1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Author: Adrian Hunter
20 */
21
22 #include "ubifs.h"
23
24 /*
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
33 *
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
39 *
40 * The number of orphans that can fit in a LEB is:
41 *
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
43 *
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
45 *
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
53 */
54
55 #ifdef CONFIG_UBIFS_FS_DEBUG
56 static int dbg_check_orphans(struct ubifs_info *c);
57 #else
58 #define dbg_check_orphans(c) 0
59 #endif
60
61 /**
62 * ubifs_add_orphan - add an orphan.
63 * @c: UBIFS file-system description object
64 * @inum: orphan inode number
65 *
66 * Add an orphan. This function is called when an inodes link count drops to
67 * zero.
68 */
ubifs_add_orphan(struct ubifs_info * c,ino_t inum)69 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
70 {
71 struct ubifs_orphan *orphan, *o;
72 struct rb_node **p, *parent = NULL;
73
74 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
75 if (!orphan)
76 return -ENOMEM;
77 orphan->inum = inum;
78 orphan->new = 1;
79
80 spin_lock(&c->orphan_lock);
81 if (c->tot_orphans >= c->max_orphans) {
82 spin_unlock(&c->orphan_lock);
83 kfree(orphan);
84 return -ENFILE;
85 }
86 p = &c->orph_tree.rb_node;
87 while (*p) {
88 parent = *p;
89 o = rb_entry(parent, struct ubifs_orphan, rb);
90 if (inum < o->inum)
91 p = &(*p)->rb_left;
92 else if (inum > o->inum)
93 p = &(*p)->rb_right;
94 else {
95 dbg_err("orphaned twice");
96 spin_unlock(&c->orphan_lock);
97 kfree(orphan);
98 return 0;
99 }
100 }
101 c->tot_orphans += 1;
102 c->new_orphans += 1;
103 rb_link_node(&orphan->rb, parent, p);
104 rb_insert_color(&orphan->rb, &c->orph_tree);
105 list_add_tail(&orphan->list, &c->orph_list);
106 list_add_tail(&orphan->new_list, &c->orph_new);
107 spin_unlock(&c->orphan_lock);
108 dbg_gen("ino %lu", (unsigned long)inum);
109 return 0;
110 }
111
112 /**
113 * ubifs_delete_orphan - delete an orphan.
114 * @c: UBIFS file-system description object
115 * @inum: orphan inode number
116 *
117 * Delete an orphan. This function is called when an inode is deleted.
118 */
ubifs_delete_orphan(struct ubifs_info * c,ino_t inum)119 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
120 {
121 struct ubifs_orphan *o;
122 struct rb_node *p;
123
124 spin_lock(&c->orphan_lock);
125 p = c->orph_tree.rb_node;
126 while (p) {
127 o = rb_entry(p, struct ubifs_orphan, rb);
128 if (inum < o->inum)
129 p = p->rb_left;
130 else if (inum > o->inum)
131 p = p->rb_right;
132 else {
133 if (o->del) {
134 spin_unlock(&c->orphan_lock);
135 dbg_gen("deleted twice ino %lu",
136 (unsigned long)inum);
137 return;
138 }
139 if (o->cnext) {
140 o->del = 1;
141 o->dnext = c->orph_dnext;
142 c->orph_dnext = o;
143 spin_unlock(&c->orphan_lock);
144 dbg_gen("delete later ino %lu",
145 (unsigned long)inum);
146 return;
147 }
148 rb_erase(p, &c->orph_tree);
149 list_del(&o->list);
150 c->tot_orphans -= 1;
151 if (o->new) {
152 list_del(&o->new_list);
153 c->new_orphans -= 1;
154 }
155 spin_unlock(&c->orphan_lock);
156 kfree(o);
157 dbg_gen("inum %lu", (unsigned long)inum);
158 return;
159 }
160 }
161 spin_unlock(&c->orphan_lock);
162 dbg_err("missing orphan ino %lu", (unsigned long)inum);
163 dbg_dump_stack();
164 }
165
166 /**
167 * ubifs_orphan_start_commit - start commit of orphans.
168 * @c: UBIFS file-system description object
169 *
170 * Start commit of orphans.
171 */
ubifs_orphan_start_commit(struct ubifs_info * c)172 int ubifs_orphan_start_commit(struct ubifs_info *c)
173 {
174 struct ubifs_orphan *orphan, **last;
175
176 spin_lock(&c->orphan_lock);
177 last = &c->orph_cnext;
178 list_for_each_entry(orphan, &c->orph_new, new_list) {
179 ubifs_assert(orphan->new);
180 orphan->new = 0;
181 *last = orphan;
182 last = &orphan->cnext;
183 }
184 *last = orphan->cnext;
185 c->cmt_orphans = c->new_orphans;
186 c->new_orphans = 0;
187 dbg_cmt("%d orphans to commit", c->cmt_orphans);
188 INIT_LIST_HEAD(&c->orph_new);
189 if (c->tot_orphans == 0)
190 c->no_orphs = 1;
191 else
192 c->no_orphs = 0;
193 spin_unlock(&c->orphan_lock);
194 return 0;
195 }
196
197 /**
198 * avail_orphs - calculate available space.
199 * @c: UBIFS file-system description object
200 *
201 * This function returns the number of orphans that can be written in the
202 * available space.
203 */
avail_orphs(struct ubifs_info * c)204 static int avail_orphs(struct ubifs_info *c)
205 {
206 int avail_lebs, avail, gap;
207
208 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
209 avail = avail_lebs *
210 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
211 gap = c->leb_size - c->ohead_offs;
212 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
213 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
214 return avail;
215 }
216
217 /**
218 * tot_avail_orphs - calculate total space.
219 * @c: UBIFS file-system description object
220 *
221 * This function returns the number of orphans that can be written in half
222 * the total space. That leaves half the space for adding new orphans.
223 */
tot_avail_orphs(struct ubifs_info * c)224 static int tot_avail_orphs(struct ubifs_info *c)
225 {
226 int avail_lebs, avail;
227
228 avail_lebs = c->orph_lebs;
229 avail = avail_lebs *
230 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
231 return avail / 2;
232 }
233
234 /**
235 * do_write_orph_node - write a node to the orphan head.
236 * @c: UBIFS file-system description object
237 * @len: length of node
238 * @atomic: write atomically
239 *
240 * This function writes a node to the orphan head from the orphan buffer. If
241 * %atomic is not zero, then the write is done atomically. On success, %0 is
242 * returned, otherwise a negative error code is returned.
243 */
do_write_orph_node(struct ubifs_info * c,int len,int atomic)244 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
245 {
246 int err = 0;
247
248 if (atomic) {
249 ubifs_assert(c->ohead_offs == 0);
250 ubifs_prepare_node(c, c->orph_buf, len, 1);
251 len = ALIGN(len, c->min_io_size);
252 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
253 UBI_SHORTTERM);
254 } else {
255 if (c->ohead_offs == 0) {
256 /* Ensure LEB has been unmapped */
257 err = ubifs_leb_unmap(c, c->ohead_lnum);
258 if (err)
259 return err;
260 }
261 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
262 c->ohead_offs, UBI_SHORTTERM);
263 }
264 return err;
265 }
266
267 /**
268 * write_orph_node - write an orphan node.
269 * @c: UBIFS file-system description object
270 * @atomic: write atomically
271 *
272 * This function builds an orphan node from the cnext list and writes it to the
273 * orphan head. On success, %0 is returned, otherwise a negative error code
274 * is returned.
275 */
write_orph_node(struct ubifs_info * c,int atomic)276 static int write_orph_node(struct ubifs_info *c, int atomic)
277 {
278 struct ubifs_orphan *orphan, *cnext;
279 struct ubifs_orph_node *orph;
280 int gap, err, len, cnt, i;
281
282 ubifs_assert(c->cmt_orphans > 0);
283 gap = c->leb_size - c->ohead_offs;
284 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
285 c->ohead_lnum += 1;
286 c->ohead_offs = 0;
287 gap = c->leb_size;
288 if (c->ohead_lnum > c->orph_last) {
289 /*
290 * We limit the number of orphans so that this should
291 * never happen.
292 */
293 ubifs_err("out of space in orphan area");
294 return -EINVAL;
295 }
296 }
297 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
298 if (cnt > c->cmt_orphans)
299 cnt = c->cmt_orphans;
300 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
301 ubifs_assert(c->orph_buf);
302 orph = c->orph_buf;
303 orph->ch.node_type = UBIFS_ORPH_NODE;
304 spin_lock(&c->orphan_lock);
305 cnext = c->orph_cnext;
306 for (i = 0; i < cnt; i++) {
307 orphan = cnext;
308 orph->inos[i] = cpu_to_le64(orphan->inum);
309 cnext = orphan->cnext;
310 orphan->cnext = NULL;
311 }
312 c->orph_cnext = cnext;
313 c->cmt_orphans -= cnt;
314 spin_unlock(&c->orphan_lock);
315 if (c->cmt_orphans)
316 orph->cmt_no = cpu_to_le64(c->cmt_no);
317 else
318 /* Mark the last node of the commit */
319 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
320 ubifs_assert(c->ohead_offs + len <= c->leb_size);
321 ubifs_assert(c->ohead_lnum >= c->orph_first);
322 ubifs_assert(c->ohead_lnum <= c->orph_last);
323 err = do_write_orph_node(c, len, atomic);
324 c->ohead_offs += ALIGN(len, c->min_io_size);
325 c->ohead_offs = ALIGN(c->ohead_offs, 8);
326 return err;
327 }
328
329 /**
330 * write_orph_nodes - write orphan nodes until there are no more to commit.
331 * @c: UBIFS file-system description object
332 * @atomic: write atomically
333 *
334 * This function writes orphan nodes for all the orphans to commit. On success,
335 * %0 is returned, otherwise a negative error code is returned.
336 */
write_orph_nodes(struct ubifs_info * c,int atomic)337 static int write_orph_nodes(struct ubifs_info *c, int atomic)
338 {
339 int err;
340
341 while (c->cmt_orphans > 0) {
342 err = write_orph_node(c, atomic);
343 if (err)
344 return err;
345 }
346 if (atomic) {
347 int lnum;
348
349 /* Unmap any unused LEBs after consolidation */
350 lnum = c->ohead_lnum + 1;
351 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
352 err = ubifs_leb_unmap(c, lnum);
353 if (err)
354 return err;
355 }
356 }
357 return 0;
358 }
359
360 /**
361 * consolidate - consolidate the orphan area.
362 * @c: UBIFS file-system description object
363 *
364 * This function enables consolidation by putting all the orphans into the list
365 * to commit. The list is in the order that the orphans were added, and the
366 * LEBs are written atomically in order, so at no time can orphans be lost by
367 * an unclean unmount.
368 *
369 * This function returns %0 on success and a negative error code on failure.
370 */
consolidate(struct ubifs_info * c)371 static int consolidate(struct ubifs_info *c)
372 {
373 int tot_avail = tot_avail_orphs(c), err = 0;
374
375 spin_lock(&c->orphan_lock);
376 dbg_cmt("there is space for %d orphans and there are %d",
377 tot_avail, c->tot_orphans);
378 if (c->tot_orphans - c->new_orphans <= tot_avail) {
379 struct ubifs_orphan *orphan, **last;
380 int cnt = 0;
381
382 /* Change the cnext list to include all non-new orphans */
383 last = &c->orph_cnext;
384 list_for_each_entry(orphan, &c->orph_list, list) {
385 if (orphan->new)
386 continue;
387 *last = orphan;
388 last = &orphan->cnext;
389 cnt += 1;
390 }
391 *last = orphan->cnext;
392 ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
393 c->cmt_orphans = cnt;
394 c->ohead_lnum = c->orph_first;
395 c->ohead_offs = 0;
396 } else {
397 /*
398 * We limit the number of orphans so that this should
399 * never happen.
400 */
401 ubifs_err("out of space in orphan area");
402 err = -EINVAL;
403 }
404 spin_unlock(&c->orphan_lock);
405 return err;
406 }
407
408 /**
409 * commit_orphans - commit orphans.
410 * @c: UBIFS file-system description object
411 *
412 * This function commits orphans to flash. On success, %0 is returned,
413 * otherwise a negative error code is returned.
414 */
commit_orphans(struct ubifs_info * c)415 static int commit_orphans(struct ubifs_info *c)
416 {
417 int avail, atomic = 0, err;
418
419 ubifs_assert(c->cmt_orphans > 0);
420 avail = avail_orphs(c);
421 if (avail < c->cmt_orphans) {
422 /* Not enough space to write new orphans, so consolidate */
423 err = consolidate(c);
424 if (err)
425 return err;
426 atomic = 1;
427 }
428 err = write_orph_nodes(c, atomic);
429 return err;
430 }
431
432 /**
433 * erase_deleted - erase the orphans marked for deletion.
434 * @c: UBIFS file-system description object
435 *
436 * During commit, the orphans being committed cannot be deleted, so they are
437 * marked for deletion and deleted by this function. Also, the recovery
438 * adds killed orphans to the deletion list, and therefore they are deleted
439 * here too.
440 */
erase_deleted(struct ubifs_info * c)441 static void erase_deleted(struct ubifs_info *c)
442 {
443 struct ubifs_orphan *orphan, *dnext;
444
445 spin_lock(&c->orphan_lock);
446 dnext = c->orph_dnext;
447 while (dnext) {
448 orphan = dnext;
449 dnext = orphan->dnext;
450 ubifs_assert(!orphan->new);
451 ubifs_assert(orphan->del);
452 rb_erase(&orphan->rb, &c->orph_tree);
453 list_del(&orphan->list);
454 c->tot_orphans -= 1;
455 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
456 kfree(orphan);
457 }
458 c->orph_dnext = NULL;
459 spin_unlock(&c->orphan_lock);
460 }
461
462 /**
463 * ubifs_orphan_end_commit - end commit of orphans.
464 * @c: UBIFS file-system description object
465 *
466 * End commit of orphans.
467 */
ubifs_orphan_end_commit(struct ubifs_info * c)468 int ubifs_orphan_end_commit(struct ubifs_info *c)
469 {
470 int err;
471
472 if (c->cmt_orphans != 0) {
473 err = commit_orphans(c);
474 if (err)
475 return err;
476 }
477 erase_deleted(c);
478 err = dbg_check_orphans(c);
479 return err;
480 }
481
482 /**
483 * ubifs_clear_orphans - erase all LEBs used for orphans.
484 * @c: UBIFS file-system description object
485 *
486 * If recovery is not required, then the orphans from the previous session
487 * are not needed. This function locates the LEBs used to record
488 * orphans, and un-maps them.
489 */
ubifs_clear_orphans(struct ubifs_info * c)490 int ubifs_clear_orphans(struct ubifs_info *c)
491 {
492 int lnum, err;
493
494 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
495 err = ubifs_leb_unmap(c, lnum);
496 if (err)
497 return err;
498 }
499 c->ohead_lnum = c->orph_first;
500 c->ohead_offs = 0;
501 return 0;
502 }
503
504 /**
505 * insert_dead_orphan - insert an orphan.
506 * @c: UBIFS file-system description object
507 * @inum: orphan inode number
508 *
509 * This function is a helper to the 'do_kill_orphans()' function. The orphan
510 * must be kept until the next commit, so it is added to the rb-tree and the
511 * deletion list.
512 */
insert_dead_orphan(struct ubifs_info * c,ino_t inum)513 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
514 {
515 struct ubifs_orphan *orphan, *o;
516 struct rb_node **p, *parent = NULL;
517
518 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
519 if (!orphan)
520 return -ENOMEM;
521 orphan->inum = inum;
522
523 p = &c->orph_tree.rb_node;
524 while (*p) {
525 parent = *p;
526 o = rb_entry(parent, struct ubifs_orphan, rb);
527 if (inum < o->inum)
528 p = &(*p)->rb_left;
529 else if (inum > o->inum)
530 p = &(*p)->rb_right;
531 else {
532 /* Already added - no problem */
533 kfree(orphan);
534 return 0;
535 }
536 }
537 c->tot_orphans += 1;
538 rb_link_node(&orphan->rb, parent, p);
539 rb_insert_color(&orphan->rb, &c->orph_tree);
540 list_add_tail(&orphan->list, &c->orph_list);
541 orphan->del = 1;
542 orphan->dnext = c->orph_dnext;
543 c->orph_dnext = orphan;
544 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
545 c->new_orphans, c->tot_orphans);
546 return 0;
547 }
548
549 /**
550 * do_kill_orphans - remove orphan inodes from the index.
551 * @c: UBIFS file-system description object
552 * @sleb: scanned LEB
553 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
554 * @outofdate: whether the LEB is out of date is returned here
555 * @last_flagged: whether the end orphan node is encountered
556 *
557 * This function is a helper to the 'kill_orphans()' function. It goes through
558 * every orphan node in a LEB and for every inode number recorded, removes
559 * all keys for that inode from the TNC.
560 */
do_kill_orphans(struct ubifs_info * c,struct ubifs_scan_leb * sleb,unsigned long long * last_cmt_no,int * outofdate,int * last_flagged)561 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
562 unsigned long long *last_cmt_no, int *outofdate,
563 int *last_flagged)
564 {
565 struct ubifs_scan_node *snod;
566 struct ubifs_orph_node *orph;
567 unsigned long long cmt_no;
568 ino_t inum;
569 int i, n, err, first = 1;
570
571 list_for_each_entry(snod, &sleb->nodes, list) {
572 if (snod->type != UBIFS_ORPH_NODE) {
573 ubifs_err("invalid node type %d in orphan area at "
574 "%d:%d", snod->type, sleb->lnum, snod->offs);
575 dbg_dump_node(c, snod->node);
576 return -EINVAL;
577 }
578
579 orph = snod->node;
580
581 /* Check commit number */
582 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
583 /*
584 * The commit number on the master node may be less, because
585 * of a failed commit. If there are several failed commits in a
586 * row, the commit number written on orphan nodes will continue
587 * to increase (because the commit number is adjusted here) even
588 * though the commit number on the master node stays the same
589 * because the master node has not been re-written.
590 */
591 if (cmt_no > c->cmt_no)
592 c->cmt_no = cmt_no;
593 if (cmt_no < *last_cmt_no && *last_flagged) {
594 /*
595 * The last orphan node had a higher commit number and
596 * was flagged as the last written for that commit
597 * number. That makes this orphan node, out of date.
598 */
599 if (!first) {
600 ubifs_err("out of order commit number %llu in "
601 "orphan node at %d:%d",
602 cmt_no, sleb->lnum, snod->offs);
603 dbg_dump_node(c, snod->node);
604 return -EINVAL;
605 }
606 dbg_rcvry("out of date LEB %d", sleb->lnum);
607 *outofdate = 1;
608 return 0;
609 }
610
611 if (first)
612 first = 0;
613
614 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
615 for (i = 0; i < n; i++) {
616 inum = le64_to_cpu(orph->inos[i]);
617 dbg_rcvry("deleting orphaned inode %lu",
618 (unsigned long)inum);
619 err = ubifs_tnc_remove_ino(c, inum);
620 if (err)
621 return err;
622 err = insert_dead_orphan(c, inum);
623 if (err)
624 return err;
625 }
626
627 *last_cmt_no = cmt_no;
628 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
629 dbg_rcvry("last orph node for commit %llu at %d:%d",
630 cmt_no, sleb->lnum, snod->offs);
631 *last_flagged = 1;
632 } else
633 *last_flagged = 0;
634 }
635
636 return 0;
637 }
638
639 /**
640 * kill_orphans - remove all orphan inodes from the index.
641 * @c: UBIFS file-system description object
642 *
643 * If recovery is required, then orphan inodes recorded during the previous
644 * session (which ended with an unclean unmount) must be deleted from the index.
645 * This is done by updating the TNC, but since the index is not updated until
646 * the next commit, the LEBs where the orphan information is recorded are not
647 * erased until the next commit.
648 */
kill_orphans(struct ubifs_info * c)649 static int kill_orphans(struct ubifs_info *c)
650 {
651 unsigned long long last_cmt_no = 0;
652 int lnum, err = 0, outofdate = 0, last_flagged = 0;
653
654 c->ohead_lnum = c->orph_first;
655 c->ohead_offs = 0;
656 /* Check no-orphans flag and skip this if no orphans */
657 if (c->no_orphs) {
658 dbg_rcvry("no orphans");
659 return 0;
660 }
661 /*
662 * Orph nodes always start at c->orph_first and are written to each
663 * successive LEB in turn. Generally unused LEBs will have been unmapped
664 * but may contain out of date orphan nodes if the unmap didn't go
665 * through. In addition, the last orphan node written for each commit is
666 * marked (top bit of orph->cmt_no is set to 1). It is possible that
667 * there are orphan nodes from the next commit (i.e. the commit did not
668 * complete successfully). In that case, no orphans will have been lost
669 * due to the way that orphans are written, and any orphans added will
670 * be valid orphans anyway and so can be deleted.
671 */
672 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
673 struct ubifs_scan_leb *sleb;
674
675 dbg_rcvry("LEB %d", lnum);
676 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
677 if (IS_ERR(sleb)) {
678 if (PTR_ERR(sleb) == -EUCLEAN)
679 sleb = ubifs_recover_leb(c, lnum, 0,
680 c->sbuf, -1);
681 if (IS_ERR(sleb)) {
682 err = PTR_ERR(sleb);
683 break;
684 }
685 }
686 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
687 &last_flagged);
688 if (err || outofdate) {
689 ubifs_scan_destroy(sleb);
690 break;
691 }
692 if (sleb->endpt) {
693 c->ohead_lnum = lnum;
694 c->ohead_offs = sleb->endpt;
695 }
696 ubifs_scan_destroy(sleb);
697 }
698 return err;
699 }
700
701 /**
702 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
703 * @c: UBIFS file-system description object
704 * @unclean: indicates recovery from unclean unmount
705 * @read_only: indicates read only mount
706 *
707 * This function is called when mounting to erase orphans from the previous
708 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
709 * orphans are deleted.
710 */
ubifs_mount_orphans(struct ubifs_info * c,int unclean,int read_only)711 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
712 {
713 int err = 0;
714
715 c->max_orphans = tot_avail_orphs(c);
716
717 if (!read_only) {
718 c->orph_buf = vmalloc(c->leb_size);
719 if (!c->orph_buf)
720 return -ENOMEM;
721 }
722
723 if (unclean)
724 err = kill_orphans(c);
725 else if (!read_only)
726 err = ubifs_clear_orphans(c);
727
728 return err;
729 }
730
731 #ifdef CONFIG_UBIFS_FS_DEBUG
732
733 struct check_orphan {
734 struct rb_node rb;
735 ino_t inum;
736 };
737
738 struct check_info {
739 unsigned long last_ino;
740 unsigned long tot_inos;
741 unsigned long missing;
742 unsigned long long leaf_cnt;
743 struct ubifs_ino_node *node;
744 struct rb_root root;
745 };
746
dbg_find_orphan(struct ubifs_info * c,ino_t inum)747 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
748 {
749 struct ubifs_orphan *o;
750 struct rb_node *p;
751
752 spin_lock(&c->orphan_lock);
753 p = c->orph_tree.rb_node;
754 while (p) {
755 o = rb_entry(p, struct ubifs_orphan, rb);
756 if (inum < o->inum)
757 p = p->rb_left;
758 else if (inum > o->inum)
759 p = p->rb_right;
760 else {
761 spin_unlock(&c->orphan_lock);
762 return 1;
763 }
764 }
765 spin_unlock(&c->orphan_lock);
766 return 0;
767 }
768
dbg_ins_check_orphan(struct rb_root * root,ino_t inum)769 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
770 {
771 struct check_orphan *orphan, *o;
772 struct rb_node **p, *parent = NULL;
773
774 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
775 if (!orphan)
776 return -ENOMEM;
777 orphan->inum = inum;
778
779 p = &root->rb_node;
780 while (*p) {
781 parent = *p;
782 o = rb_entry(parent, struct check_orphan, rb);
783 if (inum < o->inum)
784 p = &(*p)->rb_left;
785 else if (inum > o->inum)
786 p = &(*p)->rb_right;
787 else {
788 kfree(orphan);
789 return 0;
790 }
791 }
792 rb_link_node(&orphan->rb, parent, p);
793 rb_insert_color(&orphan->rb, root);
794 return 0;
795 }
796
dbg_find_check_orphan(struct rb_root * root,ino_t inum)797 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
798 {
799 struct check_orphan *o;
800 struct rb_node *p;
801
802 p = root->rb_node;
803 while (p) {
804 o = rb_entry(p, struct check_orphan, rb);
805 if (inum < o->inum)
806 p = p->rb_left;
807 else if (inum > o->inum)
808 p = p->rb_right;
809 else
810 return 1;
811 }
812 return 0;
813 }
814
dbg_free_check_tree(struct rb_root * root)815 static void dbg_free_check_tree(struct rb_root *root)
816 {
817 struct rb_node *this = root->rb_node;
818 struct check_orphan *o;
819
820 while (this) {
821 if (this->rb_left) {
822 this = this->rb_left;
823 continue;
824 } else if (this->rb_right) {
825 this = this->rb_right;
826 continue;
827 }
828 o = rb_entry(this, struct check_orphan, rb);
829 this = rb_parent(this);
830 if (this) {
831 if (this->rb_left == &o->rb)
832 this->rb_left = NULL;
833 else
834 this->rb_right = NULL;
835 }
836 kfree(o);
837 }
838 }
839
dbg_orphan_check(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)840 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
841 void *priv)
842 {
843 struct check_info *ci = priv;
844 ino_t inum;
845 int err;
846
847 inum = key_inum(c, &zbr->key);
848 if (inum != ci->last_ino) {
849 /* Lowest node type is the inode node, so it comes first */
850 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
851 ubifs_err("found orphan node ino %lu, type %d",
852 (unsigned long)inum, key_type(c, &zbr->key));
853 ci->last_ino = inum;
854 ci->tot_inos += 1;
855 err = ubifs_tnc_read_node(c, zbr, ci->node);
856 if (err) {
857 ubifs_err("node read failed, error %d", err);
858 return err;
859 }
860 if (ci->node->nlink == 0)
861 /* Must be recorded as an orphan */
862 if (!dbg_find_check_orphan(&ci->root, inum) &&
863 !dbg_find_orphan(c, inum)) {
864 ubifs_err("missing orphan, ino %lu",
865 (unsigned long)inum);
866 ci->missing += 1;
867 }
868 }
869 ci->leaf_cnt += 1;
870 return 0;
871 }
872
dbg_read_orphans(struct check_info * ci,struct ubifs_scan_leb * sleb)873 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
874 {
875 struct ubifs_scan_node *snod;
876 struct ubifs_orph_node *orph;
877 ino_t inum;
878 int i, n, err;
879
880 list_for_each_entry(snod, &sleb->nodes, list) {
881 cond_resched();
882 if (snod->type != UBIFS_ORPH_NODE)
883 continue;
884 orph = snod->node;
885 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
886 for (i = 0; i < n; i++) {
887 inum = le64_to_cpu(orph->inos[i]);
888 err = dbg_ins_check_orphan(&ci->root, inum);
889 if (err)
890 return err;
891 }
892 }
893 return 0;
894 }
895
dbg_scan_orphans(struct ubifs_info * c,struct check_info * ci)896 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
897 {
898 int lnum, err = 0;
899 void *buf;
900
901 /* Check no-orphans flag and skip this if no orphans */
902 if (c->no_orphs)
903 return 0;
904
905 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
906 if (!buf) {
907 ubifs_err("cannot allocate memory to check orphans");
908 return 0;
909 }
910
911 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
912 struct ubifs_scan_leb *sleb;
913
914 sleb = ubifs_scan(c, lnum, 0, buf, 0);
915 if (IS_ERR(sleb)) {
916 err = PTR_ERR(sleb);
917 break;
918 }
919
920 err = dbg_read_orphans(ci, sleb);
921 ubifs_scan_destroy(sleb);
922 if (err)
923 break;
924 }
925
926 vfree(buf);
927 return err;
928 }
929
dbg_check_orphans(struct ubifs_info * c)930 static int dbg_check_orphans(struct ubifs_info *c)
931 {
932 struct check_info ci;
933 int err;
934
935 if (!dbg_is_chk_orph(c))
936 return 0;
937
938 ci.last_ino = 0;
939 ci.tot_inos = 0;
940 ci.missing = 0;
941 ci.leaf_cnt = 0;
942 ci.root = RB_ROOT;
943 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
944 if (!ci.node) {
945 ubifs_err("out of memory");
946 return -ENOMEM;
947 }
948
949 err = dbg_scan_orphans(c, &ci);
950 if (err)
951 goto out;
952
953 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
954 if (err) {
955 ubifs_err("cannot scan TNC, error %d", err);
956 goto out;
957 }
958
959 if (ci.missing) {
960 ubifs_err("%lu missing orphan(s)", ci.missing);
961 err = -EINVAL;
962 goto out;
963 }
964
965 dbg_cmt("last inode number is %lu", ci.last_ino);
966 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
967 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
968
969 out:
970 dbg_free_check_tree(&ci.root);
971 kfree(ci.node);
972 return err;
973 }
974
975 #endif /* CONFIG_UBIFS_FS_DEBUG */
976