1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42
43 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
44 UTP_TASK_REQ_COMPL |\
45 UFSHCD_ERROR_MASK)
46
47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
48 UFSHCD_ERROR_MASK |\
49 MCQ_CQ_EVENT_STATUS)
50
51
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT 500
54
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES 10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT 50 /* msecs */
59
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
67
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT 100 /* msecs */
70
71 /* maximum number of retries for a general UIC command */
72 #define UFS_UIC_COMMAND_RETRIES 3
73
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO 0x02
88
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103
is_mcq_supported(struct ufs_hba * hba)104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 return hba->mcq_sup && use_mcq_mode;
107 }
108
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
113 ({ \
114 int _ret; \
115 if (_on) \
116 _ret = ufshcd_enable_vreg(_dev, _vreg); \
117 else \
118 _ret = ufshcd_disable_vreg(_dev, _vreg); \
119 _ret; \
120 })
121
122 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
123 size_t __len = (len); \
124 print_hex_dump(KERN_ERR, prefix_str, \
125 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 16, 4, buf, __len, false); \
127 } while (0)
128
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 const char *prefix)
131 {
132 u32 *regs;
133 size_t pos;
134
135 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 return -EINVAL;
137
138 regs = kzalloc(len, GFP_ATOMIC);
139 if (!regs)
140 return -ENOMEM;
141
142 for (pos = 0; pos < len; pos += 4) {
143 if (offset == 0 &&
144 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 pos <= REG_UIC_ERROR_CODE_DME)
146 continue;
147 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 }
149
150 ufshcd_hex_dump(prefix, regs, len);
151 kfree(regs);
152
153 return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156
157 enum {
158 UFSHCD_MAX_CHANNEL = 0,
159 UFSHCD_MAX_ID = 1,
160 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED,
161 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED,
162 };
163
164 static const char *const ufshcd_state_name[] = {
165 [UFSHCD_STATE_RESET] = "reset",
166 [UFSHCD_STATE_OPERATIONAL] = "operational",
167 [UFSHCD_STATE_ERROR] = "error",
168 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
169 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
170 };
171
172 /* UFSHCD error handling flags */
173 enum {
174 UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176
177 /* UFSHCD UIC layer error flags */
178 enum {
179 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187
188 #define ufshcd_set_eh_in_progress(h) \
189 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 /*
203 * For DeepSleep, the link is first put in hibern8 and then off.
204 * Leaving the link in hibern8 is not supported.
205 */
206 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208
209 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 return ufs_pm_lvl_states[lvl].dev_state;
213 }
214
215 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 return ufs_pm_lvl_states[lvl].link_state;
219 }
220
221 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 enum uic_link_state link_state)
224 {
225 enum ufs_pm_level lvl;
226
227 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 (ufs_pm_lvl_states[lvl].link_state == link_state))
230 return lvl;
231 }
232
233 /* if no match found, return the level 0 */
234 return UFS_PM_LVL_0;
235 }
236
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 /* UFS cards deviations table */
239 { .wmanufacturerid = UFS_VENDOR_MICRON,
240 .model = UFS_ANY_MODEL,
241 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 .model = UFS_ANY_MODEL,
244 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 .model = UFS_ANY_MODEL,
249 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 .model = "hB8aL1" /*H28U62301AMR*/,
252 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 .model = UFS_ANY_MODEL,
255 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 .model = "THGLF2G9C8KBADG",
258 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 .model = "THGLF2G9D8KBADG",
261 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 {}
263 };
264
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290
ufshcd_enable_irq(struct ufs_hba * hba)291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 if (!hba->is_irq_enabled) {
294 enable_irq(hba->irq);
295 hba->is_irq_enabled = true;
296 }
297 }
298
ufshcd_disable_irq(struct ufs_hba * hba)299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 if (hba->is_irq_enabled) {
302 disable_irq(hba->irq);
303 hba->is_irq_enabled = false;
304 }
305 }
306
ufshcd_configure_wb(struct ufs_hba * hba)307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 if (!ufshcd_is_wb_allowed(hba))
310 return;
311
312 ufshcd_wb_toggle(hba, true);
313
314 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315
316 if (ufshcd_is_wb_buf_flush_allowed(hba))
317 ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 scsi_unblock_requests(hba->host);
324 }
325
ufshcd_scsi_block_requests(struct ufs_hba * hba)326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 scsi_block_requests(hba->host);
330 }
331
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 enum ufs_trace_str_t str_t)
334 {
335 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 struct utp_upiu_header *header;
337
338 if (!trace_ufshcd_upiu_enabled())
339 return;
340
341 if (str_t == UFS_CMD_SEND)
342 header = &rq->header;
343 else
344 header = &hba->lrb[tag].ucd_rsp_ptr->header;
345
346 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 UFS_TSF_CDB);
348 }
349
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 enum ufs_trace_str_t str_t,
352 struct utp_upiu_req *rq_rsp)
353 {
354 if (!trace_ufshcd_upiu_enabled())
355 return;
356
357 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 &rq_rsp->qr, UFS_TSF_OSF);
359 }
360
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 enum ufs_trace_str_t str_t)
363 {
364 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365
366 if (!trace_ufshcd_upiu_enabled())
367 return;
368
369 if (str_t == UFS_TM_SEND)
370 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 &descp->upiu_req.req_header,
372 &descp->upiu_req.input_param1,
373 UFS_TSF_TM_INPUT);
374 else
375 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 &descp->upiu_rsp.rsp_header,
377 &descp->upiu_rsp.output_param1,
378 UFS_TSF_TM_OUTPUT);
379 }
380
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 const struct uic_command *ucmd,
383 enum ufs_trace_str_t str_t)
384 {
385 u32 cmd;
386
387 if (!trace_ufshcd_uic_command_enabled())
388 return;
389
390 if (str_t == UFS_CMD_SEND)
391 cmd = ucmd->command;
392 else
393 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394
395 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 enum ufs_trace_str_t str_t)
403 {
404 u64 lba = 0;
405 u8 opcode = 0, group_id = 0;
406 u32 doorbell = 0;
407 u32 intr;
408 int hwq_id = -1;
409 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 struct scsi_cmnd *cmd = lrbp->cmd;
411 struct request *rq = scsi_cmd_to_rq(cmd);
412 int transfer_len = -1;
413
414 if (!cmd)
415 return;
416
417 /* trace UPIU also */
418 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 if (!trace_ufshcd_command_enabled())
420 return;
421
422 opcode = cmd->cmnd[0];
423
424 if (opcode == READ_10 || opcode == WRITE_10) {
425 /*
426 * Currently we only fully trace read(10) and write(10) commands
427 */
428 transfer_len =
429 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 lba = scsi_get_lba(cmd);
431 if (opcode == WRITE_10)
432 group_id = lrbp->cmd->cmnd[6];
433 } else if (opcode == UNMAP) {
434 /*
435 * The number of Bytes to be unmapped beginning with the lba.
436 */
437 transfer_len = blk_rq_bytes(rq);
438 lba = scsi_get_lba(cmd);
439 }
440
441 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442
443 if (is_mcq_enabled(hba)) {
444 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445
446 hwq_id = hwq->id;
447 } else {
448 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 }
450 trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453
ufshcd_print_clk_freqs(struct ufs_hba * hba)454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 struct ufs_clk_info *clki;
457 struct list_head *head = &hba->clk_list_head;
458
459 if (list_empty(head))
460 return;
461
462 list_for_each_entry(clki, head, list) {
463 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 clki->max_freq)
465 dev_err(hba->dev, "clk: %s, rate: %u\n",
466 clki->name, clki->curr_freq);
467 }
468 }
469
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 const char *err_name)
472 {
473 int i;
474 bool found = false;
475 const struct ufs_event_hist *e;
476
477 if (id >= UFS_EVT_CNT)
478 return;
479
480 e = &hba->ufs_stats.event[id];
481
482 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484
485 if (e->tstamp[p] == 0)
486 continue;
487 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 e->val[p], div_u64(e->tstamp[p], 1000));
489 found = true;
490 }
491
492 if (!found)
493 dev_err(hba->dev, "No record of %s\n", err_name);
494 else
495 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497
ufshcd_print_evt_hist(struct ufs_hba * hba)498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501
502 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 "auto_hibern8_err");
509 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 "link_startup_fail");
512 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 "suspend_fail");
515 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 "wlun suspend_fail");
518 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521
522 ufshcd_vops_dbg_register_dump(hba);
523 }
524
525 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 const struct ufshcd_lrb *lrbp;
529 int prdt_length;
530
531 lrbp = &hba->lrb[tag];
532
533 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 dev_err(hba->dev,
538 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 tag, (u64)lrbp->utrd_dma_addr);
540
541 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 sizeof(struct utp_transfer_req_desc));
543 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 (u64)lrbp->ucd_req_dma_addr);
545 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 sizeof(struct utp_upiu_req));
547 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 (u64)lrbp->ucd_rsp_dma_addr);
549 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 sizeof(struct utp_upiu_rsp));
551
552 prdt_length = le16_to_cpu(
553 lrbp->utr_descriptor_ptr->prd_table_length);
554 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 prdt_length /= ufshcd_sg_entry_size(hba);
556
557 dev_err(hba->dev,
558 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
559 tag, prdt_length,
560 (u64)lrbp->ucd_prdt_dma_addr);
561
562 if (pr_prdt)
563 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566
ufshcd_print_tr_iter(struct request * req,void * priv)567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 struct scsi_device *sdev = req->q->queuedata;
570 struct Scsi_Host *shost = sdev->host;
571 struct ufs_hba *hba = shost_priv(shost);
572
573 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574
575 return true;
576 }
577
578 /**
579 * ufshcd_print_trs_all - print trs for all started requests.
580 * @hba: per-adapter instance.
581 * @pr_prdt: need to print prdt or not.
582 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 int tag;
591
592 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594
595 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 }
598 }
599
ufshcd_print_host_state(struct ufs_hba * hba)600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603
604 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 hba->outstanding_reqs, hba->outstanding_tasks);
607 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 hba->saved_err, hba->saved_uic_err);
609 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 hba->curr_dev_pwr_mode, hba->uic_link_state);
611 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 hba->pm_op_in_progress, hba->is_sys_suspended);
613 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 dev_err(hba->dev,
617 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 hba->ufs_stats.hibern8_exit_cnt);
620 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 hba->ufs_stats.last_intr_status);
623 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 hba->eh_flags, hba->req_abort_count);
625 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 hba->ufs_version, hba->capabilities, hba->caps);
627 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 hba->dev_quirks);
629 if (sdev_ufs)
630 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632
633 ufshcd_print_clk_freqs(hba);
634 }
635
636 /**
637 * ufshcd_print_pwr_info - print power params as saved in hba
638 * power info
639 * @hba: per-adapter instance
640 */
ufshcd_print_pwr_info(struct ufs_hba * hba)641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 static const char * const names[] = {
644 "INVALID MODE",
645 "FAST MODE",
646 "SLOW_MODE",
647 "INVALID MODE",
648 "FASTAUTO_MODE",
649 "SLOWAUTO_MODE",
650 "INVALID MODE",
651 };
652
653 /*
654 * Using dev_dbg to avoid messages during runtime PM to avoid
655 * never-ending cycles of messages written back to storage by user space
656 * causing runtime resume, causing more messages and so on.
657 */
658 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 __func__,
660 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 names[hba->pwr_info.pwr_rx],
663 names[hba->pwr_info.pwr_tx],
664 hba->pwr_info.hs_rate);
665 }
666
ufshcd_device_reset(struct ufs_hba * hba)667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 int err;
670
671 err = ufshcd_vops_device_reset(hba);
672
673 if (!err) {
674 ufshcd_set_ufs_dev_active(hba);
675 if (ufshcd_is_wb_allowed(hba)) {
676 hba->dev_info.wb_enabled = false;
677 hba->dev_info.wb_buf_flush_enabled = false;
678 }
679 }
680 if (err != -EOPNOTSUPP)
681 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683
ufshcd_delay_us(unsigned long us,unsigned long tolerance)684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 if (!us)
687 return;
688
689 if (us < 10)
690 udelay(us);
691 else
692 usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695
696 /**
697 * ufshcd_wait_for_register - wait for register value to change
698 * @hba: per-adapter interface
699 * @reg: mmio register offset
700 * @mask: mask to apply to the read register value
701 * @val: value to wait for
702 * @interval_us: polling interval in microseconds
703 * @timeout_ms: timeout in milliseconds
704 *
705 * Return: -ETIMEDOUT on error, zero on success.
706 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 u32 val, unsigned long interval_us,
709 unsigned long timeout_ms)
710 {
711 int err = 0;
712 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713
714 /* ignore bits that we don't intend to wait on */
715 val = val & mask;
716
717 while ((ufshcd_readl(hba, reg) & mask) != val) {
718 usleep_range(interval_us, interval_us + 50);
719 if (time_after(jiffies, timeout)) {
720 if ((ufshcd_readl(hba, reg) & mask) != val)
721 err = -ETIMEDOUT;
722 break;
723 }
724 }
725
726 return err;
727 }
728
729 /**
730 * ufshcd_get_intr_mask - Get the interrupt bit mask
731 * @hba: Pointer to adapter instance
732 *
733 * Return: interrupt bit mask per version
734 */
ufshcd_get_intr_mask(struct ufs_hba * hba)735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 if (hba->ufs_version == ufshci_version(1, 0))
738 return INTERRUPT_MASK_ALL_VER_10;
739 if (hba->ufs_version <= ufshci_version(2, 0))
740 return INTERRUPT_MASK_ALL_VER_11;
741
742 return INTERRUPT_MASK_ALL_VER_21;
743 }
744
745 /**
746 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747 * @hba: Pointer to adapter instance
748 *
749 * Return: UFSHCI version supported by the controller
750 */
ufshcd_get_ufs_version(struct ufs_hba * hba)751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 u32 ufshci_ver;
754
755 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 else
758 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759
760 /*
761 * UFSHCI v1.x uses a different version scheme, in order
762 * to allow the use of comparisons with the ufshci_version
763 * function, we convert it to the same scheme as ufs 2.0+.
764 */
765 if (ufshci_ver & 0x00010000)
766 return ufshci_version(1, ufshci_ver & 0x00000100);
767
768 return ufshci_ver;
769 }
770
771 /**
772 * ufshcd_is_device_present - Check if any device connected to
773 * the host controller
774 * @hba: pointer to adapter instance
775 *
776 * Return: true if device present, false if no device detected
777 */
ufshcd_is_device_present(struct ufs_hba * hba)778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782
783 /**
784 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785 * @lrbp: pointer to local command reference block
786 * @cqe: pointer to the completion queue entry
787 *
788 * This function is used to get the OCS field from UTRD
789 *
790 * Return: the OCS field in the UTRD.
791 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 struct cq_entry *cqe)
794 {
795 if (cqe)
796 return le32_to_cpu(cqe->status) & MASK_OCS;
797
798 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800
801 /**
802 * ufshcd_utrl_clear() - Clear requests from the controller request list.
803 * @hba: per adapter instance
804 * @mask: mask with one bit set for each request to be cleared
805 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 mask = ~mask;
810 /*
811 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 * Register (UTRLCLR): This field is bit significant. Each bit
813 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 * by host software to indicate to the host controller that a transfer
816 * request slot is cleared. The host controller
817 * shall free up any resources associated to the request slot
818 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 * host software indicates no change to request slots by setting the
820 * associated bits in this field to ‘1’. Bits in this field shall only
821 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 */
823 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825
826 /**
827 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828 * @hba: per adapter instance
829 * @pos: position of the bit to be cleared
830 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 else
836 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838
839 /**
840 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841 * @reg: Register value of host controller status
842 *
843 * Return: 0 on success; a positive value if failed.
844 */
ufshcd_get_lists_status(u32 reg)845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849
850 /**
851 * ufshcd_get_uic_cmd_result - Get the UIC command result
852 * @hba: Pointer to adapter instance
853 *
854 * This function gets the result of UIC command completion
855 *
856 * Return: 0 on success; non-zero value on error.
857 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 MASK_UIC_COMMAND_RESULT;
862 }
863
864 /**
865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866 * @hba: Pointer to adapter instance
867 *
868 * This function gets UIC command argument3
869 *
870 * Return: 0 on success; non-zero value on error.
871 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876
877 /**
878 * ufshcd_get_req_rsp - returns the TR response transaction type
879 * @ucd_rsp_ptr: pointer to response UPIU
880 *
881 * Return: UPIU type.
882 */
883 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 return ucd_rsp_ptr->header.transaction_code;
887 }
888
889 /**
890 * ufshcd_is_exception_event - Check if the device raised an exception event
891 * @ucd_rsp_ptr: pointer to response UPIU
892 *
893 * The function checks if the device raised an exception event indicated in
894 * the Device Information field of response UPIU.
895 *
896 * Return: true if exception is raised, false otherwise.
897 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 return ucd_rsp_ptr->header.device_information & 1;
901 }
902
903 /**
904 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905 * @hba: per adapter instance
906 */
907 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 ufshcd_writel(hba, INT_AGGR_ENABLE |
911 INT_AGGR_COUNTER_AND_TIMER_RESET,
912 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914
915 /**
916 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917 * @hba: per adapter instance
918 * @cnt: Interrupt aggregation counter threshold
919 * @tmout: Interrupt aggregation timeout value
920 */
921 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 INT_AGGR_TIMEOUT_VAL(tmout),
927 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929
930 /**
931 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932 * @hba: per adapter instance
933 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938
939 /**
940 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941 * When run-stop registers are set to 1, it indicates the
942 * host controller that it can process the requests
943 * @hba: per adapter instance
944 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952
953 /**
954 * ufshcd_hba_start - Start controller initialization sequence
955 * @hba: per adapter instance
956 */
ufshcd_hba_start(struct ufs_hba * hba)957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 u32 val = CONTROLLER_ENABLE;
960
961 if (ufshcd_crypto_enable(hba))
962 val |= CRYPTO_GENERAL_ENABLE;
963
964 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966
967 /**
968 * ufshcd_is_hba_active - Get controller state
969 * @hba: per adapter instance
970 *
971 * Return: true if and only if the controller is active.
972 */
ufshcd_is_hba_active(struct ufs_hba * hba)973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 if (hba->ufs_version <= ufshci_version(1, 1))
983 return UFS_UNIPRO_VER_1_41;
984 else
985 return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 /*
992 * If both host and device support UniPro ver1.6 or later, PA layer
993 * parameters tuning happens during link startup itself.
994 *
995 * We can manually tune PA layer parameters if either host or device
996 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 * logic simple, we will only do manual tuning if local unipro version
998 * doesn't support ver1.6 or later.
999 */
1000 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002
1003 /**
1004 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005 * @hba: per adapter instance
1006 * @scale_up: If True, set max possible frequency othewise set low frequency
1007 *
1008 * Return: 0 if successful; < 0 upon failure.
1009 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 int ret = 0;
1013 struct ufs_clk_info *clki;
1014 struct list_head *head = &hba->clk_list_head;
1015
1016 if (list_empty(head))
1017 goto out;
1018
1019 list_for_each_entry(clki, head, list) {
1020 if (!IS_ERR_OR_NULL(clki->clk)) {
1021 if (scale_up && clki->max_freq) {
1022 if (clki->curr_freq == clki->max_freq)
1023 continue;
1024
1025 ret = clk_set_rate(clki->clk, clki->max_freq);
1026 if (ret) {
1027 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 __func__, clki->name,
1029 clki->max_freq, ret);
1030 break;
1031 }
1032 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 "scaled up", clki->name,
1034 clki->curr_freq,
1035 clki->max_freq);
1036
1037 clki->curr_freq = clki->max_freq;
1038
1039 } else if (!scale_up && clki->min_freq) {
1040 if (clki->curr_freq == clki->min_freq)
1041 continue;
1042
1043 ret = clk_set_rate(clki->clk, clki->min_freq);
1044 if (ret) {
1045 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 __func__, clki->name,
1047 clki->min_freq, ret);
1048 break;
1049 }
1050 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 "scaled down", clki->name,
1052 clki->curr_freq,
1053 clki->min_freq);
1054 clki->curr_freq = clki->min_freq;
1055 }
1056 }
1057 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 clki->name, clk_get_rate(clki->clk));
1059 }
1060
1061 out:
1062 return ret;
1063 }
1064
1065 /**
1066 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067 * @hba: per adapter instance
1068 * @scale_up: True if scaling up and false if scaling down
1069 *
1070 * Return: 0 if successful; < 0 upon failure.
1071 */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 int ret = 0;
1075 ktime_t start = ktime_get();
1076
1077 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 if (ret)
1079 goto out;
1080
1081 ret = ufshcd_set_clk_freq(hba, scale_up);
1082 if (ret)
1083 goto out;
1084
1085 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 if (ret)
1087 ufshcd_set_clk_freq(hba, !scale_up);
1088
1089 out:
1090 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 (scale_up ? "up" : "down"),
1092 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 return ret;
1094 }
1095
1096 /**
1097 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098 * @hba: per adapter instance
1099 * @scale_up: True if scaling up and false if scaling down
1100 *
1101 * Return: true if scaling is required, false otherwise.
1102 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 bool scale_up)
1105 {
1106 struct ufs_clk_info *clki;
1107 struct list_head *head = &hba->clk_list_head;
1108
1109 if (list_empty(head))
1110 return false;
1111
1112 list_for_each_entry(clki, head, list) {
1113 if (!IS_ERR_OR_NULL(clki->clk)) {
1114 if (scale_up && clki->max_freq) {
1115 if (clki->curr_freq == clki->max_freq)
1116 continue;
1117 return true;
1118 } else if (!scale_up && clki->min_freq) {
1119 if (clki->curr_freq == clki->min_freq)
1120 continue;
1121 return true;
1122 }
1123 }
1124 }
1125
1126 return false;
1127 }
1128
1129 /*
1130 * Determine the number of pending commands by counting the bits in the SCSI
1131 * device budget maps. This approach has been selected because a bit is set in
1132 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133 * flag. The host_self_blocked flag can be modified by calling
1134 * scsi_block_requests() or scsi_unblock_requests().
1135 */
ufshcd_pending_cmds(struct ufs_hba * hba)1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 const struct scsi_device *sdev;
1139 u32 pending = 0;
1140
1141 lockdep_assert_held(hba->host->host_lock);
1142 __shost_for_each_device(sdev, hba->host)
1143 pending += sbitmap_weight(&sdev->budget_map);
1144
1145 return pending;
1146 }
1147
1148 /*
1149 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150 * has expired.
1151 *
1152 * Return: 0 upon success; -EBUSY upon timeout.
1153 */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 u64 wait_timeout_us)
1156 {
1157 unsigned long flags;
1158 int ret = 0;
1159 u32 tm_doorbell;
1160 u32 tr_pending;
1161 bool timeout = false, do_last_check = false;
1162 ktime_t start;
1163
1164 ufshcd_hold(hba);
1165 spin_lock_irqsave(hba->host->host_lock, flags);
1166 /*
1167 * Wait for all the outstanding tasks/transfer requests.
1168 * Verify by checking the doorbell registers are clear.
1169 */
1170 start = ktime_get();
1171 do {
1172 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 ret = -EBUSY;
1174 goto out;
1175 }
1176
1177 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 tr_pending = ufshcd_pending_cmds(hba);
1179 if (!tm_doorbell && !tr_pending) {
1180 timeout = false;
1181 break;
1182 } else if (do_last_check) {
1183 break;
1184 }
1185
1186 spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 io_schedule_timeout(msecs_to_jiffies(20));
1188 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 wait_timeout_us) {
1190 timeout = true;
1191 /*
1192 * We might have scheduled out for long time so make
1193 * sure to check if doorbells are cleared by this time
1194 * or not.
1195 */
1196 do_last_check = true;
1197 }
1198 spin_lock_irqsave(hba->host->host_lock, flags);
1199 } while (tm_doorbell || tr_pending);
1200
1201 if (timeout) {
1202 dev_err(hba->dev,
1203 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 __func__, tm_doorbell, tr_pending);
1205 ret = -EBUSY;
1206 }
1207 out:
1208 spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 ufshcd_release(hba);
1210 return ret;
1211 }
1212
1213 /**
1214 * ufshcd_scale_gear - scale up/down UFS gear
1215 * @hba: per adapter instance
1216 * @scale_up: True for scaling up gear and false for scaling down
1217 *
1218 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219 * non-zero for any other errors.
1220 */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 int ret = 0;
1224 struct ufs_pa_layer_attr new_pwr_info;
1225
1226 if (scale_up) {
1227 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 sizeof(struct ufs_pa_layer_attr));
1229 } else {
1230 memcpy(&new_pwr_info, &hba->pwr_info,
1231 sizeof(struct ufs_pa_layer_attr));
1232
1233 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 /* save the current power mode */
1236 memcpy(&hba->clk_scaling.saved_pwr_info,
1237 &hba->pwr_info,
1238 sizeof(struct ufs_pa_layer_attr));
1239
1240 /* scale down gear */
1241 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 }
1244 }
1245
1246 /* check if the power mode needs to be changed or not? */
1247 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 if (ret)
1249 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 __func__, ret,
1251 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253
1254 return ret;
1255 }
1256
1257 /*
1258 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259 * has expired.
1260 *
1261 * Return: 0 upon success; -EBUSY upon timeout.
1262 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 int ret = 0;
1266 /*
1267 * make sure that there are no outstanding requests when
1268 * clock scaling is in progress
1269 */
1270 ufshcd_scsi_block_requests(hba);
1271 mutex_lock(&hba->wb_mutex);
1272 down_write(&hba->clk_scaling_lock);
1273
1274 if (!hba->clk_scaling.is_allowed ||
1275 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 ret = -EBUSY;
1277 up_write(&hba->clk_scaling_lock);
1278 mutex_unlock(&hba->wb_mutex);
1279 ufshcd_scsi_unblock_requests(hba);
1280 goto out;
1281 }
1282
1283 /* let's not get into low power until clock scaling is completed */
1284 ufshcd_hold(hba);
1285
1286 out:
1287 return ret;
1288 }
1289
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err,bool scale_up)1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 up_write(&hba->clk_scaling_lock);
1293
1294 /* Enable Write Booster if we have scaled up else disable it */
1295 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 ufshcd_wb_toggle(hba, scale_up);
1297
1298 mutex_unlock(&hba->wb_mutex);
1299
1300 ufshcd_scsi_unblock_requests(hba);
1301 ufshcd_release(hba);
1302 }
1303
1304 /**
1305 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306 * @hba: per adapter instance
1307 * @scale_up: True for scaling up and false for scalin down
1308 *
1309 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310 * for any other errors.
1311 */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 int ret = 0;
1315
1316 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 if (ret)
1318 return ret;
1319
1320 /* scale down the gear before scaling down clocks */
1321 if (!scale_up) {
1322 ret = ufshcd_scale_gear(hba, false);
1323 if (ret)
1324 goto out_unprepare;
1325 }
1326
1327 ret = ufshcd_scale_clks(hba, scale_up);
1328 if (ret) {
1329 if (!scale_up)
1330 ufshcd_scale_gear(hba, true);
1331 goto out_unprepare;
1332 }
1333
1334 /* scale up the gear after scaling up clocks */
1335 if (scale_up) {
1336 ret = ufshcd_scale_gear(hba, true);
1337 if (ret) {
1338 ufshcd_scale_clks(hba, false);
1339 goto out_unprepare;
1340 }
1341 }
1342
1343 out_unprepare:
1344 ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 return ret;
1346 }
1347
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 clk_scaling.suspend_work);
1352 unsigned long irq_flags;
1353
1354 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 return;
1358 }
1359 hba->clk_scaling.is_suspended = true;
1360 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361
1362 __ufshcd_suspend_clkscaling(hba);
1363 }
1364
ufshcd_clk_scaling_resume_work(struct work_struct * work)1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 clk_scaling.resume_work);
1369 unsigned long irq_flags;
1370
1371 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 if (!hba->clk_scaling.is_suspended) {
1373 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 return;
1375 }
1376 hba->clk_scaling.is_suspended = false;
1377 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378
1379 devfreq_resume_device(hba->devfreq);
1380 }
1381
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1382 static int ufshcd_devfreq_target(struct device *dev,
1383 unsigned long *freq, u32 flags)
1384 {
1385 int ret = 0;
1386 struct ufs_hba *hba = dev_get_drvdata(dev);
1387 ktime_t start;
1388 bool scale_up, sched_clk_scaling_suspend_work = false;
1389 struct list_head *clk_list = &hba->clk_list_head;
1390 struct ufs_clk_info *clki;
1391 unsigned long irq_flags;
1392
1393 if (!ufshcd_is_clkscaling_supported(hba))
1394 return -EINVAL;
1395
1396 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 /* Override with the closest supported frequency */
1398 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 if (ufshcd_eh_in_progress(hba)) {
1401 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 return 0;
1403 }
1404
1405 if (!hba->clk_scaling.active_reqs)
1406 sched_clk_scaling_suspend_work = true;
1407
1408 if (list_empty(clk_list)) {
1409 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 goto out;
1411 }
1412
1413 /* Decide based on the rounded-off frequency and update */
1414 scale_up = *freq == clki->max_freq;
1415 if (!scale_up)
1416 *freq = clki->min_freq;
1417 /* Update the frequency */
1418 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 ret = 0;
1421 goto out; /* no state change required */
1422 }
1423 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424
1425 start = ktime_get();
1426 ret = ufshcd_devfreq_scale(hba, scale_up);
1427
1428 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 (scale_up ? "up" : "down"),
1430 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431
1432 out:
1433 if (sched_clk_scaling_suspend_work)
1434 queue_work(hba->clk_scaling.workq,
1435 &hba->clk_scaling.suspend_work);
1436
1437 return ret;
1438 }
1439
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 struct devfreq_dev_status *stat)
1442 {
1443 struct ufs_hba *hba = dev_get_drvdata(dev);
1444 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 unsigned long flags;
1446 struct list_head *clk_list = &hba->clk_list_head;
1447 struct ufs_clk_info *clki;
1448 ktime_t curr_t;
1449
1450 if (!ufshcd_is_clkscaling_supported(hba))
1451 return -EINVAL;
1452
1453 memset(stat, 0, sizeof(*stat));
1454
1455 spin_lock_irqsave(hba->host->host_lock, flags);
1456 curr_t = ktime_get();
1457 if (!scaling->window_start_t)
1458 goto start_window;
1459
1460 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 /*
1462 * If current frequency is 0, then the ondemand governor considers
1463 * there's no initial frequency set. And it always requests to set
1464 * to max. frequency.
1465 */
1466 stat->current_frequency = clki->curr_freq;
1467 if (scaling->is_busy_started)
1468 scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 scaling->busy_start_t);
1470
1471 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 scaling->window_start_t = curr_t;
1475 scaling->tot_busy_t = 0;
1476
1477 if (scaling->active_reqs) {
1478 scaling->busy_start_t = curr_t;
1479 scaling->is_busy_started = true;
1480 } else {
1481 scaling->busy_start_t = 0;
1482 scaling->is_busy_started = false;
1483 }
1484 spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 return 0;
1486 }
1487
ufshcd_devfreq_init(struct ufs_hba * hba)1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 struct list_head *clk_list = &hba->clk_list_head;
1491 struct ufs_clk_info *clki;
1492 struct devfreq *devfreq;
1493 int ret;
1494
1495 /* Skip devfreq if we don't have any clocks in the list */
1496 if (list_empty(clk_list))
1497 return 0;
1498
1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502
1503 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 &hba->vps->ondemand_data);
1505 devfreq = devfreq_add_device(hba->dev,
1506 &hba->vps->devfreq_profile,
1507 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 &hba->vps->ondemand_data);
1509 if (IS_ERR(devfreq)) {
1510 ret = PTR_ERR(devfreq);
1511 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512
1513 dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 return ret;
1516 }
1517
1518 hba->devfreq = devfreq;
1519
1520 return 0;
1521 }
1522
ufshcd_devfreq_remove(struct ufs_hba * hba)1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 struct list_head *clk_list = &hba->clk_list_head;
1526 struct ufs_clk_info *clki;
1527
1528 if (!hba->devfreq)
1529 return;
1530
1531 devfreq_remove_device(hba->devfreq);
1532 hba->devfreq = NULL;
1533
1534 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 unsigned long flags;
1542
1543 devfreq_suspend_device(hba->devfreq);
1544 spin_lock_irqsave(hba->host->host_lock, flags);
1545 hba->clk_scaling.window_start_t = 0;
1546 spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 unsigned long flags;
1552 bool suspend = false;
1553
1554 cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 cancel_work_sync(&hba->clk_scaling.resume_work);
1556
1557 spin_lock_irqsave(hba->host->host_lock, flags);
1558 if (!hba->clk_scaling.is_suspended) {
1559 suspend = true;
1560 hba->clk_scaling.is_suspended = true;
1561 }
1562 spin_unlock_irqrestore(hba->host->host_lock, flags);
1563
1564 if (suspend)
1565 __ufshcd_suspend_clkscaling(hba);
1566 }
1567
ufshcd_resume_clkscaling(struct ufs_hba * hba)1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 unsigned long flags;
1571 bool resume = false;
1572
1573 spin_lock_irqsave(hba->host->host_lock, flags);
1574 if (hba->clk_scaling.is_suspended) {
1575 resume = true;
1576 hba->clk_scaling.is_suspended = false;
1577 }
1578 spin_unlock_irqrestore(hba->host->host_lock, flags);
1579
1580 if (resume)
1581 devfreq_resume_device(hba->devfreq);
1582 }
1583
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 struct device_attribute *attr, char *buf)
1586 {
1587 struct ufs_hba *hba = dev_get_drvdata(dev);
1588
1589 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 struct ufs_hba *hba = dev_get_drvdata(dev);
1596 u32 value;
1597 int err = 0;
1598
1599 if (kstrtou32(buf, 0, &value))
1600 return -EINVAL;
1601
1602 down(&hba->host_sem);
1603 if (!ufshcd_is_user_access_allowed(hba)) {
1604 err = -EBUSY;
1605 goto out;
1606 }
1607
1608 value = !!value;
1609 if (value == hba->clk_scaling.is_enabled)
1610 goto out;
1611
1612 ufshcd_rpm_get_sync(hba);
1613 ufshcd_hold(hba);
1614
1615 hba->clk_scaling.is_enabled = value;
1616
1617 if (value) {
1618 ufshcd_resume_clkscaling(hba);
1619 } else {
1620 ufshcd_suspend_clkscaling(hba);
1621 err = ufshcd_devfreq_scale(hba, true);
1622 if (err)
1623 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 __func__, err);
1625 }
1626
1627 ufshcd_release(hba);
1628 ufshcd_rpm_put_sync(hba);
1629 out:
1630 up(&hba->host_sem);
1631 return err ? err : count;
1632 }
1633
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 if (hba->clk_scaling.enable_attr.attr.name)
1648 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650
ufshcd_init_clk_scaling(struct ufs_hba * hba)1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 char wq_name[sizeof("ufs_clkscaling_00")];
1654
1655 if (!ufshcd_is_clkscaling_supported(hba))
1656 return;
1657
1658 if (!hba->clk_scaling.min_gear)
1659 hba->clk_scaling.min_gear = UFS_HS_G1;
1660
1661 INIT_WORK(&hba->clk_scaling.suspend_work,
1662 ufshcd_clk_scaling_suspend_work);
1663 INIT_WORK(&hba->clk_scaling.resume_work,
1664 ufshcd_clk_scaling_resume_work);
1665
1666 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 hba->host->host_no);
1668 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669
1670 hba->clk_scaling.is_initialized = true;
1671 }
1672
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 if (!hba->clk_scaling.is_initialized)
1676 return;
1677
1678 ufshcd_remove_clk_scaling_sysfs(hba);
1679 destroy_workqueue(hba->clk_scaling.workq);
1680 ufshcd_devfreq_remove(hba);
1681 hba->clk_scaling.is_initialized = false;
1682 }
1683
ufshcd_ungate_work(struct work_struct * work)1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 int ret;
1687 unsigned long flags;
1688 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 clk_gating.ungate_work);
1690
1691 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692
1693 spin_lock_irqsave(hba->host->host_lock, flags);
1694 if (hba->clk_gating.state == CLKS_ON) {
1695 spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 return;
1697 }
1698
1699 spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 ufshcd_hba_vreg_set_hpm(hba);
1701 ufshcd_setup_clocks(hba, true);
1702
1703 ufshcd_enable_irq(hba);
1704
1705 /* Exit from hibern8 */
1706 if (ufshcd_can_hibern8_during_gating(hba)) {
1707 /* Prevent gating in this path */
1708 hba->clk_gating.is_suspended = true;
1709 if (ufshcd_is_link_hibern8(hba)) {
1710 ret = ufshcd_uic_hibern8_exit(hba);
1711 if (ret)
1712 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 __func__, ret);
1714 else
1715 ufshcd_set_link_active(hba);
1716 }
1717 hba->clk_gating.is_suspended = false;
1718 }
1719 }
1720
1721 /**
1722 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723 * Also, exit from hibern8 mode and set the link as active.
1724 * @hba: per adapter instance
1725 */
ufshcd_hold(struct ufs_hba * hba)1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 bool flush_result;
1729 unsigned long flags;
1730
1731 if (!ufshcd_is_clkgating_allowed(hba) ||
1732 !hba->clk_gating.is_initialized)
1733 return;
1734 spin_lock_irqsave(hba->host->host_lock, flags);
1735 hba->clk_gating.active_reqs++;
1736
1737 start:
1738 switch (hba->clk_gating.state) {
1739 case CLKS_ON:
1740 /*
1741 * Wait for the ungate work to complete if in progress.
1742 * Though the clocks may be in ON state, the link could
1743 * still be in hibner8 state if hibern8 is allowed
1744 * during clock gating.
1745 * Make sure we exit hibern8 state also in addition to
1746 * clocks being ON.
1747 */
1748 if (ufshcd_can_hibern8_during_gating(hba) &&
1749 ufshcd_is_link_hibern8(hba)) {
1750 spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 if (hba->clk_gating.is_suspended && !flush_result)
1753 return;
1754 spin_lock_irqsave(hba->host->host_lock, flags);
1755 goto start;
1756 }
1757 break;
1758 case REQ_CLKS_OFF:
1759 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 hba->clk_gating.state = CLKS_ON;
1761 trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 hba->clk_gating.state);
1763 break;
1764 }
1765 /*
1766 * If we are here, it means gating work is either done or
1767 * currently running. Hence, fall through to cancel gating
1768 * work and to enable clocks.
1769 */
1770 fallthrough;
1771 case CLKS_OFF:
1772 hba->clk_gating.state = REQ_CLKS_ON;
1773 trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 hba->clk_gating.state);
1775 queue_work(hba->clk_gating.clk_gating_workq,
1776 &hba->clk_gating.ungate_work);
1777 /*
1778 * fall through to check if we should wait for this
1779 * work to be done or not.
1780 */
1781 fallthrough;
1782 case REQ_CLKS_ON:
1783 spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 flush_work(&hba->clk_gating.ungate_work);
1785 /* Make sure state is CLKS_ON before returning */
1786 spin_lock_irqsave(hba->host->host_lock, flags);
1787 goto start;
1788 default:
1789 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 __func__, hba->clk_gating.state);
1791 break;
1792 }
1793 spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796
ufshcd_gate_work(struct work_struct * work)1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 clk_gating.gate_work.work);
1801 unsigned long flags;
1802 int ret;
1803
1804 spin_lock_irqsave(hba->host->host_lock, flags);
1805 /*
1806 * In case you are here to cancel this work the gating state
1807 * would be marked as REQ_CLKS_ON. In this case save time by
1808 * skipping the gating work and exit after changing the clock
1809 * state to CLKS_ON.
1810 */
1811 if (hba->clk_gating.is_suspended ||
1812 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 hba->clk_gating.state = CLKS_ON;
1814 trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 hba->clk_gating.state);
1816 goto rel_lock;
1817 }
1818
1819 if (hba->clk_gating.active_reqs
1820 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 || hba->outstanding_reqs || hba->outstanding_tasks
1822 || hba->active_uic_cmd || hba->uic_async_done)
1823 goto rel_lock;
1824
1825 spin_unlock_irqrestore(hba->host->host_lock, flags);
1826
1827 /* put the link into hibern8 mode before turning off clocks */
1828 if (ufshcd_can_hibern8_during_gating(hba)) {
1829 ret = ufshcd_uic_hibern8_enter(hba);
1830 if (ret) {
1831 hba->clk_gating.state = CLKS_ON;
1832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 __func__, ret);
1834 trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 hba->clk_gating.state);
1836 goto out;
1837 }
1838 ufshcd_set_link_hibern8(hba);
1839 }
1840
1841 ufshcd_disable_irq(hba);
1842
1843 ufshcd_setup_clocks(hba, false);
1844
1845 /* Put the host controller in low power mode if possible */
1846 ufshcd_hba_vreg_set_lpm(hba);
1847 /*
1848 * In case you are here to cancel this work the gating state
1849 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 * and a request to turn them on is pending. By doing this way,
1852 * we keep the state machine in tact and this would ultimately
1853 * prevent from doing cancel work multiple times when there are
1854 * new requests arriving before the current cancel work is done.
1855 */
1856 spin_lock_irqsave(hba->host->host_lock, flags);
1857 if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 hba->clk_gating.state = CLKS_OFF;
1859 trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 hba->clk_gating.state);
1861 }
1862 rel_lock:
1863 spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 return;
1866 }
1867
1868 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 if (!ufshcd_is_clkgating_allowed(hba))
1872 return;
1873
1874 hba->clk_gating.active_reqs--;
1875
1876 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 hba->active_uic_cmd || hba->uic_async_done ||
1880 hba->clk_gating.state == CLKS_OFF)
1881 return;
1882
1883 hba->clk_gating.state = REQ_CLKS_OFF;
1884 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 &hba->clk_gating.gate_work,
1887 msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889
ufshcd_release(struct ufs_hba * hba)1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 unsigned long flags;
1893
1894 spin_lock_irqsave(hba->host->host_lock, flags);
1895 __ufshcd_release(hba);
1896 spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 struct device_attribute *attr, char *buf)
1902 {
1903 struct ufs_hba *hba = dev_get_drvdata(dev);
1904
1905 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 struct ufs_hba *hba = dev_get_drvdata(dev);
1911 unsigned long flags;
1912
1913 spin_lock_irqsave(hba->host->host_lock, flags);
1914 hba->clk_gating.delay_ms = value;
1915 spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 unsigned long value;
1923
1924 if (kstrtoul(buf, 0, &value))
1925 return -EINVAL;
1926
1927 ufshcd_clkgate_delay_set(dev, value);
1928 return count;
1929 }
1930
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 struct device_attribute *attr, char *buf)
1933 {
1934 struct ufs_hba *hba = dev_get_drvdata(dev);
1935
1936 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 struct ufs_hba *hba = dev_get_drvdata(dev);
1943 unsigned long flags;
1944 u32 value;
1945
1946 if (kstrtou32(buf, 0, &value))
1947 return -EINVAL;
1948
1949 value = !!value;
1950
1951 spin_lock_irqsave(hba->host->host_lock, flags);
1952 if (value == hba->clk_gating.is_enabled)
1953 goto out;
1954
1955 if (value)
1956 __ufshcd_release(hba);
1957 else
1958 hba->clk_gating.active_reqs++;
1959
1960 hba->clk_gating.is_enabled = value;
1961 out:
1962 spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 return count;
1964 }
1965
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 hba->clk_gating.delay_attr.attr.mode = 0644;
1973 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975
1976 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 hba->clk_gating.enable_attr.attr.mode = 0644;
1981 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 if (hba->clk_gating.delay_attr.attr.name)
1988 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 if (hba->clk_gating.enable_attr.attr.name)
1990 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992
ufshcd_init_clk_gating(struct ufs_hba * hba)1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 char wq_name[sizeof("ufs_clk_gating_00")];
1996
1997 if (!ufshcd_is_clkgating_allowed(hba))
1998 return;
1999
2000 hba->clk_gating.state = CLKS_ON;
2001
2002 hba->clk_gating.delay_ms = 150;
2003 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005
2006 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 hba->host->host_no);
2008 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010
2011 ufshcd_init_clk_gating_sysfs(hba);
2012
2013 hba->clk_gating.is_enabled = true;
2014 hba->clk_gating.is_initialized = true;
2015 }
2016
ufshcd_exit_clk_gating(struct ufs_hba * hba)2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 if (!hba->clk_gating.is_initialized)
2020 return;
2021
2022 ufshcd_remove_clk_gating_sysfs(hba);
2023
2024 /* Ungate the clock if necessary. */
2025 ufshcd_hold(hba);
2026 hba->clk_gating.is_initialized = false;
2027 ufshcd_release(hba);
2028
2029 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 bool queue_resume_work = false;
2035 ktime_t curr_t = ktime_get();
2036 unsigned long flags;
2037
2038 if (!ufshcd_is_clkscaling_supported(hba))
2039 return;
2040
2041 spin_lock_irqsave(hba->host->host_lock, flags);
2042 if (!hba->clk_scaling.active_reqs++)
2043 queue_resume_work = true;
2044
2045 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 return;
2048 }
2049
2050 if (queue_resume_work)
2051 queue_work(hba->clk_scaling.workq,
2052 &hba->clk_scaling.resume_work);
2053
2054 if (!hba->clk_scaling.window_start_t) {
2055 hba->clk_scaling.window_start_t = curr_t;
2056 hba->clk_scaling.tot_busy_t = 0;
2057 hba->clk_scaling.is_busy_started = false;
2058 }
2059
2060 if (!hba->clk_scaling.is_busy_started) {
2061 hba->clk_scaling.busy_start_t = curr_t;
2062 hba->clk_scaling.is_busy_started = true;
2063 }
2064 spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 unsigned long flags;
2071
2072 if (!ufshcd_is_clkscaling_supported(hba))
2073 return;
2074
2075 spin_lock_irqsave(hba->host->host_lock, flags);
2076 hba->clk_scaling.active_reqs--;
2077 if (!scaling->active_reqs && scaling->is_busy_started) {
2078 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 scaling->busy_start_t));
2080 scaling->busy_start_t = 0;
2081 scaling->is_busy_started = false;
2082 }
2083 spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085
ufshcd_monitor_opcode2dir(u8 opcode)2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 return READ;
2090 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 return WRITE;
2092 else
2093 return -EINVAL;
2094 }
2095
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 struct ufshcd_lrb *lrbp)
2098 {
2099 const struct ufs_hba_monitor *m = &hba->monitor;
2100
2101 return (m->enabled && lrbp && lrbp->cmd &&
2102 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 const struct ufshcd_lrb *lrbp)
2108 {
2109 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 unsigned long flags;
2111
2112 spin_lock_irqsave(hba->host->host_lock, flags);
2113 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 hba->monitor.busy_start_ts[dir] = ktime_get();
2115 spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 unsigned long flags;
2122
2123 spin_lock_irqsave(hba->host->host_lock, flags);
2124 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 struct ufs_hba_monitor *m = &hba->monitor;
2127 ktime_t now, inc, lat;
2128
2129 now = lrbp->compl_time_stamp;
2130 inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133
2134 /* Update latencies */
2135 m->nr_req[dir]++;
2136 lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 m->lat_sum[dir] += lat;
2138 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 m->lat_max[dir] = lat;
2140 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 m->lat_min[dir] = lat;
2142
2143 m->nr_queued[dir]--;
2144 /* Push forward the busy start of monitor */
2145 m->busy_start_ts[dir] = now;
2146 }
2147 spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149
2150 /**
2151 * ufshcd_send_command - Send SCSI or device management commands
2152 * @hba: per adapter instance
2153 * @task_tag: Task tag of the command
2154 * @hwq: pointer to hardware queue instance
2155 */
2156 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 struct ufs_hw_queue *hwq)
2159 {
2160 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 unsigned long flags;
2162
2163 lrbp->issue_time_stamp = ktime_get();
2164 lrbp->issue_time_stamp_local_clock = local_clock();
2165 lrbp->compl_time_stamp = ktime_set(0, 0);
2166 lrbp->compl_time_stamp_local_clock = 0;
2167 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 ufshcd_clk_scaling_start_busy(hba);
2169 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 ufshcd_start_monitor(hba, lrbp);
2171
2172 if (is_mcq_enabled(hba)) {
2173 int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 struct utp_transfer_req_desc *dest;
2176
2177 spin_lock(&hwq->sq_lock);
2178 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2179 memcpy(dest, src, utrd_size);
2180 ufshcd_inc_sq_tail(hwq);
2181 spin_unlock(&hwq->sq_lock);
2182 } else {
2183 spin_lock_irqsave(&hba->outstanding_lock, flags);
2184 if (hba->vops && hba->vops->setup_xfer_req)
2185 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2186 !!lrbp->cmd);
2187 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2188 ufshcd_writel(hba, 1 << lrbp->task_tag,
2189 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2190 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2191 }
2192 }
2193
2194 /**
2195 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2196 * @lrbp: pointer to local reference block
2197 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2199 {
2200 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2201 u16 resp_len;
2202 int len;
2203
2204 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2205 if (sense_buffer && resp_len) {
2206 int len_to_copy;
2207
2208 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2209 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2210
2211 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2212 len_to_copy);
2213 }
2214 }
2215
2216 /**
2217 * ufshcd_copy_query_response() - Copy the Query Response and the data
2218 * descriptor
2219 * @hba: per adapter instance
2220 * @lrbp: pointer to local reference block
2221 *
2222 * Return: 0 upon success; < 0 upon failure.
2223 */
2224 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2226 {
2227 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2228
2229 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2230
2231 /* Get the descriptor */
2232 if (hba->dev_cmd.query.descriptor &&
2233 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2234 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2235 GENERAL_UPIU_REQUEST_SIZE;
2236 u16 resp_len;
2237 u16 buf_len;
2238
2239 /* data segment length */
2240 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2241 .data_segment_length);
2242 buf_len = be16_to_cpu(
2243 hba->dev_cmd.query.request.upiu_req.length);
2244 if (likely(buf_len >= resp_len)) {
2245 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2246 } else {
2247 dev_warn(hba->dev,
2248 "%s: rsp size %d is bigger than buffer size %d",
2249 __func__, resp_len, buf_len);
2250 return -EINVAL;
2251 }
2252 }
2253
2254 return 0;
2255 }
2256
2257 /**
2258 * ufshcd_hba_capabilities - Read controller capabilities
2259 * @hba: per adapter instance
2260 *
2261 * Return: 0 on success, negative on error.
2262 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2264 {
2265 int err;
2266
2267 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2268 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2269 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2270
2271 /* nutrs and nutmrs are 0 based values */
2272 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2273 hba->nutmrs =
2274 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2275 hba->reserved_slot = hba->nutrs - 1;
2276
2277 /* Read crypto capabilities */
2278 err = ufshcd_hba_init_crypto_capabilities(hba);
2279 if (err) {
2280 dev_err(hba->dev, "crypto setup failed\n");
2281 return err;
2282 }
2283
2284 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2285 if (!hba->mcq_sup)
2286 return 0;
2287
2288 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2289 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2290 hba->mcq_capabilities);
2291
2292 return 0;
2293 }
2294
2295 /**
2296 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2297 * to accept UIC commands
2298 * @hba: per adapter instance
2299 *
2300 * Return: true on success, else false.
2301 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2302 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2303 {
2304 u32 val;
2305 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2306 500, UIC_CMD_TIMEOUT * 1000, false, hba,
2307 REG_CONTROLLER_STATUS);
2308 return ret == 0 ? true : false;
2309 }
2310
2311 /**
2312 * ufshcd_get_upmcrs - Get the power mode change request status
2313 * @hba: Pointer to adapter instance
2314 *
2315 * This function gets the UPMCRS field of HCS register
2316 *
2317 * Return: value of UPMCRS field.
2318 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2319 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2320 {
2321 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2322 }
2323
2324 /**
2325 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2326 * @hba: per adapter instance
2327 * @uic_cmd: UIC command
2328 */
2329 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2330 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2331 {
2332 lockdep_assert_held(&hba->uic_cmd_mutex);
2333
2334 WARN_ON(hba->active_uic_cmd);
2335
2336 hba->active_uic_cmd = uic_cmd;
2337
2338 /* Write Args */
2339 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2340 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2341 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2342
2343 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2344
2345 /* Write UIC Cmd */
2346 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2347 REG_UIC_COMMAND);
2348 }
2349
2350 /**
2351 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2352 * @hba: per adapter instance
2353 * @uic_cmd: UIC command
2354 *
2355 * Return: 0 only if success.
2356 */
2357 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2358 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2359 {
2360 int ret;
2361 unsigned long flags;
2362
2363 lockdep_assert_held(&hba->uic_cmd_mutex);
2364
2365 if (wait_for_completion_timeout(&uic_cmd->done,
2366 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2367 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2368 } else {
2369 ret = -ETIMEDOUT;
2370 dev_err(hba->dev,
2371 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2372 uic_cmd->command, uic_cmd->argument3);
2373
2374 if (!uic_cmd->cmd_active) {
2375 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2376 __func__);
2377 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2378 }
2379 }
2380
2381 spin_lock_irqsave(hba->host->host_lock, flags);
2382 hba->active_uic_cmd = NULL;
2383 spin_unlock_irqrestore(hba->host->host_lock, flags);
2384
2385 return ret;
2386 }
2387
2388 /**
2389 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2390 * @hba: per adapter instance
2391 * @uic_cmd: UIC command
2392 * @completion: initialize the completion only if this is set to true
2393 *
2394 * Return: 0 only if success.
2395 */
2396 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2397 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2398 bool completion)
2399 {
2400 lockdep_assert_held(&hba->uic_cmd_mutex);
2401
2402 if (!ufshcd_ready_for_uic_cmd(hba)) {
2403 dev_err(hba->dev,
2404 "Controller not ready to accept UIC commands\n");
2405 return -EIO;
2406 }
2407
2408 if (completion)
2409 init_completion(&uic_cmd->done);
2410
2411 uic_cmd->cmd_active = 1;
2412 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2413
2414 return 0;
2415 }
2416
2417 /**
2418 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2419 * @hba: per adapter instance
2420 * @uic_cmd: UIC command
2421 *
2422 * Return: 0 only if success.
2423 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2424 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2425 {
2426 int ret;
2427
2428 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2429 return 0;
2430
2431 ufshcd_hold(hba);
2432 mutex_lock(&hba->uic_cmd_mutex);
2433 ufshcd_add_delay_before_dme_cmd(hba);
2434
2435 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2436 if (!ret)
2437 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2438
2439 mutex_unlock(&hba->uic_cmd_mutex);
2440
2441 ufshcd_release(hba);
2442 return ret;
2443 }
2444
2445 /**
2446 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2447 * @hba: per-adapter instance
2448 * @lrbp: pointer to local reference block
2449 * @sg_entries: The number of sg lists actually used
2450 * @sg_list: Pointer to SG list
2451 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2452 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2453 struct scatterlist *sg_list)
2454 {
2455 struct ufshcd_sg_entry *prd;
2456 struct scatterlist *sg;
2457 int i;
2458
2459 if (sg_entries) {
2460
2461 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2462 lrbp->utr_descriptor_ptr->prd_table_length =
2463 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2464 else
2465 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2466
2467 prd = lrbp->ucd_prdt_ptr;
2468
2469 for_each_sg(sg_list, sg, sg_entries, i) {
2470 const unsigned int len = sg_dma_len(sg);
2471
2472 /*
2473 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2474 * based value that indicates the length, in bytes, of
2475 * the data block. A maximum of length of 256KB may
2476 * exist for any entry. Bits 1:0 of this field shall be
2477 * 11b to indicate Dword granularity. A value of '3'
2478 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2479 */
2480 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2481 prd->size = cpu_to_le32(len - 1);
2482 prd->addr = cpu_to_le64(sg->dma_address);
2483 prd->reserved = 0;
2484 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2485 }
2486 } else {
2487 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2488 }
2489 }
2490
2491 /**
2492 * ufshcd_map_sg - Map scatter-gather list to prdt
2493 * @hba: per adapter instance
2494 * @lrbp: pointer to local reference block
2495 *
2496 * Return: 0 in case of success, non-zero value in case of failure.
2497 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2498 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2499 {
2500 struct scsi_cmnd *cmd = lrbp->cmd;
2501 int sg_segments = scsi_dma_map(cmd);
2502
2503 if (sg_segments < 0)
2504 return sg_segments;
2505
2506 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2507
2508 return 0;
2509 }
2510
2511 /**
2512 * ufshcd_enable_intr - enable interrupts
2513 * @hba: per adapter instance
2514 * @intrs: interrupt bits
2515 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2516 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2517 {
2518 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2519
2520 if (hba->ufs_version == ufshci_version(1, 0)) {
2521 u32 rw;
2522 rw = set & INTERRUPT_MASK_RW_VER_10;
2523 set = rw | ((set ^ intrs) & intrs);
2524 } else {
2525 set |= intrs;
2526 }
2527
2528 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2529 }
2530
2531 /**
2532 * ufshcd_disable_intr - disable interrupts
2533 * @hba: per adapter instance
2534 * @intrs: interrupt bits
2535 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2536 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2537 {
2538 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2539
2540 if (hba->ufs_version == ufshci_version(1, 0)) {
2541 u32 rw;
2542 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2543 ~(intrs & INTERRUPT_MASK_RW_VER_10);
2544 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2545
2546 } else {
2547 set &= ~intrs;
2548 }
2549
2550 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2551 }
2552
2553 /**
2554 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2555 * descriptor according to request
2556 * @lrbp: pointer to local reference block
2557 * @upiu_flags: flags required in the header
2558 * @cmd_dir: requests data direction
2559 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2560 */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2561 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2562 enum dma_data_direction cmd_dir, int ehs_length)
2563 {
2564 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2565 struct request_desc_header *h = &req_desc->header;
2566 enum utp_data_direction data_direction;
2567
2568 *h = (typeof(*h)){ };
2569
2570 if (cmd_dir == DMA_FROM_DEVICE) {
2571 data_direction = UTP_DEVICE_TO_HOST;
2572 *upiu_flags = UPIU_CMD_FLAGS_READ;
2573 } else if (cmd_dir == DMA_TO_DEVICE) {
2574 data_direction = UTP_HOST_TO_DEVICE;
2575 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2576 } else {
2577 data_direction = UTP_NO_DATA_TRANSFER;
2578 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2579 }
2580
2581 h->command_type = lrbp->command_type;
2582 h->data_direction = data_direction;
2583 h->ehs_length = ehs_length;
2584
2585 if (lrbp->intr_cmd)
2586 h->interrupt = 1;
2587
2588 /* Prepare crypto related dwords */
2589 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2590
2591 /*
2592 * assigning invalid value for command status. Controller
2593 * updates OCS on command completion, with the command
2594 * status
2595 */
2596 h->ocs = OCS_INVALID_COMMAND_STATUS;
2597
2598 req_desc->prd_table_length = 0;
2599 }
2600
2601 /**
2602 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2603 * for scsi commands
2604 * @lrbp: local reference block pointer
2605 * @upiu_flags: flags
2606 */
2607 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2608 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2609 {
2610 struct scsi_cmnd *cmd = lrbp->cmd;
2611 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2612 unsigned short cdb_len;
2613
2614 ucd_req_ptr->header = (struct utp_upiu_header){
2615 .transaction_code = UPIU_TRANSACTION_COMMAND,
2616 .flags = upiu_flags,
2617 .lun = lrbp->lun,
2618 .task_tag = lrbp->task_tag,
2619 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2620 };
2621
2622 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2623
2624 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2625 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2626 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2627
2628 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2629 }
2630
2631 /**
2632 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2633 * @hba: UFS hba
2634 * @lrbp: local reference block pointer
2635 * @upiu_flags: flags
2636 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2637 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2638 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2639 {
2640 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2641 struct ufs_query *query = &hba->dev_cmd.query;
2642 u16 len = be16_to_cpu(query->request.upiu_req.length);
2643
2644 /* Query request header */
2645 ucd_req_ptr->header = (struct utp_upiu_header){
2646 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2647 .flags = upiu_flags,
2648 .lun = lrbp->lun,
2649 .task_tag = lrbp->task_tag,
2650 .query_function = query->request.query_func,
2651 /* Data segment length only need for WRITE_DESC */
2652 .data_segment_length =
2653 query->request.upiu_req.opcode ==
2654 UPIU_QUERY_OPCODE_WRITE_DESC ?
2655 cpu_to_be16(len) :
2656 0,
2657 };
2658
2659 /* Copy the Query Request buffer as is */
2660 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2661 QUERY_OSF_SIZE);
2662
2663 /* Copy the Descriptor */
2664 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2665 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2666
2667 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2668 }
2669
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2670 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2671 {
2672 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2673
2674 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2675
2676 ucd_req_ptr->header = (struct utp_upiu_header){
2677 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2678 .task_tag = lrbp->task_tag,
2679 };
2680
2681 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2682 }
2683
2684 /**
2685 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2686 * for Device Management Purposes
2687 * @hba: per adapter instance
2688 * @lrbp: pointer to local reference block
2689 *
2690 * Return: 0 upon success; < 0 upon failure.
2691 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2692 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2693 struct ufshcd_lrb *lrbp)
2694 {
2695 u8 upiu_flags;
2696 int ret = 0;
2697
2698 if (hba->ufs_version <= ufshci_version(1, 1))
2699 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2700 else
2701 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2702
2703 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2704 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2705 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2706 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2707 ufshcd_prepare_utp_nop_upiu(lrbp);
2708 else
2709 ret = -EINVAL;
2710
2711 return ret;
2712 }
2713
2714 /**
2715 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2716 * for SCSI Purposes
2717 * @hba: per adapter instance
2718 * @lrbp: pointer to local reference block
2719 *
2720 * Return: 0 upon success; < 0 upon failure.
2721 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2722 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2723 {
2724 u8 upiu_flags;
2725 int ret = 0;
2726
2727 if (hba->ufs_version <= ufshci_version(1, 1))
2728 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2729 else
2730 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2731
2732 if (likely(lrbp->cmd)) {
2733 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2734 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2735 } else {
2736 ret = -EINVAL;
2737 }
2738
2739 return ret;
2740 }
2741
2742 /**
2743 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2744 * @upiu_wlun_id: UPIU W-LUN id
2745 *
2746 * Return: SCSI W-LUN id.
2747 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2748 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2749 {
2750 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2751 }
2752
is_device_wlun(struct scsi_device * sdev)2753 static inline bool is_device_wlun(struct scsi_device *sdev)
2754 {
2755 return sdev->lun ==
2756 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2757 }
2758
2759 /*
2760 * Associate the UFS controller queue with the default and poll HCTX types.
2761 * Initialize the mq_map[] arrays.
2762 */
ufshcd_map_queues(struct Scsi_Host * shost)2763 static void ufshcd_map_queues(struct Scsi_Host *shost)
2764 {
2765 struct ufs_hba *hba = shost_priv(shost);
2766 int i, queue_offset = 0;
2767
2768 if (!is_mcq_supported(hba)) {
2769 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2770 hba->nr_queues[HCTX_TYPE_READ] = 0;
2771 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2772 hba->nr_hw_queues = 1;
2773 }
2774
2775 for (i = 0; i < shost->nr_maps; i++) {
2776 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2777
2778 map->nr_queues = hba->nr_queues[i];
2779 if (!map->nr_queues)
2780 continue;
2781 map->queue_offset = queue_offset;
2782 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2783 map->queue_offset = 0;
2784
2785 blk_mq_map_queues(map);
2786 queue_offset += map->nr_queues;
2787 }
2788 }
2789
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2790 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2791 {
2792 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2793 i * ufshcd_get_ucd_size(hba);
2794 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2795 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2796 i * ufshcd_get_ucd_size(hba);
2797 u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2798 response_upiu);
2799 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2800
2801 lrb->utr_descriptor_ptr = utrdlp + i;
2802 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2803 i * sizeof(struct utp_transfer_req_desc);
2804 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2805 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2806 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2807 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2808 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2809 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2810 }
2811
2812 /**
2813 * ufshcd_queuecommand - main entry point for SCSI requests
2814 * @host: SCSI host pointer
2815 * @cmd: command from SCSI Midlayer
2816 *
2817 * Return: 0 for success, non-zero in case of failure.
2818 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2819 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2820 {
2821 struct ufs_hba *hba = shost_priv(host);
2822 int tag = scsi_cmd_to_rq(cmd)->tag;
2823 struct ufshcd_lrb *lrbp;
2824 int err = 0;
2825 struct ufs_hw_queue *hwq = NULL;
2826
2827 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2828
2829 switch (hba->ufshcd_state) {
2830 case UFSHCD_STATE_OPERATIONAL:
2831 break;
2832 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2833 /*
2834 * SCSI error handler can call ->queuecommand() while UFS error
2835 * handler is in progress. Error interrupts could change the
2836 * state from UFSHCD_STATE_RESET to
2837 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2838 * being issued in that case.
2839 */
2840 if (ufshcd_eh_in_progress(hba)) {
2841 err = SCSI_MLQUEUE_HOST_BUSY;
2842 goto out;
2843 }
2844 break;
2845 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2846 /*
2847 * pm_runtime_get_sync() is used at error handling preparation
2848 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2849 * PM ops, it can never be finished if we let SCSI layer keep
2850 * retrying it, which gets err handler stuck forever. Neither
2851 * can we let the scsi cmd pass through, because UFS is in bad
2852 * state, the scsi cmd may eventually time out, which will get
2853 * err handler blocked for too long. So, just fail the scsi cmd
2854 * sent from PM ops, err handler can recover PM error anyways.
2855 */
2856 if (hba->pm_op_in_progress) {
2857 hba->force_reset = true;
2858 set_host_byte(cmd, DID_BAD_TARGET);
2859 scsi_done(cmd);
2860 goto out;
2861 }
2862 fallthrough;
2863 case UFSHCD_STATE_RESET:
2864 err = SCSI_MLQUEUE_HOST_BUSY;
2865 goto out;
2866 case UFSHCD_STATE_ERROR:
2867 set_host_byte(cmd, DID_ERROR);
2868 scsi_done(cmd);
2869 goto out;
2870 }
2871
2872 hba->req_abort_count = 0;
2873
2874 ufshcd_hold(hba);
2875
2876 lrbp = &hba->lrb[tag];
2877 lrbp->cmd = cmd;
2878 lrbp->task_tag = tag;
2879 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2880 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2881
2882 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2883
2884 lrbp->req_abort_skip = false;
2885
2886 ufshcd_comp_scsi_upiu(hba, lrbp);
2887
2888 err = ufshcd_map_sg(hba, lrbp);
2889 if (err) {
2890 ufshcd_release(hba);
2891 goto out;
2892 }
2893
2894 if (is_mcq_enabled(hba))
2895 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2896
2897 ufshcd_send_command(hba, tag, hwq);
2898
2899 out:
2900 if (ufs_trigger_eh()) {
2901 unsigned long flags;
2902
2903 spin_lock_irqsave(hba->host->host_lock, flags);
2904 ufshcd_schedule_eh_work(hba);
2905 spin_unlock_irqrestore(hba->host->host_lock, flags);
2906 }
2907
2908 return err;
2909 }
2910
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2911 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2912 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2913 {
2914 lrbp->cmd = NULL;
2915 lrbp->task_tag = tag;
2916 lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2917 lrbp->intr_cmd = true; /* No interrupt aggregation */
2918 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2919 hba->dev_cmd.type = cmd_type;
2920
2921 return ufshcd_compose_devman_upiu(hba, lrbp);
2922 }
2923
2924 /*
2925 * Check with the block layer if the command is inflight
2926 * @cmd: command to check.
2927 *
2928 * Return: true if command is inflight; false if not.
2929 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)2930 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2931 {
2932 struct request *rq;
2933
2934 if (!cmd)
2935 return false;
2936
2937 rq = scsi_cmd_to_rq(cmd);
2938 if (!blk_mq_request_started(rq))
2939 return false;
2940
2941 return true;
2942 }
2943
2944 /*
2945 * Clear the pending command in the controller and wait until
2946 * the controller confirms that the command has been cleared.
2947 * @hba: per adapter instance
2948 * @task_tag: The tag number of the command to be cleared.
2949 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)2950 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2951 {
2952 u32 mask;
2953 unsigned long flags;
2954 int err;
2955
2956 if (is_mcq_enabled(hba)) {
2957 /*
2958 * MCQ mode. Clean up the MCQ resources similar to
2959 * what the ufshcd_utrl_clear() does for SDB mode.
2960 */
2961 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2962 if (err) {
2963 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2964 __func__, task_tag, err);
2965 return err;
2966 }
2967 return 0;
2968 }
2969
2970 mask = 1U << task_tag;
2971
2972 /* clear outstanding transaction before retry */
2973 spin_lock_irqsave(hba->host->host_lock, flags);
2974 ufshcd_utrl_clear(hba, mask);
2975 spin_unlock_irqrestore(hba->host->host_lock, flags);
2976
2977 /*
2978 * wait for h/w to clear corresponding bit in door-bell.
2979 * max. wait is 1 sec.
2980 */
2981 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2982 mask, ~mask, 1000, 1000);
2983 }
2984
2985 /**
2986 * ufshcd_dev_cmd_completion() - handles device management command responses
2987 * @hba: per adapter instance
2988 * @lrbp: pointer to local reference block
2989 *
2990 * Return: 0 upon success; < 0 upon failure.
2991 */
2992 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2993 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2994 {
2995 enum upiu_response_transaction resp;
2996 int err = 0;
2997
2998 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2999 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3000
3001 switch (resp) {
3002 case UPIU_TRANSACTION_NOP_IN:
3003 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3004 err = -EINVAL;
3005 dev_err(hba->dev, "%s: unexpected response %x\n",
3006 __func__, resp);
3007 }
3008 break;
3009 case UPIU_TRANSACTION_QUERY_RSP: {
3010 u8 response = lrbp->ucd_rsp_ptr->header.response;
3011
3012 if (response == 0)
3013 err = ufshcd_copy_query_response(hba, lrbp);
3014 break;
3015 }
3016 case UPIU_TRANSACTION_REJECT_UPIU:
3017 /* TODO: handle Reject UPIU Response */
3018 err = -EPERM;
3019 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3020 __func__);
3021 break;
3022 case UPIU_TRANSACTION_RESPONSE:
3023 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3024 err = -EINVAL;
3025 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3026 }
3027 break;
3028 default:
3029 err = -EINVAL;
3030 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3031 __func__, resp);
3032 break;
3033 }
3034
3035 return err;
3036 }
3037
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3038 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3039 struct ufshcd_lrb *lrbp, int max_timeout)
3040 {
3041 unsigned long time_left = msecs_to_jiffies(max_timeout);
3042 unsigned long flags;
3043 bool pending;
3044 int err;
3045
3046 retry:
3047 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3048 time_left);
3049
3050 if (likely(time_left)) {
3051 /*
3052 * The completion handler called complete() and the caller of
3053 * this function still owns the @lrbp tag so the code below does
3054 * not trigger any race conditions.
3055 */
3056 hba->dev_cmd.complete = NULL;
3057 err = ufshcd_get_tr_ocs(lrbp, NULL);
3058 if (!err)
3059 err = ufshcd_dev_cmd_completion(hba, lrbp);
3060 } else {
3061 err = -ETIMEDOUT;
3062 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3063 __func__, lrbp->task_tag);
3064
3065 /* MCQ mode */
3066 if (is_mcq_enabled(hba)) {
3067 err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3068 hba->dev_cmd.complete = NULL;
3069 return err;
3070 }
3071
3072 /* SDB mode */
3073 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3074 /* successfully cleared the command, retry if needed */
3075 err = -EAGAIN;
3076 /*
3077 * Since clearing the command succeeded we also need to
3078 * clear the task tag bit from the outstanding_reqs
3079 * variable.
3080 */
3081 spin_lock_irqsave(&hba->outstanding_lock, flags);
3082 pending = test_bit(lrbp->task_tag,
3083 &hba->outstanding_reqs);
3084 if (pending) {
3085 hba->dev_cmd.complete = NULL;
3086 __clear_bit(lrbp->task_tag,
3087 &hba->outstanding_reqs);
3088 }
3089 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3090
3091 if (!pending) {
3092 /*
3093 * The completion handler ran while we tried to
3094 * clear the command.
3095 */
3096 time_left = 1;
3097 goto retry;
3098 }
3099 } else {
3100 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3101 __func__, lrbp->task_tag);
3102
3103 spin_lock_irqsave(&hba->outstanding_lock, flags);
3104 pending = test_bit(lrbp->task_tag,
3105 &hba->outstanding_reqs);
3106 if (pending)
3107 hba->dev_cmd.complete = NULL;
3108 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3109
3110 if (!pending) {
3111 /*
3112 * The completion handler ran while we tried to
3113 * clear the command.
3114 */
3115 time_left = 1;
3116 goto retry;
3117 }
3118 }
3119 }
3120
3121 return err;
3122 }
3123
3124 /**
3125 * ufshcd_exec_dev_cmd - API for sending device management requests
3126 * @hba: UFS hba
3127 * @cmd_type: specifies the type (NOP, Query...)
3128 * @timeout: timeout in milliseconds
3129 *
3130 * Return: 0 upon success; < 0 upon failure.
3131 *
3132 * NOTE: Since there is only one available tag for device management commands,
3133 * it is expected you hold the hba->dev_cmd.lock mutex.
3134 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3135 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3136 enum dev_cmd_type cmd_type, int timeout)
3137 {
3138 DECLARE_COMPLETION_ONSTACK(wait);
3139 const u32 tag = hba->reserved_slot;
3140 struct ufshcd_lrb *lrbp;
3141 int err;
3142
3143 /* Protects use of hba->reserved_slot. */
3144 lockdep_assert_held(&hba->dev_cmd.lock);
3145
3146 down_read(&hba->clk_scaling_lock);
3147
3148 lrbp = &hba->lrb[tag];
3149 lrbp->cmd = NULL;
3150 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3151 if (unlikely(err))
3152 goto out;
3153
3154 hba->dev_cmd.complete = &wait;
3155
3156 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3157
3158 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3159 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3160 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3161 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3162
3163 out:
3164 up_read(&hba->clk_scaling_lock);
3165 return err;
3166 }
3167
3168 /**
3169 * ufshcd_init_query() - init the query response and request parameters
3170 * @hba: per-adapter instance
3171 * @request: address of the request pointer to be initialized
3172 * @response: address of the response pointer to be initialized
3173 * @opcode: operation to perform
3174 * @idn: flag idn to access
3175 * @index: LU number to access
3176 * @selector: query/flag/descriptor further identification
3177 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3178 static inline void ufshcd_init_query(struct ufs_hba *hba,
3179 struct ufs_query_req **request, struct ufs_query_res **response,
3180 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3181 {
3182 *request = &hba->dev_cmd.query.request;
3183 *response = &hba->dev_cmd.query.response;
3184 memset(*request, 0, sizeof(struct ufs_query_req));
3185 memset(*response, 0, sizeof(struct ufs_query_res));
3186 (*request)->upiu_req.opcode = opcode;
3187 (*request)->upiu_req.idn = idn;
3188 (*request)->upiu_req.index = index;
3189 (*request)->upiu_req.selector = selector;
3190 }
3191
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3192 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3193 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3194 {
3195 int ret;
3196 int retries;
3197
3198 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3199 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3200 if (ret)
3201 dev_dbg(hba->dev,
3202 "%s: failed with error %d, retries %d\n",
3203 __func__, ret, retries);
3204 else
3205 break;
3206 }
3207
3208 if (ret)
3209 dev_err(hba->dev,
3210 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3211 __func__, opcode, idn, ret, retries);
3212 return ret;
3213 }
3214
3215 /**
3216 * ufshcd_query_flag() - API function for sending flag query requests
3217 * @hba: per-adapter instance
3218 * @opcode: flag query to perform
3219 * @idn: flag idn to access
3220 * @index: flag index to access
3221 * @flag_res: the flag value after the query request completes
3222 *
3223 * Return: 0 for success, non-zero in case of failure.
3224 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3225 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3226 enum flag_idn idn, u8 index, bool *flag_res)
3227 {
3228 struct ufs_query_req *request = NULL;
3229 struct ufs_query_res *response = NULL;
3230 int err, selector = 0;
3231 int timeout = QUERY_REQ_TIMEOUT;
3232
3233 BUG_ON(!hba);
3234
3235 ufshcd_hold(hba);
3236 mutex_lock(&hba->dev_cmd.lock);
3237 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3238 selector);
3239
3240 switch (opcode) {
3241 case UPIU_QUERY_OPCODE_SET_FLAG:
3242 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3243 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3244 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3245 break;
3246 case UPIU_QUERY_OPCODE_READ_FLAG:
3247 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3248 if (!flag_res) {
3249 /* No dummy reads */
3250 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3251 __func__);
3252 err = -EINVAL;
3253 goto out_unlock;
3254 }
3255 break;
3256 default:
3257 dev_err(hba->dev,
3258 "%s: Expected query flag opcode but got = %d\n",
3259 __func__, opcode);
3260 err = -EINVAL;
3261 goto out_unlock;
3262 }
3263
3264 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3265
3266 if (err) {
3267 dev_err(hba->dev,
3268 "%s: Sending flag query for idn %d failed, err = %d\n",
3269 __func__, idn, err);
3270 goto out_unlock;
3271 }
3272
3273 if (flag_res)
3274 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3275 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3276
3277 out_unlock:
3278 mutex_unlock(&hba->dev_cmd.lock);
3279 ufshcd_release(hba);
3280 return err;
3281 }
3282
3283 /**
3284 * ufshcd_query_attr - API function for sending attribute requests
3285 * @hba: per-adapter instance
3286 * @opcode: attribute opcode
3287 * @idn: attribute idn to access
3288 * @index: index field
3289 * @selector: selector field
3290 * @attr_val: the attribute value after the query request completes
3291 *
3292 * Return: 0 for success, non-zero in case of failure.
3293 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3294 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3295 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3296 {
3297 struct ufs_query_req *request = NULL;
3298 struct ufs_query_res *response = NULL;
3299 int err;
3300
3301 BUG_ON(!hba);
3302
3303 if (!attr_val) {
3304 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3305 __func__, opcode);
3306 return -EINVAL;
3307 }
3308
3309 ufshcd_hold(hba);
3310
3311 mutex_lock(&hba->dev_cmd.lock);
3312 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3313 selector);
3314
3315 switch (opcode) {
3316 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3317 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3318 request->upiu_req.value = cpu_to_be32(*attr_val);
3319 break;
3320 case UPIU_QUERY_OPCODE_READ_ATTR:
3321 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3322 break;
3323 default:
3324 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3325 __func__, opcode);
3326 err = -EINVAL;
3327 goto out_unlock;
3328 }
3329
3330 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3331
3332 if (err) {
3333 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3334 __func__, opcode, idn, index, err);
3335 goto out_unlock;
3336 }
3337
3338 *attr_val = be32_to_cpu(response->upiu_res.value);
3339
3340 out_unlock:
3341 mutex_unlock(&hba->dev_cmd.lock);
3342 ufshcd_release(hba);
3343 return err;
3344 }
3345
3346 /**
3347 * ufshcd_query_attr_retry() - API function for sending query
3348 * attribute with retries
3349 * @hba: per-adapter instance
3350 * @opcode: attribute opcode
3351 * @idn: attribute idn to access
3352 * @index: index field
3353 * @selector: selector field
3354 * @attr_val: the attribute value after the query request
3355 * completes
3356 *
3357 * Return: 0 for success, non-zero in case of failure.
3358 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3359 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3360 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3361 u32 *attr_val)
3362 {
3363 int ret = 0;
3364 u32 retries;
3365
3366 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3367 ret = ufshcd_query_attr(hba, opcode, idn, index,
3368 selector, attr_val);
3369 if (ret)
3370 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3371 __func__, ret, retries);
3372 else
3373 break;
3374 }
3375
3376 if (ret)
3377 dev_err(hba->dev,
3378 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3379 __func__, idn, ret, QUERY_REQ_RETRIES);
3380 return ret;
3381 }
3382
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3383 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3384 enum query_opcode opcode, enum desc_idn idn, u8 index,
3385 u8 selector, u8 *desc_buf, int *buf_len)
3386 {
3387 struct ufs_query_req *request = NULL;
3388 struct ufs_query_res *response = NULL;
3389 int err;
3390
3391 BUG_ON(!hba);
3392
3393 if (!desc_buf) {
3394 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3395 __func__, opcode);
3396 return -EINVAL;
3397 }
3398
3399 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3400 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3401 __func__, *buf_len);
3402 return -EINVAL;
3403 }
3404
3405 ufshcd_hold(hba);
3406
3407 mutex_lock(&hba->dev_cmd.lock);
3408 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3409 selector);
3410 hba->dev_cmd.query.descriptor = desc_buf;
3411 request->upiu_req.length = cpu_to_be16(*buf_len);
3412
3413 switch (opcode) {
3414 case UPIU_QUERY_OPCODE_WRITE_DESC:
3415 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3416 break;
3417 case UPIU_QUERY_OPCODE_READ_DESC:
3418 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3419 break;
3420 default:
3421 dev_err(hba->dev,
3422 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3423 __func__, opcode);
3424 err = -EINVAL;
3425 goto out_unlock;
3426 }
3427
3428 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3429
3430 if (err) {
3431 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3432 __func__, opcode, idn, index, err);
3433 goto out_unlock;
3434 }
3435
3436 *buf_len = be16_to_cpu(response->upiu_res.length);
3437
3438 out_unlock:
3439 hba->dev_cmd.query.descriptor = NULL;
3440 mutex_unlock(&hba->dev_cmd.lock);
3441 ufshcd_release(hba);
3442 return err;
3443 }
3444
3445 /**
3446 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3447 * @hba: per-adapter instance
3448 * @opcode: attribute opcode
3449 * @idn: attribute idn to access
3450 * @index: index field
3451 * @selector: selector field
3452 * @desc_buf: the buffer that contains the descriptor
3453 * @buf_len: length parameter passed to the device
3454 *
3455 * The buf_len parameter will contain, on return, the length parameter
3456 * received on the response.
3457 *
3458 * Return: 0 for success, non-zero in case of failure.
3459 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3460 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3461 enum query_opcode opcode,
3462 enum desc_idn idn, u8 index,
3463 u8 selector,
3464 u8 *desc_buf, int *buf_len)
3465 {
3466 int err;
3467 int retries;
3468
3469 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3470 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3471 selector, desc_buf, buf_len);
3472 if (!err || err == -EINVAL)
3473 break;
3474 }
3475
3476 return err;
3477 }
3478
3479 /**
3480 * ufshcd_read_desc_param - read the specified descriptor parameter
3481 * @hba: Pointer to adapter instance
3482 * @desc_id: descriptor idn value
3483 * @desc_index: descriptor index
3484 * @param_offset: offset of the parameter to read
3485 * @param_read_buf: pointer to buffer where parameter would be read
3486 * @param_size: sizeof(param_read_buf)
3487 *
3488 * Return: 0 in case of success, non-zero otherwise.
3489 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3490 int ufshcd_read_desc_param(struct ufs_hba *hba,
3491 enum desc_idn desc_id,
3492 int desc_index,
3493 u8 param_offset,
3494 u8 *param_read_buf,
3495 u8 param_size)
3496 {
3497 int ret;
3498 u8 *desc_buf;
3499 int buff_len = QUERY_DESC_MAX_SIZE;
3500 bool is_kmalloc = true;
3501
3502 /* Safety check */
3503 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3504 return -EINVAL;
3505
3506 /* Check whether we need temp memory */
3507 if (param_offset != 0 || param_size < buff_len) {
3508 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3509 if (!desc_buf)
3510 return -ENOMEM;
3511 } else {
3512 desc_buf = param_read_buf;
3513 is_kmalloc = false;
3514 }
3515
3516 /* Request for full descriptor */
3517 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3518 desc_id, desc_index, 0,
3519 desc_buf, &buff_len);
3520 if (ret) {
3521 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3522 __func__, desc_id, desc_index, param_offset, ret);
3523 goto out;
3524 }
3525
3526 /* Update descriptor length */
3527 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3528
3529 if (param_offset >= buff_len) {
3530 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3531 __func__, param_offset, desc_id, buff_len);
3532 ret = -EINVAL;
3533 goto out;
3534 }
3535
3536 /* Sanity check */
3537 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3538 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3539 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3540 ret = -EINVAL;
3541 goto out;
3542 }
3543
3544 if (is_kmalloc) {
3545 /* Make sure we don't copy more data than available */
3546 if (param_offset >= buff_len)
3547 ret = -EINVAL;
3548 else
3549 memcpy(param_read_buf, &desc_buf[param_offset],
3550 min_t(u32, param_size, buff_len - param_offset));
3551 }
3552 out:
3553 if (is_kmalloc)
3554 kfree(desc_buf);
3555 return ret;
3556 }
3557
3558 /**
3559 * struct uc_string_id - unicode string
3560 *
3561 * @len: size of this descriptor inclusive
3562 * @type: descriptor type
3563 * @uc: unicode string character
3564 */
3565 struct uc_string_id {
3566 u8 len;
3567 u8 type;
3568 wchar_t uc[];
3569 } __packed;
3570
3571 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3572 static inline char ufshcd_remove_non_printable(u8 ch)
3573 {
3574 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3575 }
3576
3577 /**
3578 * ufshcd_read_string_desc - read string descriptor
3579 * @hba: pointer to adapter instance
3580 * @desc_index: descriptor index
3581 * @buf: pointer to buffer where descriptor would be read,
3582 * the caller should free the memory.
3583 * @ascii: if true convert from unicode to ascii characters
3584 * null terminated string.
3585 *
3586 * Return:
3587 * * string size on success.
3588 * * -ENOMEM: on allocation failure
3589 * * -EINVAL: on a wrong parameter
3590 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3591 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3592 u8 **buf, bool ascii)
3593 {
3594 struct uc_string_id *uc_str;
3595 u8 *str;
3596 int ret;
3597
3598 if (!buf)
3599 return -EINVAL;
3600
3601 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3602 if (!uc_str)
3603 return -ENOMEM;
3604
3605 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3606 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3607 if (ret < 0) {
3608 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3609 QUERY_REQ_RETRIES, ret);
3610 str = NULL;
3611 goto out;
3612 }
3613
3614 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3615 dev_dbg(hba->dev, "String Desc is of zero length\n");
3616 str = NULL;
3617 ret = 0;
3618 goto out;
3619 }
3620
3621 if (ascii) {
3622 ssize_t ascii_len;
3623 int i;
3624 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3625 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3626 str = kzalloc(ascii_len, GFP_KERNEL);
3627 if (!str) {
3628 ret = -ENOMEM;
3629 goto out;
3630 }
3631
3632 /*
3633 * the descriptor contains string in UTF16 format
3634 * we need to convert to utf-8 so it can be displayed
3635 */
3636 ret = utf16s_to_utf8s(uc_str->uc,
3637 uc_str->len - QUERY_DESC_HDR_SIZE,
3638 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3639
3640 /* replace non-printable or non-ASCII characters with spaces */
3641 for (i = 0; i < ret; i++)
3642 str[i] = ufshcd_remove_non_printable(str[i]);
3643
3644 str[ret++] = '\0';
3645
3646 } else {
3647 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3648 if (!str) {
3649 ret = -ENOMEM;
3650 goto out;
3651 }
3652 ret = uc_str->len;
3653 }
3654 out:
3655 *buf = str;
3656 kfree(uc_str);
3657 return ret;
3658 }
3659
3660 /**
3661 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3662 * @hba: Pointer to adapter instance
3663 * @lun: lun id
3664 * @param_offset: offset of the parameter to read
3665 * @param_read_buf: pointer to buffer where parameter would be read
3666 * @param_size: sizeof(param_read_buf)
3667 *
3668 * Return: 0 in case of success, non-zero otherwise.
3669 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3670 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3671 int lun,
3672 enum unit_desc_param param_offset,
3673 u8 *param_read_buf,
3674 u32 param_size)
3675 {
3676 /*
3677 * Unit descriptors are only available for general purpose LUs (LUN id
3678 * from 0 to 7) and RPMB Well known LU.
3679 */
3680 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3681 return -EOPNOTSUPP;
3682
3683 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3684 param_offset, param_read_buf, param_size);
3685 }
3686
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3687 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3688 {
3689 int err = 0;
3690 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3691
3692 if (hba->dev_info.wspecversion >= 0x300) {
3693 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3694 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3695 &gating_wait);
3696 if (err)
3697 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3698 err, gating_wait);
3699
3700 if (gating_wait == 0) {
3701 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3702 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3703 gating_wait);
3704 }
3705
3706 hba->dev_info.clk_gating_wait_us = gating_wait;
3707 }
3708
3709 return err;
3710 }
3711
3712 /**
3713 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3714 * @hba: per adapter instance
3715 *
3716 * 1. Allocate DMA memory for Command Descriptor array
3717 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3718 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3719 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3720 * (UTMRDL)
3721 * 4. Allocate memory for local reference block(lrb).
3722 *
3723 * Return: 0 for success, non-zero in case of failure.
3724 */
ufshcd_memory_alloc(struct ufs_hba * hba)3725 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3726 {
3727 size_t utmrdl_size, utrdl_size, ucdl_size;
3728
3729 /* Allocate memory for UTP command descriptors */
3730 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3731 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3732 ucdl_size,
3733 &hba->ucdl_dma_addr,
3734 GFP_KERNEL);
3735
3736 /*
3737 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3738 */
3739 if (!hba->ucdl_base_addr ||
3740 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3741 dev_err(hba->dev,
3742 "Command Descriptor Memory allocation failed\n");
3743 goto out;
3744 }
3745
3746 /*
3747 * Allocate memory for UTP Transfer descriptors
3748 * UFSHCI requires 1KB alignment of UTRD
3749 */
3750 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3751 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3752 utrdl_size,
3753 &hba->utrdl_dma_addr,
3754 GFP_KERNEL);
3755 if (!hba->utrdl_base_addr ||
3756 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3757 dev_err(hba->dev,
3758 "Transfer Descriptor Memory allocation failed\n");
3759 goto out;
3760 }
3761
3762 /*
3763 * Skip utmrdl allocation; it may have been
3764 * allocated during first pass and not released during
3765 * MCQ memory allocation.
3766 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3767 */
3768 if (hba->utmrdl_base_addr)
3769 goto skip_utmrdl;
3770 /*
3771 * Allocate memory for UTP Task Management descriptors
3772 * UFSHCI requires 1KB alignment of UTMRD
3773 */
3774 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3775 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3776 utmrdl_size,
3777 &hba->utmrdl_dma_addr,
3778 GFP_KERNEL);
3779 if (!hba->utmrdl_base_addr ||
3780 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3781 dev_err(hba->dev,
3782 "Task Management Descriptor Memory allocation failed\n");
3783 goto out;
3784 }
3785
3786 skip_utmrdl:
3787 /* Allocate memory for local reference block */
3788 hba->lrb = devm_kcalloc(hba->dev,
3789 hba->nutrs, sizeof(struct ufshcd_lrb),
3790 GFP_KERNEL);
3791 if (!hba->lrb) {
3792 dev_err(hba->dev, "LRB Memory allocation failed\n");
3793 goto out;
3794 }
3795 return 0;
3796 out:
3797 return -ENOMEM;
3798 }
3799
3800 /**
3801 * ufshcd_host_memory_configure - configure local reference block with
3802 * memory offsets
3803 * @hba: per adapter instance
3804 *
3805 * Configure Host memory space
3806 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3807 * address.
3808 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3809 * and PRDT offset.
3810 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3811 * into local reference block.
3812 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3813 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3814 {
3815 struct utp_transfer_req_desc *utrdlp;
3816 dma_addr_t cmd_desc_dma_addr;
3817 dma_addr_t cmd_desc_element_addr;
3818 u16 response_offset;
3819 u16 prdt_offset;
3820 int cmd_desc_size;
3821 int i;
3822
3823 utrdlp = hba->utrdl_base_addr;
3824
3825 response_offset =
3826 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3827 prdt_offset =
3828 offsetof(struct utp_transfer_cmd_desc, prd_table);
3829
3830 cmd_desc_size = ufshcd_get_ucd_size(hba);
3831 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3832
3833 for (i = 0; i < hba->nutrs; i++) {
3834 /* Configure UTRD with command descriptor base address */
3835 cmd_desc_element_addr =
3836 (cmd_desc_dma_addr + (cmd_desc_size * i));
3837 utrdlp[i].command_desc_base_addr =
3838 cpu_to_le64(cmd_desc_element_addr);
3839
3840 /* Response upiu and prdt offset should be in double words */
3841 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3842 utrdlp[i].response_upiu_offset =
3843 cpu_to_le16(response_offset);
3844 utrdlp[i].prd_table_offset =
3845 cpu_to_le16(prdt_offset);
3846 utrdlp[i].response_upiu_length =
3847 cpu_to_le16(ALIGNED_UPIU_SIZE);
3848 } else {
3849 utrdlp[i].response_upiu_offset =
3850 cpu_to_le16(response_offset >> 2);
3851 utrdlp[i].prd_table_offset =
3852 cpu_to_le16(prdt_offset >> 2);
3853 utrdlp[i].response_upiu_length =
3854 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3855 }
3856
3857 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3858 }
3859 }
3860
3861 /**
3862 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3863 * @hba: per adapter instance
3864 *
3865 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3866 * in order to initialize the Unipro link startup procedure.
3867 * Once the Unipro links are up, the device connected to the controller
3868 * is detected.
3869 *
3870 * Return: 0 on success, non-zero value on failure.
3871 */
ufshcd_dme_link_startup(struct ufs_hba * hba)3872 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3873 {
3874 struct uic_command uic_cmd = {0};
3875 int ret;
3876
3877 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3878
3879 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3880 if (ret)
3881 dev_dbg(hba->dev,
3882 "dme-link-startup: error code %d\n", ret);
3883 return ret;
3884 }
3885 /**
3886 * ufshcd_dme_reset - UIC command for DME_RESET
3887 * @hba: per adapter instance
3888 *
3889 * DME_RESET command is issued in order to reset UniPro stack.
3890 * This function now deals with cold reset.
3891 *
3892 * Return: 0 on success, non-zero value on failure.
3893 */
ufshcd_dme_reset(struct ufs_hba * hba)3894 static int ufshcd_dme_reset(struct ufs_hba *hba)
3895 {
3896 struct uic_command uic_cmd = {0};
3897 int ret;
3898
3899 uic_cmd.command = UIC_CMD_DME_RESET;
3900
3901 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3902 if (ret)
3903 dev_err(hba->dev,
3904 "dme-reset: error code %d\n", ret);
3905
3906 return ret;
3907 }
3908
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)3909 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3910 int agreed_gear,
3911 int adapt_val)
3912 {
3913 int ret;
3914
3915 if (agreed_gear < UFS_HS_G4)
3916 adapt_val = PA_NO_ADAPT;
3917
3918 ret = ufshcd_dme_set(hba,
3919 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3920 adapt_val);
3921 return ret;
3922 }
3923 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3924
3925 /**
3926 * ufshcd_dme_enable - UIC command for DME_ENABLE
3927 * @hba: per adapter instance
3928 *
3929 * DME_ENABLE command is issued in order to enable UniPro stack.
3930 *
3931 * Return: 0 on success, non-zero value on failure.
3932 */
ufshcd_dme_enable(struct ufs_hba * hba)3933 static int ufshcd_dme_enable(struct ufs_hba *hba)
3934 {
3935 struct uic_command uic_cmd = {0};
3936 int ret;
3937
3938 uic_cmd.command = UIC_CMD_DME_ENABLE;
3939
3940 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3941 if (ret)
3942 dev_err(hba->dev,
3943 "dme-enable: error code %d\n", ret);
3944
3945 return ret;
3946 }
3947
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3948 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3949 {
3950 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
3951 unsigned long min_sleep_time_us;
3952
3953 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3954 return;
3955
3956 /*
3957 * last_dme_cmd_tstamp will be 0 only for 1st call to
3958 * this function
3959 */
3960 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3961 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3962 } else {
3963 unsigned long delta =
3964 (unsigned long) ktime_to_us(
3965 ktime_sub(ktime_get(),
3966 hba->last_dme_cmd_tstamp));
3967
3968 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3969 min_sleep_time_us =
3970 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3971 else
3972 return; /* no more delay required */
3973 }
3974
3975 /* allow sleep for extra 50us if needed */
3976 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3977 }
3978
3979 /**
3980 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3981 * @hba: per adapter instance
3982 * @attr_sel: uic command argument1
3983 * @attr_set: attribute set type as uic command argument2
3984 * @mib_val: setting value as uic command argument3
3985 * @peer: indicate whether peer or local
3986 *
3987 * Return: 0 on success, non-zero value on failure.
3988 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3989 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3990 u8 attr_set, u32 mib_val, u8 peer)
3991 {
3992 struct uic_command uic_cmd = {0};
3993 static const char *const action[] = {
3994 "dme-set",
3995 "dme-peer-set"
3996 };
3997 const char *set = action[!!peer];
3998 int ret;
3999 int retries = UFS_UIC_COMMAND_RETRIES;
4000
4001 uic_cmd.command = peer ?
4002 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4003 uic_cmd.argument1 = attr_sel;
4004 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4005 uic_cmd.argument3 = mib_val;
4006
4007 do {
4008 /* for peer attributes we retry upon failure */
4009 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4010 if (ret)
4011 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4012 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4013 } while (ret && peer && --retries);
4014
4015 if (ret)
4016 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4017 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4018 UFS_UIC_COMMAND_RETRIES - retries);
4019
4020 return ret;
4021 }
4022 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4023
4024 /**
4025 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4026 * @hba: per adapter instance
4027 * @attr_sel: uic command argument1
4028 * @mib_val: the value of the attribute as returned by the UIC command
4029 * @peer: indicate whether peer or local
4030 *
4031 * Return: 0 on success, non-zero value on failure.
4032 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4033 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4034 u32 *mib_val, u8 peer)
4035 {
4036 struct uic_command uic_cmd = {0};
4037 static const char *const action[] = {
4038 "dme-get",
4039 "dme-peer-get"
4040 };
4041 const char *get = action[!!peer];
4042 int ret;
4043 int retries = UFS_UIC_COMMAND_RETRIES;
4044 struct ufs_pa_layer_attr orig_pwr_info;
4045 struct ufs_pa_layer_attr temp_pwr_info;
4046 bool pwr_mode_change = false;
4047
4048 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4049 orig_pwr_info = hba->pwr_info;
4050 temp_pwr_info = orig_pwr_info;
4051
4052 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4053 orig_pwr_info.pwr_rx == FAST_MODE) {
4054 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4055 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4056 pwr_mode_change = true;
4057 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4058 orig_pwr_info.pwr_rx == SLOW_MODE) {
4059 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4060 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4061 pwr_mode_change = true;
4062 }
4063 if (pwr_mode_change) {
4064 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4065 if (ret)
4066 goto out;
4067 }
4068 }
4069
4070 uic_cmd.command = peer ?
4071 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4072 uic_cmd.argument1 = attr_sel;
4073
4074 do {
4075 /* for peer attributes we retry upon failure */
4076 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4077 if (ret)
4078 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4079 get, UIC_GET_ATTR_ID(attr_sel), ret);
4080 } while (ret && peer && --retries);
4081
4082 if (ret)
4083 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4084 get, UIC_GET_ATTR_ID(attr_sel),
4085 UFS_UIC_COMMAND_RETRIES - retries);
4086
4087 if (mib_val && !ret)
4088 *mib_val = uic_cmd.argument3;
4089
4090 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4091 && pwr_mode_change)
4092 ufshcd_change_power_mode(hba, &orig_pwr_info);
4093 out:
4094 return ret;
4095 }
4096 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4097
4098 /**
4099 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4100 * state) and waits for it to take effect.
4101 *
4102 * @hba: per adapter instance
4103 * @cmd: UIC command to execute
4104 *
4105 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4106 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4107 * and device UniPro link and hence it's final completion would be indicated by
4108 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4109 * addition to normal UIC command completion Status (UCCS). This function only
4110 * returns after the relevant status bits indicate the completion.
4111 *
4112 * Return: 0 on success, non-zero value on failure.
4113 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4114 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4115 {
4116 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4117 unsigned long flags;
4118 u8 status;
4119 int ret;
4120 bool reenable_intr = false;
4121
4122 mutex_lock(&hba->uic_cmd_mutex);
4123 ufshcd_add_delay_before_dme_cmd(hba);
4124
4125 spin_lock_irqsave(hba->host->host_lock, flags);
4126 if (ufshcd_is_link_broken(hba)) {
4127 ret = -ENOLINK;
4128 goto out_unlock;
4129 }
4130 hba->uic_async_done = &uic_async_done;
4131 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4132 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4133 /*
4134 * Make sure UIC command completion interrupt is disabled before
4135 * issuing UIC command.
4136 */
4137 wmb();
4138 reenable_intr = true;
4139 }
4140 spin_unlock_irqrestore(hba->host->host_lock, flags);
4141 ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4142 if (ret) {
4143 dev_err(hba->dev,
4144 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4145 cmd->command, cmd->argument3, ret);
4146 goto out;
4147 }
4148
4149 if (!wait_for_completion_timeout(hba->uic_async_done,
4150 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4151 dev_err(hba->dev,
4152 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4153 cmd->command, cmd->argument3);
4154
4155 if (!cmd->cmd_active) {
4156 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4157 __func__);
4158 goto check_upmcrs;
4159 }
4160
4161 ret = -ETIMEDOUT;
4162 goto out;
4163 }
4164
4165 check_upmcrs:
4166 status = ufshcd_get_upmcrs(hba);
4167 if (status != PWR_LOCAL) {
4168 dev_err(hba->dev,
4169 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4170 cmd->command, status);
4171 ret = (status != PWR_OK) ? status : -1;
4172 }
4173 out:
4174 if (ret) {
4175 ufshcd_print_host_state(hba);
4176 ufshcd_print_pwr_info(hba);
4177 ufshcd_print_evt_hist(hba);
4178 }
4179
4180 spin_lock_irqsave(hba->host->host_lock, flags);
4181 hba->active_uic_cmd = NULL;
4182 hba->uic_async_done = NULL;
4183 if (reenable_intr)
4184 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4185 if (ret) {
4186 ufshcd_set_link_broken(hba);
4187 ufshcd_schedule_eh_work(hba);
4188 }
4189 out_unlock:
4190 spin_unlock_irqrestore(hba->host->host_lock, flags);
4191 mutex_unlock(&hba->uic_cmd_mutex);
4192
4193 return ret;
4194 }
4195
4196 /**
4197 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4198 * using DME_SET primitives.
4199 * @hba: per adapter instance
4200 * @mode: powr mode value
4201 *
4202 * Return: 0 on success, non-zero value on failure.
4203 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4204 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4205 {
4206 struct uic_command uic_cmd = {0};
4207 int ret;
4208
4209 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4210 ret = ufshcd_dme_set(hba,
4211 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4212 if (ret) {
4213 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4214 __func__, ret);
4215 goto out;
4216 }
4217 }
4218
4219 uic_cmd.command = UIC_CMD_DME_SET;
4220 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4221 uic_cmd.argument3 = mode;
4222 ufshcd_hold(hba);
4223 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4224 ufshcd_release(hba);
4225
4226 out:
4227 return ret;
4228 }
4229 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4230
ufshcd_link_recovery(struct ufs_hba * hba)4231 int ufshcd_link_recovery(struct ufs_hba *hba)
4232 {
4233 int ret;
4234 unsigned long flags;
4235
4236 spin_lock_irqsave(hba->host->host_lock, flags);
4237 hba->ufshcd_state = UFSHCD_STATE_RESET;
4238 ufshcd_set_eh_in_progress(hba);
4239 spin_unlock_irqrestore(hba->host->host_lock, flags);
4240
4241 /* Reset the attached device */
4242 ufshcd_device_reset(hba);
4243
4244 ret = ufshcd_host_reset_and_restore(hba);
4245
4246 spin_lock_irqsave(hba->host->host_lock, flags);
4247 if (ret)
4248 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4249 ufshcd_clear_eh_in_progress(hba);
4250 spin_unlock_irqrestore(hba->host->host_lock, flags);
4251
4252 if (ret)
4253 dev_err(hba->dev, "%s: link recovery failed, err %d",
4254 __func__, ret);
4255
4256 return ret;
4257 }
4258 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4259
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4260 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4261 {
4262 int ret;
4263 struct uic_command uic_cmd = {0};
4264 ktime_t start = ktime_get();
4265
4266 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4267
4268 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4269 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4270 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4271 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4272
4273 if (ret)
4274 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4275 __func__, ret);
4276 else
4277 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4278 POST_CHANGE);
4279
4280 return ret;
4281 }
4282 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4283
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4284 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4285 {
4286 struct uic_command uic_cmd = {0};
4287 int ret;
4288 ktime_t start = ktime_get();
4289
4290 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4291
4292 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4293 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4294 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4295 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4296
4297 if (ret) {
4298 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4299 __func__, ret);
4300 } else {
4301 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4302 POST_CHANGE);
4303 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4304 hba->ufs_stats.hibern8_exit_cnt++;
4305 }
4306
4307 return ret;
4308 }
4309 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4310
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4311 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4312 {
4313 unsigned long flags;
4314 bool update = false;
4315
4316 if (!ufshcd_is_auto_hibern8_supported(hba))
4317 return;
4318
4319 spin_lock_irqsave(hba->host->host_lock, flags);
4320 if (hba->ahit != ahit) {
4321 hba->ahit = ahit;
4322 update = true;
4323 }
4324 spin_unlock_irqrestore(hba->host->host_lock, flags);
4325
4326 if (update &&
4327 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4328 ufshcd_rpm_get_sync(hba);
4329 ufshcd_hold(hba);
4330 ufshcd_auto_hibern8_enable(hba);
4331 ufshcd_release(hba);
4332 ufshcd_rpm_put_sync(hba);
4333 }
4334 }
4335 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4336
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4337 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4338 {
4339 if (!ufshcd_is_auto_hibern8_supported(hba))
4340 return;
4341
4342 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4343 }
4344
4345 /**
4346 * ufshcd_init_pwr_info - setting the POR (power on reset)
4347 * values in hba power info
4348 * @hba: per-adapter instance
4349 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4350 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4351 {
4352 hba->pwr_info.gear_rx = UFS_PWM_G1;
4353 hba->pwr_info.gear_tx = UFS_PWM_G1;
4354 hba->pwr_info.lane_rx = UFS_LANE_1;
4355 hba->pwr_info.lane_tx = UFS_LANE_1;
4356 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4357 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4358 hba->pwr_info.hs_rate = 0;
4359 }
4360
4361 /**
4362 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4363 * @hba: per-adapter instance
4364 *
4365 * Return: 0 upon success; < 0 upon failure.
4366 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4367 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4368 {
4369 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4370
4371 if (hba->max_pwr_info.is_valid)
4372 return 0;
4373
4374 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4375 pwr_info->pwr_tx = FASTAUTO_MODE;
4376 pwr_info->pwr_rx = FASTAUTO_MODE;
4377 } else {
4378 pwr_info->pwr_tx = FAST_MODE;
4379 pwr_info->pwr_rx = FAST_MODE;
4380 }
4381 pwr_info->hs_rate = PA_HS_MODE_B;
4382
4383 /* Get the connected lane count */
4384 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4385 &pwr_info->lane_rx);
4386 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4387 &pwr_info->lane_tx);
4388
4389 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4390 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4391 __func__,
4392 pwr_info->lane_rx,
4393 pwr_info->lane_tx);
4394 return -EINVAL;
4395 }
4396
4397 /*
4398 * First, get the maximum gears of HS speed.
4399 * If a zero value, it means there is no HSGEAR capability.
4400 * Then, get the maximum gears of PWM speed.
4401 */
4402 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4403 if (!pwr_info->gear_rx) {
4404 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4405 &pwr_info->gear_rx);
4406 if (!pwr_info->gear_rx) {
4407 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4408 __func__, pwr_info->gear_rx);
4409 return -EINVAL;
4410 }
4411 pwr_info->pwr_rx = SLOW_MODE;
4412 }
4413
4414 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4415 &pwr_info->gear_tx);
4416 if (!pwr_info->gear_tx) {
4417 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4418 &pwr_info->gear_tx);
4419 if (!pwr_info->gear_tx) {
4420 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4421 __func__, pwr_info->gear_tx);
4422 return -EINVAL;
4423 }
4424 pwr_info->pwr_tx = SLOW_MODE;
4425 }
4426
4427 hba->max_pwr_info.is_valid = true;
4428 return 0;
4429 }
4430
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4431 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4432 struct ufs_pa_layer_attr *pwr_mode)
4433 {
4434 int ret;
4435
4436 /* if already configured to the requested pwr_mode */
4437 if (!hba->force_pmc &&
4438 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4439 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4440 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4441 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4442 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4443 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4444 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4445 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4446 return 0;
4447 }
4448
4449 /*
4450 * Configure attributes for power mode change with below.
4451 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4452 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4453 * - PA_HSSERIES
4454 */
4455 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4456 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4457 pwr_mode->lane_rx);
4458 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4459 pwr_mode->pwr_rx == FAST_MODE)
4460 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4461 else
4462 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4463
4464 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4465 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4466 pwr_mode->lane_tx);
4467 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4468 pwr_mode->pwr_tx == FAST_MODE)
4469 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4470 else
4471 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4472
4473 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4474 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4475 pwr_mode->pwr_rx == FAST_MODE ||
4476 pwr_mode->pwr_tx == FAST_MODE)
4477 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4478 pwr_mode->hs_rate);
4479
4480 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4481 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4482 DL_FC0ProtectionTimeOutVal_Default);
4483 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4484 DL_TC0ReplayTimeOutVal_Default);
4485 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4486 DL_AFC0ReqTimeOutVal_Default);
4487 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4488 DL_FC1ProtectionTimeOutVal_Default);
4489 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4490 DL_TC1ReplayTimeOutVal_Default);
4491 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4492 DL_AFC1ReqTimeOutVal_Default);
4493
4494 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4495 DL_FC0ProtectionTimeOutVal_Default);
4496 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4497 DL_TC0ReplayTimeOutVal_Default);
4498 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4499 DL_AFC0ReqTimeOutVal_Default);
4500 }
4501
4502 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4503 | pwr_mode->pwr_tx);
4504
4505 if (ret) {
4506 dev_err(hba->dev,
4507 "%s: power mode change failed %d\n", __func__, ret);
4508 } else {
4509 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4510 pwr_mode);
4511
4512 memcpy(&hba->pwr_info, pwr_mode,
4513 sizeof(struct ufs_pa_layer_attr));
4514 }
4515
4516 return ret;
4517 }
4518
4519 /**
4520 * ufshcd_config_pwr_mode - configure a new power mode
4521 * @hba: per-adapter instance
4522 * @desired_pwr_mode: desired power configuration
4523 *
4524 * Return: 0 upon success; < 0 upon failure.
4525 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4526 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4527 struct ufs_pa_layer_attr *desired_pwr_mode)
4528 {
4529 struct ufs_pa_layer_attr final_params = { 0 };
4530 int ret;
4531
4532 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4533 desired_pwr_mode, &final_params);
4534
4535 if (ret)
4536 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4537
4538 ret = ufshcd_change_power_mode(hba, &final_params);
4539
4540 return ret;
4541 }
4542 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4543
4544 /**
4545 * ufshcd_complete_dev_init() - checks device readiness
4546 * @hba: per-adapter instance
4547 *
4548 * Set fDeviceInit flag and poll until device toggles it.
4549 *
4550 * Return: 0 upon success; < 0 upon failure.
4551 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4552 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4553 {
4554 int err;
4555 bool flag_res = true;
4556 ktime_t timeout;
4557
4558 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4559 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4560 if (err) {
4561 dev_err(hba->dev,
4562 "%s: setting fDeviceInit flag failed with error %d\n",
4563 __func__, err);
4564 goto out;
4565 }
4566
4567 /* Poll fDeviceInit flag to be cleared */
4568 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4569 do {
4570 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4571 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4572 if (!flag_res)
4573 break;
4574 usleep_range(500, 1000);
4575 } while (ktime_before(ktime_get(), timeout));
4576
4577 if (err) {
4578 dev_err(hba->dev,
4579 "%s: reading fDeviceInit flag failed with error %d\n",
4580 __func__, err);
4581 } else if (flag_res) {
4582 dev_err(hba->dev,
4583 "%s: fDeviceInit was not cleared by the device\n",
4584 __func__);
4585 err = -EBUSY;
4586 }
4587 out:
4588 return err;
4589 }
4590
4591 /**
4592 * ufshcd_make_hba_operational - Make UFS controller operational
4593 * @hba: per adapter instance
4594 *
4595 * To bring UFS host controller to operational state,
4596 * 1. Enable required interrupts
4597 * 2. Configure interrupt aggregation
4598 * 3. Program UTRL and UTMRL base address
4599 * 4. Configure run-stop-registers
4600 *
4601 * Return: 0 on success, non-zero value on failure.
4602 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4603 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4604 {
4605 int err = 0;
4606 u32 reg;
4607
4608 /* Enable required interrupts */
4609 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4610
4611 /* Configure interrupt aggregation */
4612 if (ufshcd_is_intr_aggr_allowed(hba))
4613 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4614 else
4615 ufshcd_disable_intr_aggr(hba);
4616
4617 /* Configure UTRL and UTMRL base address registers */
4618 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4619 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4620 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4621 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4622 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4623 REG_UTP_TASK_REQ_LIST_BASE_L);
4624 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4625 REG_UTP_TASK_REQ_LIST_BASE_H);
4626
4627 /*
4628 * Make sure base address and interrupt setup are updated before
4629 * enabling the run/stop registers below.
4630 */
4631 wmb();
4632
4633 /*
4634 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4635 */
4636 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4637 if (!(ufshcd_get_lists_status(reg))) {
4638 ufshcd_enable_run_stop_reg(hba);
4639 } else {
4640 dev_err(hba->dev,
4641 "Host controller not ready to process requests");
4642 err = -EIO;
4643 }
4644
4645 return err;
4646 }
4647 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4648
4649 /**
4650 * ufshcd_hba_stop - Send controller to reset state
4651 * @hba: per adapter instance
4652 */
ufshcd_hba_stop(struct ufs_hba * hba)4653 void ufshcd_hba_stop(struct ufs_hba *hba)
4654 {
4655 unsigned long flags;
4656 int err;
4657
4658 /*
4659 * Obtain the host lock to prevent that the controller is disabled
4660 * while the UFS interrupt handler is active on another CPU.
4661 */
4662 spin_lock_irqsave(hba->host->host_lock, flags);
4663 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4664 spin_unlock_irqrestore(hba->host->host_lock, flags);
4665
4666 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4667 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4668 10, 1);
4669 if (err)
4670 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4671 }
4672 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4673
4674 /**
4675 * ufshcd_hba_execute_hce - initialize the controller
4676 * @hba: per adapter instance
4677 *
4678 * The controller resets itself and controller firmware initialization
4679 * sequence kicks off. When controller is ready it will set
4680 * the Host Controller Enable bit to 1.
4681 *
4682 * Return: 0 on success, non-zero value on failure.
4683 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4684 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4685 {
4686 int retry_outer = 3;
4687 int retry_inner;
4688
4689 start:
4690 if (ufshcd_is_hba_active(hba))
4691 /* change controller state to "reset state" */
4692 ufshcd_hba_stop(hba);
4693
4694 /* UniPro link is disabled at this point */
4695 ufshcd_set_link_off(hba);
4696
4697 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4698
4699 /* start controller initialization sequence */
4700 ufshcd_hba_start(hba);
4701
4702 /*
4703 * To initialize a UFS host controller HCE bit must be set to 1.
4704 * During initialization the HCE bit value changes from 1->0->1.
4705 * When the host controller completes initialization sequence
4706 * it sets the value of HCE bit to 1. The same HCE bit is read back
4707 * to check if the controller has completed initialization sequence.
4708 * So without this delay the value HCE = 1, set in the previous
4709 * instruction might be read back.
4710 * This delay can be changed based on the controller.
4711 */
4712 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4713
4714 /* wait for the host controller to complete initialization */
4715 retry_inner = 50;
4716 while (!ufshcd_is_hba_active(hba)) {
4717 if (retry_inner) {
4718 retry_inner--;
4719 } else {
4720 dev_err(hba->dev,
4721 "Controller enable failed\n");
4722 if (retry_outer) {
4723 retry_outer--;
4724 goto start;
4725 }
4726 return -EIO;
4727 }
4728 usleep_range(1000, 1100);
4729 }
4730
4731 /* enable UIC related interrupts */
4732 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4733
4734 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4735
4736 return 0;
4737 }
4738
ufshcd_hba_enable(struct ufs_hba * hba)4739 int ufshcd_hba_enable(struct ufs_hba *hba)
4740 {
4741 int ret;
4742
4743 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4744 ufshcd_set_link_off(hba);
4745 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4746
4747 /* enable UIC related interrupts */
4748 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4749 ret = ufshcd_dme_reset(hba);
4750 if (ret) {
4751 dev_err(hba->dev, "DME_RESET failed\n");
4752 return ret;
4753 }
4754
4755 ret = ufshcd_dme_enable(hba);
4756 if (ret) {
4757 dev_err(hba->dev, "Enabling DME failed\n");
4758 return ret;
4759 }
4760
4761 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4762 } else {
4763 ret = ufshcd_hba_execute_hce(hba);
4764 }
4765
4766 return ret;
4767 }
4768 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4769
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4770 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4771 {
4772 int tx_lanes = 0, i, err = 0;
4773
4774 if (!peer)
4775 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4776 &tx_lanes);
4777 else
4778 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4779 &tx_lanes);
4780 for (i = 0; i < tx_lanes; i++) {
4781 if (!peer)
4782 err = ufshcd_dme_set(hba,
4783 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4784 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4785 0);
4786 else
4787 err = ufshcd_dme_peer_set(hba,
4788 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4789 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4790 0);
4791 if (err) {
4792 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4793 __func__, peer, i, err);
4794 break;
4795 }
4796 }
4797
4798 return err;
4799 }
4800
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4801 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4802 {
4803 return ufshcd_disable_tx_lcc(hba, true);
4804 }
4805
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4806 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4807 {
4808 struct ufs_event_hist *e;
4809
4810 if (id >= UFS_EVT_CNT)
4811 return;
4812
4813 e = &hba->ufs_stats.event[id];
4814 e->val[e->pos] = val;
4815 e->tstamp[e->pos] = local_clock();
4816 e->cnt += 1;
4817 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4818
4819 ufshcd_vops_event_notify(hba, id, &val);
4820 }
4821 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4822
4823 /**
4824 * ufshcd_link_startup - Initialize unipro link startup
4825 * @hba: per adapter instance
4826 *
4827 * Return: 0 for success, non-zero in case of failure.
4828 */
ufshcd_link_startup(struct ufs_hba * hba)4829 static int ufshcd_link_startup(struct ufs_hba *hba)
4830 {
4831 int ret;
4832 int retries = DME_LINKSTARTUP_RETRIES;
4833 bool link_startup_again = false;
4834
4835 /*
4836 * If UFS device isn't active then we will have to issue link startup
4837 * 2 times to make sure the device state move to active.
4838 */
4839 if (!ufshcd_is_ufs_dev_active(hba))
4840 link_startup_again = true;
4841
4842 link_startup:
4843 do {
4844 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4845
4846 ret = ufshcd_dme_link_startup(hba);
4847
4848 /* check if device is detected by inter-connect layer */
4849 if (!ret && !ufshcd_is_device_present(hba)) {
4850 ufshcd_update_evt_hist(hba,
4851 UFS_EVT_LINK_STARTUP_FAIL,
4852 0);
4853 dev_err(hba->dev, "%s: Device not present\n", __func__);
4854 ret = -ENXIO;
4855 goto out;
4856 }
4857
4858 /*
4859 * DME link lost indication is only received when link is up,
4860 * but we can't be sure if the link is up until link startup
4861 * succeeds. So reset the local Uni-Pro and try again.
4862 */
4863 if (ret && retries && ufshcd_hba_enable(hba)) {
4864 ufshcd_update_evt_hist(hba,
4865 UFS_EVT_LINK_STARTUP_FAIL,
4866 (u32)ret);
4867 goto out;
4868 }
4869 } while (ret && retries--);
4870
4871 if (ret) {
4872 /* failed to get the link up... retire */
4873 ufshcd_update_evt_hist(hba,
4874 UFS_EVT_LINK_STARTUP_FAIL,
4875 (u32)ret);
4876 goto out;
4877 }
4878
4879 if (link_startup_again) {
4880 link_startup_again = false;
4881 retries = DME_LINKSTARTUP_RETRIES;
4882 goto link_startup;
4883 }
4884
4885 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4886 ufshcd_init_pwr_info(hba);
4887 ufshcd_print_pwr_info(hba);
4888
4889 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4890 ret = ufshcd_disable_device_tx_lcc(hba);
4891 if (ret)
4892 goto out;
4893 }
4894
4895 /* Include any host controller configuration via UIC commands */
4896 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4897 if (ret)
4898 goto out;
4899
4900 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4901 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4902 ret = ufshcd_make_hba_operational(hba);
4903 out:
4904 if (ret) {
4905 dev_err(hba->dev, "link startup failed %d\n", ret);
4906 ufshcd_print_host_state(hba);
4907 ufshcd_print_pwr_info(hba);
4908 ufshcd_print_evt_hist(hba);
4909 }
4910 return ret;
4911 }
4912
4913 /**
4914 * ufshcd_verify_dev_init() - Verify device initialization
4915 * @hba: per-adapter instance
4916 *
4917 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4918 * device Transport Protocol (UTP) layer is ready after a reset.
4919 * If the UTP layer at the device side is not initialized, it may
4920 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4921 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4922 *
4923 * Return: 0 upon success; < 0 upon failure.
4924 */
ufshcd_verify_dev_init(struct ufs_hba * hba)4925 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4926 {
4927 int err = 0;
4928 int retries;
4929
4930 ufshcd_hold(hba);
4931 mutex_lock(&hba->dev_cmd.lock);
4932 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4933 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4934 hba->nop_out_timeout);
4935
4936 if (!err || err == -ETIMEDOUT)
4937 break;
4938
4939 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4940 }
4941 mutex_unlock(&hba->dev_cmd.lock);
4942 ufshcd_release(hba);
4943
4944 if (err)
4945 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4946 return err;
4947 }
4948
4949 /**
4950 * ufshcd_setup_links - associate link b/w device wlun and other luns
4951 * @sdev: pointer to SCSI device
4952 * @hba: pointer to ufs hba
4953 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)4954 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4955 {
4956 struct device_link *link;
4957
4958 /*
4959 * Device wlun is the supplier & rest of the luns are consumers.
4960 * This ensures that device wlun suspends after all other luns.
4961 */
4962 if (hba->ufs_device_wlun) {
4963 link = device_link_add(&sdev->sdev_gendev,
4964 &hba->ufs_device_wlun->sdev_gendev,
4965 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4966 if (!link) {
4967 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4968 dev_name(&hba->ufs_device_wlun->sdev_gendev));
4969 return;
4970 }
4971 hba->luns_avail--;
4972 /* Ignore REPORT_LUN wlun probing */
4973 if (hba->luns_avail == 1) {
4974 ufshcd_rpm_put(hba);
4975 return;
4976 }
4977 } else {
4978 /*
4979 * Device wlun is probed. The assumption is that WLUNs are
4980 * scanned before other LUNs.
4981 */
4982 hba->luns_avail--;
4983 }
4984 }
4985
4986 /**
4987 * ufshcd_lu_init - Initialize the relevant parameters of the LU
4988 * @hba: per-adapter instance
4989 * @sdev: pointer to SCSI device
4990 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)4991 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4992 {
4993 int len = QUERY_DESC_MAX_SIZE;
4994 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
4995 u8 lun_qdepth = hba->nutrs;
4996 u8 *desc_buf;
4997 int ret;
4998
4999 desc_buf = kzalloc(len, GFP_KERNEL);
5000 if (!desc_buf)
5001 goto set_qdepth;
5002
5003 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5004 if (ret < 0) {
5005 if (ret == -EOPNOTSUPP)
5006 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5007 lun_qdepth = 1;
5008 kfree(desc_buf);
5009 goto set_qdepth;
5010 }
5011
5012 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5013 /*
5014 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5015 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5016 */
5017 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5018 }
5019 /*
5020 * According to UFS device specification, the write protection mode is only supported by
5021 * normal LU, not supported by WLUN.
5022 */
5023 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5024 !hba->dev_info.is_lu_power_on_wp &&
5025 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5026 hba->dev_info.is_lu_power_on_wp = true;
5027
5028 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5029 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5030 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5031 hba->dev_info.b_advanced_rpmb_en = true;
5032
5033
5034 kfree(desc_buf);
5035 set_qdepth:
5036 /*
5037 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5038 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5039 */
5040 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5041 scsi_change_queue_depth(sdev, lun_qdepth);
5042 }
5043
5044 /**
5045 * ufshcd_slave_alloc - handle initial SCSI device configurations
5046 * @sdev: pointer to SCSI device
5047 *
5048 * Return: success.
5049 */
ufshcd_slave_alloc(struct scsi_device * sdev)5050 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5051 {
5052 struct ufs_hba *hba;
5053
5054 hba = shost_priv(sdev->host);
5055
5056 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5057 sdev->use_10_for_ms = 1;
5058
5059 /* DBD field should be set to 1 in mode sense(10) */
5060 sdev->set_dbd_for_ms = 1;
5061
5062 /* allow SCSI layer to restart the device in case of errors */
5063 sdev->allow_restart = 1;
5064
5065 /* REPORT SUPPORTED OPERATION CODES is not supported */
5066 sdev->no_report_opcodes = 1;
5067
5068 /* WRITE_SAME command is not supported */
5069 sdev->no_write_same = 1;
5070
5071 ufshcd_lu_init(hba, sdev);
5072
5073 ufshcd_setup_links(hba, sdev);
5074
5075 return 0;
5076 }
5077
5078 /**
5079 * ufshcd_change_queue_depth - change queue depth
5080 * @sdev: pointer to SCSI device
5081 * @depth: required depth to set
5082 *
5083 * Change queue depth and make sure the max. limits are not crossed.
5084 *
5085 * Return: new queue depth.
5086 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5087 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5088 {
5089 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5090 }
5091
5092 /**
5093 * ufshcd_slave_configure - adjust SCSI device configurations
5094 * @sdev: pointer to SCSI device
5095 *
5096 * Return: 0 (success).
5097 */
ufshcd_slave_configure(struct scsi_device * sdev)5098 static int ufshcd_slave_configure(struct scsi_device *sdev)
5099 {
5100 struct ufs_hba *hba = shost_priv(sdev->host);
5101 struct request_queue *q = sdev->request_queue;
5102
5103 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5104 if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5105 blk_queue_update_dma_alignment(q, SZ_4K - 1);
5106 /*
5107 * Block runtime-pm until all consumers are added.
5108 * Refer ufshcd_setup_links().
5109 */
5110 if (is_device_wlun(sdev))
5111 pm_runtime_get_noresume(&sdev->sdev_gendev);
5112 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5113 sdev->rpm_autosuspend = 1;
5114 /*
5115 * Do not print messages during runtime PM to avoid never-ending cycles
5116 * of messages written back to storage by user space causing runtime
5117 * resume, causing more messages and so on.
5118 */
5119 sdev->silence_suspend = 1;
5120
5121 ufshcd_crypto_register(hba, q);
5122
5123 return 0;
5124 }
5125
5126 /**
5127 * ufshcd_slave_destroy - remove SCSI device configurations
5128 * @sdev: pointer to SCSI device
5129 */
ufshcd_slave_destroy(struct scsi_device * sdev)5130 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5131 {
5132 struct ufs_hba *hba;
5133 unsigned long flags;
5134
5135 hba = shost_priv(sdev->host);
5136
5137 /* Drop the reference as it won't be needed anymore */
5138 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5139 spin_lock_irqsave(hba->host->host_lock, flags);
5140 hba->ufs_device_wlun = NULL;
5141 spin_unlock_irqrestore(hba->host->host_lock, flags);
5142 } else if (hba->ufs_device_wlun) {
5143 struct device *supplier = NULL;
5144
5145 /* Ensure UFS Device WLUN exists and does not disappear */
5146 spin_lock_irqsave(hba->host->host_lock, flags);
5147 if (hba->ufs_device_wlun) {
5148 supplier = &hba->ufs_device_wlun->sdev_gendev;
5149 get_device(supplier);
5150 }
5151 spin_unlock_irqrestore(hba->host->host_lock, flags);
5152
5153 if (supplier) {
5154 /*
5155 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5156 * device will not have been registered but can still
5157 * have a device link holding a reference to the device.
5158 */
5159 device_link_remove(&sdev->sdev_gendev, supplier);
5160 put_device(supplier);
5161 }
5162 }
5163 }
5164
5165 /**
5166 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5167 * @lrbp: pointer to local reference block of completed command
5168 * @scsi_status: SCSI command status
5169 *
5170 * Return: value base on SCSI command status.
5171 */
5172 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5173 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5174 {
5175 int result = 0;
5176
5177 switch (scsi_status) {
5178 case SAM_STAT_CHECK_CONDITION:
5179 ufshcd_copy_sense_data(lrbp);
5180 fallthrough;
5181 case SAM_STAT_GOOD:
5182 result |= DID_OK << 16 | scsi_status;
5183 break;
5184 case SAM_STAT_TASK_SET_FULL:
5185 case SAM_STAT_BUSY:
5186 case SAM_STAT_TASK_ABORTED:
5187 ufshcd_copy_sense_data(lrbp);
5188 result |= scsi_status;
5189 break;
5190 default:
5191 result |= DID_ERROR << 16;
5192 break;
5193 } /* end of switch */
5194
5195 return result;
5196 }
5197
5198 /**
5199 * ufshcd_transfer_rsp_status - Get overall status of the response
5200 * @hba: per adapter instance
5201 * @lrbp: pointer to local reference block of completed command
5202 * @cqe: pointer to the completion queue entry
5203 *
5204 * Return: result of the command to notify SCSI midlayer.
5205 */
5206 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5207 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5208 struct cq_entry *cqe)
5209 {
5210 int result = 0;
5211 int scsi_status;
5212 enum utp_ocs ocs;
5213 u8 upiu_flags;
5214 u32 resid;
5215
5216 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5217 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5218 /*
5219 * Test !overflow instead of underflow to support UFS devices that do
5220 * not set either flag.
5221 */
5222 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5223 scsi_set_resid(lrbp->cmd, resid);
5224
5225 /* overall command status of utrd */
5226 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5227
5228 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5229 if (lrbp->ucd_rsp_ptr->header.response ||
5230 lrbp->ucd_rsp_ptr->header.status)
5231 ocs = OCS_SUCCESS;
5232 }
5233
5234 switch (ocs) {
5235 case OCS_SUCCESS:
5236 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5237 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5238 case UPIU_TRANSACTION_RESPONSE:
5239 /*
5240 * get the result based on SCSI status response
5241 * to notify the SCSI midlayer of the command status
5242 */
5243 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5244 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5245
5246 /*
5247 * Currently we are only supporting BKOPs exception
5248 * events hence we can ignore BKOPs exception event
5249 * during power management callbacks. BKOPs exception
5250 * event is not expected to be raised in runtime suspend
5251 * callback as it allows the urgent bkops.
5252 * During system suspend, we are anyway forcefully
5253 * disabling the bkops and if urgent bkops is needed
5254 * it will be enabled on system resume. Long term
5255 * solution could be to abort the system suspend if
5256 * UFS device needs urgent BKOPs.
5257 */
5258 if (!hba->pm_op_in_progress &&
5259 !ufshcd_eh_in_progress(hba) &&
5260 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5261 /* Flushed in suspend */
5262 schedule_work(&hba->eeh_work);
5263 break;
5264 case UPIU_TRANSACTION_REJECT_UPIU:
5265 /* TODO: handle Reject UPIU Response */
5266 result = DID_ERROR << 16;
5267 dev_err(hba->dev,
5268 "Reject UPIU not fully implemented\n");
5269 break;
5270 default:
5271 dev_err(hba->dev,
5272 "Unexpected request response code = %x\n",
5273 result);
5274 result = DID_ERROR << 16;
5275 break;
5276 }
5277 break;
5278 case OCS_ABORTED:
5279 result |= DID_ABORT << 16;
5280 break;
5281 case OCS_INVALID_COMMAND_STATUS:
5282 result |= DID_REQUEUE << 16;
5283 break;
5284 case OCS_INVALID_CMD_TABLE_ATTR:
5285 case OCS_INVALID_PRDT_ATTR:
5286 case OCS_MISMATCH_DATA_BUF_SIZE:
5287 case OCS_MISMATCH_RESP_UPIU_SIZE:
5288 case OCS_PEER_COMM_FAILURE:
5289 case OCS_FATAL_ERROR:
5290 case OCS_DEVICE_FATAL_ERROR:
5291 case OCS_INVALID_CRYPTO_CONFIG:
5292 case OCS_GENERAL_CRYPTO_ERROR:
5293 default:
5294 result |= DID_ERROR << 16;
5295 dev_err(hba->dev,
5296 "OCS error from controller = %x for tag %d\n",
5297 ocs, lrbp->task_tag);
5298 ufshcd_print_evt_hist(hba);
5299 ufshcd_print_host_state(hba);
5300 break;
5301 } /* end of switch */
5302
5303 if ((host_byte(result) != DID_OK) &&
5304 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5305 ufshcd_print_tr(hba, lrbp->task_tag, true);
5306 return result;
5307 }
5308
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5309 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5310 u32 intr_mask)
5311 {
5312 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5313 !ufshcd_is_auto_hibern8_enabled(hba))
5314 return false;
5315
5316 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5317 return false;
5318
5319 if (hba->active_uic_cmd &&
5320 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5321 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5322 return false;
5323
5324 return true;
5325 }
5326
5327 /**
5328 * ufshcd_uic_cmd_compl - handle completion of uic command
5329 * @hba: per adapter instance
5330 * @intr_status: interrupt status generated by the controller
5331 *
5332 * Return:
5333 * IRQ_HANDLED - If interrupt is valid
5334 * IRQ_NONE - If invalid interrupt
5335 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5336 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5337 {
5338 irqreturn_t retval = IRQ_NONE;
5339
5340 spin_lock(hba->host->host_lock);
5341 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5342 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5343
5344 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5345 hba->active_uic_cmd->argument2 |=
5346 ufshcd_get_uic_cmd_result(hba);
5347 hba->active_uic_cmd->argument3 =
5348 ufshcd_get_dme_attr_val(hba);
5349 if (!hba->uic_async_done)
5350 hba->active_uic_cmd->cmd_active = 0;
5351 complete(&hba->active_uic_cmd->done);
5352 retval = IRQ_HANDLED;
5353 }
5354
5355 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5356 hba->active_uic_cmd->cmd_active = 0;
5357 complete(hba->uic_async_done);
5358 retval = IRQ_HANDLED;
5359 }
5360
5361 if (retval == IRQ_HANDLED)
5362 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5363 UFS_CMD_COMP);
5364 spin_unlock(hba->host->host_lock);
5365 return retval;
5366 }
5367
5368 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5369 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5370 struct ufshcd_lrb *lrbp)
5371 {
5372 struct scsi_cmnd *cmd = lrbp->cmd;
5373
5374 scsi_dma_unmap(cmd);
5375 ufshcd_release(hba);
5376 ufshcd_clk_scaling_update_busy(hba);
5377 }
5378
5379 /**
5380 * ufshcd_compl_one_cqe - handle a completion queue entry
5381 * @hba: per adapter instance
5382 * @task_tag: the task tag of the request to be completed
5383 * @cqe: pointer to the completion queue entry
5384 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5385 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5386 struct cq_entry *cqe)
5387 {
5388 struct ufshcd_lrb *lrbp;
5389 struct scsi_cmnd *cmd;
5390 enum utp_ocs ocs;
5391
5392 lrbp = &hba->lrb[task_tag];
5393 lrbp->compl_time_stamp = ktime_get();
5394 cmd = lrbp->cmd;
5395 if (cmd) {
5396 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5397 ufshcd_update_monitor(hba, lrbp);
5398 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5399 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5400 ufshcd_release_scsi_cmd(hba, lrbp);
5401 /* Do not touch lrbp after scsi done */
5402 scsi_done(cmd);
5403 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5404 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5405 if (hba->dev_cmd.complete) {
5406 if (cqe) {
5407 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5408 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5409 }
5410 complete(hba->dev_cmd.complete);
5411 ufshcd_clk_scaling_update_busy(hba);
5412 }
5413 }
5414 }
5415
5416 /**
5417 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5418 * @hba: per adapter instance
5419 * @completed_reqs: bitmask that indicates which requests to complete
5420 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5421 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5422 unsigned long completed_reqs)
5423 {
5424 int tag;
5425
5426 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5427 ufshcd_compl_one_cqe(hba, tag, NULL);
5428 }
5429
5430 /* Any value that is not an existing queue number is fine for this constant. */
5431 enum {
5432 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5433 };
5434
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5435 static void ufshcd_clear_polled(struct ufs_hba *hba,
5436 unsigned long *completed_reqs)
5437 {
5438 int tag;
5439
5440 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5441 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5442
5443 if (!cmd)
5444 continue;
5445 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5446 __clear_bit(tag, completed_reqs);
5447 }
5448 }
5449
5450 /*
5451 * Return: > 0 if one or more commands have been completed or 0 if no
5452 * requests have been completed.
5453 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5454 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5455 {
5456 struct ufs_hba *hba = shost_priv(shost);
5457 unsigned long completed_reqs, flags;
5458 u32 tr_doorbell;
5459 struct ufs_hw_queue *hwq;
5460
5461 if (is_mcq_enabled(hba)) {
5462 hwq = &hba->uhq[queue_num];
5463
5464 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5465 }
5466
5467 spin_lock_irqsave(&hba->outstanding_lock, flags);
5468 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5469 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5470 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5471 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5472 hba->outstanding_reqs);
5473 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5474 /* Do not complete polled requests from interrupt context. */
5475 ufshcd_clear_polled(hba, &completed_reqs);
5476 }
5477 hba->outstanding_reqs &= ~completed_reqs;
5478 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5479
5480 if (completed_reqs)
5481 __ufshcd_transfer_req_compl(hba, completed_reqs);
5482
5483 return completed_reqs != 0;
5484 }
5485
5486 /**
5487 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5488 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5489 * to complete the pending transfers and free the resources associated with
5490 * the scsi command.
5491 *
5492 * @hba: per adapter instance
5493 * @force_compl: This flag is set to true when invoked
5494 * from ufshcd_host_reset_and_restore() in which case it requires special
5495 * handling because the host controller has been reset by ufshcd_hba_stop().
5496 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5497 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5498 bool force_compl)
5499 {
5500 struct ufs_hw_queue *hwq;
5501 struct ufshcd_lrb *lrbp;
5502 struct scsi_cmnd *cmd;
5503 unsigned long flags;
5504 u32 hwq_num, utag;
5505 int tag;
5506
5507 for (tag = 0; tag < hba->nutrs; tag++) {
5508 lrbp = &hba->lrb[tag];
5509 cmd = lrbp->cmd;
5510 if (!ufshcd_cmd_inflight(cmd) ||
5511 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5512 continue;
5513
5514 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5515 hwq_num = blk_mq_unique_tag_to_hwq(utag);
5516 hwq = &hba->uhq[hwq_num];
5517
5518 if (force_compl) {
5519 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5520 /*
5521 * For those cmds of which the cqes are not present
5522 * in the cq, complete them explicitly.
5523 */
5524 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5525 spin_lock_irqsave(&hwq->cq_lock, flags);
5526 set_host_byte(cmd, DID_REQUEUE);
5527 ufshcd_release_scsi_cmd(hba, lrbp);
5528 scsi_done(cmd);
5529 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5530 }
5531 } else {
5532 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5533 }
5534 }
5535 }
5536
5537 /**
5538 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5539 * @hba: per adapter instance
5540 *
5541 * Return:
5542 * IRQ_HANDLED - If interrupt is valid
5543 * IRQ_NONE - If invalid interrupt
5544 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5545 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5546 {
5547 /* Resetting interrupt aggregation counters first and reading the
5548 * DOOR_BELL afterward allows us to handle all the completed requests.
5549 * In order to prevent other interrupts starvation the DB is read once
5550 * after reset. The down side of this solution is the possibility of
5551 * false interrupt if device completes another request after resetting
5552 * aggregation and before reading the DB.
5553 */
5554 if (ufshcd_is_intr_aggr_allowed(hba) &&
5555 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5556 ufshcd_reset_intr_aggr(hba);
5557
5558 if (ufs_fail_completion())
5559 return IRQ_HANDLED;
5560
5561 /*
5562 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5563 * do not want polling to trigger spurious interrupt complaints.
5564 */
5565 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5566
5567 return IRQ_HANDLED;
5568 }
5569
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5570 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5571 {
5572 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5573 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5574 &ee_ctrl_mask);
5575 }
5576
ufshcd_write_ee_control(struct ufs_hba * hba)5577 int ufshcd_write_ee_control(struct ufs_hba *hba)
5578 {
5579 int err;
5580
5581 mutex_lock(&hba->ee_ctrl_mutex);
5582 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5583 mutex_unlock(&hba->ee_ctrl_mutex);
5584 if (err)
5585 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5586 __func__, err);
5587 return err;
5588 }
5589
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5590 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5591 const u16 *other_mask, u16 set, u16 clr)
5592 {
5593 u16 new_mask, ee_ctrl_mask;
5594 int err = 0;
5595
5596 mutex_lock(&hba->ee_ctrl_mutex);
5597 new_mask = (*mask & ~clr) | set;
5598 ee_ctrl_mask = new_mask | *other_mask;
5599 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5600 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5601 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5602 if (!err) {
5603 hba->ee_ctrl_mask = ee_ctrl_mask;
5604 *mask = new_mask;
5605 }
5606 mutex_unlock(&hba->ee_ctrl_mutex);
5607 return err;
5608 }
5609
5610 /**
5611 * ufshcd_disable_ee - disable exception event
5612 * @hba: per-adapter instance
5613 * @mask: exception event to disable
5614 *
5615 * Disables exception event in the device so that the EVENT_ALERT
5616 * bit is not set.
5617 *
5618 * Return: zero on success, non-zero error value on failure.
5619 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5620 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5621 {
5622 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5623 }
5624
5625 /**
5626 * ufshcd_enable_ee - enable exception event
5627 * @hba: per-adapter instance
5628 * @mask: exception event to enable
5629 *
5630 * Enable corresponding exception event in the device to allow
5631 * device to alert host in critical scenarios.
5632 *
5633 * Return: zero on success, non-zero error value on failure.
5634 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5635 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5636 {
5637 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5638 }
5639
5640 /**
5641 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5642 * @hba: per-adapter instance
5643 *
5644 * Allow device to manage background operations on its own. Enabling
5645 * this might lead to inconsistent latencies during normal data transfers
5646 * as the device is allowed to manage its own way of handling background
5647 * operations.
5648 *
5649 * Return: zero on success, non-zero on failure.
5650 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5651 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5652 {
5653 int err = 0;
5654
5655 if (hba->auto_bkops_enabled)
5656 goto out;
5657
5658 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5659 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5660 if (err) {
5661 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5662 __func__, err);
5663 goto out;
5664 }
5665
5666 hba->auto_bkops_enabled = true;
5667 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5668
5669 /* No need of URGENT_BKOPS exception from the device */
5670 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5671 if (err)
5672 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5673 __func__, err);
5674 out:
5675 return err;
5676 }
5677
5678 /**
5679 * ufshcd_disable_auto_bkops - block device in doing background operations
5680 * @hba: per-adapter instance
5681 *
5682 * Disabling background operations improves command response latency but
5683 * has drawback of device moving into critical state where the device is
5684 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5685 * host is idle so that BKOPS are managed effectively without any negative
5686 * impacts.
5687 *
5688 * Return: zero on success, non-zero on failure.
5689 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5690 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5691 {
5692 int err = 0;
5693
5694 if (!hba->auto_bkops_enabled)
5695 goto out;
5696
5697 /*
5698 * If host assisted BKOPs is to be enabled, make sure
5699 * urgent bkops exception is allowed.
5700 */
5701 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5702 if (err) {
5703 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5704 __func__, err);
5705 goto out;
5706 }
5707
5708 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5709 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5710 if (err) {
5711 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5712 __func__, err);
5713 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5714 goto out;
5715 }
5716
5717 hba->auto_bkops_enabled = false;
5718 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5719 hba->is_urgent_bkops_lvl_checked = false;
5720 out:
5721 return err;
5722 }
5723
5724 /**
5725 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5726 * @hba: per adapter instance
5727 *
5728 * After a device reset the device may toggle the BKOPS_EN flag
5729 * to default value. The s/w tracking variables should be updated
5730 * as well. This function would change the auto-bkops state based on
5731 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5732 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5733 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5734 {
5735 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5736 hba->auto_bkops_enabled = false;
5737 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5738 ufshcd_enable_auto_bkops(hba);
5739 } else {
5740 hba->auto_bkops_enabled = true;
5741 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5742 ufshcd_disable_auto_bkops(hba);
5743 }
5744 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5745 hba->is_urgent_bkops_lvl_checked = false;
5746 }
5747
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5748 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5749 {
5750 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5751 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5752 }
5753
5754 /**
5755 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5756 * @hba: per-adapter instance
5757 * @status: bkops_status value
5758 *
5759 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5760 * flag in the device to permit background operations if the device
5761 * bkops_status is greater than or equal to "status" argument passed to
5762 * this function, disable otherwise.
5763 *
5764 * Return: 0 for success, non-zero in case of failure.
5765 *
5766 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5767 * to know whether auto bkops is enabled or disabled after this function
5768 * returns control to it.
5769 */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5770 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5771 enum bkops_status status)
5772 {
5773 int err;
5774 u32 curr_status = 0;
5775
5776 err = ufshcd_get_bkops_status(hba, &curr_status);
5777 if (err) {
5778 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5779 __func__, err);
5780 goto out;
5781 } else if (curr_status > BKOPS_STATUS_MAX) {
5782 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5783 __func__, curr_status);
5784 err = -EINVAL;
5785 goto out;
5786 }
5787
5788 if (curr_status >= status)
5789 err = ufshcd_enable_auto_bkops(hba);
5790 else
5791 err = ufshcd_disable_auto_bkops(hba);
5792 out:
5793 return err;
5794 }
5795
5796 /**
5797 * ufshcd_urgent_bkops - handle urgent bkops exception event
5798 * @hba: per-adapter instance
5799 *
5800 * Enable fBackgroundOpsEn flag in the device to permit background
5801 * operations.
5802 *
5803 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5804 * and negative error value for any other failure.
5805 *
5806 * Return: 0 upon success; < 0 upon failure.
5807 */
ufshcd_urgent_bkops(struct ufs_hba * hba)5808 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5809 {
5810 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5811 }
5812
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5813 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5814 {
5815 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5816 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5817 }
5818
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5819 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5820 {
5821 int err;
5822 u32 curr_status = 0;
5823
5824 if (hba->is_urgent_bkops_lvl_checked)
5825 goto enable_auto_bkops;
5826
5827 err = ufshcd_get_bkops_status(hba, &curr_status);
5828 if (err) {
5829 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5830 __func__, err);
5831 goto out;
5832 }
5833
5834 /*
5835 * We are seeing that some devices are raising the urgent bkops
5836 * exception events even when BKOPS status doesn't indicate performace
5837 * impacted or critical. Handle these device by determining their urgent
5838 * bkops status at runtime.
5839 */
5840 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5841 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5842 __func__, curr_status);
5843 /* update the current status as the urgent bkops level */
5844 hba->urgent_bkops_lvl = curr_status;
5845 hba->is_urgent_bkops_lvl_checked = true;
5846 }
5847
5848 enable_auto_bkops:
5849 err = ufshcd_enable_auto_bkops(hba);
5850 out:
5851 if (err < 0)
5852 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5853 __func__, err);
5854 }
5855
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)5856 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5857 {
5858 u32 value;
5859
5860 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5861 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5862 return;
5863
5864 dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5865
5866 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5867
5868 /*
5869 * A placeholder for the platform vendors to add whatever additional
5870 * steps required
5871 */
5872 }
5873
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)5874 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5875 {
5876 u8 index;
5877 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5878 UPIU_QUERY_OPCODE_CLEAR_FLAG;
5879
5880 index = ufshcd_wb_get_query_index(hba);
5881 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5882 }
5883
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)5884 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5885 {
5886 int ret;
5887
5888 if (!ufshcd_is_wb_allowed(hba) ||
5889 hba->dev_info.wb_enabled == enable)
5890 return 0;
5891
5892 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5893 if (ret) {
5894 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5895 __func__, enable ? "enabling" : "disabling", ret);
5896 return ret;
5897 }
5898
5899 hba->dev_info.wb_enabled = enable;
5900 dev_dbg(hba->dev, "%s: Write Booster %s\n",
5901 __func__, enable ? "enabled" : "disabled");
5902
5903 return ret;
5904 }
5905
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)5906 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5907 bool enable)
5908 {
5909 int ret;
5910
5911 ret = __ufshcd_wb_toggle(hba, enable,
5912 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5913 if (ret) {
5914 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5915 __func__, enable ? "enabling" : "disabling", ret);
5916 return;
5917 }
5918 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5919 __func__, enable ? "enabled" : "disabled");
5920 }
5921
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)5922 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5923 {
5924 int ret;
5925
5926 if (!ufshcd_is_wb_allowed(hba) ||
5927 hba->dev_info.wb_buf_flush_enabled == enable)
5928 return 0;
5929
5930 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5931 if (ret) {
5932 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5933 __func__, enable ? "enabling" : "disabling", ret);
5934 return ret;
5935 }
5936
5937 hba->dev_info.wb_buf_flush_enabled = enable;
5938 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5939 __func__, enable ? "enabled" : "disabled");
5940
5941 return ret;
5942 }
5943
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5944 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5945 u32 avail_buf)
5946 {
5947 u32 cur_buf;
5948 int ret;
5949 u8 index;
5950
5951 index = ufshcd_wb_get_query_index(hba);
5952 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5953 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5954 index, 0, &cur_buf);
5955 if (ret) {
5956 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5957 __func__, ret);
5958 return false;
5959 }
5960
5961 if (!cur_buf) {
5962 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5963 cur_buf);
5964 return false;
5965 }
5966 /* Let it continue to flush when available buffer exceeds threshold */
5967 return avail_buf < hba->vps->wb_flush_threshold;
5968 }
5969
ufshcd_wb_force_disable(struct ufs_hba * hba)5970 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5971 {
5972 if (ufshcd_is_wb_buf_flush_allowed(hba))
5973 ufshcd_wb_toggle_buf_flush(hba, false);
5974
5975 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5976 ufshcd_wb_toggle(hba, false);
5977 hba->caps &= ~UFSHCD_CAP_WB_EN;
5978
5979 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5980 }
5981
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)5982 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5983 {
5984 u32 lifetime;
5985 int ret;
5986 u8 index;
5987
5988 index = ufshcd_wb_get_query_index(hba);
5989 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5990 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5991 index, 0, &lifetime);
5992 if (ret) {
5993 dev_err(hba->dev,
5994 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5995 __func__, ret);
5996 return false;
5997 }
5998
5999 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6000 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6001 __func__, lifetime);
6002 return false;
6003 }
6004
6005 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6006 __func__, lifetime);
6007
6008 return true;
6009 }
6010
ufshcd_wb_need_flush(struct ufs_hba * hba)6011 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6012 {
6013 int ret;
6014 u32 avail_buf;
6015 u8 index;
6016
6017 if (!ufshcd_is_wb_allowed(hba))
6018 return false;
6019
6020 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6021 ufshcd_wb_force_disable(hba);
6022 return false;
6023 }
6024
6025 /*
6026 * The ufs device needs the vcc to be ON to flush.
6027 * With user-space reduction enabled, it's enough to enable flush
6028 * by checking only the available buffer. The threshold
6029 * defined here is > 90% full.
6030 * With user-space preserved enabled, the current-buffer
6031 * should be checked too because the wb buffer size can reduce
6032 * when disk tends to be full. This info is provided by current
6033 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6034 * keeping vcc on when current buffer is empty.
6035 */
6036 index = ufshcd_wb_get_query_index(hba);
6037 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6038 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6039 index, 0, &avail_buf);
6040 if (ret) {
6041 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6042 __func__, ret);
6043 return false;
6044 }
6045
6046 if (!hba->dev_info.b_presrv_uspc_en)
6047 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6048
6049 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6050 }
6051
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6052 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6053 {
6054 struct ufs_hba *hba = container_of(to_delayed_work(work),
6055 struct ufs_hba,
6056 rpm_dev_flush_recheck_work);
6057 /*
6058 * To prevent unnecessary VCC power drain after device finishes
6059 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6060 * after a certain delay to recheck the threshold by next runtime
6061 * suspend.
6062 */
6063 ufshcd_rpm_get_sync(hba);
6064 ufshcd_rpm_put_sync(hba);
6065 }
6066
6067 /**
6068 * ufshcd_exception_event_handler - handle exceptions raised by device
6069 * @work: pointer to work data
6070 *
6071 * Read bExceptionEventStatus attribute from the device and handle the
6072 * exception event accordingly.
6073 */
ufshcd_exception_event_handler(struct work_struct * work)6074 static void ufshcd_exception_event_handler(struct work_struct *work)
6075 {
6076 struct ufs_hba *hba;
6077 int err;
6078 u32 status = 0;
6079 hba = container_of(work, struct ufs_hba, eeh_work);
6080
6081 ufshcd_scsi_block_requests(hba);
6082 err = ufshcd_get_ee_status(hba, &status);
6083 if (err) {
6084 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6085 __func__, err);
6086 goto out;
6087 }
6088
6089 trace_ufshcd_exception_event(dev_name(hba->dev), status);
6090
6091 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6092 ufshcd_bkops_exception_event_handler(hba);
6093
6094 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6095 ufshcd_temp_exception_event_handler(hba, status);
6096
6097 ufs_debugfs_exception_event(hba, status);
6098 out:
6099 ufshcd_scsi_unblock_requests(hba);
6100 }
6101
6102 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6103 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6104 {
6105 if (is_mcq_enabled(hba))
6106 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6107 else
6108 ufshcd_transfer_req_compl(hba);
6109
6110 ufshcd_tmc_handler(hba);
6111 }
6112
6113 /**
6114 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6115 * to recover from the DL NAC errors or not.
6116 * @hba: per-adapter instance
6117 *
6118 * Return: true if error handling is required, false otherwise.
6119 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6120 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6121 {
6122 unsigned long flags;
6123 bool err_handling = true;
6124
6125 spin_lock_irqsave(hba->host->host_lock, flags);
6126 /*
6127 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6128 * device fatal error and/or DL NAC & REPLAY timeout errors.
6129 */
6130 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6131 goto out;
6132
6133 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6134 ((hba->saved_err & UIC_ERROR) &&
6135 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6136 goto out;
6137
6138 if ((hba->saved_err & UIC_ERROR) &&
6139 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6140 int err;
6141 /*
6142 * wait for 50ms to see if we can get any other errors or not.
6143 */
6144 spin_unlock_irqrestore(hba->host->host_lock, flags);
6145 msleep(50);
6146 spin_lock_irqsave(hba->host->host_lock, flags);
6147
6148 /*
6149 * now check if we have got any other severe errors other than
6150 * DL NAC error?
6151 */
6152 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6153 ((hba->saved_err & UIC_ERROR) &&
6154 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6155 goto out;
6156
6157 /*
6158 * As DL NAC is the only error received so far, send out NOP
6159 * command to confirm if link is still active or not.
6160 * - If we don't get any response then do error recovery.
6161 * - If we get response then clear the DL NAC error bit.
6162 */
6163
6164 spin_unlock_irqrestore(hba->host->host_lock, flags);
6165 err = ufshcd_verify_dev_init(hba);
6166 spin_lock_irqsave(hba->host->host_lock, flags);
6167
6168 if (err)
6169 goto out;
6170
6171 /* Link seems to be alive hence ignore the DL NAC errors */
6172 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6173 hba->saved_err &= ~UIC_ERROR;
6174 /* clear NAC error */
6175 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6176 if (!hba->saved_uic_err)
6177 err_handling = false;
6178 }
6179 out:
6180 spin_unlock_irqrestore(hba->host->host_lock, flags);
6181 return err_handling;
6182 }
6183
6184 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6185 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6186 {
6187 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6188 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6189 }
6190
ufshcd_schedule_eh_work(struct ufs_hba * hba)6191 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6192 {
6193 lockdep_assert_held(hba->host->host_lock);
6194
6195 /* handle fatal errors only when link is not in error state */
6196 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6197 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6198 ufshcd_is_saved_err_fatal(hba))
6199 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6200 else
6201 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6202 queue_work(hba->eh_wq, &hba->eh_work);
6203 }
6204 }
6205
ufshcd_force_error_recovery(struct ufs_hba * hba)6206 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6207 {
6208 spin_lock_irq(hba->host->host_lock);
6209 hba->force_reset = true;
6210 ufshcd_schedule_eh_work(hba);
6211 spin_unlock_irq(hba->host->host_lock);
6212 }
6213
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6214 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6215 {
6216 mutex_lock(&hba->wb_mutex);
6217 down_write(&hba->clk_scaling_lock);
6218 hba->clk_scaling.is_allowed = allow;
6219 up_write(&hba->clk_scaling_lock);
6220 mutex_unlock(&hba->wb_mutex);
6221 }
6222
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6223 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6224 {
6225 if (suspend) {
6226 if (hba->clk_scaling.is_enabled)
6227 ufshcd_suspend_clkscaling(hba);
6228 ufshcd_clk_scaling_allow(hba, false);
6229 } else {
6230 ufshcd_clk_scaling_allow(hba, true);
6231 if (hba->clk_scaling.is_enabled)
6232 ufshcd_resume_clkscaling(hba);
6233 }
6234 }
6235
ufshcd_err_handling_prepare(struct ufs_hba * hba)6236 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6237 {
6238 ufshcd_rpm_get_sync(hba);
6239 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6240 hba->is_sys_suspended) {
6241 enum ufs_pm_op pm_op;
6242
6243 /*
6244 * Don't assume anything of resume, if
6245 * resume fails, irq and clocks can be OFF, and powers
6246 * can be OFF or in LPM.
6247 */
6248 ufshcd_setup_hba_vreg(hba, true);
6249 ufshcd_enable_irq(hba);
6250 ufshcd_setup_vreg(hba, true);
6251 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6252 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6253 ufshcd_hold(hba);
6254 if (!ufshcd_is_clkgating_allowed(hba))
6255 ufshcd_setup_clocks(hba, true);
6256 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6257 ufshcd_vops_resume(hba, pm_op);
6258 } else {
6259 ufshcd_hold(hba);
6260 if (ufshcd_is_clkscaling_supported(hba) &&
6261 hba->clk_scaling.is_enabled)
6262 ufshcd_suspend_clkscaling(hba);
6263 ufshcd_clk_scaling_allow(hba, false);
6264 }
6265 ufshcd_scsi_block_requests(hba);
6266 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6267 blk_mq_wait_quiesce_done(&hba->host->tag_set);
6268 cancel_work_sync(&hba->eeh_work);
6269 }
6270
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6271 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6272 {
6273 ufshcd_scsi_unblock_requests(hba);
6274 ufshcd_release(hba);
6275 if (ufshcd_is_clkscaling_supported(hba))
6276 ufshcd_clk_scaling_suspend(hba, false);
6277 ufshcd_rpm_put(hba);
6278 }
6279
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6280 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6281 {
6282 return (!hba->is_powered || hba->shutting_down ||
6283 !hba->ufs_device_wlun ||
6284 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6285 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6286 ufshcd_is_link_broken(hba))));
6287 }
6288
6289 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6290 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6291 {
6292 struct Scsi_Host *shost = hba->host;
6293 struct scsi_device *sdev;
6294 struct request_queue *q;
6295 int ret;
6296
6297 hba->is_sys_suspended = false;
6298 /*
6299 * Set RPM status of wlun device to RPM_ACTIVE,
6300 * this also clears its runtime error.
6301 */
6302 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6303
6304 /* hba device might have a runtime error otherwise */
6305 if (ret)
6306 ret = pm_runtime_set_active(hba->dev);
6307 /*
6308 * If wlun device had runtime error, we also need to resume those
6309 * consumer scsi devices in case any of them has failed to be
6310 * resumed due to supplier runtime resume failure. This is to unblock
6311 * blk_queue_enter in case there are bios waiting inside it.
6312 */
6313 if (!ret) {
6314 shost_for_each_device(sdev, shost) {
6315 q = sdev->request_queue;
6316 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6317 q->rpm_status == RPM_SUSPENDING))
6318 pm_request_resume(q->dev);
6319 }
6320 }
6321 }
6322 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6323 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6324 {
6325 }
6326 #endif
6327
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6328 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6329 {
6330 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6331 u32 mode;
6332
6333 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6334
6335 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6336 return true;
6337
6338 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6339 return true;
6340
6341 return false;
6342 }
6343
ufshcd_abort_one(struct request * rq,void * priv)6344 static bool ufshcd_abort_one(struct request *rq, void *priv)
6345 {
6346 int *ret = priv;
6347 u32 tag = rq->tag;
6348 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6349 struct scsi_device *sdev = cmd->device;
6350 struct Scsi_Host *shost = sdev->host;
6351 struct ufs_hba *hba = shost_priv(shost);
6352 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6353 struct ufs_hw_queue *hwq;
6354 unsigned long flags;
6355
6356 *ret = ufshcd_try_to_abort_task(hba, tag);
6357 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6358 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6359 *ret ? "failed" : "succeeded");
6360
6361 /* Release cmd in MCQ mode if abort succeeds */
6362 if (is_mcq_enabled(hba) && (*ret == 0)) {
6363 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6364 spin_lock_irqsave(&hwq->cq_lock, flags);
6365 if (ufshcd_cmd_inflight(lrbp->cmd))
6366 ufshcd_release_scsi_cmd(hba, lrbp);
6367 spin_unlock_irqrestore(&hwq->cq_lock, flags);
6368 }
6369
6370 return *ret == 0;
6371 }
6372
6373 /**
6374 * ufshcd_abort_all - Abort all pending commands.
6375 * @hba: Host bus adapter pointer.
6376 *
6377 * Return: true if and only if the host controller needs to be reset.
6378 */
ufshcd_abort_all(struct ufs_hba * hba)6379 static bool ufshcd_abort_all(struct ufs_hba *hba)
6380 {
6381 int tag, ret = 0;
6382
6383 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6384 if (ret)
6385 goto out;
6386
6387 /* Clear pending task management requests */
6388 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6389 ret = ufshcd_clear_tm_cmd(hba, tag);
6390 if (ret)
6391 goto out;
6392 }
6393
6394 out:
6395 /* Complete the requests that are cleared by s/w */
6396 ufshcd_complete_requests(hba, false);
6397
6398 return ret != 0;
6399 }
6400
6401 /**
6402 * ufshcd_err_handler - handle UFS errors that require s/w attention
6403 * @work: pointer to work structure
6404 */
ufshcd_err_handler(struct work_struct * work)6405 static void ufshcd_err_handler(struct work_struct *work)
6406 {
6407 int retries = MAX_ERR_HANDLER_RETRIES;
6408 struct ufs_hba *hba;
6409 unsigned long flags;
6410 bool needs_restore;
6411 bool needs_reset;
6412 int pmc_err;
6413
6414 hba = container_of(work, struct ufs_hba, eh_work);
6415
6416 dev_info(hba->dev,
6417 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6418 __func__, ufshcd_state_name[hba->ufshcd_state],
6419 hba->is_powered, hba->shutting_down, hba->saved_err,
6420 hba->saved_uic_err, hba->force_reset,
6421 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6422
6423 down(&hba->host_sem);
6424 spin_lock_irqsave(hba->host->host_lock, flags);
6425 if (ufshcd_err_handling_should_stop(hba)) {
6426 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6427 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6428 spin_unlock_irqrestore(hba->host->host_lock, flags);
6429 up(&hba->host_sem);
6430 return;
6431 }
6432 ufshcd_set_eh_in_progress(hba);
6433 spin_unlock_irqrestore(hba->host->host_lock, flags);
6434 ufshcd_err_handling_prepare(hba);
6435 /* Complete requests that have door-bell cleared by h/w */
6436 ufshcd_complete_requests(hba, false);
6437 spin_lock_irqsave(hba->host->host_lock, flags);
6438 again:
6439 needs_restore = false;
6440 needs_reset = false;
6441
6442 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6443 hba->ufshcd_state = UFSHCD_STATE_RESET;
6444 /*
6445 * A full reset and restore might have happened after preparation
6446 * is finished, double check whether we should stop.
6447 */
6448 if (ufshcd_err_handling_should_stop(hba))
6449 goto skip_err_handling;
6450
6451 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6452 bool ret;
6453
6454 spin_unlock_irqrestore(hba->host->host_lock, flags);
6455 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6456 ret = ufshcd_quirk_dl_nac_errors(hba);
6457 spin_lock_irqsave(hba->host->host_lock, flags);
6458 if (!ret && ufshcd_err_handling_should_stop(hba))
6459 goto skip_err_handling;
6460 }
6461
6462 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6463 (hba->saved_uic_err &&
6464 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6465 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6466
6467 spin_unlock_irqrestore(hba->host->host_lock, flags);
6468 ufshcd_print_host_state(hba);
6469 ufshcd_print_pwr_info(hba);
6470 ufshcd_print_evt_hist(hba);
6471 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6472 ufshcd_print_trs_all(hba, pr_prdt);
6473 spin_lock_irqsave(hba->host->host_lock, flags);
6474 }
6475
6476 /*
6477 * if host reset is required then skip clearing the pending
6478 * transfers forcefully because they will get cleared during
6479 * host reset and restore
6480 */
6481 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6482 ufshcd_is_saved_err_fatal(hba) ||
6483 ((hba->saved_err & UIC_ERROR) &&
6484 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6485 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6486 needs_reset = true;
6487 goto do_reset;
6488 }
6489
6490 /*
6491 * If LINERESET was caught, UFS might have been put to PWM mode,
6492 * check if power mode restore is needed.
6493 */
6494 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6495 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6496 if (!hba->saved_uic_err)
6497 hba->saved_err &= ~UIC_ERROR;
6498 spin_unlock_irqrestore(hba->host->host_lock, flags);
6499 if (ufshcd_is_pwr_mode_restore_needed(hba))
6500 needs_restore = true;
6501 spin_lock_irqsave(hba->host->host_lock, flags);
6502 if (!hba->saved_err && !needs_restore)
6503 goto skip_err_handling;
6504 }
6505
6506 hba->silence_err_logs = true;
6507 /* release lock as clear command might sleep */
6508 spin_unlock_irqrestore(hba->host->host_lock, flags);
6509
6510 needs_reset = ufshcd_abort_all(hba);
6511
6512 spin_lock_irqsave(hba->host->host_lock, flags);
6513 hba->silence_err_logs = false;
6514 if (needs_reset)
6515 goto do_reset;
6516
6517 /*
6518 * After all reqs and tasks are cleared from doorbell,
6519 * now it is safe to retore power mode.
6520 */
6521 if (needs_restore) {
6522 spin_unlock_irqrestore(hba->host->host_lock, flags);
6523 /*
6524 * Hold the scaling lock just in case dev cmds
6525 * are sent via bsg and/or sysfs.
6526 */
6527 down_write(&hba->clk_scaling_lock);
6528 hba->force_pmc = true;
6529 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6530 if (pmc_err) {
6531 needs_reset = true;
6532 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6533 __func__, pmc_err);
6534 }
6535 hba->force_pmc = false;
6536 ufshcd_print_pwr_info(hba);
6537 up_write(&hba->clk_scaling_lock);
6538 spin_lock_irqsave(hba->host->host_lock, flags);
6539 }
6540
6541 do_reset:
6542 /* Fatal errors need reset */
6543 if (needs_reset) {
6544 int err;
6545
6546 hba->force_reset = false;
6547 spin_unlock_irqrestore(hba->host->host_lock, flags);
6548 err = ufshcd_reset_and_restore(hba);
6549 if (err)
6550 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6551 __func__, err);
6552 else
6553 ufshcd_recover_pm_error(hba);
6554 spin_lock_irqsave(hba->host->host_lock, flags);
6555 }
6556
6557 skip_err_handling:
6558 if (!needs_reset) {
6559 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6560 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6561 if (hba->saved_err || hba->saved_uic_err)
6562 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6563 __func__, hba->saved_err, hba->saved_uic_err);
6564 }
6565 /* Exit in an operational state or dead */
6566 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6567 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6568 if (--retries)
6569 goto again;
6570 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6571 }
6572 ufshcd_clear_eh_in_progress(hba);
6573 spin_unlock_irqrestore(hba->host->host_lock, flags);
6574 ufshcd_err_handling_unprepare(hba);
6575 up(&hba->host_sem);
6576
6577 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6578 ufshcd_state_name[hba->ufshcd_state]);
6579 }
6580
6581 /**
6582 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6583 * @hba: per-adapter instance
6584 *
6585 * Return:
6586 * IRQ_HANDLED - If interrupt is valid
6587 * IRQ_NONE - If invalid interrupt
6588 */
ufshcd_update_uic_error(struct ufs_hba * hba)6589 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6590 {
6591 u32 reg;
6592 irqreturn_t retval = IRQ_NONE;
6593
6594 /* PHY layer error */
6595 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6596 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6597 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6598 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6599 /*
6600 * To know whether this error is fatal or not, DB timeout
6601 * must be checked but this error is handled separately.
6602 */
6603 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6604 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6605 __func__);
6606
6607 /* Got a LINERESET indication. */
6608 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6609 struct uic_command *cmd = NULL;
6610
6611 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6612 if (hba->uic_async_done && hba->active_uic_cmd)
6613 cmd = hba->active_uic_cmd;
6614 /*
6615 * Ignore the LINERESET during power mode change
6616 * operation via DME_SET command.
6617 */
6618 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6619 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6620 }
6621 retval |= IRQ_HANDLED;
6622 }
6623
6624 /* PA_INIT_ERROR is fatal and needs UIC reset */
6625 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6626 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6627 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6628 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6629
6630 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6631 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6632 else if (hba->dev_quirks &
6633 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6634 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6635 hba->uic_error |=
6636 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6637 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6638 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6639 }
6640 retval |= IRQ_HANDLED;
6641 }
6642
6643 /* UIC NL/TL/DME errors needs software retry */
6644 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6645 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6646 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6647 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6648 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6649 retval |= IRQ_HANDLED;
6650 }
6651
6652 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6653 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6654 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6655 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6656 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6657 retval |= IRQ_HANDLED;
6658 }
6659
6660 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6661 if ((reg & UIC_DME_ERROR) &&
6662 (reg & UIC_DME_ERROR_CODE_MASK)) {
6663 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6664 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6665 retval |= IRQ_HANDLED;
6666 }
6667
6668 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6669 __func__, hba->uic_error);
6670 return retval;
6671 }
6672
6673 /**
6674 * ufshcd_check_errors - Check for errors that need s/w attention
6675 * @hba: per-adapter instance
6676 * @intr_status: interrupt status generated by the controller
6677 *
6678 * Return:
6679 * IRQ_HANDLED - If interrupt is valid
6680 * IRQ_NONE - If invalid interrupt
6681 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6682 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6683 {
6684 bool queue_eh_work = false;
6685 irqreturn_t retval = IRQ_NONE;
6686
6687 spin_lock(hba->host->host_lock);
6688 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6689
6690 if (hba->errors & INT_FATAL_ERRORS) {
6691 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6692 hba->errors);
6693 queue_eh_work = true;
6694 }
6695
6696 if (hba->errors & UIC_ERROR) {
6697 hba->uic_error = 0;
6698 retval = ufshcd_update_uic_error(hba);
6699 if (hba->uic_error)
6700 queue_eh_work = true;
6701 }
6702
6703 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6704 dev_err(hba->dev,
6705 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6706 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6707 "Enter" : "Exit",
6708 hba->errors, ufshcd_get_upmcrs(hba));
6709 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6710 hba->errors);
6711 ufshcd_set_link_broken(hba);
6712 queue_eh_work = true;
6713 }
6714
6715 if (queue_eh_work) {
6716 /*
6717 * update the transfer error masks to sticky bits, let's do this
6718 * irrespective of current ufshcd_state.
6719 */
6720 hba->saved_err |= hba->errors;
6721 hba->saved_uic_err |= hba->uic_error;
6722
6723 /* dump controller state before resetting */
6724 if ((hba->saved_err &
6725 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6726 (hba->saved_uic_err &&
6727 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6728 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6729 __func__, hba->saved_err,
6730 hba->saved_uic_err);
6731 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6732 "host_regs: ");
6733 ufshcd_print_pwr_info(hba);
6734 }
6735 ufshcd_schedule_eh_work(hba);
6736 retval |= IRQ_HANDLED;
6737 }
6738 /*
6739 * if (!queue_eh_work) -
6740 * Other errors are either non-fatal where host recovers
6741 * itself without s/w intervention or errors that will be
6742 * handled by the SCSI core layer.
6743 */
6744 hba->errors = 0;
6745 hba->uic_error = 0;
6746 spin_unlock(hba->host->host_lock);
6747 return retval;
6748 }
6749
6750 /**
6751 * ufshcd_tmc_handler - handle task management function completion
6752 * @hba: per adapter instance
6753 *
6754 * Return:
6755 * IRQ_HANDLED - If interrupt is valid
6756 * IRQ_NONE - If invalid interrupt
6757 */
ufshcd_tmc_handler(struct ufs_hba * hba)6758 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6759 {
6760 unsigned long flags, pending, issued;
6761 irqreturn_t ret = IRQ_NONE;
6762 int tag;
6763
6764 spin_lock_irqsave(hba->host->host_lock, flags);
6765 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6766 issued = hba->outstanding_tasks & ~pending;
6767 for_each_set_bit(tag, &issued, hba->nutmrs) {
6768 struct request *req = hba->tmf_rqs[tag];
6769 struct completion *c = req->end_io_data;
6770
6771 complete(c);
6772 ret = IRQ_HANDLED;
6773 }
6774 spin_unlock_irqrestore(hba->host->host_lock, flags);
6775
6776 return ret;
6777 }
6778
6779 /**
6780 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6781 * @hba: per adapter instance
6782 *
6783 * Return: IRQ_HANDLED if interrupt is handled.
6784 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6785 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6786 {
6787 struct ufs_hw_queue *hwq;
6788 unsigned long outstanding_cqs;
6789 unsigned int nr_queues;
6790 int i, ret;
6791 u32 events;
6792
6793 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6794 if (ret)
6795 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6796
6797 /* Exclude the poll queues */
6798 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6799 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6800 hwq = &hba->uhq[i];
6801
6802 events = ufshcd_mcq_read_cqis(hba, i);
6803 if (events)
6804 ufshcd_mcq_write_cqis(hba, events, i);
6805
6806 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6807 ufshcd_mcq_poll_cqe_lock(hba, hwq);
6808 }
6809
6810 return IRQ_HANDLED;
6811 }
6812
6813 /**
6814 * ufshcd_sl_intr - Interrupt service routine
6815 * @hba: per adapter instance
6816 * @intr_status: contains interrupts generated by the controller
6817 *
6818 * Return:
6819 * IRQ_HANDLED - If interrupt is valid
6820 * IRQ_NONE - If invalid interrupt
6821 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6822 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6823 {
6824 irqreturn_t retval = IRQ_NONE;
6825
6826 if (intr_status & UFSHCD_UIC_MASK)
6827 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6828
6829 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6830 retval |= ufshcd_check_errors(hba, intr_status);
6831
6832 if (intr_status & UTP_TASK_REQ_COMPL)
6833 retval |= ufshcd_tmc_handler(hba);
6834
6835 if (intr_status & UTP_TRANSFER_REQ_COMPL)
6836 retval |= ufshcd_transfer_req_compl(hba);
6837
6838 if (intr_status & MCQ_CQ_EVENT_STATUS)
6839 retval |= ufshcd_handle_mcq_cq_events(hba);
6840
6841 return retval;
6842 }
6843
6844 /**
6845 * ufshcd_intr - Main interrupt service routine
6846 * @irq: irq number
6847 * @__hba: pointer to adapter instance
6848 *
6849 * Return:
6850 * IRQ_HANDLED - If interrupt is valid
6851 * IRQ_NONE - If invalid interrupt
6852 */
ufshcd_intr(int irq,void * __hba)6853 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6854 {
6855 u32 intr_status, enabled_intr_status = 0;
6856 irqreturn_t retval = IRQ_NONE;
6857 struct ufs_hba *hba = __hba;
6858 int retries = hba->nutrs;
6859
6860 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6861 hba->ufs_stats.last_intr_status = intr_status;
6862 hba->ufs_stats.last_intr_ts = local_clock();
6863
6864 /*
6865 * There could be max of hba->nutrs reqs in flight and in worst case
6866 * if the reqs get finished 1 by 1 after the interrupt status is
6867 * read, make sure we handle them by checking the interrupt status
6868 * again in a loop until we process all of the reqs before returning.
6869 */
6870 while (intr_status && retries--) {
6871 enabled_intr_status =
6872 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6873 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6874 if (enabled_intr_status)
6875 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6876
6877 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6878 }
6879
6880 if (enabled_intr_status && retval == IRQ_NONE &&
6881 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6882 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6883 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6884 __func__,
6885 intr_status,
6886 hba->ufs_stats.last_intr_status,
6887 enabled_intr_status);
6888 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6889 }
6890
6891 return retval;
6892 }
6893
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6894 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6895 {
6896 int err = 0;
6897 u32 mask = 1 << tag;
6898 unsigned long flags;
6899
6900 if (!test_bit(tag, &hba->outstanding_tasks))
6901 goto out;
6902
6903 spin_lock_irqsave(hba->host->host_lock, flags);
6904 ufshcd_utmrl_clear(hba, tag);
6905 spin_unlock_irqrestore(hba->host->host_lock, flags);
6906
6907 /* poll for max. 1 sec to clear door bell register by h/w */
6908 err = ufshcd_wait_for_register(hba,
6909 REG_UTP_TASK_REQ_DOOR_BELL,
6910 mask, 0, 1000, 1000);
6911
6912 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6913 tag, err < 0 ? "failed" : "succeeded");
6914
6915 out:
6916 return err;
6917 }
6918
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6919 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6920 struct utp_task_req_desc *treq, u8 tm_function)
6921 {
6922 struct request_queue *q = hba->tmf_queue;
6923 struct Scsi_Host *host = hba->host;
6924 DECLARE_COMPLETION_ONSTACK(wait);
6925 struct request *req;
6926 unsigned long flags;
6927 int task_tag, err;
6928
6929 /*
6930 * blk_mq_alloc_request() is used here only to get a free tag.
6931 */
6932 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6933 if (IS_ERR(req))
6934 return PTR_ERR(req);
6935
6936 req->end_io_data = &wait;
6937 ufshcd_hold(hba);
6938
6939 spin_lock_irqsave(host->host_lock, flags);
6940
6941 task_tag = req->tag;
6942 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6943 task_tag);
6944 hba->tmf_rqs[req->tag] = req;
6945 treq->upiu_req.req_header.task_tag = task_tag;
6946
6947 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6948 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6949
6950 /* send command to the controller */
6951 __set_bit(task_tag, &hba->outstanding_tasks);
6952
6953 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6954 /* Make sure that doorbell is committed immediately */
6955 wmb();
6956
6957 spin_unlock_irqrestore(host->host_lock, flags);
6958
6959 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6960
6961 /* wait until the task management command is completed */
6962 err = wait_for_completion_io_timeout(&wait,
6963 msecs_to_jiffies(TM_CMD_TIMEOUT));
6964 if (!err) {
6965 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6966 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6967 __func__, tm_function);
6968 if (ufshcd_clear_tm_cmd(hba, task_tag))
6969 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6970 __func__, task_tag);
6971 err = -ETIMEDOUT;
6972 } else {
6973 err = 0;
6974 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6975
6976 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6977 }
6978
6979 spin_lock_irqsave(hba->host->host_lock, flags);
6980 hba->tmf_rqs[req->tag] = NULL;
6981 __clear_bit(task_tag, &hba->outstanding_tasks);
6982 spin_unlock_irqrestore(hba->host->host_lock, flags);
6983
6984 ufshcd_release(hba);
6985 blk_mq_free_request(req);
6986
6987 return err;
6988 }
6989
6990 /**
6991 * ufshcd_issue_tm_cmd - issues task management commands to controller
6992 * @hba: per adapter instance
6993 * @lun_id: LUN ID to which TM command is sent
6994 * @task_id: task ID to which the TM command is applicable
6995 * @tm_function: task management function opcode
6996 * @tm_response: task management service response return value
6997 *
6998 * Return: non-zero value on error, zero on success.
6999 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7000 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7001 u8 tm_function, u8 *tm_response)
7002 {
7003 struct utp_task_req_desc treq = { };
7004 enum utp_ocs ocs_value;
7005 int err;
7006
7007 /* Configure task request descriptor */
7008 treq.header.interrupt = 1;
7009 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7010
7011 /* Configure task request UPIU */
7012 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7013 treq.upiu_req.req_header.lun = lun_id;
7014 treq.upiu_req.req_header.tm_function = tm_function;
7015
7016 /*
7017 * The host shall provide the same value for LUN field in the basic
7018 * header and for Input Parameter.
7019 */
7020 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7021 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7022
7023 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7024 if (err == -ETIMEDOUT)
7025 return err;
7026
7027 ocs_value = treq.header.ocs & MASK_OCS;
7028 if (ocs_value != OCS_SUCCESS)
7029 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7030 __func__, ocs_value);
7031 else if (tm_response)
7032 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7033 MASK_TM_SERVICE_RESP;
7034 return err;
7035 }
7036
7037 /**
7038 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7039 * @hba: per-adapter instance
7040 * @req_upiu: upiu request
7041 * @rsp_upiu: upiu reply
7042 * @desc_buff: pointer to descriptor buffer, NULL if NA
7043 * @buff_len: descriptor size, 0 if NA
7044 * @cmd_type: specifies the type (NOP, Query...)
7045 * @desc_op: descriptor operation
7046 *
7047 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7048 * Therefore, it "rides" the device management infrastructure: uses its tag and
7049 * tasks work queues.
7050 *
7051 * Since there is only one available tag for device management commands,
7052 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7053 *
7054 * Return: 0 upon success; < 0 upon failure.
7055 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7056 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7057 struct utp_upiu_req *req_upiu,
7058 struct utp_upiu_req *rsp_upiu,
7059 u8 *desc_buff, int *buff_len,
7060 enum dev_cmd_type cmd_type,
7061 enum query_opcode desc_op)
7062 {
7063 DECLARE_COMPLETION_ONSTACK(wait);
7064 const u32 tag = hba->reserved_slot;
7065 struct ufshcd_lrb *lrbp;
7066 int err = 0;
7067 u8 upiu_flags;
7068
7069 /* Protects use of hba->reserved_slot. */
7070 lockdep_assert_held(&hba->dev_cmd.lock);
7071
7072 down_read(&hba->clk_scaling_lock);
7073
7074 lrbp = &hba->lrb[tag];
7075 lrbp->cmd = NULL;
7076 lrbp->task_tag = tag;
7077 lrbp->lun = 0;
7078 lrbp->intr_cmd = true;
7079 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7080 hba->dev_cmd.type = cmd_type;
7081
7082 if (hba->ufs_version <= ufshci_version(1, 1))
7083 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7084 else
7085 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7086
7087 /* update the task tag in the request upiu */
7088 req_upiu->header.task_tag = tag;
7089
7090 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7091
7092 /* just copy the upiu request as it is */
7093 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7094 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7095 /* The Data Segment Area is optional depending upon the query
7096 * function value. for WRITE DESCRIPTOR, the data segment
7097 * follows right after the tsf.
7098 */
7099 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7100 *buff_len = 0;
7101 }
7102
7103 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7104
7105 hba->dev_cmd.complete = &wait;
7106
7107 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7108
7109 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7110 /*
7111 * ignore the returning value here - ufshcd_check_query_response is
7112 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7113 * read the response directly ignoring all errors.
7114 */
7115 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7116
7117 /* just copy the upiu response as it is */
7118 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7119 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7120 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7121 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7122 .data_segment_length);
7123
7124 if (*buff_len >= resp_len) {
7125 memcpy(desc_buff, descp, resp_len);
7126 *buff_len = resp_len;
7127 } else {
7128 dev_warn(hba->dev,
7129 "%s: rsp size %d is bigger than buffer size %d",
7130 __func__, resp_len, *buff_len);
7131 *buff_len = 0;
7132 err = -EINVAL;
7133 }
7134 }
7135 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7136 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7137
7138 up_read(&hba->clk_scaling_lock);
7139 return err;
7140 }
7141
7142 /**
7143 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7144 * @hba: per-adapter instance
7145 * @req_upiu: upiu request
7146 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7147 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7148 * @desc_buff: pointer to descriptor buffer, NULL if NA
7149 * @buff_len: descriptor size, 0 if NA
7150 * @desc_op: descriptor operation
7151 *
7152 * Supports UTP Transfer requests (nop and query), and UTP Task
7153 * Management requests.
7154 * It is up to the caller to fill the upiu conent properly, as it will
7155 * be copied without any further input validations.
7156 *
7157 * Return: 0 upon success; < 0 upon failure.
7158 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7159 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7160 struct utp_upiu_req *req_upiu,
7161 struct utp_upiu_req *rsp_upiu,
7162 enum upiu_request_transaction msgcode,
7163 u8 *desc_buff, int *buff_len,
7164 enum query_opcode desc_op)
7165 {
7166 int err;
7167 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7168 struct utp_task_req_desc treq = { };
7169 enum utp_ocs ocs_value;
7170 u8 tm_f = req_upiu->header.tm_function;
7171
7172 switch (msgcode) {
7173 case UPIU_TRANSACTION_NOP_OUT:
7174 cmd_type = DEV_CMD_TYPE_NOP;
7175 fallthrough;
7176 case UPIU_TRANSACTION_QUERY_REQ:
7177 ufshcd_hold(hba);
7178 mutex_lock(&hba->dev_cmd.lock);
7179 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7180 desc_buff, buff_len,
7181 cmd_type, desc_op);
7182 mutex_unlock(&hba->dev_cmd.lock);
7183 ufshcd_release(hba);
7184
7185 break;
7186 case UPIU_TRANSACTION_TASK_REQ:
7187 treq.header.interrupt = 1;
7188 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7189
7190 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7191
7192 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7193 if (err == -ETIMEDOUT)
7194 break;
7195
7196 ocs_value = treq.header.ocs & MASK_OCS;
7197 if (ocs_value != OCS_SUCCESS) {
7198 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7199 ocs_value);
7200 break;
7201 }
7202
7203 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7204
7205 break;
7206 default:
7207 err = -EINVAL;
7208
7209 break;
7210 }
7211
7212 return err;
7213 }
7214
7215 /**
7216 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7217 * @hba: per adapter instance
7218 * @req_upiu: upiu request
7219 * @rsp_upiu: upiu reply
7220 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7221 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7222 * @sg_cnt: The number of sg lists actually used
7223 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7224 * @dir: DMA direction
7225 *
7226 * Return: zero on success, non-zero on failure.
7227 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7228 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7229 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7230 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7231 enum dma_data_direction dir)
7232 {
7233 DECLARE_COMPLETION_ONSTACK(wait);
7234 const u32 tag = hba->reserved_slot;
7235 struct ufshcd_lrb *lrbp;
7236 int err = 0;
7237 int result;
7238 u8 upiu_flags;
7239 u8 *ehs_data;
7240 u16 ehs_len;
7241
7242 /* Protects use of hba->reserved_slot. */
7243 ufshcd_hold(hba);
7244 mutex_lock(&hba->dev_cmd.lock);
7245 down_read(&hba->clk_scaling_lock);
7246
7247 lrbp = &hba->lrb[tag];
7248 lrbp->cmd = NULL;
7249 lrbp->task_tag = tag;
7250 lrbp->lun = UFS_UPIU_RPMB_WLUN;
7251
7252 lrbp->intr_cmd = true;
7253 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7254 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7255
7256 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7257 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7258
7259 /*
7260 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7261 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7262 * HW controller takes EHS length from UTRD.
7263 */
7264 if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7265 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7266 else
7267 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7268
7269 /* update the task tag */
7270 req_upiu->header.task_tag = tag;
7271
7272 /* copy the UPIU(contains CDB) request as it is */
7273 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7274 /* Copy EHS, starting with byte32, immediately after the CDB package */
7275 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7276
7277 if (dir != DMA_NONE && sg_list)
7278 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7279
7280 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7281
7282 hba->dev_cmd.complete = &wait;
7283
7284 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7285
7286 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7287
7288 if (!err) {
7289 /* Just copy the upiu response as it is */
7290 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7291 /* Get the response UPIU result */
7292 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7293 lrbp->ucd_rsp_ptr->header.status;
7294
7295 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7296 /*
7297 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7298 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7299 * Message is 02h
7300 */
7301 if (ehs_len == 2 && rsp_ehs) {
7302 /*
7303 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7304 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7305 */
7306 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7307 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7308 }
7309 }
7310
7311 up_read(&hba->clk_scaling_lock);
7312 mutex_unlock(&hba->dev_cmd.lock);
7313 ufshcd_release(hba);
7314 return err ? : result;
7315 }
7316
7317 /**
7318 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7319 * @cmd: SCSI command pointer
7320 *
7321 * Return: SUCCESS or FAILED.
7322 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7323 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7324 {
7325 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7326 struct Scsi_Host *host;
7327 struct ufs_hba *hba;
7328 struct ufs_hw_queue *hwq;
7329 struct ufshcd_lrb *lrbp;
7330 u32 pos, not_cleared_mask = 0;
7331 int err;
7332 u8 resp = 0xF, lun;
7333
7334 host = cmd->device->host;
7335 hba = shost_priv(host);
7336
7337 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7338 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7339 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7340 if (!err)
7341 err = resp;
7342 goto out;
7343 }
7344
7345 if (is_mcq_enabled(hba)) {
7346 for (pos = 0; pos < hba->nutrs; pos++) {
7347 lrbp = &hba->lrb[pos];
7348 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7349 lrbp->lun == lun) {
7350 ufshcd_clear_cmd(hba, pos);
7351 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7352 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7353 }
7354 }
7355 err = 0;
7356 goto out;
7357 }
7358
7359 /* clear the commands that were pending for corresponding LUN */
7360 spin_lock_irqsave(&hba->outstanding_lock, flags);
7361 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7362 if (hba->lrb[pos].lun == lun)
7363 __set_bit(pos, &pending_reqs);
7364 hba->outstanding_reqs &= ~pending_reqs;
7365 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7366
7367 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7368 if (ufshcd_clear_cmd(hba, pos) < 0) {
7369 spin_lock_irqsave(&hba->outstanding_lock, flags);
7370 not_cleared = 1U << pos &
7371 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7372 hba->outstanding_reqs |= not_cleared;
7373 not_cleared_mask |= not_cleared;
7374 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7375
7376 dev_err(hba->dev, "%s: failed to clear request %d\n",
7377 __func__, pos);
7378 }
7379 }
7380 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7381
7382 out:
7383 hba->req_abort_count = 0;
7384 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7385 if (!err) {
7386 err = SUCCESS;
7387 } else {
7388 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7389 err = FAILED;
7390 }
7391 return err;
7392 }
7393
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7394 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7395 {
7396 struct ufshcd_lrb *lrbp;
7397 int tag;
7398
7399 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7400 lrbp = &hba->lrb[tag];
7401 lrbp->req_abort_skip = true;
7402 }
7403 }
7404
7405 /**
7406 * ufshcd_try_to_abort_task - abort a specific task
7407 * @hba: Pointer to adapter instance
7408 * @tag: Task tag/index to be aborted
7409 *
7410 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7411 * command, and in host controller by clearing the door-bell register. There can
7412 * be race between controller sending the command to the device while abort is
7413 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7414 * really issued and then try to abort it.
7415 *
7416 * Return: zero on success, non-zero on failure.
7417 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7418 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7419 {
7420 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7421 int err = 0;
7422 int poll_cnt;
7423 u8 resp = 0xF;
7424 u32 reg;
7425
7426 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7427 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7428 UFS_QUERY_TASK, &resp);
7429 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7430 /* cmd pending in the device */
7431 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7432 __func__, tag);
7433 break;
7434 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7435 /*
7436 * cmd not pending in the device, check if it is
7437 * in transition.
7438 */
7439 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7440 __func__, tag);
7441 if (is_mcq_enabled(hba)) {
7442 /* MCQ mode */
7443 if (ufshcd_cmd_inflight(lrbp->cmd)) {
7444 /* sleep for max. 200us same delay as in SDB mode */
7445 usleep_range(100, 200);
7446 continue;
7447 }
7448 /* command completed already */
7449 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7450 __func__, tag);
7451 goto out;
7452 }
7453
7454 /* Single Doorbell Mode */
7455 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7456 if (reg & (1 << tag)) {
7457 /* sleep for max. 200us to stabilize */
7458 usleep_range(100, 200);
7459 continue;
7460 }
7461 /* command completed already */
7462 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7463 __func__, tag);
7464 goto out;
7465 } else {
7466 dev_err(hba->dev,
7467 "%s: no response from device. tag = %d, err %d\n",
7468 __func__, tag, err);
7469 if (!err)
7470 err = resp; /* service response error */
7471 goto out;
7472 }
7473 }
7474
7475 if (!poll_cnt) {
7476 err = -EBUSY;
7477 goto out;
7478 }
7479
7480 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7481 UFS_ABORT_TASK, &resp);
7482 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7483 if (!err) {
7484 err = resp; /* service response error */
7485 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7486 __func__, tag, err);
7487 }
7488 goto out;
7489 }
7490
7491 err = ufshcd_clear_cmd(hba, tag);
7492 if (err)
7493 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7494 __func__, tag, err);
7495
7496 out:
7497 return err;
7498 }
7499
7500 /**
7501 * ufshcd_abort - scsi host template eh_abort_handler callback
7502 * @cmd: SCSI command pointer
7503 *
7504 * Return: SUCCESS or FAILED.
7505 */
ufshcd_abort(struct scsi_cmnd * cmd)7506 static int ufshcd_abort(struct scsi_cmnd *cmd)
7507 {
7508 struct Scsi_Host *host = cmd->device->host;
7509 struct ufs_hba *hba = shost_priv(host);
7510 int tag = scsi_cmd_to_rq(cmd)->tag;
7511 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7512 unsigned long flags;
7513 int err = FAILED;
7514 bool outstanding;
7515 u32 reg;
7516
7517 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7518
7519 ufshcd_hold(hba);
7520
7521 if (!is_mcq_enabled(hba)) {
7522 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7523 if (!test_bit(tag, &hba->outstanding_reqs)) {
7524 /* If command is already aborted/completed, return FAILED. */
7525 dev_err(hba->dev,
7526 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7527 __func__, tag, hba->outstanding_reqs, reg);
7528 goto release;
7529 }
7530 }
7531
7532 /* Print Transfer Request of aborted task */
7533 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7534
7535 /*
7536 * Print detailed info about aborted request.
7537 * As more than one request might get aborted at the same time,
7538 * print full information only for the first aborted request in order
7539 * to reduce repeated printouts. For other aborted requests only print
7540 * basic details.
7541 */
7542 scsi_print_command(cmd);
7543 if (!hba->req_abort_count) {
7544 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7545 ufshcd_print_evt_hist(hba);
7546 ufshcd_print_host_state(hba);
7547 ufshcd_print_pwr_info(hba);
7548 ufshcd_print_tr(hba, tag, true);
7549 } else {
7550 ufshcd_print_tr(hba, tag, false);
7551 }
7552 hba->req_abort_count++;
7553
7554 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7555 /* only execute this code in single doorbell mode */
7556 dev_err(hba->dev,
7557 "%s: cmd was completed, but without a notifying intr, tag = %d",
7558 __func__, tag);
7559 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7560 goto release;
7561 }
7562
7563 /*
7564 * Task abort to the device W-LUN is illegal. When this command
7565 * will fail, due to spec violation, scsi err handling next step
7566 * will be to send LU reset which, again, is a spec violation.
7567 * To avoid these unnecessary/illegal steps, first we clean up
7568 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7569 * then queue the eh_work and bail.
7570 */
7571 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7572 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7573
7574 spin_lock_irqsave(host->host_lock, flags);
7575 hba->force_reset = true;
7576 ufshcd_schedule_eh_work(hba);
7577 spin_unlock_irqrestore(host->host_lock, flags);
7578 goto release;
7579 }
7580
7581 if (is_mcq_enabled(hba)) {
7582 /* MCQ mode. Branch off to handle abort for mcq mode */
7583 err = ufshcd_mcq_abort(cmd);
7584 goto release;
7585 }
7586
7587 /* Skip task abort in case previous aborts failed and report failure */
7588 if (lrbp->req_abort_skip) {
7589 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7590 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7591 goto release;
7592 }
7593
7594 err = ufshcd_try_to_abort_task(hba, tag);
7595 if (err) {
7596 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7597 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7598 err = FAILED;
7599 goto release;
7600 }
7601
7602 /*
7603 * Clear the corresponding bit from outstanding_reqs since the command
7604 * has been aborted successfully.
7605 */
7606 spin_lock_irqsave(&hba->outstanding_lock, flags);
7607 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7608 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7609
7610 if (outstanding)
7611 ufshcd_release_scsi_cmd(hba, lrbp);
7612
7613 err = SUCCESS;
7614
7615 release:
7616 /* Matches the ufshcd_hold() call at the start of this function. */
7617 ufshcd_release(hba);
7618 return err;
7619 }
7620
7621 /**
7622 * ufshcd_host_reset_and_restore - reset and restore host controller
7623 * @hba: per-adapter instance
7624 *
7625 * Note that host controller reset may issue DME_RESET to
7626 * local and remote (device) Uni-Pro stack and the attributes
7627 * are reset to default state.
7628 *
7629 * Return: zero on success, non-zero on failure.
7630 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7631 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7632 {
7633 int err;
7634
7635 /*
7636 * Stop the host controller and complete the requests
7637 * cleared by h/w
7638 */
7639 ufshcd_hba_stop(hba);
7640 hba->silence_err_logs = true;
7641 ufshcd_complete_requests(hba, true);
7642 hba->silence_err_logs = false;
7643
7644 /* scale up clocks to max frequency before full reinitialization */
7645 ufshcd_scale_clks(hba, true);
7646
7647 err = ufshcd_hba_enable(hba);
7648
7649 /* Establish the link again and restore the device */
7650 if (!err)
7651 err = ufshcd_probe_hba(hba, false);
7652
7653 if (err)
7654 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7655 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7656 return err;
7657 }
7658
7659 /**
7660 * ufshcd_reset_and_restore - reset and re-initialize host/device
7661 * @hba: per-adapter instance
7662 *
7663 * Reset and recover device, host and re-establish link. This
7664 * is helpful to recover the communication in fatal error conditions.
7665 *
7666 * Return: zero on success, non-zero on failure.
7667 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7668 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7669 {
7670 u32 saved_err = 0;
7671 u32 saved_uic_err = 0;
7672 int err = 0;
7673 unsigned long flags;
7674 int retries = MAX_HOST_RESET_RETRIES;
7675
7676 spin_lock_irqsave(hba->host->host_lock, flags);
7677 do {
7678 /*
7679 * This is a fresh start, cache and clear saved error first,
7680 * in case new error generated during reset and restore.
7681 */
7682 saved_err |= hba->saved_err;
7683 saved_uic_err |= hba->saved_uic_err;
7684 hba->saved_err = 0;
7685 hba->saved_uic_err = 0;
7686 hba->force_reset = false;
7687 hba->ufshcd_state = UFSHCD_STATE_RESET;
7688 spin_unlock_irqrestore(hba->host->host_lock, flags);
7689
7690 /* Reset the attached device */
7691 ufshcd_device_reset(hba);
7692
7693 err = ufshcd_host_reset_and_restore(hba);
7694
7695 spin_lock_irqsave(hba->host->host_lock, flags);
7696 if (err)
7697 continue;
7698 /* Do not exit unless operational or dead */
7699 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7700 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7701 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7702 err = -EAGAIN;
7703 } while (err && --retries);
7704
7705 /*
7706 * Inform scsi mid-layer that we did reset and allow to handle
7707 * Unit Attention properly.
7708 */
7709 scsi_report_bus_reset(hba->host, 0);
7710 if (err) {
7711 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7712 hba->saved_err |= saved_err;
7713 hba->saved_uic_err |= saved_uic_err;
7714 }
7715 spin_unlock_irqrestore(hba->host->host_lock, flags);
7716
7717 return err;
7718 }
7719
7720 /**
7721 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7722 * @cmd: SCSI command pointer
7723 *
7724 * Return: SUCCESS or FAILED.
7725 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7726 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7727 {
7728 int err = SUCCESS;
7729 unsigned long flags;
7730 struct ufs_hba *hba;
7731
7732 hba = shost_priv(cmd->device->host);
7733
7734 spin_lock_irqsave(hba->host->host_lock, flags);
7735 hba->force_reset = true;
7736 ufshcd_schedule_eh_work(hba);
7737 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7738 spin_unlock_irqrestore(hba->host->host_lock, flags);
7739
7740 flush_work(&hba->eh_work);
7741
7742 spin_lock_irqsave(hba->host->host_lock, flags);
7743 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7744 err = FAILED;
7745 spin_unlock_irqrestore(hba->host->host_lock, flags);
7746
7747 return err;
7748 }
7749
7750 /**
7751 * ufshcd_get_max_icc_level - calculate the ICC level
7752 * @sup_curr_uA: max. current supported by the regulator
7753 * @start_scan: row at the desc table to start scan from
7754 * @buff: power descriptor buffer
7755 *
7756 * Return: calculated max ICC level for specific regulator.
7757 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7758 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7759 const char *buff)
7760 {
7761 int i;
7762 int curr_uA;
7763 u16 data;
7764 u16 unit;
7765
7766 for (i = start_scan; i >= 0; i--) {
7767 data = get_unaligned_be16(&buff[2 * i]);
7768 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7769 ATTR_ICC_LVL_UNIT_OFFSET;
7770 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7771 switch (unit) {
7772 case UFSHCD_NANO_AMP:
7773 curr_uA = curr_uA / 1000;
7774 break;
7775 case UFSHCD_MILI_AMP:
7776 curr_uA = curr_uA * 1000;
7777 break;
7778 case UFSHCD_AMP:
7779 curr_uA = curr_uA * 1000 * 1000;
7780 break;
7781 case UFSHCD_MICRO_AMP:
7782 default:
7783 break;
7784 }
7785 if (sup_curr_uA >= curr_uA)
7786 break;
7787 }
7788 if (i < 0) {
7789 i = 0;
7790 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7791 }
7792
7793 return (u32)i;
7794 }
7795
7796 /**
7797 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7798 * In case regulators are not initialized we'll return 0
7799 * @hba: per-adapter instance
7800 * @desc_buf: power descriptor buffer to extract ICC levels from.
7801 *
7802 * Return: calculated ICC level.
7803 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7804 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7805 const u8 *desc_buf)
7806 {
7807 u32 icc_level = 0;
7808
7809 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7810 !hba->vreg_info.vccq2) {
7811 /*
7812 * Using dev_dbg to avoid messages during runtime PM to avoid
7813 * never-ending cycles of messages written back to storage by
7814 * user space causing runtime resume, causing more messages and
7815 * so on.
7816 */
7817 dev_dbg(hba->dev,
7818 "%s: Regulator capability was not set, actvIccLevel=%d",
7819 __func__, icc_level);
7820 goto out;
7821 }
7822
7823 if (hba->vreg_info.vcc->max_uA)
7824 icc_level = ufshcd_get_max_icc_level(
7825 hba->vreg_info.vcc->max_uA,
7826 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7827 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7828
7829 if (hba->vreg_info.vccq->max_uA)
7830 icc_level = ufshcd_get_max_icc_level(
7831 hba->vreg_info.vccq->max_uA,
7832 icc_level,
7833 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7834
7835 if (hba->vreg_info.vccq2->max_uA)
7836 icc_level = ufshcd_get_max_icc_level(
7837 hba->vreg_info.vccq2->max_uA,
7838 icc_level,
7839 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7840 out:
7841 return icc_level;
7842 }
7843
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7844 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7845 {
7846 int ret;
7847 u8 *desc_buf;
7848 u32 icc_level;
7849
7850 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7851 if (!desc_buf)
7852 return;
7853
7854 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7855 desc_buf, QUERY_DESC_MAX_SIZE);
7856 if (ret) {
7857 dev_err(hba->dev,
7858 "%s: Failed reading power descriptor ret = %d",
7859 __func__, ret);
7860 goto out;
7861 }
7862
7863 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7864 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7865
7866 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7867 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7868
7869 if (ret)
7870 dev_err(hba->dev,
7871 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7872 __func__, icc_level, ret);
7873
7874 out:
7875 kfree(desc_buf);
7876 }
7877
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7878 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7879 {
7880 scsi_autopm_get_device(sdev);
7881 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7882 if (sdev->rpm_autosuspend)
7883 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7884 RPM_AUTOSUSPEND_DELAY_MS);
7885 scsi_autopm_put_device(sdev);
7886 }
7887
7888 /**
7889 * ufshcd_scsi_add_wlus - Adds required W-LUs
7890 * @hba: per-adapter instance
7891 *
7892 * UFS device specification requires the UFS devices to support 4 well known
7893 * logical units:
7894 * "REPORT_LUNS" (address: 01h)
7895 * "UFS Device" (address: 50h)
7896 * "RPMB" (address: 44h)
7897 * "BOOT" (address: 30h)
7898 * UFS device's power management needs to be controlled by "POWER CONDITION"
7899 * field of SSU (START STOP UNIT) command. But this "power condition" field
7900 * will take effect only when its sent to "UFS device" well known logical unit
7901 * hence we require the scsi_device instance to represent this logical unit in
7902 * order for the UFS host driver to send the SSU command for power management.
7903 *
7904 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7905 * Block) LU so user space process can control this LU. User space may also
7906 * want to have access to BOOT LU.
7907 *
7908 * This function adds scsi device instances for each of all well known LUs
7909 * (except "REPORT LUNS" LU).
7910 *
7911 * Return: zero on success (all required W-LUs are added successfully),
7912 * non-zero error value on failure (if failed to add any of the required W-LU).
7913 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7914 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7915 {
7916 int ret = 0;
7917 struct scsi_device *sdev_boot, *sdev_rpmb;
7918
7919 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7920 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7921 if (IS_ERR(hba->ufs_device_wlun)) {
7922 ret = PTR_ERR(hba->ufs_device_wlun);
7923 hba->ufs_device_wlun = NULL;
7924 goto out;
7925 }
7926 scsi_device_put(hba->ufs_device_wlun);
7927
7928 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7929 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7930 if (IS_ERR(sdev_rpmb)) {
7931 ret = PTR_ERR(sdev_rpmb);
7932 goto remove_ufs_device_wlun;
7933 }
7934 ufshcd_blk_pm_runtime_init(sdev_rpmb);
7935 scsi_device_put(sdev_rpmb);
7936
7937 sdev_boot = __scsi_add_device(hba->host, 0, 0,
7938 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7939 if (IS_ERR(sdev_boot)) {
7940 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7941 } else {
7942 ufshcd_blk_pm_runtime_init(sdev_boot);
7943 scsi_device_put(sdev_boot);
7944 }
7945 goto out;
7946
7947 remove_ufs_device_wlun:
7948 scsi_remove_device(hba->ufs_device_wlun);
7949 out:
7950 return ret;
7951 }
7952
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)7953 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7954 {
7955 struct ufs_dev_info *dev_info = &hba->dev_info;
7956 u8 lun;
7957 u32 d_lu_wb_buf_alloc;
7958 u32 ext_ufs_feature;
7959
7960 if (!ufshcd_is_wb_allowed(hba))
7961 return;
7962
7963 /*
7964 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7965 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7966 * enabled
7967 */
7968 if (!(dev_info->wspecversion >= 0x310 ||
7969 dev_info->wspecversion == 0x220 ||
7970 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7971 goto wb_disabled;
7972
7973 ext_ufs_feature = get_unaligned_be32(desc_buf +
7974 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7975
7976 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7977 goto wb_disabled;
7978
7979 /*
7980 * WB may be supported but not configured while provisioning. The spec
7981 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7982 * buffer configured.
7983 */
7984 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7985
7986 dev_info->b_presrv_uspc_en =
7987 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7988
7989 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7990 if (!get_unaligned_be32(desc_buf +
7991 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7992 goto wb_disabled;
7993 } else {
7994 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7995 d_lu_wb_buf_alloc = 0;
7996 ufshcd_read_unit_desc_param(hba,
7997 lun,
7998 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7999 (u8 *)&d_lu_wb_buf_alloc,
8000 sizeof(d_lu_wb_buf_alloc));
8001 if (d_lu_wb_buf_alloc) {
8002 dev_info->wb_dedicated_lu = lun;
8003 break;
8004 }
8005 }
8006
8007 if (!d_lu_wb_buf_alloc)
8008 goto wb_disabled;
8009 }
8010
8011 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8012 goto wb_disabled;
8013
8014 return;
8015
8016 wb_disabled:
8017 hba->caps &= ~UFSHCD_CAP_WB_EN;
8018 }
8019
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8020 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8021 {
8022 struct ufs_dev_info *dev_info = &hba->dev_info;
8023 u32 ext_ufs_feature;
8024 u8 mask = 0;
8025
8026 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8027 return;
8028
8029 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8030
8031 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8032 mask |= MASK_EE_TOO_LOW_TEMP;
8033
8034 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8035 mask |= MASK_EE_TOO_HIGH_TEMP;
8036
8037 if (mask) {
8038 ufshcd_enable_ee(hba, mask);
8039 ufs_hwmon_probe(hba, mask);
8040 }
8041 }
8042
ufshcd_ext_iid_probe(struct ufs_hba * hba,u8 * desc_buf)8043 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8044 {
8045 struct ufs_dev_info *dev_info = &hba->dev_info;
8046 u32 ext_ufs_feature;
8047 u32 ext_iid_en = 0;
8048 int err;
8049
8050 /* Only UFS-4.0 and above may support EXT_IID */
8051 if (dev_info->wspecversion < 0x400)
8052 goto out;
8053
8054 ext_ufs_feature = get_unaligned_be32(desc_buf +
8055 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8056 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8057 goto out;
8058
8059 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8060 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8061 if (err)
8062 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8063
8064 out:
8065 dev_info->b_ext_iid_en = ext_iid_en;
8066 }
8067
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8068 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8069 const struct ufs_dev_quirk *fixups)
8070 {
8071 const struct ufs_dev_quirk *f;
8072 struct ufs_dev_info *dev_info = &hba->dev_info;
8073
8074 if (!fixups)
8075 return;
8076
8077 for (f = fixups; f->quirk; f++) {
8078 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8079 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8080 ((dev_info->model &&
8081 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8082 !strcmp(f->model, UFS_ANY_MODEL)))
8083 hba->dev_quirks |= f->quirk;
8084 }
8085 }
8086 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8087
ufs_fixup_device_setup(struct ufs_hba * hba)8088 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8089 {
8090 /* fix by general quirk table */
8091 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8092
8093 /* allow vendors to fix quirks */
8094 ufshcd_vops_fixup_dev_quirks(hba);
8095 }
8096
ufs_get_device_desc(struct ufs_hba * hba)8097 static int ufs_get_device_desc(struct ufs_hba *hba)
8098 {
8099 int err;
8100 u8 model_index;
8101 u8 *desc_buf;
8102 struct ufs_dev_info *dev_info = &hba->dev_info;
8103
8104 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8105 if (!desc_buf) {
8106 err = -ENOMEM;
8107 goto out;
8108 }
8109
8110 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8111 QUERY_DESC_MAX_SIZE);
8112 if (err) {
8113 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8114 __func__, err);
8115 goto out;
8116 }
8117
8118 /*
8119 * getting vendor (manufacturerID) and Bank Index in big endian
8120 * format
8121 */
8122 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8123 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8124
8125 /* getting Specification Version in big endian format */
8126 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8127 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8128 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8129
8130 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8131
8132 err = ufshcd_read_string_desc(hba, model_index,
8133 &dev_info->model, SD_ASCII_STD);
8134 if (err < 0) {
8135 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8136 __func__, err);
8137 goto out;
8138 }
8139
8140 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8141 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8142
8143 ufs_fixup_device_setup(hba);
8144
8145 ufshcd_wb_probe(hba, desc_buf);
8146
8147 ufshcd_temp_notif_probe(hba, desc_buf);
8148
8149 if (hba->ext_iid_sup)
8150 ufshcd_ext_iid_probe(hba, desc_buf);
8151
8152 /*
8153 * ufshcd_read_string_desc returns size of the string
8154 * reset the error value
8155 */
8156 err = 0;
8157
8158 out:
8159 kfree(desc_buf);
8160 return err;
8161 }
8162
ufs_put_device_desc(struct ufs_hba * hba)8163 static void ufs_put_device_desc(struct ufs_hba *hba)
8164 {
8165 struct ufs_dev_info *dev_info = &hba->dev_info;
8166
8167 kfree(dev_info->model);
8168 dev_info->model = NULL;
8169 }
8170
8171 /**
8172 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8173 * @hba: per-adapter instance
8174 *
8175 * PA_TActivate parameter can be tuned manually if UniPro version is less than
8176 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8177 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8178 * the hibern8 exit latency.
8179 *
8180 * Return: zero on success, non-zero error value on failure.
8181 */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)8182 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8183 {
8184 int ret = 0;
8185 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8186
8187 ret = ufshcd_dme_peer_get(hba,
8188 UIC_ARG_MIB_SEL(
8189 RX_MIN_ACTIVATETIME_CAPABILITY,
8190 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8191 &peer_rx_min_activatetime);
8192 if (ret)
8193 goto out;
8194
8195 /* make sure proper unit conversion is applied */
8196 tuned_pa_tactivate =
8197 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8198 / PA_TACTIVATE_TIME_UNIT_US);
8199 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8200 tuned_pa_tactivate);
8201
8202 out:
8203 return ret;
8204 }
8205
8206 /**
8207 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8208 * @hba: per-adapter instance
8209 *
8210 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8211 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8212 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8213 * This optimal value can help reduce the hibern8 exit latency.
8214 *
8215 * Return: zero on success, non-zero error value on failure.
8216 */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)8217 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8218 {
8219 int ret = 0;
8220 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8221 u32 max_hibern8_time, tuned_pa_hibern8time;
8222
8223 ret = ufshcd_dme_get(hba,
8224 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8225 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8226 &local_tx_hibern8_time_cap);
8227 if (ret)
8228 goto out;
8229
8230 ret = ufshcd_dme_peer_get(hba,
8231 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8232 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8233 &peer_rx_hibern8_time_cap);
8234 if (ret)
8235 goto out;
8236
8237 max_hibern8_time = max(local_tx_hibern8_time_cap,
8238 peer_rx_hibern8_time_cap);
8239 /* make sure proper unit conversion is applied */
8240 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8241 / PA_HIBERN8_TIME_UNIT_US);
8242 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8243 tuned_pa_hibern8time);
8244 out:
8245 return ret;
8246 }
8247
8248 /**
8249 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8250 * less than device PA_TACTIVATE time.
8251 * @hba: per-adapter instance
8252 *
8253 * Some UFS devices require host PA_TACTIVATE to be lower than device
8254 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8255 * for such devices.
8256 *
8257 * Return: zero on success, non-zero error value on failure.
8258 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8259 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8260 {
8261 int ret = 0;
8262 u32 granularity, peer_granularity;
8263 u32 pa_tactivate, peer_pa_tactivate;
8264 u32 pa_tactivate_us, peer_pa_tactivate_us;
8265 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8266
8267 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8268 &granularity);
8269 if (ret)
8270 goto out;
8271
8272 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8273 &peer_granularity);
8274 if (ret)
8275 goto out;
8276
8277 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8278 (granularity > PA_GRANULARITY_MAX_VAL)) {
8279 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8280 __func__, granularity);
8281 return -EINVAL;
8282 }
8283
8284 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8285 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8286 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8287 __func__, peer_granularity);
8288 return -EINVAL;
8289 }
8290
8291 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8292 if (ret)
8293 goto out;
8294
8295 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8296 &peer_pa_tactivate);
8297 if (ret)
8298 goto out;
8299
8300 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8301 peer_pa_tactivate_us = peer_pa_tactivate *
8302 gran_to_us_table[peer_granularity - 1];
8303
8304 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8305 u32 new_peer_pa_tactivate;
8306
8307 new_peer_pa_tactivate = pa_tactivate_us /
8308 gran_to_us_table[peer_granularity - 1];
8309 new_peer_pa_tactivate++;
8310 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8311 new_peer_pa_tactivate);
8312 }
8313
8314 out:
8315 return ret;
8316 }
8317
ufshcd_tune_unipro_params(struct ufs_hba * hba)8318 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8319 {
8320 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8321 ufshcd_tune_pa_tactivate(hba);
8322 ufshcd_tune_pa_hibern8time(hba);
8323 }
8324
8325 ufshcd_vops_apply_dev_quirks(hba);
8326
8327 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8328 /* set 1ms timeout for PA_TACTIVATE */
8329 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8330
8331 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8332 ufshcd_quirk_tune_host_pa_tactivate(hba);
8333 }
8334
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8335 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8336 {
8337 hba->ufs_stats.hibern8_exit_cnt = 0;
8338 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8339 hba->req_abort_count = 0;
8340 }
8341
ufshcd_device_geo_params_init(struct ufs_hba * hba)8342 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8343 {
8344 int err;
8345 u8 *desc_buf;
8346
8347 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8348 if (!desc_buf) {
8349 err = -ENOMEM;
8350 goto out;
8351 }
8352
8353 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8354 desc_buf, QUERY_DESC_MAX_SIZE);
8355 if (err) {
8356 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8357 __func__, err);
8358 goto out;
8359 }
8360
8361 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8362 hba->dev_info.max_lu_supported = 32;
8363 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8364 hba->dev_info.max_lu_supported = 8;
8365
8366 out:
8367 kfree(desc_buf);
8368 return err;
8369 }
8370
8371 struct ufs_ref_clk {
8372 unsigned long freq_hz;
8373 enum ufs_ref_clk_freq val;
8374 };
8375
8376 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8377 {19200000, REF_CLK_FREQ_19_2_MHZ},
8378 {26000000, REF_CLK_FREQ_26_MHZ},
8379 {38400000, REF_CLK_FREQ_38_4_MHZ},
8380 {52000000, REF_CLK_FREQ_52_MHZ},
8381 {0, REF_CLK_FREQ_INVAL},
8382 };
8383
8384 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8385 ufs_get_bref_clk_from_hz(unsigned long freq)
8386 {
8387 int i;
8388
8389 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8390 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8391 return ufs_ref_clk_freqs[i].val;
8392
8393 return REF_CLK_FREQ_INVAL;
8394 }
8395
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8396 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8397 {
8398 unsigned long freq;
8399
8400 freq = clk_get_rate(refclk);
8401
8402 hba->dev_ref_clk_freq =
8403 ufs_get_bref_clk_from_hz(freq);
8404
8405 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8406 dev_err(hba->dev,
8407 "invalid ref_clk setting = %ld\n", freq);
8408 }
8409
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8410 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8411 {
8412 int err;
8413 u32 ref_clk;
8414 u32 freq = hba->dev_ref_clk_freq;
8415
8416 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8417 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8418
8419 if (err) {
8420 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8421 err);
8422 goto out;
8423 }
8424
8425 if (ref_clk == freq)
8426 goto out; /* nothing to update */
8427
8428 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8429 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8430
8431 if (err) {
8432 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8433 ufs_ref_clk_freqs[freq].freq_hz);
8434 goto out;
8435 }
8436
8437 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8438 ufs_ref_clk_freqs[freq].freq_hz);
8439
8440 out:
8441 return err;
8442 }
8443
ufshcd_device_params_init(struct ufs_hba * hba)8444 static int ufshcd_device_params_init(struct ufs_hba *hba)
8445 {
8446 bool flag;
8447 int ret;
8448
8449 /* Init UFS geometry descriptor related parameters */
8450 ret = ufshcd_device_geo_params_init(hba);
8451 if (ret)
8452 goto out;
8453
8454 /* Check and apply UFS device quirks */
8455 ret = ufs_get_device_desc(hba);
8456 if (ret) {
8457 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8458 __func__, ret);
8459 goto out;
8460 }
8461
8462 ufshcd_get_ref_clk_gating_wait(hba);
8463
8464 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8465 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8466 hba->dev_info.f_power_on_wp_en = flag;
8467
8468 /* Probe maximum power mode co-supported by both UFS host and device */
8469 if (ufshcd_get_max_pwr_mode(hba))
8470 dev_err(hba->dev,
8471 "%s: Failed getting max supported power mode\n",
8472 __func__);
8473 out:
8474 return ret;
8475 }
8476
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8477 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8478 {
8479 int err;
8480 struct ufs_query_req *request = NULL;
8481 struct ufs_query_res *response = NULL;
8482 struct ufs_dev_info *dev_info = &hba->dev_info;
8483 struct utp_upiu_query_v4_0 *upiu_data;
8484
8485 if (dev_info->wspecversion < 0x400)
8486 return;
8487
8488 ufshcd_hold(hba);
8489
8490 mutex_lock(&hba->dev_cmd.lock);
8491
8492 ufshcd_init_query(hba, &request, &response,
8493 UPIU_QUERY_OPCODE_WRITE_ATTR,
8494 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8495
8496 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8497
8498 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8499
8500 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8501
8502 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8503
8504 if (err)
8505 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8506 __func__, err);
8507
8508 mutex_unlock(&hba->dev_cmd.lock);
8509 ufshcd_release(hba);
8510 }
8511
8512 /**
8513 * ufshcd_add_lus - probe and add UFS logical units
8514 * @hba: per-adapter instance
8515 *
8516 * Return: 0 upon success; < 0 upon failure.
8517 */
ufshcd_add_lus(struct ufs_hba * hba)8518 static int ufshcd_add_lus(struct ufs_hba *hba)
8519 {
8520 int ret;
8521
8522 /* Add required well known logical units to scsi mid layer */
8523 ret = ufshcd_scsi_add_wlus(hba);
8524 if (ret)
8525 goto out;
8526
8527 /* Initialize devfreq after UFS device is detected */
8528 if (ufshcd_is_clkscaling_supported(hba)) {
8529 memcpy(&hba->clk_scaling.saved_pwr_info,
8530 &hba->pwr_info,
8531 sizeof(struct ufs_pa_layer_attr));
8532 hba->clk_scaling.is_allowed = true;
8533
8534 ret = ufshcd_devfreq_init(hba);
8535 if (ret)
8536 goto out;
8537
8538 hba->clk_scaling.is_enabled = true;
8539 ufshcd_init_clk_scaling_sysfs(hba);
8540 }
8541
8542 ufs_bsg_probe(hba);
8543 scsi_scan_host(hba->host);
8544
8545 out:
8546 return ret;
8547 }
8548
8549 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8550 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8551 {
8552 size_t ucdl_size, utrdl_size;
8553
8554 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8555 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8556 hba->ucdl_dma_addr);
8557
8558 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8559 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8560 hba->utrdl_dma_addr);
8561
8562 devm_kfree(hba->dev, hba->lrb);
8563 }
8564
ufshcd_alloc_mcq(struct ufs_hba * hba)8565 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8566 {
8567 int ret;
8568 int old_nutrs = hba->nutrs;
8569
8570 ret = ufshcd_mcq_decide_queue_depth(hba);
8571 if (ret < 0)
8572 return ret;
8573
8574 hba->nutrs = ret;
8575 ret = ufshcd_mcq_init(hba);
8576 if (ret)
8577 goto err;
8578
8579 /*
8580 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8581 * Number of supported tags in MCQ mode may be larger than SDB mode.
8582 */
8583 if (hba->nutrs != old_nutrs) {
8584 ufshcd_release_sdb_queue(hba, old_nutrs);
8585 ret = ufshcd_memory_alloc(hba);
8586 if (ret)
8587 goto err;
8588 ufshcd_host_memory_configure(hba);
8589 }
8590
8591 ret = ufshcd_mcq_memory_alloc(hba);
8592 if (ret)
8593 goto err;
8594
8595 return 0;
8596 err:
8597 hba->nutrs = old_nutrs;
8598 return ret;
8599 }
8600
ufshcd_config_mcq(struct ufs_hba * hba)8601 static void ufshcd_config_mcq(struct ufs_hba *hba)
8602 {
8603 int ret;
8604 u32 intrs;
8605
8606 ret = ufshcd_mcq_vops_config_esi(hba);
8607 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8608
8609 intrs = UFSHCD_ENABLE_MCQ_INTRS;
8610 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8611 intrs &= ~MCQ_CQ_EVENT_STATUS;
8612 ufshcd_enable_intr(hba, intrs);
8613 ufshcd_mcq_make_queues_operational(hba);
8614 ufshcd_mcq_config_mac(hba, hba->nutrs);
8615
8616 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8617 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8618
8619 /* Select MCQ mode */
8620 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8621 REG_UFS_MEM_CFG);
8622 hba->mcq_enabled = true;
8623
8624 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8625 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8626 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8627 hba->nutrs);
8628 }
8629
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8630 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8631 {
8632 int ret;
8633 struct Scsi_Host *host = hba->host;
8634
8635 hba->ufshcd_state = UFSHCD_STATE_RESET;
8636
8637 ret = ufshcd_link_startup(hba);
8638 if (ret)
8639 return ret;
8640
8641 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8642 return ret;
8643
8644 /* Debug counters initialization */
8645 ufshcd_clear_dbg_ufs_stats(hba);
8646
8647 /* UniPro link is active now */
8648 ufshcd_set_link_active(hba);
8649
8650 /* Reconfigure MCQ upon reset */
8651 if (is_mcq_enabled(hba) && !init_dev_params)
8652 ufshcd_config_mcq(hba);
8653
8654 /* Verify device initialization by sending NOP OUT UPIU */
8655 ret = ufshcd_verify_dev_init(hba);
8656 if (ret)
8657 return ret;
8658
8659 /* Initiate UFS initialization, and waiting until completion */
8660 ret = ufshcd_complete_dev_init(hba);
8661 if (ret)
8662 return ret;
8663
8664 /*
8665 * Initialize UFS device parameters used by driver, these
8666 * parameters are associated with UFS descriptors.
8667 */
8668 if (init_dev_params) {
8669 ret = ufshcd_device_params_init(hba);
8670 if (ret)
8671 return ret;
8672 if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8673 ret = ufshcd_alloc_mcq(hba);
8674 if (!ret) {
8675 ufshcd_config_mcq(hba);
8676 } else {
8677 /* Continue with SDB mode */
8678 use_mcq_mode = false;
8679 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8680 ret);
8681 }
8682 ret = scsi_add_host(host, hba->dev);
8683 if (ret) {
8684 dev_err(hba->dev, "scsi_add_host failed\n");
8685 return ret;
8686 }
8687 hba->scsi_host_added = true;
8688 } else if (is_mcq_supported(hba)) {
8689 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8690 ufshcd_config_mcq(hba);
8691 }
8692 }
8693
8694 ufshcd_tune_unipro_params(hba);
8695
8696 /* UFS device is also active now */
8697 ufshcd_set_ufs_dev_active(hba);
8698 ufshcd_force_reset_auto_bkops(hba);
8699
8700 ufshcd_set_timestamp_attr(hba);
8701
8702 /* Gear up to HS gear if supported */
8703 if (hba->max_pwr_info.is_valid) {
8704 /*
8705 * Set the right value to bRefClkFreq before attempting to
8706 * switch to HS gears.
8707 */
8708 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8709 ufshcd_set_dev_ref_clk(hba);
8710 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8711 if (ret) {
8712 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8713 __func__, ret);
8714 return ret;
8715 }
8716 }
8717
8718 return 0;
8719 }
8720
8721 /**
8722 * ufshcd_probe_hba - probe hba to detect device and initialize it
8723 * @hba: per-adapter instance
8724 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8725 *
8726 * Execute link-startup and verify device initialization
8727 *
8728 * Return: 0 upon success; < 0 upon failure.
8729 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8730 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8731 {
8732 ktime_t start = ktime_get();
8733 unsigned long flags;
8734 int ret;
8735
8736 ret = ufshcd_device_init(hba, init_dev_params);
8737 if (ret)
8738 goto out;
8739
8740 if (!hba->pm_op_in_progress &&
8741 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8742 /* Reset the device and controller before doing reinit */
8743 ufshcd_device_reset(hba);
8744 ufshcd_hba_stop(hba);
8745 ufshcd_vops_reinit_notify(hba);
8746 ret = ufshcd_hba_enable(hba);
8747 if (ret) {
8748 dev_err(hba->dev, "Host controller enable failed\n");
8749 ufshcd_print_evt_hist(hba);
8750 ufshcd_print_host_state(hba);
8751 goto out;
8752 }
8753
8754 /* Reinit the device */
8755 ret = ufshcd_device_init(hba, init_dev_params);
8756 if (ret)
8757 goto out;
8758 }
8759
8760 ufshcd_print_pwr_info(hba);
8761
8762 /*
8763 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8764 * and for removable UFS card as well, hence always set the parameter.
8765 * Note: Error handler may issue the device reset hence resetting
8766 * bActiveICCLevel as well so it is always safe to set this here.
8767 */
8768 ufshcd_set_active_icc_lvl(hba);
8769
8770 /* Enable UFS Write Booster if supported */
8771 ufshcd_configure_wb(hba);
8772
8773 if (hba->ee_usr_mask)
8774 ufshcd_write_ee_control(hba);
8775 /* Enable Auto-Hibernate if configured */
8776 ufshcd_auto_hibern8_enable(hba);
8777
8778 out:
8779 spin_lock_irqsave(hba->host->host_lock, flags);
8780 if (ret)
8781 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8782 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8783 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8784 spin_unlock_irqrestore(hba->host->host_lock, flags);
8785
8786 trace_ufshcd_init(dev_name(hba->dev), ret,
8787 ktime_to_us(ktime_sub(ktime_get(), start)),
8788 hba->curr_dev_pwr_mode, hba->uic_link_state);
8789 return ret;
8790 }
8791
8792 /**
8793 * ufshcd_async_scan - asynchronous execution for probing hba
8794 * @data: data pointer to pass to this function
8795 * @cookie: cookie data
8796 */
ufshcd_async_scan(void * data,async_cookie_t cookie)8797 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8798 {
8799 struct ufs_hba *hba = (struct ufs_hba *)data;
8800 int ret;
8801
8802 down(&hba->host_sem);
8803 /* Initialize hba, detect and initialize UFS device */
8804 ret = ufshcd_probe_hba(hba, true);
8805 up(&hba->host_sem);
8806 if (ret)
8807 goto out;
8808
8809 /* Probe and add UFS logical units */
8810 ret = ufshcd_add_lus(hba);
8811
8812 out:
8813 pm_runtime_put_sync(hba->dev);
8814
8815 if (ret)
8816 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8817 }
8818
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8819 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8820 {
8821 struct ufs_hba *hba = shost_priv(scmd->device->host);
8822
8823 if (!hba->system_suspending) {
8824 /* Activate the error handler in the SCSI core. */
8825 return SCSI_EH_NOT_HANDLED;
8826 }
8827
8828 /*
8829 * If we get here we know that no TMFs are outstanding and also that
8830 * the only pending command is a START STOP UNIT command. Handle the
8831 * timeout of that command directly to prevent a deadlock between
8832 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8833 */
8834 ufshcd_link_recovery(hba);
8835 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8836 __func__, hba->outstanding_tasks);
8837
8838 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8839 }
8840
8841 static const struct attribute_group *ufshcd_driver_groups[] = {
8842 &ufs_sysfs_unit_descriptor_group,
8843 &ufs_sysfs_lun_attributes_group,
8844 NULL,
8845 };
8846
8847 static struct ufs_hba_variant_params ufs_hba_vps = {
8848 .hba_enable_delay_us = 1000,
8849 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
8850 .devfreq_profile.polling_ms = 100,
8851 .devfreq_profile.target = ufshcd_devfreq_target,
8852 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8853 .ondemand_data.upthreshold = 70,
8854 .ondemand_data.downdifferential = 5,
8855 };
8856
8857 static const struct scsi_host_template ufshcd_driver_template = {
8858 .module = THIS_MODULE,
8859 .name = UFSHCD,
8860 .proc_name = UFSHCD,
8861 .map_queues = ufshcd_map_queues,
8862 .queuecommand = ufshcd_queuecommand,
8863 .mq_poll = ufshcd_poll,
8864 .slave_alloc = ufshcd_slave_alloc,
8865 .slave_configure = ufshcd_slave_configure,
8866 .slave_destroy = ufshcd_slave_destroy,
8867 .change_queue_depth = ufshcd_change_queue_depth,
8868 .eh_abort_handler = ufshcd_abort,
8869 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8870 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
8871 .eh_timed_out = ufshcd_eh_timed_out,
8872 .this_id = -1,
8873 .sg_tablesize = SG_ALL,
8874 .cmd_per_lun = UFSHCD_CMD_PER_LUN,
8875 .can_queue = UFSHCD_CAN_QUEUE,
8876 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
8877 .max_sectors = SZ_1M / SECTOR_SIZE,
8878 .max_host_blocked = 1,
8879 .track_queue_depth = 1,
8880 .skip_settle_delay = 1,
8881 .sdev_groups = ufshcd_driver_groups,
8882 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS,
8883 };
8884
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8885 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8886 int ua)
8887 {
8888 int ret;
8889
8890 if (!vreg)
8891 return 0;
8892
8893 /*
8894 * "set_load" operation shall be required on those regulators
8895 * which specifically configured current limitation. Otherwise
8896 * zero max_uA may cause unexpected behavior when regulator is
8897 * enabled or set as high power mode.
8898 */
8899 if (!vreg->max_uA)
8900 return 0;
8901
8902 ret = regulator_set_load(vreg->reg, ua);
8903 if (ret < 0) {
8904 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8905 __func__, vreg->name, ua, ret);
8906 }
8907
8908 return ret;
8909 }
8910
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8911 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8912 struct ufs_vreg *vreg)
8913 {
8914 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8915 }
8916
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8917 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8918 struct ufs_vreg *vreg)
8919 {
8920 if (!vreg)
8921 return 0;
8922
8923 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8924 }
8925
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)8926 static int ufshcd_config_vreg(struct device *dev,
8927 struct ufs_vreg *vreg, bool on)
8928 {
8929 if (regulator_count_voltages(vreg->reg) <= 0)
8930 return 0;
8931
8932 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8933 }
8934
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)8935 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8936 {
8937 int ret = 0;
8938
8939 if (!vreg || vreg->enabled)
8940 goto out;
8941
8942 ret = ufshcd_config_vreg(dev, vreg, true);
8943 if (!ret)
8944 ret = regulator_enable(vreg->reg);
8945
8946 if (!ret)
8947 vreg->enabled = true;
8948 else
8949 dev_err(dev, "%s: %s enable failed, err=%d\n",
8950 __func__, vreg->name, ret);
8951 out:
8952 return ret;
8953 }
8954
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)8955 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8956 {
8957 int ret = 0;
8958
8959 if (!vreg || !vreg->enabled || vreg->always_on)
8960 goto out;
8961
8962 ret = regulator_disable(vreg->reg);
8963
8964 if (!ret) {
8965 /* ignore errors on applying disable config */
8966 ufshcd_config_vreg(dev, vreg, false);
8967 vreg->enabled = false;
8968 } else {
8969 dev_err(dev, "%s: %s disable failed, err=%d\n",
8970 __func__, vreg->name, ret);
8971 }
8972 out:
8973 return ret;
8974 }
8975
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)8976 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8977 {
8978 int ret = 0;
8979 struct device *dev = hba->dev;
8980 struct ufs_vreg_info *info = &hba->vreg_info;
8981
8982 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8983 if (ret)
8984 goto out;
8985
8986 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8987 if (ret)
8988 goto out;
8989
8990 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8991
8992 out:
8993 if (ret) {
8994 ufshcd_toggle_vreg(dev, info->vccq2, false);
8995 ufshcd_toggle_vreg(dev, info->vccq, false);
8996 ufshcd_toggle_vreg(dev, info->vcc, false);
8997 }
8998 return ret;
8999 }
9000
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9001 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9002 {
9003 struct ufs_vreg_info *info = &hba->vreg_info;
9004
9005 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9006 }
9007
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9008 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9009 {
9010 int ret = 0;
9011
9012 if (!vreg)
9013 goto out;
9014
9015 vreg->reg = devm_regulator_get(dev, vreg->name);
9016 if (IS_ERR(vreg->reg)) {
9017 ret = PTR_ERR(vreg->reg);
9018 dev_err(dev, "%s: %s get failed, err=%d\n",
9019 __func__, vreg->name, ret);
9020 }
9021 out:
9022 return ret;
9023 }
9024 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9025
ufshcd_init_vreg(struct ufs_hba * hba)9026 static int ufshcd_init_vreg(struct ufs_hba *hba)
9027 {
9028 int ret = 0;
9029 struct device *dev = hba->dev;
9030 struct ufs_vreg_info *info = &hba->vreg_info;
9031
9032 ret = ufshcd_get_vreg(dev, info->vcc);
9033 if (ret)
9034 goto out;
9035
9036 ret = ufshcd_get_vreg(dev, info->vccq);
9037 if (!ret)
9038 ret = ufshcd_get_vreg(dev, info->vccq2);
9039 out:
9040 return ret;
9041 }
9042
ufshcd_init_hba_vreg(struct ufs_hba * hba)9043 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9044 {
9045 struct ufs_vreg_info *info = &hba->vreg_info;
9046
9047 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9048 }
9049
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9050 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9051 {
9052 int ret = 0;
9053 struct ufs_clk_info *clki;
9054 struct list_head *head = &hba->clk_list_head;
9055 unsigned long flags;
9056 ktime_t start = ktime_get();
9057 bool clk_state_changed = false;
9058
9059 if (list_empty(head))
9060 goto out;
9061
9062 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9063 if (ret)
9064 return ret;
9065
9066 list_for_each_entry(clki, head, list) {
9067 if (!IS_ERR_OR_NULL(clki->clk)) {
9068 /*
9069 * Don't disable clocks which are needed
9070 * to keep the link active.
9071 */
9072 if (ufshcd_is_link_active(hba) &&
9073 clki->keep_link_active)
9074 continue;
9075
9076 clk_state_changed = on ^ clki->enabled;
9077 if (on && !clki->enabled) {
9078 ret = clk_prepare_enable(clki->clk);
9079 if (ret) {
9080 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9081 __func__, clki->name, ret);
9082 goto out;
9083 }
9084 } else if (!on && clki->enabled) {
9085 clk_disable_unprepare(clki->clk);
9086 }
9087 clki->enabled = on;
9088 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9089 clki->name, on ? "en" : "dis");
9090 }
9091 }
9092
9093 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9094 if (ret)
9095 return ret;
9096
9097 out:
9098 if (ret) {
9099 list_for_each_entry(clki, head, list) {
9100 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9101 clk_disable_unprepare(clki->clk);
9102 }
9103 } else if (!ret && on) {
9104 spin_lock_irqsave(hba->host->host_lock, flags);
9105 hba->clk_gating.state = CLKS_ON;
9106 trace_ufshcd_clk_gating(dev_name(hba->dev),
9107 hba->clk_gating.state);
9108 spin_unlock_irqrestore(hba->host->host_lock, flags);
9109 }
9110
9111 if (clk_state_changed)
9112 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9113 (on ? "on" : "off"),
9114 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9115 return ret;
9116 }
9117
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9118 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9119 {
9120 u32 freq;
9121 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9122
9123 if (ret) {
9124 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9125 return REF_CLK_FREQ_INVAL;
9126 }
9127
9128 return ufs_get_bref_clk_from_hz(freq);
9129 }
9130
ufshcd_init_clocks(struct ufs_hba * hba)9131 static int ufshcd_init_clocks(struct ufs_hba *hba)
9132 {
9133 int ret = 0;
9134 struct ufs_clk_info *clki;
9135 struct device *dev = hba->dev;
9136 struct list_head *head = &hba->clk_list_head;
9137
9138 if (list_empty(head))
9139 goto out;
9140
9141 list_for_each_entry(clki, head, list) {
9142 if (!clki->name)
9143 continue;
9144
9145 clki->clk = devm_clk_get(dev, clki->name);
9146 if (IS_ERR(clki->clk)) {
9147 ret = PTR_ERR(clki->clk);
9148 dev_err(dev, "%s: %s clk get failed, %d\n",
9149 __func__, clki->name, ret);
9150 goto out;
9151 }
9152
9153 /*
9154 * Parse device ref clk freq as per device tree "ref_clk".
9155 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9156 * in ufshcd_alloc_host().
9157 */
9158 if (!strcmp(clki->name, "ref_clk"))
9159 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9160
9161 if (clki->max_freq) {
9162 ret = clk_set_rate(clki->clk, clki->max_freq);
9163 if (ret) {
9164 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9165 __func__, clki->name,
9166 clki->max_freq, ret);
9167 goto out;
9168 }
9169 clki->curr_freq = clki->max_freq;
9170 }
9171 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9172 clki->name, clk_get_rate(clki->clk));
9173 }
9174 out:
9175 return ret;
9176 }
9177
ufshcd_variant_hba_init(struct ufs_hba * hba)9178 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9179 {
9180 int err = 0;
9181
9182 if (!hba->vops)
9183 goto out;
9184
9185 err = ufshcd_vops_init(hba);
9186 if (err)
9187 dev_err_probe(hba->dev, err,
9188 "%s: variant %s init failed with err %d\n",
9189 __func__, ufshcd_get_var_name(hba), err);
9190 out:
9191 return err;
9192 }
9193
ufshcd_variant_hba_exit(struct ufs_hba * hba)9194 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9195 {
9196 if (!hba->vops)
9197 return;
9198
9199 ufshcd_vops_exit(hba);
9200 }
9201
ufshcd_hba_init(struct ufs_hba * hba)9202 static int ufshcd_hba_init(struct ufs_hba *hba)
9203 {
9204 int err;
9205
9206 /*
9207 * Handle host controller power separately from the UFS device power
9208 * rails as it will help controlling the UFS host controller power
9209 * collapse easily which is different than UFS device power collapse.
9210 * Also, enable the host controller power before we go ahead with rest
9211 * of the initialization here.
9212 */
9213 err = ufshcd_init_hba_vreg(hba);
9214 if (err)
9215 goto out;
9216
9217 err = ufshcd_setup_hba_vreg(hba, true);
9218 if (err)
9219 goto out;
9220
9221 err = ufshcd_init_clocks(hba);
9222 if (err)
9223 goto out_disable_hba_vreg;
9224
9225 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9226 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9227
9228 err = ufshcd_setup_clocks(hba, true);
9229 if (err)
9230 goto out_disable_hba_vreg;
9231
9232 err = ufshcd_init_vreg(hba);
9233 if (err)
9234 goto out_disable_clks;
9235
9236 err = ufshcd_setup_vreg(hba, true);
9237 if (err)
9238 goto out_disable_clks;
9239
9240 err = ufshcd_variant_hba_init(hba);
9241 if (err)
9242 goto out_disable_vreg;
9243
9244 ufs_debugfs_hba_init(hba);
9245
9246 hba->is_powered = true;
9247 goto out;
9248
9249 out_disable_vreg:
9250 ufshcd_setup_vreg(hba, false);
9251 out_disable_clks:
9252 ufshcd_setup_clocks(hba, false);
9253 out_disable_hba_vreg:
9254 ufshcd_setup_hba_vreg(hba, false);
9255 out:
9256 return err;
9257 }
9258
ufshcd_hba_exit(struct ufs_hba * hba)9259 static void ufshcd_hba_exit(struct ufs_hba *hba)
9260 {
9261 if (hba->is_powered) {
9262 ufshcd_exit_clk_scaling(hba);
9263 ufshcd_exit_clk_gating(hba);
9264 if (hba->eh_wq)
9265 destroy_workqueue(hba->eh_wq);
9266 ufs_debugfs_hba_exit(hba);
9267 ufshcd_variant_hba_exit(hba);
9268 ufshcd_setup_vreg(hba, false);
9269 ufshcd_setup_clocks(hba, false);
9270 ufshcd_setup_hba_vreg(hba, false);
9271 hba->is_powered = false;
9272 ufs_put_device_desc(hba);
9273 }
9274 }
9275
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9276 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9277 enum ufs_dev_pwr_mode pwr_mode,
9278 struct scsi_sense_hdr *sshdr)
9279 {
9280 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9281 const struct scsi_exec_args args = {
9282 .sshdr = sshdr,
9283 .req_flags = BLK_MQ_REQ_PM,
9284 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9285 };
9286
9287 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9288 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9289 &args);
9290 }
9291
9292 /**
9293 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9294 * power mode
9295 * @hba: per adapter instance
9296 * @pwr_mode: device power mode to set
9297 *
9298 * Return: 0 if requested power mode is set successfully;
9299 * < 0 if failed to set the requested power mode.
9300 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9301 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9302 enum ufs_dev_pwr_mode pwr_mode)
9303 {
9304 struct scsi_sense_hdr sshdr;
9305 struct scsi_device *sdp;
9306 unsigned long flags;
9307 int ret, retries;
9308
9309 spin_lock_irqsave(hba->host->host_lock, flags);
9310 sdp = hba->ufs_device_wlun;
9311 if (sdp && scsi_device_online(sdp))
9312 ret = scsi_device_get(sdp);
9313 else
9314 ret = -ENODEV;
9315 spin_unlock_irqrestore(hba->host->host_lock, flags);
9316
9317 if (ret)
9318 return ret;
9319
9320 /*
9321 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9322 * handling, which would wait for host to be resumed. Since we know
9323 * we are functional while we are here, skip host resume in error
9324 * handling context.
9325 */
9326 hba->host->eh_noresume = 1;
9327
9328 /*
9329 * Current function would be generally called from the power management
9330 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9331 * already suspended childs.
9332 */
9333 for (retries = 3; retries > 0; --retries) {
9334 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9335 /*
9336 * scsi_execute() only returns a negative value if the request
9337 * queue is dying.
9338 */
9339 if (ret <= 0)
9340 break;
9341 }
9342 if (ret) {
9343 sdev_printk(KERN_WARNING, sdp,
9344 "START_STOP failed for power mode: %d, result %x\n",
9345 pwr_mode, ret);
9346 if (ret > 0) {
9347 if (scsi_sense_valid(&sshdr))
9348 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9349 ret = -EIO;
9350 }
9351 } else {
9352 hba->curr_dev_pwr_mode = pwr_mode;
9353 }
9354
9355 scsi_device_put(sdp);
9356 hba->host->eh_noresume = 0;
9357 return ret;
9358 }
9359
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9360 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9361 enum uic_link_state req_link_state,
9362 bool check_for_bkops)
9363 {
9364 int ret = 0;
9365
9366 if (req_link_state == hba->uic_link_state)
9367 return 0;
9368
9369 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9370 ret = ufshcd_uic_hibern8_enter(hba);
9371 if (!ret) {
9372 ufshcd_set_link_hibern8(hba);
9373 } else {
9374 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9375 __func__, ret);
9376 goto out;
9377 }
9378 }
9379 /*
9380 * If autobkops is enabled, link can't be turned off because
9381 * turning off the link would also turn off the device, except in the
9382 * case of DeepSleep where the device is expected to remain powered.
9383 */
9384 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9385 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9386 /*
9387 * Let's make sure that link is in low power mode, we are doing
9388 * this currently by putting the link in Hibern8. Otherway to
9389 * put the link in low power mode is to send the DME end point
9390 * to device and then send the DME reset command to local
9391 * unipro. But putting the link in hibern8 is much faster.
9392 *
9393 * Note also that putting the link in Hibern8 is a requirement
9394 * for entering DeepSleep.
9395 */
9396 ret = ufshcd_uic_hibern8_enter(hba);
9397 if (ret) {
9398 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9399 __func__, ret);
9400 goto out;
9401 }
9402 /*
9403 * Change controller state to "reset state" which
9404 * should also put the link in off/reset state
9405 */
9406 ufshcd_hba_stop(hba);
9407 /*
9408 * TODO: Check if we need any delay to make sure that
9409 * controller is reset
9410 */
9411 ufshcd_set_link_off(hba);
9412 }
9413
9414 out:
9415 return ret;
9416 }
9417
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9418 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9419 {
9420 bool vcc_off = false;
9421
9422 /*
9423 * It seems some UFS devices may keep drawing more than sleep current
9424 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9425 * To avoid this situation, add 2ms delay before putting these UFS
9426 * rails in LPM mode.
9427 */
9428 if (!ufshcd_is_link_active(hba) &&
9429 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9430 usleep_range(2000, 2100);
9431
9432 /*
9433 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9434 * power.
9435 *
9436 * If UFS device and link is in OFF state, all power supplies (VCC,
9437 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9438 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9439 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9440 *
9441 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9442 * in low power state which would save some power.
9443 *
9444 * If Write Booster is enabled and the device needs to flush the WB
9445 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9446 */
9447 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9448 !hba->dev_info.is_lu_power_on_wp) {
9449 ufshcd_setup_vreg(hba, false);
9450 vcc_off = true;
9451 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9452 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9453 vcc_off = true;
9454 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9455 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9456 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9457 }
9458 }
9459
9460 /*
9461 * Some UFS devices require delay after VCC power rail is turned-off.
9462 */
9463 if (vcc_off && hba->vreg_info.vcc &&
9464 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9465 usleep_range(5000, 5100);
9466 }
9467
9468 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9469 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9470 {
9471 int ret = 0;
9472
9473 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9474 !hba->dev_info.is_lu_power_on_wp) {
9475 ret = ufshcd_setup_vreg(hba, true);
9476 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9477 if (!ufshcd_is_link_active(hba)) {
9478 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9479 if (ret)
9480 goto vcc_disable;
9481 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9482 if (ret)
9483 goto vccq_lpm;
9484 }
9485 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9486 }
9487 goto out;
9488
9489 vccq_lpm:
9490 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9491 vcc_disable:
9492 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9493 out:
9494 return ret;
9495 }
9496 #endif /* CONFIG_PM */
9497
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9498 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9499 {
9500 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9501 ufshcd_setup_hba_vreg(hba, false);
9502 }
9503
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9504 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9505 {
9506 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9507 ufshcd_setup_hba_vreg(hba, true);
9508 }
9509
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9510 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9511 {
9512 int ret = 0;
9513 bool check_for_bkops;
9514 enum ufs_pm_level pm_lvl;
9515 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9516 enum uic_link_state req_link_state;
9517
9518 hba->pm_op_in_progress = true;
9519 if (pm_op != UFS_SHUTDOWN_PM) {
9520 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9521 hba->rpm_lvl : hba->spm_lvl;
9522 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9523 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9524 } else {
9525 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9526 req_link_state = UIC_LINK_OFF_STATE;
9527 }
9528
9529 /*
9530 * If we can't transition into any of the low power modes
9531 * just gate the clocks.
9532 */
9533 ufshcd_hold(hba);
9534 hba->clk_gating.is_suspended = true;
9535
9536 if (ufshcd_is_clkscaling_supported(hba))
9537 ufshcd_clk_scaling_suspend(hba, true);
9538
9539 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9540 req_link_state == UIC_LINK_ACTIVE_STATE) {
9541 goto vops_suspend;
9542 }
9543
9544 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9545 (req_link_state == hba->uic_link_state))
9546 goto enable_scaling;
9547
9548 /* UFS device & link must be active before we enter in this function */
9549 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9550 ret = -EINVAL;
9551 goto enable_scaling;
9552 }
9553
9554 if (pm_op == UFS_RUNTIME_PM) {
9555 if (ufshcd_can_autobkops_during_suspend(hba)) {
9556 /*
9557 * The device is idle with no requests in the queue,
9558 * allow background operations if bkops status shows
9559 * that performance might be impacted.
9560 */
9561 ret = ufshcd_urgent_bkops(hba);
9562 if (ret) {
9563 /*
9564 * If return err in suspend flow, IO will hang.
9565 * Trigger error handler and break suspend for
9566 * error recovery.
9567 */
9568 ufshcd_force_error_recovery(hba);
9569 ret = -EBUSY;
9570 goto enable_scaling;
9571 }
9572 } else {
9573 /* make sure that auto bkops is disabled */
9574 ufshcd_disable_auto_bkops(hba);
9575 }
9576 /*
9577 * If device needs to do BKOP or WB buffer flush during
9578 * Hibern8, keep device power mode as "active power mode"
9579 * and VCC supply.
9580 */
9581 hba->dev_info.b_rpm_dev_flush_capable =
9582 hba->auto_bkops_enabled ||
9583 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9584 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9585 ufshcd_is_auto_hibern8_enabled(hba))) &&
9586 ufshcd_wb_need_flush(hba));
9587 }
9588
9589 flush_work(&hba->eeh_work);
9590
9591 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9592 if (ret)
9593 goto enable_scaling;
9594
9595 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9596 if (pm_op != UFS_RUNTIME_PM)
9597 /* ensure that bkops is disabled */
9598 ufshcd_disable_auto_bkops(hba);
9599
9600 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9601 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9602 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9603 /*
9604 * If return err in suspend flow, IO will hang.
9605 * Trigger error handler and break suspend for
9606 * error recovery.
9607 */
9608 ufshcd_force_error_recovery(hba);
9609 ret = -EBUSY;
9610 }
9611 if (ret)
9612 goto enable_scaling;
9613 }
9614 }
9615
9616 /*
9617 * In the case of DeepSleep, the device is expected to remain powered
9618 * with the link off, so do not check for bkops.
9619 */
9620 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9621 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9622 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9623 /*
9624 * If return err in suspend flow, IO will hang.
9625 * Trigger error handler and break suspend for
9626 * error recovery.
9627 */
9628 ufshcd_force_error_recovery(hba);
9629 ret = -EBUSY;
9630 }
9631 if (ret)
9632 goto set_dev_active;
9633
9634 vops_suspend:
9635 /*
9636 * Call vendor specific suspend callback. As these callbacks may access
9637 * vendor specific host controller register space call them before the
9638 * host clocks are ON.
9639 */
9640 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9641 if (ret)
9642 goto set_link_active;
9643 goto out;
9644
9645 set_link_active:
9646 /*
9647 * Device hardware reset is required to exit DeepSleep. Also, for
9648 * DeepSleep, the link is off so host reset and restore will be done
9649 * further below.
9650 */
9651 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9652 ufshcd_device_reset(hba);
9653 WARN_ON(!ufshcd_is_link_off(hba));
9654 }
9655 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9656 ufshcd_set_link_active(hba);
9657 else if (ufshcd_is_link_off(hba))
9658 ufshcd_host_reset_and_restore(hba);
9659 set_dev_active:
9660 /* Can also get here needing to exit DeepSleep */
9661 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9662 ufshcd_device_reset(hba);
9663 ufshcd_host_reset_and_restore(hba);
9664 }
9665 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9666 ufshcd_disable_auto_bkops(hba);
9667 enable_scaling:
9668 if (ufshcd_is_clkscaling_supported(hba))
9669 ufshcd_clk_scaling_suspend(hba, false);
9670
9671 hba->dev_info.b_rpm_dev_flush_capable = false;
9672 out:
9673 if (hba->dev_info.b_rpm_dev_flush_capable) {
9674 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9675 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9676 }
9677
9678 if (ret) {
9679 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9680 hba->clk_gating.is_suspended = false;
9681 ufshcd_release(hba);
9682 }
9683 hba->pm_op_in_progress = false;
9684 return ret;
9685 }
9686
9687 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9688 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9689 {
9690 int ret;
9691 enum uic_link_state old_link_state = hba->uic_link_state;
9692
9693 hba->pm_op_in_progress = true;
9694
9695 /*
9696 * Call vendor specific resume callback. As these callbacks may access
9697 * vendor specific host controller register space call them when the
9698 * host clocks are ON.
9699 */
9700 ret = ufshcd_vops_resume(hba, pm_op);
9701 if (ret)
9702 goto out;
9703
9704 /* For DeepSleep, the only supported option is to have the link off */
9705 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9706
9707 if (ufshcd_is_link_hibern8(hba)) {
9708 ret = ufshcd_uic_hibern8_exit(hba);
9709 if (!ret) {
9710 ufshcd_set_link_active(hba);
9711 } else {
9712 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9713 __func__, ret);
9714 goto vendor_suspend;
9715 }
9716 } else if (ufshcd_is_link_off(hba)) {
9717 /*
9718 * A full initialization of the host and the device is
9719 * required since the link was put to off during suspend.
9720 * Note, in the case of DeepSleep, the device will exit
9721 * DeepSleep due to device reset.
9722 */
9723 ret = ufshcd_reset_and_restore(hba);
9724 /*
9725 * ufshcd_reset_and_restore() should have already
9726 * set the link state as active
9727 */
9728 if (ret || !ufshcd_is_link_active(hba))
9729 goto vendor_suspend;
9730 }
9731
9732 if (!ufshcd_is_ufs_dev_active(hba)) {
9733 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9734 if (ret)
9735 goto set_old_link_state;
9736 ufshcd_set_timestamp_attr(hba);
9737 }
9738
9739 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9740 ufshcd_enable_auto_bkops(hba);
9741 else
9742 /*
9743 * If BKOPs operations are urgently needed at this moment then
9744 * keep auto-bkops enabled or else disable it.
9745 */
9746 ufshcd_urgent_bkops(hba);
9747
9748 if (hba->ee_usr_mask)
9749 ufshcd_write_ee_control(hba);
9750
9751 if (ufshcd_is_clkscaling_supported(hba))
9752 ufshcd_clk_scaling_suspend(hba, false);
9753
9754 if (hba->dev_info.b_rpm_dev_flush_capable) {
9755 hba->dev_info.b_rpm_dev_flush_capable = false;
9756 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9757 }
9758
9759 /* Enable Auto-Hibernate if configured */
9760 ufshcd_auto_hibern8_enable(hba);
9761
9762 goto out;
9763
9764 set_old_link_state:
9765 ufshcd_link_state_transition(hba, old_link_state, 0);
9766 vendor_suspend:
9767 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9768 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9769 out:
9770 if (ret)
9771 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9772 hba->clk_gating.is_suspended = false;
9773 ufshcd_release(hba);
9774 hba->pm_op_in_progress = false;
9775 return ret;
9776 }
9777
ufshcd_wl_runtime_suspend(struct device * dev)9778 static int ufshcd_wl_runtime_suspend(struct device *dev)
9779 {
9780 struct scsi_device *sdev = to_scsi_device(dev);
9781 struct ufs_hba *hba;
9782 int ret;
9783 ktime_t start = ktime_get();
9784
9785 hba = shost_priv(sdev->host);
9786
9787 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9788 if (ret)
9789 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9790
9791 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9792 ktime_to_us(ktime_sub(ktime_get(), start)),
9793 hba->curr_dev_pwr_mode, hba->uic_link_state);
9794
9795 return ret;
9796 }
9797
ufshcd_wl_runtime_resume(struct device * dev)9798 static int ufshcd_wl_runtime_resume(struct device *dev)
9799 {
9800 struct scsi_device *sdev = to_scsi_device(dev);
9801 struct ufs_hba *hba;
9802 int ret = 0;
9803 ktime_t start = ktime_get();
9804
9805 hba = shost_priv(sdev->host);
9806
9807 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9808 if (ret)
9809 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9810
9811 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9812 ktime_to_us(ktime_sub(ktime_get(), start)),
9813 hba->curr_dev_pwr_mode, hba->uic_link_state);
9814
9815 return ret;
9816 }
9817 #endif
9818
9819 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9820 static int ufshcd_wl_suspend(struct device *dev)
9821 {
9822 struct scsi_device *sdev = to_scsi_device(dev);
9823 struct ufs_hba *hba;
9824 int ret = 0;
9825 ktime_t start = ktime_get();
9826
9827 hba = shost_priv(sdev->host);
9828 down(&hba->host_sem);
9829 hba->system_suspending = true;
9830
9831 if (pm_runtime_suspended(dev))
9832 goto out;
9833
9834 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9835 if (ret) {
9836 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9837 up(&hba->host_sem);
9838 }
9839
9840 out:
9841 if (!ret)
9842 hba->is_sys_suspended = true;
9843 trace_ufshcd_wl_suspend(dev_name(dev), ret,
9844 ktime_to_us(ktime_sub(ktime_get(), start)),
9845 hba->curr_dev_pwr_mode, hba->uic_link_state);
9846
9847 return ret;
9848 }
9849
ufshcd_wl_resume(struct device * dev)9850 static int ufshcd_wl_resume(struct device *dev)
9851 {
9852 struct scsi_device *sdev = to_scsi_device(dev);
9853 struct ufs_hba *hba;
9854 int ret = 0;
9855 ktime_t start = ktime_get();
9856
9857 hba = shost_priv(sdev->host);
9858
9859 if (pm_runtime_suspended(dev))
9860 goto out;
9861
9862 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9863 if (ret)
9864 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9865 out:
9866 trace_ufshcd_wl_resume(dev_name(dev), ret,
9867 ktime_to_us(ktime_sub(ktime_get(), start)),
9868 hba->curr_dev_pwr_mode, hba->uic_link_state);
9869 if (!ret)
9870 hba->is_sys_suspended = false;
9871 hba->system_suspending = false;
9872 up(&hba->host_sem);
9873 return ret;
9874 }
9875 #endif
9876
9877 /**
9878 * ufshcd_suspend - helper function for suspend operations
9879 * @hba: per adapter instance
9880 *
9881 * This function will put disable irqs, turn off clocks
9882 * and set vreg and hba-vreg in lpm mode.
9883 *
9884 * Return: 0 upon success; < 0 upon failure.
9885 */
ufshcd_suspend(struct ufs_hba * hba)9886 static int ufshcd_suspend(struct ufs_hba *hba)
9887 {
9888 int ret;
9889
9890 if (!hba->is_powered)
9891 return 0;
9892 /*
9893 * Disable the host irq as host controller as there won't be any
9894 * host controller transaction expected till resume.
9895 */
9896 ufshcd_disable_irq(hba);
9897 ret = ufshcd_setup_clocks(hba, false);
9898 if (ret) {
9899 ufshcd_enable_irq(hba);
9900 return ret;
9901 }
9902 if (ufshcd_is_clkgating_allowed(hba)) {
9903 hba->clk_gating.state = CLKS_OFF;
9904 trace_ufshcd_clk_gating(dev_name(hba->dev),
9905 hba->clk_gating.state);
9906 }
9907
9908 ufshcd_vreg_set_lpm(hba);
9909 /* Put the host controller in low power mode if possible */
9910 ufshcd_hba_vreg_set_lpm(hba);
9911 return ret;
9912 }
9913
9914 #ifdef CONFIG_PM
9915 /**
9916 * ufshcd_resume - helper function for resume operations
9917 * @hba: per adapter instance
9918 *
9919 * This function basically turns on the regulators, clocks and
9920 * irqs of the hba.
9921 *
9922 * Return: 0 for success and non-zero for failure.
9923 */
ufshcd_resume(struct ufs_hba * hba)9924 static int ufshcd_resume(struct ufs_hba *hba)
9925 {
9926 int ret;
9927
9928 if (!hba->is_powered)
9929 return 0;
9930
9931 ufshcd_hba_vreg_set_hpm(hba);
9932 ret = ufshcd_vreg_set_hpm(hba);
9933 if (ret)
9934 goto out;
9935
9936 /* Make sure clocks are enabled before accessing controller */
9937 ret = ufshcd_setup_clocks(hba, true);
9938 if (ret)
9939 goto disable_vreg;
9940
9941 /* enable the host irq as host controller would be active soon */
9942 ufshcd_enable_irq(hba);
9943
9944 goto out;
9945
9946 disable_vreg:
9947 ufshcd_vreg_set_lpm(hba);
9948 out:
9949 if (ret)
9950 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9951 return ret;
9952 }
9953 #endif /* CONFIG_PM */
9954
9955 #ifdef CONFIG_PM_SLEEP
9956 /**
9957 * ufshcd_system_suspend - system suspend callback
9958 * @dev: Device associated with the UFS controller.
9959 *
9960 * Executed before putting the system into a sleep state in which the contents
9961 * of main memory are preserved.
9962 *
9963 * Return: 0 for success and non-zero for failure.
9964 */
ufshcd_system_suspend(struct device * dev)9965 int ufshcd_system_suspend(struct device *dev)
9966 {
9967 struct ufs_hba *hba = dev_get_drvdata(dev);
9968 int ret = 0;
9969 ktime_t start = ktime_get();
9970
9971 if (pm_runtime_suspended(hba->dev))
9972 goto out;
9973
9974 ret = ufshcd_suspend(hba);
9975 out:
9976 trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9977 ktime_to_us(ktime_sub(ktime_get(), start)),
9978 hba->curr_dev_pwr_mode, hba->uic_link_state);
9979 return ret;
9980 }
9981 EXPORT_SYMBOL(ufshcd_system_suspend);
9982
9983 /**
9984 * ufshcd_system_resume - system resume callback
9985 * @dev: Device associated with the UFS controller.
9986 *
9987 * Executed after waking the system up from a sleep state in which the contents
9988 * of main memory were preserved.
9989 *
9990 * Return: 0 for success and non-zero for failure.
9991 */
ufshcd_system_resume(struct device * dev)9992 int ufshcd_system_resume(struct device *dev)
9993 {
9994 struct ufs_hba *hba = dev_get_drvdata(dev);
9995 ktime_t start = ktime_get();
9996 int ret = 0;
9997
9998 if (pm_runtime_suspended(hba->dev))
9999 goto out;
10000
10001 ret = ufshcd_resume(hba);
10002
10003 out:
10004 trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10005 ktime_to_us(ktime_sub(ktime_get(), start)),
10006 hba->curr_dev_pwr_mode, hba->uic_link_state);
10007
10008 return ret;
10009 }
10010 EXPORT_SYMBOL(ufshcd_system_resume);
10011 #endif /* CONFIG_PM_SLEEP */
10012
10013 #ifdef CONFIG_PM
10014 /**
10015 * ufshcd_runtime_suspend - runtime suspend callback
10016 * @dev: Device associated with the UFS controller.
10017 *
10018 * Check the description of ufshcd_suspend() function for more details.
10019 *
10020 * Return: 0 for success and non-zero for failure.
10021 */
ufshcd_runtime_suspend(struct device * dev)10022 int ufshcd_runtime_suspend(struct device *dev)
10023 {
10024 struct ufs_hba *hba = dev_get_drvdata(dev);
10025 int ret;
10026 ktime_t start = ktime_get();
10027
10028 ret = ufshcd_suspend(hba);
10029
10030 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10031 ktime_to_us(ktime_sub(ktime_get(), start)),
10032 hba->curr_dev_pwr_mode, hba->uic_link_state);
10033 return ret;
10034 }
10035 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10036
10037 /**
10038 * ufshcd_runtime_resume - runtime resume routine
10039 * @dev: Device associated with the UFS controller.
10040 *
10041 * This function basically brings controller
10042 * to active state. Following operations are done in this function:
10043 *
10044 * 1. Turn on all the controller related clocks
10045 * 2. Turn ON VCC rail
10046 *
10047 * Return: 0 upon success; < 0 upon failure.
10048 */
ufshcd_runtime_resume(struct device * dev)10049 int ufshcd_runtime_resume(struct device *dev)
10050 {
10051 struct ufs_hba *hba = dev_get_drvdata(dev);
10052 int ret;
10053 ktime_t start = ktime_get();
10054
10055 ret = ufshcd_resume(hba);
10056
10057 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10058 ktime_to_us(ktime_sub(ktime_get(), start)),
10059 hba->curr_dev_pwr_mode, hba->uic_link_state);
10060 return ret;
10061 }
10062 EXPORT_SYMBOL(ufshcd_runtime_resume);
10063 #endif /* CONFIG_PM */
10064
ufshcd_wl_shutdown(struct device * dev)10065 static void ufshcd_wl_shutdown(struct device *dev)
10066 {
10067 struct scsi_device *sdev = to_scsi_device(dev);
10068 struct ufs_hba *hba = shost_priv(sdev->host);
10069
10070 down(&hba->host_sem);
10071 hba->shutting_down = true;
10072 up(&hba->host_sem);
10073
10074 /* Turn on everything while shutting down */
10075 ufshcd_rpm_get_sync(hba);
10076 scsi_device_quiesce(sdev);
10077 shost_for_each_device(sdev, hba->host) {
10078 if (sdev == hba->ufs_device_wlun)
10079 continue;
10080 scsi_device_quiesce(sdev);
10081 }
10082 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10083
10084 /*
10085 * Next, turn off the UFS controller and the UFS regulators. Disable
10086 * clocks.
10087 */
10088 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10089 ufshcd_suspend(hba);
10090
10091 hba->is_powered = false;
10092 }
10093
10094 /**
10095 * ufshcd_remove - de-allocate SCSI host and host memory space
10096 * data structure memory
10097 * @hba: per adapter instance
10098 */
ufshcd_remove(struct ufs_hba * hba)10099 void ufshcd_remove(struct ufs_hba *hba)
10100 {
10101 if (hba->ufs_device_wlun)
10102 ufshcd_rpm_get_sync(hba);
10103 ufs_hwmon_remove(hba);
10104 ufs_bsg_remove(hba);
10105 ufs_sysfs_remove_nodes(hba->dev);
10106 blk_mq_destroy_queue(hba->tmf_queue);
10107 blk_put_queue(hba->tmf_queue);
10108 blk_mq_free_tag_set(&hba->tmf_tag_set);
10109 scsi_remove_host(hba->host);
10110 /* disable interrupts */
10111 ufshcd_disable_intr(hba, hba->intr_mask);
10112 ufshcd_hba_stop(hba);
10113 ufshcd_hba_exit(hba);
10114 }
10115 EXPORT_SYMBOL_GPL(ufshcd_remove);
10116
10117 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10118 int ufshcd_system_freeze(struct device *dev)
10119 {
10120
10121 return ufshcd_system_suspend(dev);
10122
10123 }
10124 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10125
ufshcd_system_restore(struct device * dev)10126 int ufshcd_system_restore(struct device *dev)
10127 {
10128
10129 struct ufs_hba *hba = dev_get_drvdata(dev);
10130 int ret;
10131
10132 ret = ufshcd_system_resume(dev);
10133 if (ret)
10134 return ret;
10135
10136 /* Configure UTRL and UTMRL base address registers */
10137 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10138 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10139 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10140 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10141 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10142 REG_UTP_TASK_REQ_LIST_BASE_L);
10143 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10144 REG_UTP_TASK_REQ_LIST_BASE_H);
10145 /*
10146 * Make sure that UTRL and UTMRL base address registers
10147 * are updated with the latest queue addresses. Only after
10148 * updating these addresses, we can queue the new commands.
10149 */
10150 mb();
10151
10152 /* Resuming from hibernate, assume that link was OFF */
10153 ufshcd_set_link_off(hba);
10154
10155 return 0;
10156
10157 }
10158 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10159
ufshcd_system_thaw(struct device * dev)10160 int ufshcd_system_thaw(struct device *dev)
10161 {
10162 return ufshcd_system_resume(dev);
10163 }
10164 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10165 #endif /* CONFIG_PM_SLEEP */
10166
10167 /**
10168 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10169 * @hba: pointer to Host Bus Adapter (HBA)
10170 */
ufshcd_dealloc_host(struct ufs_hba * hba)10171 void ufshcd_dealloc_host(struct ufs_hba *hba)
10172 {
10173 scsi_host_put(hba->host);
10174 }
10175 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10176
10177 /**
10178 * ufshcd_set_dma_mask - Set dma mask based on the controller
10179 * addressing capability
10180 * @hba: per adapter instance
10181 *
10182 * Return: 0 for success, non-zero for failure.
10183 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10184 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10185 {
10186 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10187 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10188 return 0;
10189 }
10190 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10191 }
10192
10193 /**
10194 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10195 * @dev: pointer to device handle
10196 * @hba_handle: driver private handle
10197 *
10198 * Return: 0 on success, non-zero value on failure.
10199 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10200 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10201 {
10202 struct Scsi_Host *host;
10203 struct ufs_hba *hba;
10204 int err = 0;
10205
10206 if (!dev) {
10207 dev_err(dev,
10208 "Invalid memory reference for dev is NULL\n");
10209 err = -ENODEV;
10210 goto out_error;
10211 }
10212
10213 host = scsi_host_alloc(&ufshcd_driver_template,
10214 sizeof(struct ufs_hba));
10215 if (!host) {
10216 dev_err(dev, "scsi_host_alloc failed\n");
10217 err = -ENOMEM;
10218 goto out_error;
10219 }
10220 host->nr_maps = HCTX_TYPE_POLL + 1;
10221 hba = shost_priv(host);
10222 hba->host = host;
10223 hba->dev = dev;
10224 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10225 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10226 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10227 INIT_LIST_HEAD(&hba->clk_list_head);
10228 spin_lock_init(&hba->outstanding_lock);
10229
10230 *hba_handle = hba;
10231
10232 out_error:
10233 return err;
10234 }
10235 EXPORT_SYMBOL(ufshcd_alloc_host);
10236
10237 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10238 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10239 const struct blk_mq_queue_data *qd)
10240 {
10241 WARN_ON_ONCE(true);
10242 return BLK_STS_NOTSUPP;
10243 }
10244
10245 static const struct blk_mq_ops ufshcd_tmf_ops = {
10246 .queue_rq = ufshcd_queue_tmf,
10247 };
10248
10249 /**
10250 * ufshcd_init - Driver initialization routine
10251 * @hba: per-adapter instance
10252 * @mmio_base: base register address
10253 * @irq: Interrupt line of device
10254 *
10255 * Return: 0 on success, non-zero value on failure.
10256 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10257 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10258 {
10259 int err;
10260 struct Scsi_Host *host = hba->host;
10261 struct device *dev = hba->dev;
10262 char eh_wq_name[sizeof("ufs_eh_wq_00")];
10263
10264 /*
10265 * dev_set_drvdata() must be called before any callbacks are registered
10266 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10267 * sysfs).
10268 */
10269 dev_set_drvdata(dev, hba);
10270
10271 if (!mmio_base) {
10272 dev_err(hba->dev,
10273 "Invalid memory reference for mmio_base is NULL\n");
10274 err = -ENODEV;
10275 goto out_error;
10276 }
10277
10278 hba->mmio_base = mmio_base;
10279 hba->irq = irq;
10280 hba->vps = &ufs_hba_vps;
10281
10282 err = ufshcd_hba_init(hba);
10283 if (err)
10284 goto out_error;
10285
10286 /* Read capabilities registers */
10287 err = ufshcd_hba_capabilities(hba);
10288 if (err)
10289 goto out_disable;
10290
10291 /* Get UFS version supported by the controller */
10292 hba->ufs_version = ufshcd_get_ufs_version(hba);
10293
10294 /* Get Interrupt bit mask per version */
10295 hba->intr_mask = ufshcd_get_intr_mask(hba);
10296
10297 err = ufshcd_set_dma_mask(hba);
10298 if (err) {
10299 dev_err(hba->dev, "set dma mask failed\n");
10300 goto out_disable;
10301 }
10302
10303 /* Allocate memory for host memory space */
10304 err = ufshcd_memory_alloc(hba);
10305 if (err) {
10306 dev_err(hba->dev, "Memory allocation failed\n");
10307 goto out_disable;
10308 }
10309
10310 /* Configure LRB */
10311 ufshcd_host_memory_configure(hba);
10312
10313 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10314 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10315 host->max_id = UFSHCD_MAX_ID;
10316 host->max_lun = UFS_MAX_LUNS;
10317 host->max_channel = UFSHCD_MAX_CHANNEL;
10318 host->unique_id = host->host_no;
10319 host->max_cmd_len = UFS_CDB_SIZE;
10320 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10321
10322 hba->max_pwr_info.is_valid = false;
10323
10324 /* Initialize work queues */
10325 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10326 hba->host->host_no);
10327 hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10328 if (!hba->eh_wq) {
10329 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10330 __func__);
10331 err = -ENOMEM;
10332 goto out_disable;
10333 }
10334 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10335 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10336
10337 sema_init(&hba->host_sem, 1);
10338
10339 /* Initialize UIC command mutex */
10340 mutex_init(&hba->uic_cmd_mutex);
10341
10342 /* Initialize mutex for device management commands */
10343 mutex_init(&hba->dev_cmd.lock);
10344
10345 /* Initialize mutex for exception event control */
10346 mutex_init(&hba->ee_ctrl_mutex);
10347
10348 mutex_init(&hba->wb_mutex);
10349 init_rwsem(&hba->clk_scaling_lock);
10350
10351 ufshcd_init_clk_gating(hba);
10352
10353 ufshcd_init_clk_scaling(hba);
10354
10355 /*
10356 * In order to avoid any spurious interrupt immediately after
10357 * registering UFS controller interrupt handler, clear any pending UFS
10358 * interrupt status and disable all the UFS interrupts.
10359 */
10360 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10361 REG_INTERRUPT_STATUS);
10362 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10363 /*
10364 * Make sure that UFS interrupts are disabled and any pending interrupt
10365 * status is cleared before registering UFS interrupt handler.
10366 */
10367 mb();
10368
10369 /* IRQ registration */
10370 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10371 if (err) {
10372 dev_err(hba->dev, "request irq failed\n");
10373 goto out_disable;
10374 } else {
10375 hba->is_irq_enabled = true;
10376 }
10377
10378 if (!is_mcq_supported(hba)) {
10379 err = scsi_add_host(host, hba->dev);
10380 if (err) {
10381 dev_err(hba->dev, "scsi_add_host failed\n");
10382 goto out_disable;
10383 }
10384 }
10385
10386 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10387 .nr_hw_queues = 1,
10388 .queue_depth = hba->nutmrs,
10389 .ops = &ufshcd_tmf_ops,
10390 .flags = BLK_MQ_F_NO_SCHED,
10391 };
10392 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10393 if (err < 0)
10394 goto out_remove_scsi_host;
10395 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10396 if (IS_ERR(hba->tmf_queue)) {
10397 err = PTR_ERR(hba->tmf_queue);
10398 goto free_tmf_tag_set;
10399 }
10400 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10401 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10402 if (!hba->tmf_rqs) {
10403 err = -ENOMEM;
10404 goto free_tmf_queue;
10405 }
10406
10407 /* Reset the attached device */
10408 ufshcd_device_reset(hba);
10409
10410 ufshcd_init_crypto(hba);
10411
10412 /* Host controller enable */
10413 err = ufshcd_hba_enable(hba);
10414 if (err) {
10415 dev_err(hba->dev, "Host controller enable failed\n");
10416 ufshcd_print_evt_hist(hba);
10417 ufshcd_print_host_state(hba);
10418 goto free_tmf_queue;
10419 }
10420
10421 /*
10422 * Set the default power management level for runtime and system PM.
10423 * Default power saving mode is to keep UFS link in Hibern8 state
10424 * and UFS device in sleep state.
10425 */
10426 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10427 UFS_SLEEP_PWR_MODE,
10428 UIC_LINK_HIBERN8_STATE);
10429 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10430 UFS_SLEEP_PWR_MODE,
10431 UIC_LINK_HIBERN8_STATE);
10432
10433 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10434 ufshcd_rpm_dev_flush_recheck_work);
10435
10436 /* Set the default auto-hiberate idle timer value to 150 ms */
10437 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10438 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10439 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10440 }
10441
10442 /* Hold auto suspend until async scan completes */
10443 pm_runtime_get_sync(dev);
10444 atomic_set(&hba->scsi_block_reqs_cnt, 0);
10445 /*
10446 * We are assuming that device wasn't put in sleep/power-down
10447 * state exclusively during the boot stage before kernel.
10448 * This assumption helps avoid doing link startup twice during
10449 * ufshcd_probe_hba().
10450 */
10451 ufshcd_set_ufs_dev_active(hba);
10452
10453 async_schedule(ufshcd_async_scan, hba);
10454 ufs_sysfs_add_nodes(hba->dev);
10455
10456 device_enable_async_suspend(dev);
10457 return 0;
10458
10459 free_tmf_queue:
10460 blk_mq_destroy_queue(hba->tmf_queue);
10461 blk_put_queue(hba->tmf_queue);
10462 free_tmf_tag_set:
10463 blk_mq_free_tag_set(&hba->tmf_tag_set);
10464 out_remove_scsi_host:
10465 scsi_remove_host(hba->host);
10466 out_disable:
10467 hba->is_irq_enabled = false;
10468 ufshcd_hba_exit(hba);
10469 out_error:
10470 return err;
10471 }
10472 EXPORT_SYMBOL_GPL(ufshcd_init);
10473
ufshcd_resume_complete(struct device * dev)10474 void ufshcd_resume_complete(struct device *dev)
10475 {
10476 struct ufs_hba *hba = dev_get_drvdata(dev);
10477
10478 if (hba->complete_put) {
10479 ufshcd_rpm_put(hba);
10480 hba->complete_put = false;
10481 }
10482 }
10483 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10484
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10485 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10486 {
10487 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10488 enum ufs_dev_pwr_mode dev_pwr_mode;
10489 enum uic_link_state link_state;
10490 unsigned long flags;
10491 bool res;
10492
10493 spin_lock_irqsave(&dev->power.lock, flags);
10494 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10495 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10496 res = pm_runtime_suspended(dev) &&
10497 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10498 hba->uic_link_state == link_state &&
10499 !hba->dev_info.b_rpm_dev_flush_capable;
10500 spin_unlock_irqrestore(&dev->power.lock, flags);
10501
10502 return res;
10503 }
10504
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10505 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10506 {
10507 struct ufs_hba *hba = dev_get_drvdata(dev);
10508 int ret;
10509
10510 /*
10511 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10512 * are same. And it doesn't wake up the device for system-suspend
10513 * if it's runtime suspended. But ufs doesn't follow that.
10514 * Refer ufshcd_resume_complete()
10515 */
10516 if (hba->ufs_device_wlun) {
10517 /* Prevent runtime suspend */
10518 ufshcd_rpm_get_noresume(hba);
10519 /*
10520 * Check if already runtime suspended in same state as system
10521 * suspend would be.
10522 */
10523 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10524 /* RPM state is not ok for SPM, so runtime resume */
10525 ret = ufshcd_rpm_resume(hba);
10526 if (ret < 0 && ret != -EACCES) {
10527 ufshcd_rpm_put(hba);
10528 return ret;
10529 }
10530 }
10531 hba->complete_put = true;
10532 }
10533 return 0;
10534 }
10535 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10536
ufshcd_suspend_prepare(struct device * dev)10537 int ufshcd_suspend_prepare(struct device *dev)
10538 {
10539 return __ufshcd_suspend_prepare(dev, true);
10540 }
10541 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10542
10543 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10544 static int ufshcd_wl_poweroff(struct device *dev)
10545 {
10546 struct scsi_device *sdev = to_scsi_device(dev);
10547 struct ufs_hba *hba = shost_priv(sdev->host);
10548
10549 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10550 return 0;
10551 }
10552 #endif
10553
ufshcd_wl_probe(struct device * dev)10554 static int ufshcd_wl_probe(struct device *dev)
10555 {
10556 struct scsi_device *sdev = to_scsi_device(dev);
10557
10558 if (!is_device_wlun(sdev))
10559 return -ENODEV;
10560
10561 blk_pm_runtime_init(sdev->request_queue, dev);
10562 pm_runtime_set_autosuspend_delay(dev, 0);
10563 pm_runtime_allow(dev);
10564
10565 return 0;
10566 }
10567
ufshcd_wl_remove(struct device * dev)10568 static int ufshcd_wl_remove(struct device *dev)
10569 {
10570 pm_runtime_forbid(dev);
10571 return 0;
10572 }
10573
10574 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10575 #ifdef CONFIG_PM_SLEEP
10576 .suspend = ufshcd_wl_suspend,
10577 .resume = ufshcd_wl_resume,
10578 .freeze = ufshcd_wl_suspend,
10579 .thaw = ufshcd_wl_resume,
10580 .poweroff = ufshcd_wl_poweroff,
10581 .restore = ufshcd_wl_resume,
10582 #endif
10583 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10584 };
10585
ufshcd_check_header_layout(void)10586 static void ufshcd_check_header_layout(void)
10587 {
10588 /*
10589 * gcc compilers before version 10 cannot do constant-folding for
10590 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10591 * before.
10592 */
10593 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10594 return;
10595
10596 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10597 .cci = 3})[0] != 3);
10598
10599 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10600 .ehs_length = 2})[1] != 2);
10601
10602 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10603 .enable_crypto = 1})[2]
10604 != 0x80);
10605
10606 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10607 .command_type = 5,
10608 .data_direction = 3,
10609 .interrupt = 1,
10610 })[3]) != ((5 << 4) | (3 << 1) | 1));
10611
10612 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10613 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10614 cpu_to_le32(0xdeadbeef));
10615
10616 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10617 .ocs = 4})[8] != 4);
10618
10619 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10620 .cds = 5})[9] != 5);
10621
10622 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10623 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
10624 cpu_to_le32(0xbadcafe));
10625
10626 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10627 .iid = 0xf })[4] != 0xf0);
10628
10629 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10630 .command_set_type = 0xf })[4] != 0xf);
10631 }
10632
10633 /*
10634 * ufs_dev_wlun_template - describes ufs device wlun
10635 * ufs-device wlun - used to send pm commands
10636 * All luns are consumers of ufs-device wlun.
10637 *
10638 * Currently, no sd driver is present for wluns.
10639 * Hence the no specific pm operations are performed.
10640 * With ufs design, SSU should be sent to ufs-device wlun.
10641 * Hence register a scsi driver for ufs wluns only.
10642 */
10643 static struct scsi_driver ufs_dev_wlun_template = {
10644 .gendrv = {
10645 .name = "ufs_device_wlun",
10646 .owner = THIS_MODULE,
10647 .probe = ufshcd_wl_probe,
10648 .remove = ufshcd_wl_remove,
10649 .pm = &ufshcd_wl_pm_ops,
10650 .shutdown = ufshcd_wl_shutdown,
10651 },
10652 };
10653
ufshcd_core_init(void)10654 static int __init ufshcd_core_init(void)
10655 {
10656 int ret;
10657
10658 ufshcd_check_header_layout();
10659
10660 ufs_debugfs_init();
10661
10662 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10663 if (ret)
10664 ufs_debugfs_exit();
10665 return ret;
10666 }
10667
ufshcd_core_exit(void)10668 static void __exit ufshcd_core_exit(void)
10669 {
10670 ufs_debugfs_exit();
10671 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10672 }
10673
10674 module_init(ufshcd_core_init);
10675 module_exit(ufshcd_core_exit);
10676
10677 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10678 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10679 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10680 MODULE_SOFTDEP("pre: governor_simpleondemand");
10681 MODULE_LICENSE("GPL");
10682