *                   @ecc_strength_ds in nand_chip{}.
1411  * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1412  *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1413  *               For example, the "4bit ECC for each 512Byte" can be set with
1414  *               NAND_ECC_INFO(4, 512).
1415  */
1416 struct nand_flash_dev {
1417 	char *name;
1418 	union {
1419 		struct {
1420 			uint8_t mfr_id;
1421 			uint8_t dev_id;
1422 		};
1423 		uint8_t id[NAND_MAX_ID_LEN];
1424 	};
1425 	unsigned int pagesize;
1426 	unsigned int chipsize;
1427 	unsigned int erasesize;
1428 	unsigned int options;
1429 	uint16_t id_len;
1430 	uint16_t oobsize;
1431 	struct {
1432 		uint16_t strength_ds;
1433 		uint16_t step_ds;
1434 	} ecc;
1435 };
1436 
1437 int nand_create_bbt(struct nand_chip *chip);
1438 
1439 /*
1440  * Check if it is a SLC nand.
1441  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1442  * We do not distinguish the MLC and TLC now.
1443  */
nand_is_slc(struct nand_chip * chip)1444 static inline bool nand_is_slc(struct nand_chip *chip)
1445 {
1446 	WARN(nanddev_bits_per_cell(&chip->base) == 0,
1447 	     "chip->bits_per_cell is used uninitialized\n");
1448 	return nanddev_bits_per_cell(&chip->base) == 1;
1449 }
1450 
1451 /**
1452  * nand_opcode_8bits - Check if the opcode's address should be sent only on the
1453  *	lower 8 bits
1454  * @command: opcode to check
1455  */
nand_opcode_8bits(unsigned int command)1456 static inline int nand_opcode_8bits(unsigned int command)
1457 {
1458 	switch (command) {
1459 	case NAND_CMD_READID:
1460 	case NAND_CMD_PARAM:
1461 	case NAND_CMD_GET_FEATURES:
1462 	case NAND_CMD_SET_FEATURES:
1463 		return 1;
1464 	default:
1465 		break;
1466 	}
1467 	return 0;
1468 }
1469 
1470 int rawnand_sw_hamming_init(struct nand_chip *chip);
1471 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
1472 				 const unsigned char *buf,
1473 				 unsigned char *code);
1474 int rawnand_sw_hamming_correct(struct nand_chip *chip,
1475 			       unsigned char *buf,
1476 			       unsigned char *read_ecc,
1477 			       unsigned char *calc_ecc);
1478 void rawnand_sw_hamming_cleanup(struct nand_chip *chip);
1479 int rawnand_sw_bch_init(struct nand_chip *chip);
1480 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
1481 			   unsigned char *read_ecc, unsigned char *calc_ecc);
1482 void rawnand_sw_bch_cleanup(struct nand_chip *chip);
1483 
1484 int nand_check_erased_ecc_chunk(void *data, int datalen,
1485 				void *ecc, int ecclen,
1486 				void *extraoob, int extraooblen,
1487 				int threshold);
1488 
1489 int nand_ecc_choose_conf(struct nand_chip *chip,
1490 			 const struct nand_ecc_caps *caps, int oobavail);
1491 
1492 /* Default write_oob implementation */
1493 int nand_write_oob_std(struct nand_chip *chip, int page);
1494 
1495 /* Default read_oob implementation */
1496 int nand_read_oob_std(struct nand_chip *chip, int page);
1497 
1498 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1499 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1500 				  u8 *subfeature_param);
1501 
1502 /* read_page_raw implementations */
1503 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1504 		       int page);
1505 int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1506 				  int oob_required, int page);
1507 
1508 /* write_page_raw implementations */
1509 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1510 			int oob_required, int page);
1511 int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1512 				   int oob_required, int page);
1513 
1514 /* Reset and initialize a NAND device */
1515 int nand_reset(struct nand_chip *chip, int chipnr);
1516 
1517 /* NAND operation helpers */
1518 int nand_reset_op(struct nand_chip *chip);
1519 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1520 		   unsigned int len);
1521 int nand_status_op(struct nand_chip *chip, u8 *status);
1522 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1523 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1524 		      unsigned int offset_in_page, void *buf, unsigned int len);
1525 int nand_change_read_column_op(struct nand_chip *chip,
1526 			       unsigned int offset_in_page, void *buf,
1527 			       unsigned int len, bool force_8bit);
1528 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1529 		     unsigned int offset_in_page, void *buf, unsigned int len);
1530 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1531 			    unsigned int offset_in_page, const void *buf,
1532 			    unsigned int len);
1533 int nand_prog_page_end_op(struct nand_chip *chip);
1534 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1535 		      unsigned int offset_in_page, const void *buf,
1536 		      unsigned int len);
1537 int nand_change_write_column_op(struct nand_chip *chip,
1538 				unsigned int offset_in_page, const void *buf,
1539 				unsigned int len, bool force_8bit);
1540 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1541 		      bool force_8bit, bool check_only);
1542 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1543 		       unsigned int len, bool force_8bit);
1544 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
1545 				   int oob_required, int page);
1546 
1547 /* Scan and identify a NAND device */
1548 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1549 		       struct nand_flash_dev *ids);
1550 
nand_scan(struct nand_chip * chip,unsigned int max_chips)1551 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1552 {
1553 	return nand_scan_with_ids(chip, max_chips, NULL);
1554 }
1555 
1556 /* Internal helper for board drivers which need to override command function */
1557 void nand_wait_ready(struct nand_chip *chip);
1558 
1559 /*
1560  * Free resources held by the NAND device, must be called on error after a
1561  * sucessful nand_scan().
1562  */
1563 void nand_cleanup(struct nand_chip *chip);
1564 
1565 /*
1566  * External helper for controller drivers that have to implement the WAITRDY
1567  * instruction and have no physical pin to check it.
1568  */
1569 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1570 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1571 		      unsigned long timeout_ms);
1572 
1573 /* Select/deselect a NAND target. */
1574 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1575 void nand_deselect_target(struct nand_chip *chip);
1576 
1577 /* Bitops */
1578 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
1579 		       unsigned int src_off, unsigned int nbits);
1580 
1581 /**
1582  * nand_get_data_buf() - Get the internal page buffer
1583  * @chip: NAND chip object
1584  *
1585  * Returns the pre-allocated page buffer after invalidating the cache. This
1586  * function should be used by drivers that do not want to allocate their own
1587  * bounce buffer and still need such a buffer for specific operations (most
1588  * commonly when reading OOB data only).
1589  *
1590  * Be careful to never call this function in the write/write_oob path, because
1591  * the core may have placed the data to be written out in this buffer.
1592  *
1593  * Return: pointer to the page cache buffer
1594  */
nand_get_data_buf(struct nand_chip * chip)1595 static inline void *nand_get_data_buf(struct nand_chip *chip)
1596 {
1597 	chip->pagecache.page = -1;
1598 
1599 	return chip->data_buf;
1600 }
1601 
1602 /* Parse the gpio-cs property */
1603 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
1604 			     unsigned int *ncs_array);
1605 
1606 #endif /* __LINUX_MTD_RAWNAND_H */
1607