1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/uaccess.h>
17 #include <linux/kdebug.h>
18 #include <linux/kgdb.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/ptrace.h>
22 #include <linux/string.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/kexec.h>
26 #include <linux/sched.h>
27 #include <linux/timer.h>
28 #include <linux/init.h>
29 #include <linux/bug.h>
30 #include <linux/nmi.h>
31 #include <linux/mm.h>
32 #include <linux/smp.h>
33 #include <linux/io.h>
34 
35 #ifdef CONFIG_EISA
36 #include <linux/ioport.h>
37 #include <linux/eisa.h>
38 #endif
39 
40 #ifdef CONFIG_MCA
41 #include <linux/mca.h>
42 #endif
43 
44 #if defined(CONFIG_EDAC)
45 #include <linux/edac.h>
46 #endif
47 
48 #include <asm/kmemcheck.h>
49 #include <asm/stacktrace.h>
50 #include <asm/processor.h>
51 #include <asm/debugreg.h>
52 #include <asm/atomic.h>
53 #include <asm/system.h>
54 #include <asm/traps.h>
55 #include <asm/desc.h>
56 #include <asm/i387.h>
57 #include <asm/mce.h>
58 
59 #include <asm/mach_traps.h>
60 
61 #ifdef CONFIG_X86_64
62 #include <asm/x86_init.h>
63 #include <asm/pgalloc.h>
64 #include <asm/proto.h>
65 #else
66 #include <asm/processor-flags.h>
67 #include <asm/setup.h>
68 
69 asmlinkage int system_call(void);
70 
71 /* Do we ignore FPU interrupts ? */
72 char ignore_fpu_irq;
73 
74 /*
75  * The IDT has to be page-aligned to simplify the Pentium
76  * F0 0F bug workaround.
77  */
78 gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
79 #endif
80 
81 DECLARE_BITMAP(used_vectors, NR_VECTORS);
82 EXPORT_SYMBOL_GPL(used_vectors);
83 
84 static int ignore_nmis;
85 
86 int unknown_nmi_panic;
87 /*
88  * Prevent NMI reason port (0x61) being accessed simultaneously, can
89  * only be used in NMI handler.
90  */
91 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
92 
conditional_sti(struct pt_regs * regs)93 static inline void conditional_sti(struct pt_regs *regs)
94 {
95 	if (regs->flags & X86_EFLAGS_IF)
96 		local_irq_enable();
97 }
98 
preempt_conditional_sti(struct pt_regs * regs)99 static inline void preempt_conditional_sti(struct pt_regs *regs)
100 {
101 	inc_preempt_count();
102 	if (regs->flags & X86_EFLAGS_IF)
103 		local_irq_enable();
104 }
105 
conditional_cli(struct pt_regs * regs)106 static inline void conditional_cli(struct pt_regs *regs)
107 {
108 	if (regs->flags & X86_EFLAGS_IF)
109 		local_irq_disable();
110 }
111 
preempt_conditional_cli(struct pt_regs * regs)112 static inline void preempt_conditional_cli(struct pt_regs *regs)
113 {
114 	if (regs->flags & X86_EFLAGS_IF)
115 		local_irq_disable();
116 	dec_preempt_count();
117 }
118 
119 static void __kprobes
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,siginfo_t * info)120 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
121 	long error_code, siginfo_t *info)
122 {
123 	struct task_struct *tsk = current;
124 
125 #ifdef CONFIG_X86_32
126 	if (regs->flags & X86_VM_MASK) {
127 		/*
128 		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
129 		 * On nmi (interrupt 2), do_trap should not be called.
130 		 */
131 		if (trapnr < 6)
132 			goto vm86_trap;
133 		goto trap_signal;
134 	}
135 #endif
136 
137 	if (!user_mode(regs))
138 		goto kernel_trap;
139 
140 #ifdef CONFIG_X86_32
141 trap_signal:
142 #endif
143 	/*
144 	 * We want error_code and trap_no set for userspace faults and
145 	 * kernelspace faults which result in die(), but not
146 	 * kernelspace faults which are fixed up.  die() gives the
147 	 * process no chance to handle the signal and notice the
148 	 * kernel fault information, so that won't result in polluting
149 	 * the information about previously queued, but not yet
150 	 * delivered, faults.  See also do_general_protection below.
151 	 */
152 	tsk->thread.error_code = error_code;
153 	tsk->thread.trap_no = trapnr;
154 
155 #ifdef CONFIG_X86_64
156 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
157 	    printk_ratelimit()) {
158 		printk(KERN_INFO
159 		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
160 		       tsk->comm, tsk->pid, str,
161 		       regs->ip, regs->sp, error_code);
162 		print_vma_addr(" in ", regs->ip);
163 		printk("\n");
164 	}
165 #endif
166 
167 	if (info)
168 		force_sig_info(signr, info, tsk);
169 	else
170 		force_sig(signr, tsk);
171 	return;
172 
173 kernel_trap:
174 	if (!fixup_exception(regs)) {
175 		tsk->thread.error_code = error_code;
176 		tsk->thread.trap_no = trapnr;
177 		die(str, regs, error_code);
178 	}
179 	return;
180 
181 #ifdef CONFIG_X86_32
182 vm86_trap:
183 	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
184 						error_code, trapnr))
185 		goto trap_signal;
186 	return;
187 #endif
188 }
189 
190 #define DO_ERROR(trapnr, signr, str, name)				\
191 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
192 {									\
193 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
194 							== NOTIFY_STOP)	\
195 		return;							\
196 	conditional_sti(regs);						\
197 	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
198 }
199 
200 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
201 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
202 {									\
203 	siginfo_t info;							\
204 	info.si_signo = signr;						\
205 	info.si_errno = 0;						\
206 	info.si_code = sicode;						\
207 	info.si_addr = (void __user *)siaddr;				\
208 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
209 							== NOTIFY_STOP)	\
210 		return;							\
211 	conditional_sti(regs);						\
212 	do_trap(trapnr, signr, str, regs, error_code, &info);		\
213 }
214 
215 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
216 DO_ERROR(4, SIGSEGV, "overflow", overflow)
217 DO_ERROR(5, SIGSEGV, "bounds", bounds)
218 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
219 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
220 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
221 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
222 #ifdef CONFIG_X86_32
223 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
224 #endif
225 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
226 
227 #ifdef CONFIG_X86_64
228 /* Runs on IST stack */
do_stack_segment(struct pt_regs * regs,long error_code)229 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
230 {
231 	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
232 			12, SIGBUS) == NOTIFY_STOP)
233 		return;
234 	preempt_conditional_sti(regs);
235 	do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
236 	preempt_conditional_cli(regs);
237 }
238 
do_double_fault(struct pt_regs * regs,long error_code)239 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
240 {
241 	static const char str[] = "double fault";
242 	struct task_struct *tsk = current;
243 
244 	/* Return not checked because double check cannot be ignored */
245 	notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
246 
247 	tsk->thread.error_code = error_code;
248 	tsk->thread.trap_no = 8;
249 
250 	/*
251 	 * This is always a kernel trap and never fixable (and thus must
252 	 * never return).
253 	 */
254 	for (;;)
255 		die(str, regs, error_code);
256 }
257 #endif
258 
259 dotraplinkage void __kprobes
do_general_protection(struct pt_regs * regs,long error_code)260 do_general_protection(struct pt_regs *regs, long error_code)
261 {
262 	struct task_struct *tsk;
263 
264 	conditional_sti(regs);
265 
266 #ifdef CONFIG_X86_32
267 	if (regs->flags & X86_VM_MASK)
268 		goto gp_in_vm86;
269 #endif
270 
271 	tsk = current;
272 	if (!user_mode(regs))
273 		goto gp_in_kernel;
274 
275 	tsk->thread.error_code = error_code;
276 	tsk->thread.trap_no = 13;
277 
278 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
279 			printk_ratelimit()) {
280 		printk(KERN_INFO
281 			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
282 			tsk->comm, task_pid_nr(tsk),
283 			regs->ip, regs->sp, error_code);
284 		print_vma_addr(" in ", regs->ip);
285 		printk("\n");
286 	}
287 
288 	force_sig(SIGSEGV, tsk);
289 	return;
290 
291 #ifdef CONFIG_X86_32
292 gp_in_vm86:
293 	local_irq_enable();
294 	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
295 	return;
296 #endif
297 
298 gp_in_kernel:
299 	if (fixup_exception(regs))
300 		return;
301 
302 	tsk->thread.error_code = error_code;
303 	tsk->thread.trap_no = 13;
304 	if (notify_die(DIE_GPF, "general protection fault", regs,
305 				error_code, 13, SIGSEGV) == NOTIFY_STOP)
306 		return;
307 	die("general protection fault", regs, error_code);
308 }
309 
setup_unknown_nmi_panic(char * str)310 static int __init setup_unknown_nmi_panic(char *str)
311 {
312 	unknown_nmi_panic = 1;
313 	return 1;
314 }
315 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
316 
317 static notrace __kprobes void
pci_serr_error(unsigned char reason,struct pt_regs * regs)318 pci_serr_error(unsigned char reason, struct pt_regs *regs)
319 {
320 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
321 		 reason, smp_processor_id());
322 
323 	/*
324 	 * On some machines, PCI SERR line is used to report memory
325 	 * errors. EDAC makes use of it.
326 	 */
327 #if defined(CONFIG_EDAC)
328 	if (edac_handler_set()) {
329 		edac_atomic_assert_error();
330 		return;
331 	}
332 #endif
333 
334 	if (panic_on_unrecovered_nmi)
335 		panic("NMI: Not continuing");
336 
337 	pr_emerg("Dazed and confused, but trying to continue\n");
338 
339 	/* Clear and disable the PCI SERR error line. */
340 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
341 	outb(reason, NMI_REASON_PORT);
342 }
343 
344 static notrace __kprobes void
io_check_error(unsigned char reason,struct pt_regs * regs)345 io_check_error(unsigned char reason, struct pt_regs *regs)
346 {
347 	unsigned long i;
348 
349 	pr_emerg(
350 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
351 		 reason, smp_processor_id());
352 	show_registers(regs);
353 
354 	if (panic_on_io_nmi)
355 		panic("NMI IOCK error: Not continuing");
356 
357 	/* Re-enable the IOCK line, wait for a few seconds */
358 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
359 	outb(reason, NMI_REASON_PORT);
360 
361 	i = 20000;
362 	while (--i) {
363 		touch_nmi_watchdog();
364 		udelay(100);
365 	}
366 
367 	reason &= ~NMI_REASON_CLEAR_IOCHK;
368 	outb(reason, NMI_REASON_PORT);
369 }
370 
371 static notrace __kprobes void
unknown_nmi_error(unsigned char reason,struct pt_regs * regs)372 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
373 {
374 	if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) ==
375 			NOTIFY_STOP)
376 		return;
377 #ifdef CONFIG_MCA
378 	/*
379 	 * Might actually be able to figure out what the guilty party
380 	 * is:
381 	 */
382 	if (MCA_bus) {
383 		mca_handle_nmi();
384 		return;
385 	}
386 #endif
387 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
388 		 reason, smp_processor_id());
389 
390 	pr_emerg("Do you have a strange power saving mode enabled?\n");
391 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
392 		panic("NMI: Not continuing");
393 
394 	pr_emerg("Dazed and confused, but trying to continue\n");
395 }
396 
default_do_nmi(struct pt_regs * regs)397 static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
398 {
399 	unsigned char reason = 0;
400 
401 	/*
402 	 * CPU-specific NMI must be processed before non-CPU-specific
403 	 * NMI, otherwise we may lose it, because the CPU-specific
404 	 * NMI can not be detected/processed on other CPUs.
405 	 */
406 	if (notify_die(DIE_NMI, "nmi", regs, 0, 2, SIGINT) == NOTIFY_STOP)
407 		return;
408 
409 	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
410 	raw_spin_lock(&nmi_reason_lock);
411 	reason = get_nmi_reason();
412 
413 	if (reason & NMI_REASON_MASK) {
414 		if (reason & NMI_REASON_SERR)
415 			pci_serr_error(reason, regs);
416 		else if (reason & NMI_REASON_IOCHK)
417 			io_check_error(reason, regs);
418 #ifdef CONFIG_X86_32
419 		/*
420 		 * Reassert NMI in case it became active
421 		 * meanwhile as it's edge-triggered:
422 		 */
423 		reassert_nmi();
424 #endif
425 		raw_spin_unlock(&nmi_reason_lock);
426 		return;
427 	}
428 	raw_spin_unlock(&nmi_reason_lock);
429 
430 	unknown_nmi_error(reason, regs);
431 }
432 
433 dotraplinkage notrace __kprobes void
do_nmi(struct pt_regs * regs,long error_code)434 do_nmi(struct pt_regs *regs, long error_code)
435 {
436 	nmi_enter();
437 
438 	inc_irq_stat(__nmi_count);
439 
440 	if (!ignore_nmis)
441 		default_do_nmi(regs);
442 
443 	nmi_exit();
444 }
445 
stop_nmi(void)446 void stop_nmi(void)
447 {
448 	ignore_nmis++;
449 }
450 
restart_nmi(void)451 void restart_nmi(void)
452 {
453 	ignore_nmis--;
454 }
455 
456 /* May run on IST stack. */
do_int3(struct pt_regs * regs,long error_code)457 dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
458 {
459 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
460 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
461 			== NOTIFY_STOP)
462 		return;
463 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
464 #ifdef CONFIG_KPROBES
465 	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
466 			== NOTIFY_STOP)
467 		return;
468 #else
469 	if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP)
470 			== NOTIFY_STOP)
471 		return;
472 #endif
473 
474 	preempt_conditional_sti(regs);
475 	do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
476 	preempt_conditional_cli(regs);
477 }
478 
479 #ifdef CONFIG_X86_64
480 /*
481  * Help handler running on IST stack to switch back to user stack
482  * for scheduling or signal handling. The actual stack switch is done in
483  * entry.S
484  */
sync_regs(struct pt_regs * eregs)485 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
486 {
487 	struct pt_regs *regs = eregs;
488 	/* Did already sync */
489 	if (eregs == (struct pt_regs *)eregs->sp)
490 		;
491 	/* Exception from user space */
492 	else if (user_mode(eregs))
493 		regs = task_pt_regs(current);
494 	/*
495 	 * Exception from kernel and interrupts are enabled. Move to
496 	 * kernel process stack.
497 	 */
498 	else if (eregs->flags & X86_EFLAGS_IF)
499 		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
500 	if (eregs != regs)
501 		*regs = *eregs;
502 	return regs;
503 }
504 #endif
505 
506 /*
507  * Our handling of the processor debug registers is non-trivial.
508  * We do not clear them on entry and exit from the kernel. Therefore
509  * it is possible to get a watchpoint trap here from inside the kernel.
510  * However, the code in ./ptrace.c has ensured that the user can
511  * only set watchpoints on userspace addresses. Therefore the in-kernel
512  * watchpoint trap can only occur in code which is reading/writing
513  * from user space. Such code must not hold kernel locks (since it
514  * can equally take a page fault), therefore it is safe to call
515  * force_sig_info even though that claims and releases locks.
516  *
517  * Code in ./signal.c ensures that the debug control register
518  * is restored before we deliver any signal, and therefore that
519  * user code runs with the correct debug control register even though
520  * we clear it here.
521  *
522  * Being careful here means that we don't have to be as careful in a
523  * lot of more complicated places (task switching can be a bit lazy
524  * about restoring all the debug state, and ptrace doesn't have to
525  * find every occurrence of the TF bit that could be saved away even
526  * by user code)
527  *
528  * May run on IST stack.
529  */
do_debug(struct pt_regs * regs,long error_code)530 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
531 {
532 	struct task_struct *tsk = current;
533 	int user_icebp = 0;
534 	unsigned long dr6;
535 	int si_code;
536 
537 	get_debugreg(dr6, 6);
538 
539 	/* Filter out all the reserved bits which are preset to 1 */
540 	dr6 &= ~DR6_RESERVED;
541 
542 	/*
543 	 * If dr6 has no reason to give us about the origin of this trap,
544 	 * then it's very likely the result of an icebp/int01 trap.
545 	 * User wants a sigtrap for that.
546 	 */
547 	if (!dr6 && user_mode(regs))
548 		user_icebp = 1;
549 
550 	/* Catch kmemcheck conditions first of all! */
551 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
552 		return;
553 
554 	/* DR6 may or may not be cleared by the CPU */
555 	set_debugreg(0, 6);
556 
557 	/*
558 	 * The processor cleared BTF, so don't mark that we need it set.
559 	 */
560 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
561 
562 	/* Store the virtualized DR6 value */
563 	tsk->thread.debugreg6 = dr6;
564 
565 	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
566 							SIGTRAP) == NOTIFY_STOP)
567 		return;
568 
569 	/* It's safe to allow irq's after DR6 has been saved */
570 	preempt_conditional_sti(regs);
571 
572 	if (regs->flags & X86_VM_MASK) {
573 		handle_vm86_trap((struct kernel_vm86_regs *) regs,
574 				error_code, 1);
575 		preempt_conditional_cli(regs);
576 		return;
577 	}
578 
579 	/*
580 	 * Single-stepping through system calls: ignore any exceptions in
581 	 * kernel space, but re-enable TF when returning to user mode.
582 	 *
583 	 * We already checked v86 mode above, so we can check for kernel mode
584 	 * by just checking the CPL of CS.
585 	 */
586 	if ((dr6 & DR_STEP) && !user_mode(regs)) {
587 		tsk->thread.debugreg6 &= ~DR_STEP;
588 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
589 		regs->flags &= ~X86_EFLAGS_TF;
590 	}
591 	si_code = get_si_code(tsk->thread.debugreg6);
592 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
593 		send_sigtrap(tsk, regs, error_code, si_code);
594 	preempt_conditional_cli(regs);
595 
596 	return;
597 }
598 
599 /*
600  * Note that we play around with the 'TS' bit in an attempt to get
601  * the correct behaviour even in the presence of the asynchronous
602  * IRQ13 behaviour
603  */
math_error(struct pt_regs * regs,int error_code,int trapnr)604 void math_error(struct pt_regs *regs, int error_code, int trapnr)
605 {
606 	struct task_struct *task = current;
607 	siginfo_t info;
608 	unsigned short err;
609 	char *str = (trapnr == 16) ? "fpu exception" : "simd exception";
610 
611 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
612 		return;
613 	conditional_sti(regs);
614 
615 	if (!user_mode_vm(regs))
616 	{
617 		if (!fixup_exception(regs)) {
618 			task->thread.error_code = error_code;
619 			task->thread.trap_no = trapnr;
620 			die(str, regs, error_code);
621 		}
622 		return;
623 	}
624 
625 	/*
626 	 * Save the info for the exception handler and clear the error.
627 	 */
628 	save_init_fpu(task);
629 	task->thread.trap_no = trapnr;
630 	task->thread.error_code = error_code;
631 	info.si_signo = SIGFPE;
632 	info.si_errno = 0;
633 	info.si_addr = (void __user *)regs->ip;
634 	if (trapnr == 16) {
635 		unsigned short cwd, swd;
636 		/*
637 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
638 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
639 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
640 		 * fault bit.  We should only be taking one exception at a time,
641 		 * so if this combination doesn't produce any single exception,
642 		 * then we have a bad program that isn't synchronizing its FPU usage
643 		 * and it will suffer the consequences since we won't be able to
644 		 * fully reproduce the context of the exception
645 		 */
646 		cwd = get_fpu_cwd(task);
647 		swd = get_fpu_swd(task);
648 
649 		err = swd & ~cwd;
650 	} else {
651 		/*
652 		 * The SIMD FPU exceptions are handled a little differently, as there
653 		 * is only a single status/control register.  Thus, to determine which
654 		 * unmasked exception was caught we must mask the exception mask bits
655 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
656 		 */
657 		unsigned short mxcsr = get_fpu_mxcsr(task);
658 		err = ~(mxcsr >> 7) & mxcsr;
659 	}
660 
661 	if (err & 0x001) {	/* Invalid op */
662 		/*
663 		 * swd & 0x240 == 0x040: Stack Underflow
664 		 * swd & 0x240 == 0x240: Stack Overflow
665 		 * User must clear the SF bit (0x40) if set
666 		 */
667 		info.si_code = FPE_FLTINV;
668 	} else if (err & 0x004) { /* Divide by Zero */
669 		info.si_code = FPE_FLTDIV;
670 	} else if (err & 0x008) { /* Overflow */
671 		info.si_code = FPE_FLTOVF;
672 	} else if (err & 0x012) { /* Denormal, Underflow */
673 		info.si_code = FPE_FLTUND;
674 	} else if (err & 0x020) { /* Precision */
675 		info.si_code = FPE_FLTRES;
676 	} else {
677 		/*
678 		 * If we're using IRQ 13, or supposedly even some trap 16
679 		 * implementations, it's possible we get a spurious trap...
680 		 */
681 		return;		/* Spurious trap, no error */
682 	}
683 	force_sig_info(SIGFPE, &info, task);
684 }
685 
do_coprocessor_error(struct pt_regs * regs,long error_code)686 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
687 {
688 #ifdef CONFIG_X86_32
689 	ignore_fpu_irq = 1;
690 #endif
691 
692 	math_error(regs, error_code, 16);
693 }
694 
695 dotraplinkage void
do_simd_coprocessor_error(struct pt_regs * regs,long error_code)696 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
697 {
698 	math_error(regs, error_code, 19);
699 }
700 
701 dotraplinkage void
do_spurious_interrupt_bug(struct pt_regs * regs,long error_code)702 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
703 {
704 	conditional_sti(regs);
705 #if 0
706 	/* No need to warn about this any longer. */
707 	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
708 #endif
709 }
710 
smp_thermal_interrupt(void)711 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
712 {
713 }
714 
smp_threshold_interrupt(void)715 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
716 {
717 }
718 
719 /*
720  * __math_state_restore assumes that cr0.TS is already clear and the
721  * fpu state is all ready for use.  Used during context switch.
722  */
__math_state_restore(void)723 void __math_state_restore(void)
724 {
725 	struct thread_info *thread = current_thread_info();
726 	struct task_struct *tsk = thread->task;
727 
728 	/*
729 	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
730 	 */
731 	if (unlikely(restore_fpu_checking(tsk))) {
732 		stts();
733 		force_sig(SIGSEGV, tsk);
734 		return;
735 	}
736 
737 	thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */
738 	tsk->fpu_counter++;
739 }
740 
741 /*
742  * 'math_state_restore()' saves the current math information in the
743  * old math state array, and gets the new ones from the current task
744  *
745  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
746  * Don't touch unless you *really* know how it works.
747  *
748  * Must be called with kernel preemption disabled (in this case,
749  * local interrupts are disabled at the call-site in entry.S).
750  */
math_state_restore(void)751 asmlinkage void math_state_restore(void)
752 {
753 	struct thread_info *thread = current_thread_info();
754 	struct task_struct *tsk = thread->task;
755 
756 	if (!tsk_used_math(tsk)) {
757 		local_irq_enable();
758 		/*
759 		 * does a slab alloc which can sleep
760 		 */
761 		if (init_fpu(tsk)) {
762 			/*
763 			 * ran out of memory!
764 			 */
765 			do_group_exit(SIGKILL);
766 			return;
767 		}
768 		local_irq_disable();
769 	}
770 
771 	clts();				/* Allow maths ops (or we recurse) */
772 
773 	__math_state_restore();
774 }
775 EXPORT_SYMBOL_GPL(math_state_restore);
776 
777 dotraplinkage void __kprobes
do_device_not_available(struct pt_regs * regs,long error_code)778 do_device_not_available(struct pt_regs *regs, long error_code)
779 {
780 #ifdef CONFIG_MATH_EMULATION
781 	if (read_cr0() & X86_CR0_EM) {
782 		struct math_emu_info info = { };
783 
784 		conditional_sti(regs);
785 
786 		info.regs = regs;
787 		math_emulate(&info);
788 		return;
789 	}
790 #endif
791 	math_state_restore(); /* interrupts still off */
792 #ifdef CONFIG_X86_32
793 	conditional_sti(regs);
794 #endif
795 }
796 
797 #ifdef CONFIG_X86_32
do_iret_error(struct pt_regs * regs,long error_code)798 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
799 {
800 	siginfo_t info;
801 	local_irq_enable();
802 
803 	info.si_signo = SIGILL;
804 	info.si_errno = 0;
805 	info.si_code = ILL_BADSTK;
806 	info.si_addr = NULL;
807 	if (notify_die(DIE_TRAP, "iret exception",
808 			regs, error_code, 32, SIGILL) == NOTIFY_STOP)
809 		return;
810 	do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
811 }
812 #endif
813 
814 /* Set of traps needed for early debugging. */
early_trap_init(void)815 void __init early_trap_init(void)
816 {
817 	set_intr_gate_ist(1, &debug, DEBUG_STACK);
818 	/* int3 can be called from all */
819 	set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
820 	set_intr_gate(14, &page_fault);
821 	load_idt(&idt_descr);
822 }
823 
trap_init(void)824 void __init trap_init(void)
825 {
826 	int i;
827 
828 #ifdef CONFIG_EISA
829 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
830 
831 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
832 		EISA_bus = 1;
833 	early_iounmap(p, 4);
834 #endif
835 
836 	set_intr_gate(0, &divide_error);
837 	set_intr_gate_ist(2, &nmi, NMI_STACK);
838 	/* int4 can be called from all */
839 	set_system_intr_gate(4, &overflow);
840 	set_intr_gate(5, &bounds);
841 	set_intr_gate(6, &invalid_op);
842 	set_intr_gate(7, &device_not_available);
843 #ifdef CONFIG_X86_32
844 	set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
845 #else
846 	set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
847 #endif
848 	set_intr_gate(9, &coprocessor_segment_overrun);
849 	set_intr_gate(10, &invalid_TSS);
850 	set_intr_gate(11, &segment_not_present);
851 	set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
852 	set_intr_gate(13, &general_protection);
853 	set_intr_gate(15, &spurious_interrupt_bug);
854 	set_intr_gate(16, &coprocessor_error);
855 	set_intr_gate(17, &alignment_check);
856 #ifdef CONFIG_X86_MCE
857 	set_intr_gate_ist(18, &machine_check, MCE_STACK);
858 #endif
859 	set_intr_gate(19, &simd_coprocessor_error);
860 
861 	/* Reserve all the builtin and the syscall vector: */
862 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
863 		set_bit(i, used_vectors);
864 
865 #ifdef CONFIG_IA32_EMULATION
866 	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
867 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
868 #endif
869 
870 #ifdef CONFIG_X86_32
871 	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
872 	set_bit(SYSCALL_VECTOR, used_vectors);
873 #endif
874 
875 	/*
876 	 * Should be a barrier for any external CPU state:
877 	 */
878 	cpu_init();
879 
880 	x86_init.irqs.trap_init();
881 }
882