1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Author: Adrian Hunter
20  */
21 
22 #include "ubifs.h"
23 
24 /*
25  * An orphan is an inode number whose inode node has been committed to the index
26  * with a link count of zero. That happens when an open file is deleted
27  * (unlinked) and then a commit is run. In the normal course of events the inode
28  * would be deleted when the file is closed. However in the case of an unclean
29  * unmount, orphans need to be accounted for. After an unclean unmount, the
30  * orphans' inodes must be deleted which means either scanning the entire index
31  * looking for them, or keeping a list on flash somewhere. This unit implements
32  * the latter approach.
33  *
34  * The orphan area is a fixed number of LEBs situated between the LPT area and
35  * the main area. The number of orphan area LEBs is specified when the file
36  * system is created. The minimum number is 1. The size of the orphan area
37  * should be so that it can hold the maximum number of orphans that are expected
38  * to ever exist at one time.
39  *
40  * The number of orphans that can fit in a LEB is:
41  *
42  *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
43  *
44  * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
45  *
46  * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47  * zero, the inode number is added to the rb-tree. It is removed from the tree
48  * when the inode is deleted.  Any new orphans that are in the orphan tree when
49  * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50  * If the orphan area is full, it is consolidated to make space.  There is
51  * always enough space because validation prevents the user from creating more
52  * than the maximum number of orphans allowed.
53  */
54 
55 #ifdef CONFIG_UBIFS_FS_DEBUG
56 static int dbg_check_orphans(struct ubifs_info *c);
57 #else
58 #define dbg_check_orphans(c) 0
59 #endif
60 
61 /**
62  * ubifs_add_orphan - add an orphan.
63  * @c: UBIFS file-system description object
64  * @inum: orphan inode number
65  *
66  * Add an orphan. This function is called when an inodes link count drops to
67  * zero.
68  */
ubifs_add_orphan(struct ubifs_info * c,ino_t inum)69 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
70 {
71 	struct ubifs_orphan *orphan, *o;
72 	struct rb_node **p, *parent = NULL;
73 
74 	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
75 	if (!orphan)
76 		return -ENOMEM;
77 	orphan->inum = inum;
78 	orphan->new = 1;
79 
80 	spin_lock(&c->orphan_lock);
81 	if (c->tot_orphans >= c->max_orphans) {
82 		spin_unlock(&c->orphan_lock);
83 		kfree(orphan);
84 		return -ENFILE;
85 	}
86 	p = &c->orph_tree.rb_node;
87 	while (*p) {
88 		parent = *p;
89 		o = rb_entry(parent, struct ubifs_orphan, rb);
90 		if (inum < o->inum)
91 			p = &(*p)->rb_left;
92 		else if (inum > o->inum)
93 			p = &(*p)->rb_right;
94 		else {
95 			dbg_err("orphaned twice");
96 			spin_unlock(&c->orphan_lock);
97 			kfree(orphan);
98 			return 0;
99 		}
100 	}
101 	c->tot_orphans += 1;
102 	c->new_orphans += 1;
103 	rb_link_node(&orphan->rb, parent, p);
104 	rb_insert_color(&orphan->rb, &c->orph_tree);
105 	list_add_tail(&orphan->list, &c->orph_list);
106 	list_add_tail(&orphan->new_list, &c->orph_new);
107 	spin_unlock(&c->orphan_lock);
108 	dbg_gen("ino %lu", (unsigned long)inum);
109 	return 0;
110 }
111 
112 /**
113  * ubifs_delete_orphan - delete an orphan.
114  * @c: UBIFS file-system description object
115  * @inum: orphan inode number
116  *
117  * Delete an orphan. This function is called when an inode is deleted.
118  */
ubifs_delete_orphan(struct ubifs_info * c,ino_t inum)119 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
120 {
121 	struct ubifs_orphan *o;
122 	struct rb_node *p;
123 
124 	spin_lock(&c->orphan_lock);
125 	p = c->orph_tree.rb_node;
126 	while (p) {
127 		o = rb_entry(p, struct ubifs_orphan, rb);
128 		if (inum < o->inum)
129 			p = p->rb_left;
130 		else if (inum > o->inum)
131 			p = p->rb_right;
132 		else {
133 			if (o->del) {
134 				spin_unlock(&c->orphan_lock);
135 				dbg_gen("deleted twice ino %lu",
136 					(unsigned long)inum);
137 				return;
138 			}
139 			if (o->cnext) {
140 				o->del = 1;
141 				o->dnext = c->orph_dnext;
142 				c->orph_dnext = o;
143 				spin_unlock(&c->orphan_lock);
144 				dbg_gen("delete later ino %lu",
145 					(unsigned long)inum);
146 				return;
147 			}
148 			rb_erase(p, &c->orph_tree);
149 			list_del(&o->list);
150 			c->tot_orphans -= 1;
151 			if (o->new) {
152 				list_del(&o->new_list);
153 				c->new_orphans -= 1;
154 			}
155 			spin_unlock(&c->orphan_lock);
156 			kfree(o);
157 			dbg_gen("inum %lu", (unsigned long)inum);
158 			return;
159 		}
160 	}
161 	spin_unlock(&c->orphan_lock);
162 	dbg_err("missing orphan ino %lu", (unsigned long)inum);
163 	dbg_dump_stack();
164 }
165 
166 /**
167  * ubifs_orphan_start_commit - start commit of orphans.
168  * @c: UBIFS file-system description object
169  *
170  * Start commit of orphans.
171  */
ubifs_orphan_start_commit(struct ubifs_info * c)172 int ubifs_orphan_start_commit(struct ubifs_info *c)
173 {
174 	struct ubifs_orphan *orphan, **last;
175 
176 	spin_lock(&c->orphan_lock);
177 	last = &c->orph_cnext;
178 	list_for_each_entry(orphan, &c->orph_new, new_list) {
179 		ubifs_assert(orphan->new);
180 		orphan->new = 0;
181 		*last = orphan;
182 		last = &orphan->cnext;
183 	}
184 	*last = orphan->cnext;
185 	c->cmt_orphans = c->new_orphans;
186 	c->new_orphans = 0;
187 	dbg_cmt("%d orphans to commit", c->cmt_orphans);
188 	INIT_LIST_HEAD(&c->orph_new);
189 	if (c->tot_orphans == 0)
190 		c->no_orphs = 1;
191 	else
192 		c->no_orphs = 0;
193 	spin_unlock(&c->orphan_lock);
194 	return 0;
195 }
196 
197 /**
198  * avail_orphs - calculate available space.
199  * @c: UBIFS file-system description object
200  *
201  * This function returns the number of orphans that can be written in the
202  * available space.
203  */
avail_orphs(struct ubifs_info * c)204 static int avail_orphs(struct ubifs_info *c)
205 {
206 	int avail_lebs, avail, gap;
207 
208 	avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
209 	avail = avail_lebs *
210 	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
211 	gap = c->leb_size - c->ohead_offs;
212 	if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
213 		avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
214 	return avail;
215 }
216 
217 /**
218  * tot_avail_orphs - calculate total space.
219  * @c: UBIFS file-system description object
220  *
221  * This function returns the number of orphans that can be written in half
222  * the total space. That leaves half the space for adding new orphans.
223  */
tot_avail_orphs(struct ubifs_info * c)224 static int tot_avail_orphs(struct ubifs_info *c)
225 {
226 	int avail_lebs, avail;
227 
228 	avail_lebs = c->orph_lebs;
229 	avail = avail_lebs *
230 	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
231 	return avail / 2;
232 }
233 
234 /**
235  * do_write_orph_node - write a node to the orphan head.
236  * @c: UBIFS file-system description object
237  * @len: length of node
238  * @atomic: write atomically
239  *
240  * This function writes a node to the orphan head from the orphan buffer. If
241  * %atomic is not zero, then the write is done atomically. On success, %0 is
242  * returned, otherwise a negative error code is returned.
243  */
do_write_orph_node(struct ubifs_info * c,int len,int atomic)244 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
245 {
246 	int err = 0;
247 
248 	if (atomic) {
249 		ubifs_assert(c->ohead_offs == 0);
250 		ubifs_prepare_node(c, c->orph_buf, len, 1);
251 		len = ALIGN(len, c->min_io_size);
252 		err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
253 				       UBI_SHORTTERM);
254 	} else {
255 		if (c->ohead_offs == 0) {
256 			/* Ensure LEB has been unmapped */
257 			err = ubifs_leb_unmap(c, c->ohead_lnum);
258 			if (err)
259 				return err;
260 		}
261 		err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
262 				       c->ohead_offs, UBI_SHORTTERM);
263 	}
264 	return err;
265 }
266 
267 /**
268  * write_orph_node - write an orphan node.
269  * @c: UBIFS file-system description object
270  * @atomic: write atomically
271  *
272  * This function builds an orphan node from the cnext list and writes it to the
273  * orphan head. On success, %0 is returned, otherwise a negative error code
274  * is returned.
275  */
write_orph_node(struct ubifs_info * c,int atomic)276 static int write_orph_node(struct ubifs_info *c, int atomic)
277 {
278 	struct ubifs_orphan *orphan, *cnext;
279 	struct ubifs_orph_node *orph;
280 	int gap, err, len, cnt, i;
281 
282 	ubifs_assert(c->cmt_orphans > 0);
283 	gap = c->leb_size - c->ohead_offs;
284 	if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
285 		c->ohead_lnum += 1;
286 		c->ohead_offs = 0;
287 		gap = c->leb_size;
288 		if (c->ohead_lnum > c->orph_last) {
289 			/*
290 			 * We limit the number of orphans so that this should
291 			 * never happen.
292 			 */
293 			ubifs_err("out of space in orphan area");
294 			return -EINVAL;
295 		}
296 	}
297 	cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
298 	if (cnt > c->cmt_orphans)
299 		cnt = c->cmt_orphans;
300 	len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
301 	ubifs_assert(c->orph_buf);
302 	orph = c->orph_buf;
303 	orph->ch.node_type = UBIFS_ORPH_NODE;
304 	spin_lock(&c->orphan_lock);
305 	cnext = c->orph_cnext;
306 	for (i = 0; i < cnt; i++) {
307 		orphan = cnext;
308 		orph->inos[i] = cpu_to_le64(orphan->inum);
309 		cnext = orphan->cnext;
310 		orphan->cnext = NULL;
311 	}
312 	c->orph_cnext = cnext;
313 	c->cmt_orphans -= cnt;
314 	spin_unlock(&c->orphan_lock);
315 	if (c->cmt_orphans)
316 		orph->cmt_no = cpu_to_le64(c->cmt_no);
317 	else
318 		/* Mark the last node of the commit */
319 		orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
320 	ubifs_assert(c->ohead_offs + len <= c->leb_size);
321 	ubifs_assert(c->ohead_lnum >= c->orph_first);
322 	ubifs_assert(c->ohead_lnum <= c->orph_last);
323 	err = do_write_orph_node(c, len, atomic);
324 	c->ohead_offs += ALIGN(len, c->min_io_size);
325 	c->ohead_offs = ALIGN(c->ohead_offs, 8);
326 	return err;
327 }
328 
329 /**
330  * write_orph_nodes - write orphan nodes until there are no more to commit.
331  * @c: UBIFS file-system description object
332  * @atomic: write atomically
333  *
334  * This function writes orphan nodes for all the orphans to commit. On success,
335  * %0 is returned, otherwise a negative error code is returned.
336  */
write_orph_nodes(struct ubifs_info * c,int atomic)337 static int write_orph_nodes(struct ubifs_info *c, int atomic)
338 {
339 	int err;
340 
341 	while (c->cmt_orphans > 0) {
342 		err = write_orph_node(c, atomic);
343 		if (err)
344 			return err;
345 	}
346 	if (atomic) {
347 		int lnum;
348 
349 		/* Unmap any unused LEBs after consolidation */
350 		lnum = c->ohead_lnum + 1;
351 		for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
352 			err = ubifs_leb_unmap(c, lnum);
353 			if (err)
354 				return err;
355 		}
356 	}
357 	return 0;
358 }
359 
360 /**
361  * consolidate - consolidate the orphan area.
362  * @c: UBIFS file-system description object
363  *
364  * This function enables consolidation by putting all the orphans into the list
365  * to commit. The list is in the order that the orphans were added, and the
366  * LEBs are written atomically in order, so at no time can orphans be lost by
367  * an unclean unmount.
368  *
369  * This function returns %0 on success and a negative error code on failure.
370  */
consolidate(struct ubifs_info * c)371 static int consolidate(struct ubifs_info *c)
372 {
373 	int tot_avail = tot_avail_orphs(c), err = 0;
374 
375 	spin_lock(&c->orphan_lock);
376 	dbg_cmt("there is space for %d orphans and there are %d",
377 		tot_avail, c->tot_orphans);
378 	if (c->tot_orphans - c->new_orphans <= tot_avail) {
379 		struct ubifs_orphan *orphan, **last;
380 		int cnt = 0;
381 
382 		/* Change the cnext list to include all non-new orphans */
383 		last = &c->orph_cnext;
384 		list_for_each_entry(orphan, &c->orph_list, list) {
385 			if (orphan->new)
386 				continue;
387 			*last = orphan;
388 			last = &orphan->cnext;
389 			cnt += 1;
390 		}
391 		*last = orphan->cnext;
392 		ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
393 		c->cmt_orphans = cnt;
394 		c->ohead_lnum = c->orph_first;
395 		c->ohead_offs = 0;
396 	} else {
397 		/*
398 		 * We limit the number of orphans so that this should
399 		 * never happen.
400 		 */
401 		ubifs_err("out of space in orphan area");
402 		err = -EINVAL;
403 	}
404 	spin_unlock(&c->orphan_lock);
405 	return err;
406 }
407 
408 /**
409  * commit_orphans - commit orphans.
410  * @c: UBIFS file-system description object
411  *
412  * This function commits orphans to flash. On success, %0 is returned,
413  * otherwise a negative error code is returned.
414  */
commit_orphans(struct ubifs_info * c)415 static int commit_orphans(struct ubifs_info *c)
416 {
417 	int avail, atomic = 0, err;
418 
419 	ubifs_assert(c->cmt_orphans > 0);
420 	avail = avail_orphs(c);
421 	if (avail < c->cmt_orphans) {
422 		/* Not enough space to write new orphans, so consolidate */
423 		err = consolidate(c);
424 		if (err)
425 			return err;
426 		atomic = 1;
427 	}
428 	err = write_orph_nodes(c, atomic);
429 	return err;
430 }
431 
432 /**
433  * erase_deleted - erase the orphans marked for deletion.
434  * @c: UBIFS file-system description object
435  *
436  * During commit, the orphans being committed cannot be deleted, so they are
437  * marked for deletion and deleted by this function. Also, the recovery
438  * adds killed orphans to the deletion list, and therefore they are deleted
439  * here too.
440  */
erase_deleted(struct ubifs_info * c)441 static void erase_deleted(struct ubifs_info *c)
442 {
443 	struct ubifs_orphan *orphan, *dnext;
444 
445 	spin_lock(&c->orphan_lock);
446 	dnext = c->orph_dnext;
447 	while (dnext) {
448 		orphan = dnext;
449 		dnext = orphan->dnext;
450 		ubifs_assert(!orphan->new);
451 		ubifs_assert(orphan->del);
452 		rb_erase(&orphan->rb, &c->orph_tree);
453 		list_del(&orphan->list);
454 		c->tot_orphans -= 1;
455 		dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
456 		kfree(orphan);
457 	}
458 	c->orph_dnext = NULL;
459 	spin_unlock(&c->orphan_lock);
460 }
461 
462 /**
463  * ubifs_orphan_end_commit - end commit of orphans.
464  * @c: UBIFS file-system description object
465  *
466  * End commit of orphans.
467  */
ubifs_orphan_end_commit(struct ubifs_info * c)468 int ubifs_orphan_end_commit(struct ubifs_info *c)
469 {
470 	int err;
471 
472 	if (c->cmt_orphans != 0) {
473 		err = commit_orphans(c);
474 		if (err)
475 			return err;
476 	}
477 	erase_deleted(c);
478 	err = dbg_check_orphans(c);
479 	return err;
480 }
481 
482 /**
483  * ubifs_clear_orphans - erase all LEBs used for orphans.
484  * @c: UBIFS file-system description object
485  *
486  * If recovery is not required, then the orphans from the previous session
487  * are not needed. This function locates the LEBs used to record
488  * orphans, and un-maps them.
489  */
ubifs_clear_orphans(struct ubifs_info * c)490 int ubifs_clear_orphans(struct ubifs_info *c)
491 {
492 	int lnum, err;
493 
494 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
495 		err = ubifs_leb_unmap(c, lnum);
496 		if (err)
497 			return err;
498 	}
499 	c->ohead_lnum = c->orph_first;
500 	c->ohead_offs = 0;
501 	return 0;
502 }
503 
504 /**
505  * insert_dead_orphan - insert an orphan.
506  * @c: UBIFS file-system description object
507  * @inum: orphan inode number
508  *
509  * This function is a helper to the 'do_kill_orphans()' function. The orphan
510  * must be kept until the next commit, so it is added to the rb-tree and the
511  * deletion list.
512  */
insert_dead_orphan(struct ubifs_info * c,ino_t inum)513 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
514 {
515 	struct ubifs_orphan *orphan, *o;
516 	struct rb_node **p, *parent = NULL;
517 
518 	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
519 	if (!orphan)
520 		return -ENOMEM;
521 	orphan->inum = inum;
522 
523 	p = &c->orph_tree.rb_node;
524 	while (*p) {
525 		parent = *p;
526 		o = rb_entry(parent, struct ubifs_orphan, rb);
527 		if (inum < o->inum)
528 			p = &(*p)->rb_left;
529 		else if (inum > o->inum)
530 			p = &(*p)->rb_right;
531 		else {
532 			/* Already added - no problem */
533 			kfree(orphan);
534 			return 0;
535 		}
536 	}
537 	c->tot_orphans += 1;
538 	rb_link_node(&orphan->rb, parent, p);
539 	rb_insert_color(&orphan->rb, &c->orph_tree);
540 	list_add_tail(&orphan->list, &c->orph_list);
541 	orphan->del = 1;
542 	orphan->dnext = c->orph_dnext;
543 	c->orph_dnext = orphan;
544 	dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
545 		c->new_orphans, c->tot_orphans);
546 	return 0;
547 }
548 
549 /**
550  * do_kill_orphans - remove orphan inodes from the index.
551  * @c: UBIFS file-system description object
552  * @sleb: scanned LEB
553  * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
554  * @outofdate: whether the LEB is out of date is returned here
555  * @last_flagged: whether the end orphan node is encountered
556  *
557  * This function is a helper to the 'kill_orphans()' function. It goes through
558  * every orphan node in a LEB and for every inode number recorded, removes
559  * all keys for that inode from the TNC.
560  */
do_kill_orphans(struct ubifs_info * c,struct ubifs_scan_leb * sleb,unsigned long long * last_cmt_no,int * outofdate,int * last_flagged)561 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
562 			   unsigned long long *last_cmt_no, int *outofdate,
563 			   int *last_flagged)
564 {
565 	struct ubifs_scan_node *snod;
566 	struct ubifs_orph_node *orph;
567 	unsigned long long cmt_no;
568 	ino_t inum;
569 	int i, n, err, first = 1;
570 
571 	list_for_each_entry(snod, &sleb->nodes, list) {
572 		if (snod->type != UBIFS_ORPH_NODE) {
573 			ubifs_err("invalid node type %d in orphan area at "
574 				  "%d:%d", snod->type, sleb->lnum, snod->offs);
575 			dbg_dump_node(c, snod->node);
576 			return -EINVAL;
577 		}
578 
579 		orph = snod->node;
580 
581 		/* Check commit number */
582 		cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
583 		/*
584 		 * The commit number on the master node may be less, because
585 		 * of a failed commit. If there are several failed commits in a
586 		 * row, the commit number written on orphan nodes will continue
587 		 * to increase (because the commit number is adjusted here) even
588 		 * though the commit number on the master node stays the same
589 		 * because the master node has not been re-written.
590 		 */
591 		if (cmt_no > c->cmt_no)
592 			c->cmt_no = cmt_no;
593 		if (cmt_no < *last_cmt_no && *last_flagged) {
594 			/*
595 			 * The last orphan node had a higher commit number and
596 			 * was flagged as the last written for that commit
597 			 * number. That makes this orphan node, out of date.
598 			 */
599 			if (!first) {
600 				ubifs_err("out of order commit number %llu in "
601 					  "orphan node at %d:%d",
602 					  cmt_no, sleb->lnum, snod->offs);
603 				dbg_dump_node(c, snod->node);
604 				return -EINVAL;
605 			}
606 			dbg_rcvry("out of date LEB %d", sleb->lnum);
607 			*outofdate = 1;
608 			return 0;
609 		}
610 
611 		if (first)
612 			first = 0;
613 
614 		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
615 		for (i = 0; i < n; i++) {
616 			inum = le64_to_cpu(orph->inos[i]);
617 			dbg_rcvry("deleting orphaned inode %lu",
618 				  (unsigned long)inum);
619 			err = ubifs_tnc_remove_ino(c, inum);
620 			if (err)
621 				return err;
622 			err = insert_dead_orphan(c, inum);
623 			if (err)
624 				return err;
625 		}
626 
627 		*last_cmt_no = cmt_no;
628 		if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
629 			dbg_rcvry("last orph node for commit %llu at %d:%d",
630 				  cmt_no, sleb->lnum, snod->offs);
631 			*last_flagged = 1;
632 		} else
633 			*last_flagged = 0;
634 	}
635 
636 	return 0;
637 }
638 
639 /**
640  * kill_orphans - remove all orphan inodes from the index.
641  * @c: UBIFS file-system description object
642  *
643  * If recovery is required, then orphan inodes recorded during the previous
644  * session (which ended with an unclean unmount) must be deleted from the index.
645  * This is done by updating the TNC, but since the index is not updated until
646  * the next commit, the LEBs where the orphan information is recorded are not
647  * erased until the next commit.
648  */
kill_orphans(struct ubifs_info * c)649 static int kill_orphans(struct ubifs_info *c)
650 {
651 	unsigned long long last_cmt_no = 0;
652 	int lnum, err = 0, outofdate = 0, last_flagged = 0;
653 
654 	c->ohead_lnum = c->orph_first;
655 	c->ohead_offs = 0;
656 	/* Check no-orphans flag and skip this if no orphans */
657 	if (c->no_orphs) {
658 		dbg_rcvry("no orphans");
659 		return 0;
660 	}
661 	/*
662 	 * Orph nodes always start at c->orph_first and are written to each
663 	 * successive LEB in turn. Generally unused LEBs will have been unmapped
664 	 * but may contain out of date orphan nodes if the unmap didn't go
665 	 * through. In addition, the last orphan node written for each commit is
666 	 * marked (top bit of orph->cmt_no is set to 1). It is possible that
667 	 * there are orphan nodes from the next commit (i.e. the commit did not
668 	 * complete successfully). In that case, no orphans will have been lost
669 	 * due to the way that orphans are written, and any orphans added will
670 	 * be valid orphans anyway and so can be deleted.
671 	 */
672 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
673 		struct ubifs_scan_leb *sleb;
674 
675 		dbg_rcvry("LEB %d", lnum);
676 		sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
677 		if (IS_ERR(sleb)) {
678 			if (PTR_ERR(sleb) == -EUCLEAN)
679 				sleb = ubifs_recover_leb(c, lnum, 0,
680 							 c->sbuf, -1);
681 			if (IS_ERR(sleb)) {
682 				err = PTR_ERR(sleb);
683 				break;
684 			}
685 		}
686 		err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
687 				      &last_flagged);
688 		if (err || outofdate) {
689 			ubifs_scan_destroy(sleb);
690 			break;
691 		}
692 		if (sleb->endpt) {
693 			c->ohead_lnum = lnum;
694 			c->ohead_offs = sleb->endpt;
695 		}
696 		ubifs_scan_destroy(sleb);
697 	}
698 	return err;
699 }
700 
701 /**
702  * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
703  * @c: UBIFS file-system description object
704  * @unclean: indicates recovery from unclean unmount
705  * @read_only: indicates read only mount
706  *
707  * This function is called when mounting to erase orphans from the previous
708  * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
709  * orphans are deleted.
710  */
ubifs_mount_orphans(struct ubifs_info * c,int unclean,int read_only)711 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
712 {
713 	int err = 0;
714 
715 	c->max_orphans = tot_avail_orphs(c);
716 
717 	if (!read_only) {
718 		c->orph_buf = vmalloc(c->leb_size);
719 		if (!c->orph_buf)
720 			return -ENOMEM;
721 	}
722 
723 	if (unclean)
724 		err = kill_orphans(c);
725 	else if (!read_only)
726 		err = ubifs_clear_orphans(c);
727 
728 	return err;
729 }
730 
731 #ifdef CONFIG_UBIFS_FS_DEBUG
732 
733 struct check_orphan {
734 	struct rb_node rb;
735 	ino_t inum;
736 };
737 
738 struct check_info {
739 	unsigned long last_ino;
740 	unsigned long tot_inos;
741 	unsigned long missing;
742 	unsigned long long leaf_cnt;
743 	struct ubifs_ino_node *node;
744 	struct rb_root root;
745 };
746 
dbg_find_orphan(struct ubifs_info * c,ino_t inum)747 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
748 {
749 	struct ubifs_orphan *o;
750 	struct rb_node *p;
751 
752 	spin_lock(&c->orphan_lock);
753 	p = c->orph_tree.rb_node;
754 	while (p) {
755 		o = rb_entry(p, struct ubifs_orphan, rb);
756 		if (inum < o->inum)
757 			p = p->rb_left;
758 		else if (inum > o->inum)
759 			p = p->rb_right;
760 		else {
761 			spin_unlock(&c->orphan_lock);
762 			return 1;
763 		}
764 	}
765 	spin_unlock(&c->orphan_lock);
766 	return 0;
767 }
768 
dbg_ins_check_orphan(struct rb_root * root,ino_t inum)769 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
770 {
771 	struct check_orphan *orphan, *o;
772 	struct rb_node **p, *parent = NULL;
773 
774 	orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
775 	if (!orphan)
776 		return -ENOMEM;
777 	orphan->inum = inum;
778 
779 	p = &root->rb_node;
780 	while (*p) {
781 		parent = *p;
782 		o = rb_entry(parent, struct check_orphan, rb);
783 		if (inum < o->inum)
784 			p = &(*p)->rb_left;
785 		else if (inum > o->inum)
786 			p = &(*p)->rb_right;
787 		else {
788 			kfree(orphan);
789 			return 0;
790 		}
791 	}
792 	rb_link_node(&orphan->rb, parent, p);
793 	rb_insert_color(&orphan->rb, root);
794 	return 0;
795 }
796 
dbg_find_check_orphan(struct rb_root * root,ino_t inum)797 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
798 {
799 	struct check_orphan *o;
800 	struct rb_node *p;
801 
802 	p = root->rb_node;
803 	while (p) {
804 		o = rb_entry(p, struct check_orphan, rb);
805 		if (inum < o->inum)
806 			p = p->rb_left;
807 		else if (inum > o->inum)
808 			p = p->rb_right;
809 		else
810 			return 1;
811 	}
812 	return 0;
813 }
814 
dbg_free_check_tree(struct rb_root * root)815 static void dbg_free_check_tree(struct rb_root *root)
816 {
817 	struct rb_node *this = root->rb_node;
818 	struct check_orphan *o;
819 
820 	while (this) {
821 		if (this->rb_left) {
822 			this = this->rb_left;
823 			continue;
824 		} else if (this->rb_right) {
825 			this = this->rb_right;
826 			continue;
827 		}
828 		o = rb_entry(this, struct check_orphan, rb);
829 		this = rb_parent(this);
830 		if (this) {
831 			if (this->rb_left == &o->rb)
832 				this->rb_left = NULL;
833 			else
834 				this->rb_right = NULL;
835 		}
836 		kfree(o);
837 	}
838 }
839 
dbg_orphan_check(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)840 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
841 			    void *priv)
842 {
843 	struct check_info *ci = priv;
844 	ino_t inum;
845 	int err;
846 
847 	inum = key_inum(c, &zbr->key);
848 	if (inum != ci->last_ino) {
849 		/* Lowest node type is the inode node, so it comes first */
850 		if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
851 			ubifs_err("found orphan node ino %lu, type %d",
852 				  (unsigned long)inum, key_type(c, &zbr->key));
853 		ci->last_ino = inum;
854 		ci->tot_inos += 1;
855 		err = ubifs_tnc_read_node(c, zbr, ci->node);
856 		if (err) {
857 			ubifs_err("node read failed, error %d", err);
858 			return err;
859 		}
860 		if (ci->node->nlink == 0)
861 			/* Must be recorded as an orphan */
862 			if (!dbg_find_check_orphan(&ci->root, inum) &&
863 			    !dbg_find_orphan(c, inum)) {
864 				ubifs_err("missing orphan, ino %lu",
865 					  (unsigned long)inum);
866 				ci->missing += 1;
867 			}
868 	}
869 	ci->leaf_cnt += 1;
870 	return 0;
871 }
872 
dbg_read_orphans(struct check_info * ci,struct ubifs_scan_leb * sleb)873 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
874 {
875 	struct ubifs_scan_node *snod;
876 	struct ubifs_orph_node *orph;
877 	ino_t inum;
878 	int i, n, err;
879 
880 	list_for_each_entry(snod, &sleb->nodes, list) {
881 		cond_resched();
882 		if (snod->type != UBIFS_ORPH_NODE)
883 			continue;
884 		orph = snod->node;
885 		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
886 		for (i = 0; i < n; i++) {
887 			inum = le64_to_cpu(orph->inos[i]);
888 			err = dbg_ins_check_orphan(&ci->root, inum);
889 			if (err)
890 				return err;
891 		}
892 	}
893 	return 0;
894 }
895 
dbg_scan_orphans(struct ubifs_info * c,struct check_info * ci)896 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
897 {
898 	int lnum, err = 0;
899 	void *buf;
900 
901 	/* Check no-orphans flag and skip this if no orphans */
902 	if (c->no_orphs)
903 		return 0;
904 
905 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
906 	if (!buf) {
907 		ubifs_err("cannot allocate memory to check orphans");
908 		return 0;
909 	}
910 
911 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
912 		struct ubifs_scan_leb *sleb;
913 
914 		sleb = ubifs_scan(c, lnum, 0, buf, 0);
915 		if (IS_ERR(sleb)) {
916 			err = PTR_ERR(sleb);
917 			break;
918 		}
919 
920 		err = dbg_read_orphans(ci, sleb);
921 		ubifs_scan_destroy(sleb);
922 		if (err)
923 			break;
924 	}
925 
926 	vfree(buf);
927 	return err;
928 }
929 
dbg_check_orphans(struct ubifs_info * c)930 static int dbg_check_orphans(struct ubifs_info *c)
931 {
932 	struct check_info ci;
933 	int err;
934 
935 	if (!dbg_is_chk_orph(c))
936 		return 0;
937 
938 	ci.last_ino = 0;
939 	ci.tot_inos = 0;
940 	ci.missing  = 0;
941 	ci.leaf_cnt = 0;
942 	ci.root = RB_ROOT;
943 	ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
944 	if (!ci.node) {
945 		ubifs_err("out of memory");
946 		return -ENOMEM;
947 	}
948 
949 	err = dbg_scan_orphans(c, &ci);
950 	if (err)
951 		goto out;
952 
953 	err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
954 	if (err) {
955 		ubifs_err("cannot scan TNC, error %d", err);
956 		goto out;
957 	}
958 
959 	if (ci.missing) {
960 		ubifs_err("%lu missing orphan(s)", ci.missing);
961 		err = -EINVAL;
962 		goto out;
963 	}
964 
965 	dbg_cmt("last inode number is %lu", ci.last_ino);
966 	dbg_cmt("total number of inodes is %lu", ci.tot_inos);
967 	dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
968 
969 out:
970 	dbg_free_check_tree(&ci.root);
971 	kfree(ci.node);
972 	return err;
973 }
974 
975 #endif /* CONFIG_UBIFS_FS_DEBUG */
976