1 #ifndef _ASM_IA64_PROCESSOR_H
2 #define _ASM_IA64_PROCESSOR_H
3
4 /*
5 * Copyright (C) 1998-2004 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Stephane Eranian <eranian@hpl.hp.com>
8 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
9 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
10 *
11 * 11/24/98 S.Eranian added ia64_set_iva()
12 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API
13 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support
14 */
15
16
17 #include <asm/intrinsics.h>
18 #include <asm/kregs.h>
19 #include <asm/ptrace.h>
20 #include <asm/ustack.h>
21
22 #define IA64_NUM_PHYS_STACK_REG 96
23 #define IA64_NUM_DBG_REGS 8
24
25 #define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000)
26 #define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000)
27
28 /*
29 * TASK_SIZE really is a mis-named. It really is the maximum user
30 * space address (plus one). On IA-64, there are five regions of 2TB
31 * each (assuming 8KB page size), for a total of 8TB of user virtual
32 * address space.
33 */
34 #define TASK_SIZE_OF(tsk) ((tsk)->thread.task_size)
35 #define TASK_SIZE TASK_SIZE_OF(current)
36
37 /*
38 * This decides where the kernel will search for a free chunk of vm
39 * space during mmap's.
40 */
41 #define TASK_UNMAPPED_BASE (current->thread.map_base)
42
43 #define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */
44 #define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */
45 #define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */
46 #define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */
47 #define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */
48 #define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration
49 sync at ctx sw */
50 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */
51 #define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */
52
53 #define IA64_THREAD_UAC_SHIFT 3
54 #define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
55 #define IA64_THREAD_FPEMU_SHIFT 6
56 #define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
57
58
59 /*
60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good
61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
63 */
64 #define IA64_NSEC_PER_CYC_SHIFT 30
65
66 #ifndef __ASSEMBLY__
67
68 #include <linux/cache.h>
69 #include <linux/compiler.h>
70 #include <linux/threads.h>
71 #include <linux/types.h>
72
73 #include <asm/fpu.h>
74 #include <asm/page.h>
75 #include <asm/percpu.h>
76 #include <asm/rse.h>
77 #include <asm/unwind.h>
78 #include <asm/atomic.h>
79 #ifdef CONFIG_NUMA
80 #include <asm/nodedata.h>
81 #endif
82
83 /* like above but expressed as bitfields for more efficient access: */
84 struct ia64_psr {
85 __u64 reserved0 : 1;
86 __u64 be : 1;
87 __u64 up : 1;
88 __u64 ac : 1;
89 __u64 mfl : 1;
90 __u64 mfh : 1;
91 __u64 reserved1 : 7;
92 __u64 ic : 1;
93 __u64 i : 1;
94 __u64 pk : 1;
95 __u64 reserved2 : 1;
96 __u64 dt : 1;
97 __u64 dfl : 1;
98 __u64 dfh : 1;
99 __u64 sp : 1;
100 __u64 pp : 1;
101 __u64 di : 1;
102 __u64 si : 1;
103 __u64 db : 1;
104 __u64 lp : 1;
105 __u64 tb : 1;
106 __u64 rt : 1;
107 __u64 reserved3 : 4;
108 __u64 cpl : 2;
109 __u64 is : 1;
110 __u64 mc : 1;
111 __u64 it : 1;
112 __u64 id : 1;
113 __u64 da : 1;
114 __u64 dd : 1;
115 __u64 ss : 1;
116 __u64 ri : 2;
117 __u64 ed : 1;
118 __u64 bn : 1;
119 __u64 reserved4 : 19;
120 };
121
122 union ia64_isr {
123 __u64 val;
124 struct {
125 __u64 code : 16;
126 __u64 vector : 8;
127 __u64 reserved1 : 8;
128 __u64 x : 1;
129 __u64 w : 1;
130 __u64 r : 1;
131 __u64 na : 1;
132 __u64 sp : 1;
133 __u64 rs : 1;
134 __u64 ir : 1;
135 __u64 ni : 1;
136 __u64 so : 1;
137 __u64 ei : 2;
138 __u64 ed : 1;
139 __u64 reserved2 : 20;
140 };
141 };
142
143 union ia64_lid {
144 __u64 val;
145 struct {
146 __u64 rv : 16;
147 __u64 eid : 8;
148 __u64 id : 8;
149 __u64 ig : 32;
150 };
151 };
152
153 union ia64_tpr {
154 __u64 val;
155 struct {
156 __u64 ig0 : 4;
157 __u64 mic : 4;
158 __u64 rsv : 8;
159 __u64 mmi : 1;
160 __u64 ig1 : 47;
161 };
162 };
163
164 union ia64_itir {
165 __u64 val;
166 struct {
167 __u64 rv3 : 2; /* 0-1 */
168 __u64 ps : 6; /* 2-7 */
169 __u64 key : 24; /* 8-31 */
170 __u64 rv4 : 32; /* 32-63 */
171 };
172 };
173
174 union ia64_rr {
175 __u64 val;
176 struct {
177 __u64 ve : 1; /* enable hw walker */
178 __u64 reserved0: 1; /* reserved */
179 __u64 ps : 6; /* log page size */
180 __u64 rid : 24; /* region id */
181 __u64 reserved1: 32; /* reserved */
182 };
183 };
184
185 /*
186 * CPU type, hardware bug flags, and per-CPU state. Frequently used
187 * state comes earlier:
188 */
189 struct cpuinfo_ia64 {
190 unsigned int softirq_pending;
191 unsigned long itm_delta; /* # of clock cycles between clock ticks */
192 unsigned long itm_next; /* interval timer mask value to use for next clock tick */
193 unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
194 unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */
195 unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */
196 unsigned long itc_freq; /* frequency of ITC counter */
197 unsigned long proc_freq; /* frequency of processor */
198 unsigned long cyc_per_usec; /* itc_freq/1000000 */
199 unsigned long ptce_base;
200 unsigned int ptce_count[2];
201 unsigned int ptce_stride[2];
202 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */
203
204 #ifdef CONFIG_SMP
205 unsigned long loops_per_jiffy;
206 int cpu;
207 unsigned int socket_id; /* physical processor socket id */
208 unsigned short core_id; /* core id */
209 unsigned short thread_id; /* thread id */
210 unsigned short num_log; /* Total number of logical processors on
211 * this socket that were successfully booted */
212 unsigned char cores_per_socket; /* Cores per processor socket */
213 unsigned char threads_per_core; /* Threads per core */
214 #endif
215
216 /* CPUID-derived information: */
217 unsigned long ppn;
218 unsigned long features;
219 unsigned char number;
220 unsigned char revision;
221 unsigned char model;
222 unsigned char family;
223 unsigned char archrev;
224 char vendor[16];
225 char *model_name;
226
227 #ifdef CONFIG_NUMA
228 struct ia64_node_data *node_data;
229 #endif
230 };
231
232 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
233
234 /*
235 * The "local" data variable. It refers to the per-CPU data of the currently executing
236 * CPU, much like "current" points to the per-task data of the currently executing task.
237 * Do not use the address of local_cpu_data, since it will be different from
238 * cpu_data(smp_processor_id())!
239 */
240 #define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info))
241 #define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu))
242
243 extern void print_cpu_info (struct cpuinfo_ia64 *);
244
245 typedef struct {
246 unsigned long seg;
247 } mm_segment_t;
248
249 #define SET_UNALIGN_CTL(task,value) \
250 ({ \
251 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \
252 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \
253 0; \
254 })
255 #define GET_UNALIGN_CTL(task,addr) \
256 ({ \
257 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \
258 (int __user *) (addr)); \
259 })
260
261 #define SET_FPEMU_CTL(task,value) \
262 ({ \
263 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \
264 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \
265 0; \
266 })
267 #define GET_FPEMU_CTL(task,addr) \
268 ({ \
269 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \
270 (int __user *) (addr)); \
271 })
272
273 struct thread_struct {
274 __u32 flags; /* various thread flags (see IA64_THREAD_*) */
275 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
276 __u8 on_ustack; /* executing on user-stacks? */
277 __u8 pad[3];
278 __u64 ksp; /* kernel stack pointer */
279 __u64 map_base; /* base address for get_unmapped_area() */
280 __u64 task_size; /* limit for task size */
281 __u64 rbs_bot; /* the base address for the RBS */
282 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */
283
284 #ifdef CONFIG_PERFMON
285 void *pfm_context; /* pointer to detailed PMU context */
286 unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */
287 # define INIT_THREAD_PM .pfm_context = NULL, \
288 .pfm_needs_checking = 0UL,
289 #else
290 # define INIT_THREAD_PM
291 #endif
292 unsigned long dbr[IA64_NUM_DBG_REGS];
293 unsigned long ibr[IA64_NUM_DBG_REGS];
294 struct ia64_fpreg fph[96]; /* saved/loaded on demand */
295 };
296
297 #define INIT_THREAD { \
298 .flags = 0, \
299 .on_ustack = 0, \
300 .ksp = 0, \
301 .map_base = DEFAULT_MAP_BASE, \
302 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \
303 .task_size = DEFAULT_TASK_SIZE, \
304 .last_fph_cpu = -1, \
305 INIT_THREAD_PM \
306 .dbr = {0, }, \
307 .ibr = {0, }, \
308 .fph = {{{{0}}}, } \
309 }
310
311 #define start_thread(regs,new_ip,new_sp) do { \
312 set_fs(USER_DS); \
313 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \
314 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \
315 regs->cr_iip = new_ip; \
316 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \
317 regs->ar_rnat = 0; \
318 regs->ar_bspstore = current->thread.rbs_bot; \
319 regs->ar_fpsr = FPSR_DEFAULT; \
320 regs->loadrs = 0; \
321 regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \
322 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \
323 if (unlikely(!get_dumpable(current->mm))) { \
324 /* \
325 * Zap scratch regs to avoid leaking bits between processes with different \
326 * uid/privileges. \
327 */ \
328 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \
329 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \
330 } \
331 } while (0)
332
333 /* Forward declarations, a strange C thing... */
334 struct mm_struct;
335 struct task_struct;
336
337 /*
338 * Free all resources held by a thread. This is called after the
339 * parent of DEAD_TASK has collected the exit status of the task via
340 * wait().
341 */
342 #define release_thread(dead_task)
343
344 /* Prepare to copy thread state - unlazy all lazy status */
345 #define prepare_to_copy(tsk) do { } while (0)
346
347 /*
348 * This is the mechanism for creating a new kernel thread.
349 *
350 * NOTE 1: Only a kernel-only process (ie the swapper or direct
351 * descendants who haven't done an "execve()") should use this: it
352 * will work within a system call from a "real" process, but the
353 * process memory space will not be free'd until both the parent and
354 * the child have exited.
355 *
356 * NOTE 2: This MUST NOT be an inlined function. Otherwise, we get
357 * into trouble in init/main.c when the child thread returns to
358 * do_basic_setup() and the timing is such that free_initmem() has
359 * been called already.
360 */
361 extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags);
362
363 /* Get wait channel for task P. */
364 extern unsigned long get_wchan (struct task_struct *p);
365
366 /* Return instruction pointer of blocked task TSK. */
367 #define KSTK_EIP(tsk) \
368 ({ \
369 struct pt_regs *_regs = task_pt_regs(tsk); \
370 _regs->cr_iip + ia64_psr(_regs)->ri; \
371 })
372
373 /* Return stack pointer of blocked task TSK. */
374 #define KSTK_ESP(tsk) ((tsk)->thread.ksp)
375
376 extern void ia64_getreg_unknown_kr (void);
377 extern void ia64_setreg_unknown_kr (void);
378
379 #define ia64_get_kr(regnum) \
380 ({ \
381 unsigned long r = 0; \
382 \
383 switch (regnum) { \
384 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \
385 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \
386 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \
387 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \
388 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \
389 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \
390 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \
391 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \
392 default: ia64_getreg_unknown_kr(); break; \
393 } \
394 r; \
395 })
396
397 #define ia64_set_kr(regnum, r) \
398 ({ \
399 switch (regnum) { \
400 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \
401 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \
402 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \
403 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \
404 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \
405 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \
406 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \
407 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \
408 default: ia64_setreg_unknown_kr(); break; \
409 } \
410 })
411
412 /*
413 * The following three macros can't be inline functions because we don't have struct
414 * task_struct at this point.
415 */
416
417 /*
418 * Return TRUE if task T owns the fph partition of the CPU we're running on.
419 * Must be called from code that has preemption disabled.
420 */
421 #define ia64_is_local_fpu_owner(t) \
422 ({ \
423 struct task_struct *__ia64_islfo_task = (t); \
424 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \
425 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \
426 })
427
428 /*
429 * Mark task T as owning the fph partition of the CPU we're running on.
430 * Must be called from code that has preemption disabled.
431 */
432 #define ia64_set_local_fpu_owner(t) do { \
433 struct task_struct *__ia64_slfo_task = (t); \
434 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \
435 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \
436 } while (0)
437
438 /* Mark the fph partition of task T as being invalid on all CPUs. */
439 #define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1)
440
441 extern void __ia64_init_fpu (void);
442 extern void __ia64_save_fpu (struct ia64_fpreg *fph);
443 extern void __ia64_load_fpu (struct ia64_fpreg *fph);
444 extern void ia64_save_debug_regs (unsigned long *save_area);
445 extern void ia64_load_debug_regs (unsigned long *save_area);
446
447 #define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
448 #define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
449
450 /* load fp 0.0 into fph */
451 static inline void
ia64_init_fpu(void)452 ia64_init_fpu (void) {
453 ia64_fph_enable();
454 __ia64_init_fpu();
455 ia64_fph_disable();
456 }
457
458 /* save f32-f127 at FPH */
459 static inline void
ia64_save_fpu(struct ia64_fpreg * fph)460 ia64_save_fpu (struct ia64_fpreg *fph) {
461 ia64_fph_enable();
462 __ia64_save_fpu(fph);
463 ia64_fph_disable();
464 }
465
466 /* load f32-f127 from FPH */
467 static inline void
ia64_load_fpu(struct ia64_fpreg * fph)468 ia64_load_fpu (struct ia64_fpreg *fph) {
469 ia64_fph_enable();
470 __ia64_load_fpu(fph);
471 ia64_fph_disable();
472 }
473
474 static inline __u64
ia64_clear_ic(void)475 ia64_clear_ic (void)
476 {
477 __u64 psr;
478 psr = ia64_getreg(_IA64_REG_PSR);
479 ia64_stop();
480 ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
481 ia64_srlz_i();
482 return psr;
483 }
484
485 /*
486 * Restore the psr.
487 */
488 static inline void
ia64_set_psr(__u64 psr)489 ia64_set_psr (__u64 psr)
490 {
491 ia64_stop();
492 ia64_setreg(_IA64_REG_PSR_L, psr);
493 ia64_srlz_i();
494 }
495
496 /*
497 * Insert a translation into an instruction and/or data translation
498 * register.
499 */
500 static inline void
ia64_itr(__u64 target_mask,__u64 tr_num,__u64 vmaddr,__u64 pte,__u64 log_page_size)501 ia64_itr (__u64 target_mask, __u64 tr_num,
502 __u64 vmaddr, __u64 pte,
503 __u64 log_page_size)
504 {
505 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
506 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
507 ia64_stop();
508 if (target_mask & 0x1)
509 ia64_itri(tr_num, pte);
510 if (target_mask & 0x2)
511 ia64_itrd(tr_num, pte);
512 }
513
514 /*
515 * Insert a translation into the instruction and/or data translation
516 * cache.
517 */
518 static inline void
ia64_itc(__u64 target_mask,__u64 vmaddr,__u64 pte,__u64 log_page_size)519 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
520 __u64 log_page_size)
521 {
522 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
523 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
524 ia64_stop();
525 /* as per EAS2.6, itc must be the last instruction in an instruction group */
526 if (target_mask & 0x1)
527 ia64_itci(pte);
528 if (target_mask & 0x2)
529 ia64_itcd(pte);
530 }
531
532 /*
533 * Purge a range of addresses from instruction and/or data translation
534 * register(s).
535 */
536 static inline void
ia64_ptr(__u64 target_mask,__u64 vmaddr,__u64 log_size)537 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
538 {
539 if (target_mask & 0x1)
540 ia64_ptri(vmaddr, (log_size << 2));
541 if (target_mask & 0x2)
542 ia64_ptrd(vmaddr, (log_size << 2));
543 }
544
545 /* Set the interrupt vector address. The address must be suitably aligned (32KB). */
546 static inline void
ia64_set_iva(void * ivt_addr)547 ia64_set_iva (void *ivt_addr)
548 {
549 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
550 ia64_srlz_i();
551 }
552
553 /* Set the page table address and control bits. */
554 static inline void
ia64_set_pta(__u64 pta)555 ia64_set_pta (__u64 pta)
556 {
557 /* Note: srlz.i implies srlz.d */
558 ia64_setreg(_IA64_REG_CR_PTA, pta);
559 ia64_srlz_i();
560 }
561
562 static inline void
ia64_eoi(void)563 ia64_eoi (void)
564 {
565 ia64_setreg(_IA64_REG_CR_EOI, 0);
566 ia64_srlz_d();
567 }
568
569 #define cpu_relax() ia64_hint(ia64_hint_pause)
570
571 static inline int
ia64_get_irr(unsigned int vector)572 ia64_get_irr(unsigned int vector)
573 {
574 unsigned int reg = vector / 64;
575 unsigned int bit = vector % 64;
576 u64 irr;
577
578 switch (reg) {
579 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
580 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
581 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
582 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
583 }
584
585 return test_bit(bit, &irr);
586 }
587
588 static inline void
ia64_set_lrr0(unsigned long val)589 ia64_set_lrr0 (unsigned long val)
590 {
591 ia64_setreg(_IA64_REG_CR_LRR0, val);
592 ia64_srlz_d();
593 }
594
595 static inline void
ia64_set_lrr1(unsigned long val)596 ia64_set_lrr1 (unsigned long val)
597 {
598 ia64_setreg(_IA64_REG_CR_LRR1, val);
599 ia64_srlz_d();
600 }
601
602
603 /*
604 * Given the address to which a spill occurred, return the unat bit
605 * number that corresponds to this address.
606 */
607 static inline __u64
ia64_unat_pos(void * spill_addr)608 ia64_unat_pos (void *spill_addr)
609 {
610 return ((__u64) spill_addr >> 3) & 0x3f;
611 }
612
613 /*
614 * Set the NaT bit of an integer register which was spilled at address
615 * SPILL_ADDR. UNAT is the mask to be updated.
616 */
617 static inline void
ia64_set_unat(__u64 * unat,void * spill_addr,unsigned long nat)618 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
619 {
620 __u64 bit = ia64_unat_pos(spill_addr);
621 __u64 mask = 1UL << bit;
622
623 *unat = (*unat & ~mask) | (nat << bit);
624 }
625
626 /*
627 * Return saved PC of a blocked thread.
628 * Note that the only way T can block is through a call to schedule() -> switch_to().
629 */
630 static inline unsigned long
thread_saved_pc(struct task_struct * t)631 thread_saved_pc (struct task_struct *t)
632 {
633 struct unw_frame_info info;
634 unsigned long ip;
635
636 unw_init_from_blocked_task(&info, t);
637 if (unw_unwind(&info) < 0)
638 return 0;
639 unw_get_ip(&info, &ip);
640 return ip;
641 }
642
643 /*
644 * Get the current instruction/program counter value.
645 */
646 #define current_text_addr() \
647 ({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; })
648
649 static inline __u64
ia64_get_ivr(void)650 ia64_get_ivr (void)
651 {
652 __u64 r;
653 ia64_srlz_d();
654 r = ia64_getreg(_IA64_REG_CR_IVR);
655 ia64_srlz_d();
656 return r;
657 }
658
659 static inline void
ia64_set_dbr(__u64 regnum,__u64 value)660 ia64_set_dbr (__u64 regnum, __u64 value)
661 {
662 __ia64_set_dbr(regnum, value);
663 #ifdef CONFIG_ITANIUM
664 ia64_srlz_d();
665 #endif
666 }
667
668 static inline __u64
ia64_get_dbr(__u64 regnum)669 ia64_get_dbr (__u64 regnum)
670 {
671 __u64 retval;
672
673 retval = __ia64_get_dbr(regnum);
674 #ifdef CONFIG_ITANIUM
675 ia64_srlz_d();
676 #endif
677 return retval;
678 }
679
680 static inline __u64
ia64_rotr(__u64 w,__u64 n)681 ia64_rotr (__u64 w, __u64 n)
682 {
683 return (w >> n) | (w << (64 - n));
684 }
685
686 #define ia64_rotl(w,n) ia64_rotr((w), (64) - (n))
687
688 /*
689 * Take a mapped kernel address and return the equivalent address
690 * in the region 7 identity mapped virtual area.
691 */
692 static inline void *
ia64_imva(void * addr)693 ia64_imva (void *addr)
694 {
695 void *result;
696 result = (void *) ia64_tpa(addr);
697 return __va(result);
698 }
699
700 #define ARCH_HAS_PREFETCH
701 #define ARCH_HAS_PREFETCHW
702 #define ARCH_HAS_SPINLOCK_PREFETCH
703 #define PREFETCH_STRIDE L1_CACHE_BYTES
704
705 static inline void
prefetch(const void * x)706 prefetch (const void *x)
707 {
708 ia64_lfetch(ia64_lfhint_none, x);
709 }
710
711 static inline void
prefetchw(const void * x)712 prefetchw (const void *x)
713 {
714 ia64_lfetch_excl(ia64_lfhint_none, x);
715 }
716
717 #define spin_lock_prefetch(x) prefetchw(x)
718
719 extern unsigned long boot_option_idle_override;
720
721 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
722 IDLE_NOMWAIT, IDLE_POLL};
723
724 #endif /* !__ASSEMBLY__ */
725
726 #endif /* _ASM_IA64_PROCESSOR_H */
727