1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include "ufshcd-priv.h"
29 #include <ufs/ufs_quirks.h>
30 #include <ufs/unipro.h>
31 #include "ufs-sysfs.h"
32 #include "ufs-debugfs.h"
33 #include "ufs-fault-injection.h"
34 #include "ufs_bsg.h"
35 #include "ufshcd-crypto.h"
36 #include "ufshpb.h"
37 #include <asm/unaligned.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/ufs.h>
41
42 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
43 UTP_TASK_REQ_COMPL |\
44 UFSHCD_ERROR_MASK)
45 /* UIC command timeout, unit: ms */
46 #define UIC_CMD_TIMEOUT 500
47
48 /* NOP OUT retries waiting for NOP IN response */
49 #define NOP_OUT_RETRIES 10
50 /* Timeout after 50 msecs if NOP OUT hangs without response */
51 #define NOP_OUT_TIMEOUT 50 /* msecs */
52
53 /* Query request retries */
54 #define QUERY_REQ_RETRIES 3
55 /* Query request timeout */
56 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
57
58 /* Task management command timeout */
59 #define TM_CMD_TIMEOUT 100 /* msecs */
60
61 /* maximum number of retries for a general UIC command */
62 #define UFS_UIC_COMMAND_RETRIES 3
63
64 /* maximum number of link-startup retries */
65 #define DME_LINKSTARTUP_RETRIES 3
66
67 /* Maximum retries for Hibern8 enter */
68 #define UIC_HIBERN8_ENTER_RETRIES 3
69
70 /* maximum number of reset retries before giving up */
71 #define MAX_HOST_RESET_RETRIES 5
72
73 /* Maximum number of error handler retries before giving up */
74 #define MAX_ERR_HANDLER_RETRIES 5
75
76 /* Expose the flag value from utp_upiu_query.value */
77 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
78
79 /* Interrupt aggregation default timeout, unit: 40us */
80 #define INT_AGGR_DEF_TO 0x02
81
82 /* default delay of autosuspend: 2000 ms */
83 #define RPM_AUTOSUSPEND_DELAY_MS 2000
84
85 /* Default delay of RPM device flush delayed work */
86 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
87
88 /* Default value of wait time before gating device ref clock */
89 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
90
91 /* Polling time to wait for fDeviceInit */
92 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
93
94 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
95 ({ \
96 int _ret; \
97 if (_on) \
98 _ret = ufshcd_enable_vreg(_dev, _vreg); \
99 else \
100 _ret = ufshcd_disable_vreg(_dev, _vreg); \
101 _ret; \
102 })
103
104 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
105 size_t __len = (len); \
106 print_hex_dump(KERN_ERR, prefix_str, \
107 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
108 16, 4, buf, __len, false); \
109 } while (0)
110
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)111 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
112 const char *prefix)
113 {
114 u32 *regs;
115 size_t pos;
116
117 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
118 return -EINVAL;
119
120 regs = kzalloc(len, GFP_ATOMIC);
121 if (!regs)
122 return -ENOMEM;
123
124 for (pos = 0; pos < len; pos += 4) {
125 if (offset == 0 &&
126 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
127 pos <= REG_UIC_ERROR_CODE_DME)
128 continue;
129 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
130 }
131
132 ufshcd_hex_dump(prefix, regs, len);
133 kfree(regs);
134
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
138
139 enum {
140 UFSHCD_MAX_CHANNEL = 0,
141 UFSHCD_MAX_ID = 1,
142 UFSHCD_NUM_RESERVED = 1,
143 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED,
144 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED,
145 };
146
147 static const char *const ufshcd_state_name[] = {
148 [UFSHCD_STATE_RESET] = "reset",
149 [UFSHCD_STATE_OPERATIONAL] = "operational",
150 [UFSHCD_STATE_ERROR] = "error",
151 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
152 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
153 };
154
155 /* UFSHCD error handling flags */
156 enum {
157 UFSHCD_EH_IN_PROGRESS = (1 << 0),
158 };
159
160 /* UFSHCD UIC layer error flags */
161 enum {
162 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
163 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
164 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
165 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
166 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
167 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
168 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
169 };
170
171 #define ufshcd_set_eh_in_progress(h) \
172 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
173 #define ufshcd_eh_in_progress(h) \
174 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
175 #define ufshcd_clear_eh_in_progress(h) \
176 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
177
178 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
179 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
180 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
181 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
182 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
183 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
184 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
185 /*
186 * For DeepSleep, the link is first put in hibern8 and then off.
187 * Leaving the link in hibern8 is not supported.
188 */
189 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
190 };
191
192 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)193 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
194 {
195 return ufs_pm_lvl_states[lvl].dev_state;
196 }
197
198 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)199 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
200 {
201 return ufs_pm_lvl_states[lvl].link_state;
202 }
203
204 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)205 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
206 enum uic_link_state link_state)
207 {
208 enum ufs_pm_level lvl;
209
210 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
211 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
212 (ufs_pm_lvl_states[lvl].link_state == link_state))
213 return lvl;
214 }
215
216 /* if no match found, return the level 0 */
217 return UFS_PM_LVL_0;
218 }
219
220 static const struct ufs_dev_quirk ufs_fixups[] = {
221 /* UFS cards deviations table */
222 { .wmanufacturerid = UFS_VENDOR_MICRON,
223 .model = UFS_ANY_MODEL,
224 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
225 UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
226 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
227 .model = UFS_ANY_MODEL,
228 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
229 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
230 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
231 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
232 .model = UFS_ANY_MODEL,
233 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
234 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
235 .model = "hB8aL1" /*H28U62301AMR*/,
236 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
237 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
238 .model = UFS_ANY_MODEL,
239 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
240 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
241 .model = "THGLF2G9C8KBADG",
242 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
243 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
244 .model = "THGLF2G9D8KBADG",
245 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
246 {}
247 };
248
249 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
250 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
251 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
252 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
253 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
254 static void ufshcd_hba_exit(struct ufs_hba *hba);
255 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
256 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
257 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
258 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
259 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
260 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
261 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
262 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
263 static irqreturn_t ufshcd_intr(int irq, void *__hba);
264 static int ufshcd_change_power_mode(struct ufs_hba *hba,
265 struct ufs_pa_layer_attr *pwr_mode);
266 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
267 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
268 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
269 struct ufs_vreg *vreg);
270 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
271 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
272 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
273 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
274 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
275
ufshcd_enable_irq(struct ufs_hba * hba)276 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
277 {
278 if (!hba->is_irq_enabled) {
279 enable_irq(hba->irq);
280 hba->is_irq_enabled = true;
281 }
282 }
283
ufshcd_disable_irq(struct ufs_hba * hba)284 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
285 {
286 if (hba->is_irq_enabled) {
287 disable_irq(hba->irq);
288 hba->is_irq_enabled = false;
289 }
290 }
291
ufshcd_wb_config(struct ufs_hba * hba)292 static inline void ufshcd_wb_config(struct ufs_hba *hba)
293 {
294 if (!ufshcd_is_wb_allowed(hba))
295 return;
296
297 ufshcd_wb_toggle(hba, true);
298
299 ufshcd_wb_toggle_flush_during_h8(hba, true);
300 if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
301 ufshcd_wb_toggle_flush(hba, true);
302 }
303
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)304 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
305 {
306 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
307 scsi_unblock_requests(hba->host);
308 }
309
ufshcd_scsi_block_requests(struct ufs_hba * hba)310 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
311 {
312 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
313 scsi_block_requests(hba->host);
314 }
315
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)316 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
317 enum ufs_trace_str_t str_t)
318 {
319 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
320 struct utp_upiu_header *header;
321
322 if (!trace_ufshcd_upiu_enabled())
323 return;
324
325 if (str_t == UFS_CMD_SEND)
326 header = &rq->header;
327 else
328 header = &hba->lrb[tag].ucd_rsp_ptr->header;
329
330 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
331 UFS_TSF_CDB);
332 }
333
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)334 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
335 enum ufs_trace_str_t str_t,
336 struct utp_upiu_req *rq_rsp)
337 {
338 if (!trace_ufshcd_upiu_enabled())
339 return;
340
341 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
342 &rq_rsp->qr, UFS_TSF_OSF);
343 }
344
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)345 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
346 enum ufs_trace_str_t str_t)
347 {
348 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
349
350 if (!trace_ufshcd_upiu_enabled())
351 return;
352
353 if (str_t == UFS_TM_SEND)
354 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
355 &descp->upiu_req.req_header,
356 &descp->upiu_req.input_param1,
357 UFS_TSF_TM_INPUT);
358 else
359 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
360 &descp->upiu_rsp.rsp_header,
361 &descp->upiu_rsp.output_param1,
362 UFS_TSF_TM_OUTPUT);
363 }
364
ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,enum ufs_trace_str_t str_t)365 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
366 struct uic_command *ucmd,
367 enum ufs_trace_str_t str_t)
368 {
369 u32 cmd;
370
371 if (!trace_ufshcd_uic_command_enabled())
372 return;
373
374 if (str_t == UFS_CMD_SEND)
375 cmd = ucmd->command;
376 else
377 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
378
379 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
380 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
381 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
382 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
383 }
384
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)385 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
386 enum ufs_trace_str_t str_t)
387 {
388 u64 lba = 0;
389 u8 opcode = 0, group_id = 0;
390 u32 intr, doorbell;
391 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
392 struct scsi_cmnd *cmd = lrbp->cmd;
393 struct request *rq = scsi_cmd_to_rq(cmd);
394 int transfer_len = -1;
395
396 if (!cmd)
397 return;
398
399 /* trace UPIU also */
400 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
401 if (!trace_ufshcd_command_enabled())
402 return;
403
404 opcode = cmd->cmnd[0];
405
406 if (opcode == READ_10 || opcode == WRITE_10) {
407 /*
408 * Currently we only fully trace read(10) and write(10) commands
409 */
410 transfer_len =
411 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
412 lba = scsi_get_lba(cmd);
413 if (opcode == WRITE_10)
414 group_id = lrbp->cmd->cmnd[6];
415 } else if (opcode == UNMAP) {
416 /*
417 * The number of Bytes to be unmapped beginning with the lba.
418 */
419 transfer_len = blk_rq_bytes(rq);
420 lba = scsi_get_lba(cmd);
421 }
422
423 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
424 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
425 trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
426 doorbell, transfer_len, intr, lba, opcode, group_id);
427 }
428
ufshcd_print_clk_freqs(struct ufs_hba * hba)429 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
430 {
431 struct ufs_clk_info *clki;
432 struct list_head *head = &hba->clk_list_head;
433
434 if (list_empty(head))
435 return;
436
437 list_for_each_entry(clki, head, list) {
438 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
439 clki->max_freq)
440 dev_err(hba->dev, "clk: %s, rate: %u\n",
441 clki->name, clki->curr_freq);
442 }
443 }
444
ufshcd_print_evt(struct ufs_hba * hba,u32 id,char * err_name)445 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
446 char *err_name)
447 {
448 int i;
449 bool found = false;
450 struct ufs_event_hist *e;
451
452 if (id >= UFS_EVT_CNT)
453 return;
454
455 e = &hba->ufs_stats.event[id];
456
457 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
458 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
459
460 if (e->tstamp[p] == 0)
461 continue;
462 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
463 e->val[p], ktime_to_us(e->tstamp[p]));
464 found = true;
465 }
466
467 if (!found)
468 dev_err(hba->dev, "No record of %s\n", err_name);
469 else
470 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
471 }
472
ufshcd_print_evt_hist(struct ufs_hba * hba)473 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
474 {
475 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
476
477 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
478 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
479 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
480 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
481 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
482 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
483 "auto_hibern8_err");
484 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
485 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
486 "link_startup_fail");
487 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
488 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
489 "suspend_fail");
490 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
491 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
492 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
493
494 ufshcd_vops_dbg_register_dump(hba);
495 }
496
497 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)498 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
499 {
500 struct ufshcd_lrb *lrbp;
501 int prdt_length;
502 int tag;
503
504 for_each_set_bit(tag, &bitmap, hba->nutrs) {
505 lrbp = &hba->lrb[tag];
506
507 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
508 tag, ktime_to_us(lrbp->issue_time_stamp));
509 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
510 tag, ktime_to_us(lrbp->compl_time_stamp));
511 dev_err(hba->dev,
512 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
513 tag, (u64)lrbp->utrd_dma_addr);
514
515 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
516 sizeof(struct utp_transfer_req_desc));
517 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
518 (u64)lrbp->ucd_req_dma_addr);
519 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
520 sizeof(struct utp_upiu_req));
521 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
522 (u64)lrbp->ucd_rsp_dma_addr);
523 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
524 sizeof(struct utp_upiu_rsp));
525
526 prdt_length = le16_to_cpu(
527 lrbp->utr_descriptor_ptr->prd_table_length);
528 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
529 prdt_length /= sizeof(struct ufshcd_sg_entry);
530
531 dev_err(hba->dev,
532 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
533 tag, prdt_length,
534 (u64)lrbp->ucd_prdt_dma_addr);
535
536 if (pr_prdt)
537 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
538 sizeof(struct ufshcd_sg_entry) * prdt_length);
539 }
540 }
541
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)542 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
543 {
544 int tag;
545
546 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
547 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
548
549 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
550 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
551 }
552 }
553
ufshcd_print_host_state(struct ufs_hba * hba)554 static void ufshcd_print_host_state(struct ufs_hba *hba)
555 {
556 struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
557
558 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
559 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
560 hba->outstanding_reqs, hba->outstanding_tasks);
561 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
562 hba->saved_err, hba->saved_uic_err);
563 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
564 hba->curr_dev_pwr_mode, hba->uic_link_state);
565 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
566 hba->pm_op_in_progress, hba->is_sys_suspended);
567 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
568 hba->auto_bkops_enabled, hba->host->host_self_blocked);
569 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
570 dev_err(hba->dev,
571 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
572 ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
573 hba->ufs_stats.hibern8_exit_cnt);
574 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
575 ktime_to_us(hba->ufs_stats.last_intr_ts),
576 hba->ufs_stats.last_intr_status);
577 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
578 hba->eh_flags, hba->req_abort_count);
579 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
580 hba->ufs_version, hba->capabilities, hba->caps);
581 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
582 hba->dev_quirks);
583 if (sdev_ufs)
584 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
585 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
586
587 ufshcd_print_clk_freqs(hba);
588 }
589
590 /**
591 * ufshcd_print_pwr_info - print power params as saved in hba
592 * power info
593 * @hba: per-adapter instance
594 */
ufshcd_print_pwr_info(struct ufs_hba * hba)595 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
596 {
597 static const char * const names[] = {
598 "INVALID MODE",
599 "FAST MODE",
600 "SLOW_MODE",
601 "INVALID MODE",
602 "FASTAUTO_MODE",
603 "SLOWAUTO_MODE",
604 "INVALID MODE",
605 };
606
607 /*
608 * Using dev_dbg to avoid messages during runtime PM to avoid
609 * never-ending cycles of messages written back to storage by user space
610 * causing runtime resume, causing more messages and so on.
611 */
612 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
613 __func__,
614 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
615 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
616 names[hba->pwr_info.pwr_rx],
617 names[hba->pwr_info.pwr_tx],
618 hba->pwr_info.hs_rate);
619 }
620
ufshcd_device_reset(struct ufs_hba * hba)621 static void ufshcd_device_reset(struct ufs_hba *hba)
622 {
623 int err;
624
625 err = ufshcd_vops_device_reset(hba);
626
627 if (!err) {
628 ufshcd_set_ufs_dev_active(hba);
629 if (ufshcd_is_wb_allowed(hba)) {
630 hba->dev_info.wb_enabled = false;
631 hba->dev_info.wb_buf_flush_enabled = false;
632 }
633 }
634 if (err != -EOPNOTSUPP)
635 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
636 }
637
ufshcd_delay_us(unsigned long us,unsigned long tolerance)638 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
639 {
640 if (!us)
641 return;
642
643 if (us < 10)
644 udelay(us);
645 else
646 usleep_range(us, us + tolerance);
647 }
648 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
649
650 /**
651 * ufshcd_wait_for_register - wait for register value to change
652 * @hba: per-adapter interface
653 * @reg: mmio register offset
654 * @mask: mask to apply to the read register value
655 * @val: value to wait for
656 * @interval_us: polling interval in microseconds
657 * @timeout_ms: timeout in milliseconds
658 *
659 * Return:
660 * -ETIMEDOUT on error, zero on success.
661 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)662 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
663 u32 val, unsigned long interval_us,
664 unsigned long timeout_ms)
665 {
666 int err = 0;
667 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
668
669 /* ignore bits that we don't intend to wait on */
670 val = val & mask;
671
672 while ((ufshcd_readl(hba, reg) & mask) != val) {
673 usleep_range(interval_us, interval_us + 50);
674 if (time_after(jiffies, timeout)) {
675 if ((ufshcd_readl(hba, reg) & mask) != val)
676 err = -ETIMEDOUT;
677 break;
678 }
679 }
680
681 return err;
682 }
683
684 /**
685 * ufshcd_get_intr_mask - Get the interrupt bit mask
686 * @hba: Pointer to adapter instance
687 *
688 * Returns interrupt bit mask per version
689 */
ufshcd_get_intr_mask(struct ufs_hba * hba)690 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
691 {
692 if (hba->ufs_version == ufshci_version(1, 0))
693 return INTERRUPT_MASK_ALL_VER_10;
694 if (hba->ufs_version <= ufshci_version(2, 0))
695 return INTERRUPT_MASK_ALL_VER_11;
696
697 return INTERRUPT_MASK_ALL_VER_21;
698 }
699
700 /**
701 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
702 * @hba: Pointer to adapter instance
703 *
704 * Returns UFSHCI version supported by the controller
705 */
ufshcd_get_ufs_version(struct ufs_hba * hba)706 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
707 {
708 u32 ufshci_ver;
709
710 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
711 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
712 else
713 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
714
715 /*
716 * UFSHCI v1.x uses a different version scheme, in order
717 * to allow the use of comparisons with the ufshci_version
718 * function, we convert it to the same scheme as ufs 2.0+.
719 */
720 if (ufshci_ver & 0x00010000)
721 return ufshci_version(1, ufshci_ver & 0x00000100);
722
723 return ufshci_ver;
724 }
725
726 /**
727 * ufshcd_is_device_present - Check if any device connected to
728 * the host controller
729 * @hba: pointer to adapter instance
730 *
731 * Returns true if device present, false if no device detected
732 */
ufshcd_is_device_present(struct ufs_hba * hba)733 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
734 {
735 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
736 }
737
738 /**
739 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
740 * @lrbp: pointer to local command reference block
741 *
742 * This function is used to get the OCS field from UTRD
743 * Returns the OCS field in the UTRD
744 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)745 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
746 {
747 return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
748 }
749
750 /**
751 * ufshcd_utrl_clear() - Clear requests from the controller request list.
752 * @hba: per adapter instance
753 * @mask: mask with one bit set for each request to be cleared
754 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)755 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
756 {
757 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
758 mask = ~mask;
759 /*
760 * From the UFSHCI specification: "UTP Transfer Request List CLear
761 * Register (UTRLCLR): This field is bit significant. Each bit
762 * corresponds to a slot in the UTP Transfer Request List, where bit 0
763 * corresponds to request slot 0. A bit in this field is set to ‘0’
764 * by host software to indicate to the host controller that a transfer
765 * request slot is cleared. The host controller
766 * shall free up any resources associated to the request slot
767 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
768 * host software indicates no change to request slots by setting the
769 * associated bits in this field to ‘1’. Bits in this field shall only
770 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
771 */
772 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
773 }
774
775 /**
776 * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
777 * @hba: per adapter instance
778 * @pos: position of the bit to be cleared
779 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)780 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
781 {
782 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
783 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
784 else
785 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
786 }
787
788 /**
789 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
790 * @reg: Register value of host controller status
791 *
792 * Returns integer, 0 on Success and positive value if failed
793 */
ufshcd_get_lists_status(u32 reg)794 static inline int ufshcd_get_lists_status(u32 reg)
795 {
796 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
797 }
798
799 /**
800 * ufshcd_get_uic_cmd_result - Get the UIC command result
801 * @hba: Pointer to adapter instance
802 *
803 * This function gets the result of UIC command completion
804 * Returns 0 on success, non zero value on error
805 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)806 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
807 {
808 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
809 MASK_UIC_COMMAND_RESULT;
810 }
811
812 /**
813 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
814 * @hba: Pointer to adapter instance
815 *
816 * This function gets UIC command argument3
817 * Returns 0 on success, non zero value on error
818 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)819 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
820 {
821 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
822 }
823
824 /**
825 * ufshcd_get_req_rsp - returns the TR response transaction type
826 * @ucd_rsp_ptr: pointer to response UPIU
827 */
828 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)829 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
830 {
831 return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
832 }
833
834 /**
835 * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
836 * @ucd_rsp_ptr: pointer to response UPIU
837 *
838 * This function gets the response status and scsi_status from response UPIU
839 * Returns the response result code.
840 */
841 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)842 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
843 {
844 return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
845 }
846
847 /*
848 * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
849 * from response UPIU
850 * @ucd_rsp_ptr: pointer to response UPIU
851 *
852 * Return the data segment length.
853 */
854 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)855 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
856 {
857 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
858 MASK_RSP_UPIU_DATA_SEG_LEN;
859 }
860
861 /**
862 * ufshcd_is_exception_event - Check if the device raised an exception event
863 * @ucd_rsp_ptr: pointer to response UPIU
864 *
865 * The function checks if the device raised an exception event indicated in
866 * the Device Information field of response UPIU.
867 *
868 * Returns true if exception is raised, false otherwise.
869 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)870 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
871 {
872 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
873 MASK_RSP_EXCEPTION_EVENT;
874 }
875
876 /**
877 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
878 * @hba: per adapter instance
879 */
880 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)881 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
882 {
883 ufshcd_writel(hba, INT_AGGR_ENABLE |
884 INT_AGGR_COUNTER_AND_TIMER_RESET,
885 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
886 }
887
888 /**
889 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
890 * @hba: per adapter instance
891 * @cnt: Interrupt aggregation counter threshold
892 * @tmout: Interrupt aggregation timeout value
893 */
894 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)895 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
896 {
897 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
898 INT_AGGR_COUNTER_THLD_VAL(cnt) |
899 INT_AGGR_TIMEOUT_VAL(tmout),
900 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
901 }
902
903 /**
904 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
905 * @hba: per adapter instance
906 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)907 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
908 {
909 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
910 }
911
912 /**
913 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
914 * When run-stop registers are set to 1, it indicates the
915 * host controller that it can process the requests
916 * @hba: per adapter instance
917 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)918 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
919 {
920 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
921 REG_UTP_TASK_REQ_LIST_RUN_STOP);
922 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
923 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
924 }
925
926 /**
927 * ufshcd_hba_start - Start controller initialization sequence
928 * @hba: per adapter instance
929 */
ufshcd_hba_start(struct ufs_hba * hba)930 static inline void ufshcd_hba_start(struct ufs_hba *hba)
931 {
932 u32 val = CONTROLLER_ENABLE;
933
934 if (ufshcd_crypto_enable(hba))
935 val |= CRYPTO_GENERAL_ENABLE;
936
937 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
938 }
939
940 /**
941 * ufshcd_is_hba_active - Get controller state
942 * @hba: per adapter instance
943 *
944 * Returns true if and only if the controller is active.
945 */
ufshcd_is_hba_active(struct ufs_hba * hba)946 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
947 {
948 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
949 }
950
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)951 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
952 {
953 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
954 if (hba->ufs_version <= ufshci_version(1, 1))
955 return UFS_UNIPRO_VER_1_41;
956 else
957 return UFS_UNIPRO_VER_1_6;
958 }
959 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
960
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)961 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
962 {
963 /*
964 * If both host and device support UniPro ver1.6 or later, PA layer
965 * parameters tuning happens during link startup itself.
966 *
967 * We can manually tune PA layer parameters if either host or device
968 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
969 * logic simple, we will only do manual tuning if local unipro version
970 * doesn't support ver1.6 or later.
971 */
972 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
973 }
974
975 /**
976 * ufshcd_set_clk_freq - set UFS controller clock frequencies
977 * @hba: per adapter instance
978 * @scale_up: If True, set max possible frequency othewise set low frequency
979 *
980 * Returns 0 if successful
981 * Returns < 0 for any other errors
982 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)983 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
984 {
985 int ret = 0;
986 struct ufs_clk_info *clki;
987 struct list_head *head = &hba->clk_list_head;
988
989 if (list_empty(head))
990 goto out;
991
992 list_for_each_entry(clki, head, list) {
993 if (!IS_ERR_OR_NULL(clki->clk)) {
994 if (scale_up && clki->max_freq) {
995 if (clki->curr_freq == clki->max_freq)
996 continue;
997
998 ret = clk_set_rate(clki->clk, clki->max_freq);
999 if (ret) {
1000 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1001 __func__, clki->name,
1002 clki->max_freq, ret);
1003 break;
1004 }
1005 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1006 "scaled up", clki->name,
1007 clki->curr_freq,
1008 clki->max_freq);
1009
1010 clki->curr_freq = clki->max_freq;
1011
1012 } else if (!scale_up && clki->min_freq) {
1013 if (clki->curr_freq == clki->min_freq)
1014 continue;
1015
1016 ret = clk_set_rate(clki->clk, clki->min_freq);
1017 if (ret) {
1018 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1019 __func__, clki->name,
1020 clki->min_freq, ret);
1021 break;
1022 }
1023 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1024 "scaled down", clki->name,
1025 clki->curr_freq,
1026 clki->min_freq);
1027 clki->curr_freq = clki->min_freq;
1028 }
1029 }
1030 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1031 clki->name, clk_get_rate(clki->clk));
1032 }
1033
1034 out:
1035 return ret;
1036 }
1037
1038 /**
1039 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1040 * @hba: per adapter instance
1041 * @scale_up: True if scaling up and false if scaling down
1042 *
1043 * Returns 0 if successful
1044 * Returns < 0 for any other errors
1045 */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)1046 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1047 {
1048 int ret = 0;
1049 ktime_t start = ktime_get();
1050
1051 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1052 if (ret)
1053 goto out;
1054
1055 ret = ufshcd_set_clk_freq(hba, scale_up);
1056 if (ret)
1057 goto out;
1058
1059 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1060 if (ret)
1061 ufshcd_set_clk_freq(hba, !scale_up);
1062
1063 out:
1064 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1065 (scale_up ? "up" : "down"),
1066 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1067 return ret;
1068 }
1069
1070 /**
1071 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1072 * @hba: per adapter instance
1073 * @scale_up: True if scaling up and false if scaling down
1074 *
1075 * Returns true if scaling is required, false otherwise.
1076 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1077 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1078 bool scale_up)
1079 {
1080 struct ufs_clk_info *clki;
1081 struct list_head *head = &hba->clk_list_head;
1082
1083 if (list_empty(head))
1084 return false;
1085
1086 list_for_each_entry(clki, head, list) {
1087 if (!IS_ERR_OR_NULL(clki->clk)) {
1088 if (scale_up && clki->max_freq) {
1089 if (clki->curr_freq == clki->max_freq)
1090 continue;
1091 return true;
1092 } else if (!scale_up && clki->min_freq) {
1093 if (clki->curr_freq == clki->min_freq)
1094 continue;
1095 return true;
1096 }
1097 }
1098 }
1099
1100 return false;
1101 }
1102
1103 /*
1104 * Determine the number of pending commands by counting the bits in the SCSI
1105 * device budget maps. This approach has been selected because a bit is set in
1106 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1107 * flag. The host_self_blocked flag can be modified by calling
1108 * scsi_block_requests() or scsi_unblock_requests().
1109 */
ufshcd_pending_cmds(struct ufs_hba * hba)1110 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1111 {
1112 struct scsi_device *sdev;
1113 u32 pending = 0;
1114
1115 lockdep_assert_held(hba->host->host_lock);
1116 __shost_for_each_device(sdev, hba->host)
1117 pending += sbitmap_weight(&sdev->budget_map);
1118
1119 return pending;
1120 }
1121
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1122 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1123 u64 wait_timeout_us)
1124 {
1125 unsigned long flags;
1126 int ret = 0;
1127 u32 tm_doorbell;
1128 u32 tr_pending;
1129 bool timeout = false, do_last_check = false;
1130 ktime_t start;
1131
1132 ufshcd_hold(hba, false);
1133 spin_lock_irqsave(hba->host->host_lock, flags);
1134 /*
1135 * Wait for all the outstanding tasks/transfer requests.
1136 * Verify by checking the doorbell registers are clear.
1137 */
1138 start = ktime_get();
1139 do {
1140 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1141 ret = -EBUSY;
1142 goto out;
1143 }
1144
1145 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1146 tr_pending = ufshcd_pending_cmds(hba);
1147 if (!tm_doorbell && !tr_pending) {
1148 timeout = false;
1149 break;
1150 } else if (do_last_check) {
1151 break;
1152 }
1153
1154 spin_unlock_irqrestore(hba->host->host_lock, flags);
1155 schedule();
1156 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1157 wait_timeout_us) {
1158 timeout = true;
1159 /*
1160 * We might have scheduled out for long time so make
1161 * sure to check if doorbells are cleared by this time
1162 * or not.
1163 */
1164 do_last_check = true;
1165 }
1166 spin_lock_irqsave(hba->host->host_lock, flags);
1167 } while (tm_doorbell || tr_pending);
1168
1169 if (timeout) {
1170 dev_err(hba->dev,
1171 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1172 __func__, tm_doorbell, tr_pending);
1173 ret = -EBUSY;
1174 }
1175 out:
1176 spin_unlock_irqrestore(hba->host->host_lock, flags);
1177 ufshcd_release(hba);
1178 return ret;
1179 }
1180
1181 /**
1182 * ufshcd_scale_gear - scale up/down UFS gear
1183 * @hba: per adapter instance
1184 * @scale_up: True for scaling up gear and false for scaling down
1185 *
1186 * Returns 0 for success,
1187 * Returns -EBUSY if scaling can't happen at this time
1188 * Returns non-zero for any other errors
1189 */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1190 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1191 {
1192 int ret = 0;
1193 struct ufs_pa_layer_attr new_pwr_info;
1194
1195 if (scale_up) {
1196 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1197 sizeof(struct ufs_pa_layer_attr));
1198 } else {
1199 memcpy(&new_pwr_info, &hba->pwr_info,
1200 sizeof(struct ufs_pa_layer_attr));
1201
1202 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1203 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1204 /* save the current power mode */
1205 memcpy(&hba->clk_scaling.saved_pwr_info.info,
1206 &hba->pwr_info,
1207 sizeof(struct ufs_pa_layer_attr));
1208
1209 /* scale down gear */
1210 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1211 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1212 }
1213 }
1214
1215 /* check if the power mode needs to be changed or not? */
1216 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1217 if (ret)
1218 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1219 __func__, ret,
1220 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1221 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1222
1223 return ret;
1224 }
1225
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1226 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1227 {
1228 #define DOORBELL_CLR_TOUT_US (1000 * 1000) /* 1 sec */
1229 int ret = 0;
1230 /*
1231 * make sure that there are no outstanding requests when
1232 * clock scaling is in progress
1233 */
1234 ufshcd_scsi_block_requests(hba);
1235 down_write(&hba->clk_scaling_lock);
1236
1237 if (!hba->clk_scaling.is_allowed ||
1238 ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1239 ret = -EBUSY;
1240 up_write(&hba->clk_scaling_lock);
1241 ufshcd_scsi_unblock_requests(hba);
1242 goto out;
1243 }
1244
1245 /* let's not get into low power until clock scaling is completed */
1246 ufshcd_hold(hba, false);
1247
1248 out:
1249 return ret;
1250 }
1251
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,bool writelock)1252 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock)
1253 {
1254 if (writelock)
1255 up_write(&hba->clk_scaling_lock);
1256 else
1257 up_read(&hba->clk_scaling_lock);
1258 ufshcd_scsi_unblock_requests(hba);
1259 ufshcd_release(hba);
1260 }
1261
1262 /**
1263 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1264 * @hba: per adapter instance
1265 * @scale_up: True for scaling up and false for scalin down
1266 *
1267 * Returns 0 for success,
1268 * Returns -EBUSY if scaling can't happen at this time
1269 * Returns non-zero for any other errors
1270 */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1271 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1272 {
1273 int ret = 0;
1274 bool is_writelock = true;
1275
1276 ret = ufshcd_clock_scaling_prepare(hba);
1277 if (ret)
1278 return ret;
1279
1280 /* scale down the gear before scaling down clocks */
1281 if (!scale_up) {
1282 ret = ufshcd_scale_gear(hba, false);
1283 if (ret)
1284 goto out_unprepare;
1285 }
1286
1287 ret = ufshcd_scale_clks(hba, scale_up);
1288 if (ret) {
1289 if (!scale_up)
1290 ufshcd_scale_gear(hba, true);
1291 goto out_unprepare;
1292 }
1293
1294 /* scale up the gear after scaling up clocks */
1295 if (scale_up) {
1296 ret = ufshcd_scale_gear(hba, true);
1297 if (ret) {
1298 ufshcd_scale_clks(hba, false);
1299 goto out_unprepare;
1300 }
1301 }
1302
1303 /* Enable Write Booster if we have scaled up else disable it */
1304 downgrade_write(&hba->clk_scaling_lock);
1305 is_writelock = false;
1306 ufshcd_wb_toggle(hba, scale_up);
1307
1308 out_unprepare:
1309 ufshcd_clock_scaling_unprepare(hba, is_writelock);
1310 return ret;
1311 }
1312
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1313 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1314 {
1315 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1316 clk_scaling.suspend_work);
1317 unsigned long irq_flags;
1318
1319 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1320 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1321 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1322 return;
1323 }
1324 hba->clk_scaling.is_suspended = true;
1325 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1326
1327 __ufshcd_suspend_clkscaling(hba);
1328 }
1329
ufshcd_clk_scaling_resume_work(struct work_struct * work)1330 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1331 {
1332 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1333 clk_scaling.resume_work);
1334 unsigned long irq_flags;
1335
1336 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1337 if (!hba->clk_scaling.is_suspended) {
1338 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1339 return;
1340 }
1341 hba->clk_scaling.is_suspended = false;
1342 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1343
1344 devfreq_resume_device(hba->devfreq);
1345 }
1346
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1347 static int ufshcd_devfreq_target(struct device *dev,
1348 unsigned long *freq, u32 flags)
1349 {
1350 int ret = 0;
1351 struct ufs_hba *hba = dev_get_drvdata(dev);
1352 ktime_t start;
1353 bool scale_up, sched_clk_scaling_suspend_work = false;
1354 struct list_head *clk_list = &hba->clk_list_head;
1355 struct ufs_clk_info *clki;
1356 unsigned long irq_flags;
1357
1358 if (!ufshcd_is_clkscaling_supported(hba))
1359 return -EINVAL;
1360
1361 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1362 /* Override with the closest supported frequency */
1363 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1364 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1365 if (ufshcd_eh_in_progress(hba)) {
1366 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1367 return 0;
1368 }
1369
1370 if (!hba->clk_scaling.active_reqs)
1371 sched_clk_scaling_suspend_work = true;
1372
1373 if (list_empty(clk_list)) {
1374 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1375 goto out;
1376 }
1377
1378 /* Decide based on the rounded-off frequency and update */
1379 scale_up = *freq == clki->max_freq;
1380 if (!scale_up)
1381 *freq = clki->min_freq;
1382 /* Update the frequency */
1383 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1384 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1385 ret = 0;
1386 goto out; /* no state change required */
1387 }
1388 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1389
1390 start = ktime_get();
1391 ret = ufshcd_devfreq_scale(hba, scale_up);
1392
1393 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1394 (scale_up ? "up" : "down"),
1395 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1396
1397 out:
1398 if (sched_clk_scaling_suspend_work)
1399 queue_work(hba->clk_scaling.workq,
1400 &hba->clk_scaling.suspend_work);
1401
1402 return ret;
1403 }
1404
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1405 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1406 struct devfreq_dev_status *stat)
1407 {
1408 struct ufs_hba *hba = dev_get_drvdata(dev);
1409 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1410 unsigned long flags;
1411 struct list_head *clk_list = &hba->clk_list_head;
1412 struct ufs_clk_info *clki;
1413 ktime_t curr_t;
1414
1415 if (!ufshcd_is_clkscaling_supported(hba))
1416 return -EINVAL;
1417
1418 memset(stat, 0, sizeof(*stat));
1419
1420 spin_lock_irqsave(hba->host->host_lock, flags);
1421 curr_t = ktime_get();
1422 if (!scaling->window_start_t)
1423 goto start_window;
1424
1425 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1426 /*
1427 * If current frequency is 0, then the ondemand governor considers
1428 * there's no initial frequency set. And it always requests to set
1429 * to max. frequency.
1430 */
1431 stat->current_frequency = clki->curr_freq;
1432 if (scaling->is_busy_started)
1433 scaling->tot_busy_t += ktime_us_delta(curr_t,
1434 scaling->busy_start_t);
1435
1436 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1437 stat->busy_time = scaling->tot_busy_t;
1438 start_window:
1439 scaling->window_start_t = curr_t;
1440 scaling->tot_busy_t = 0;
1441
1442 if (hba->outstanding_reqs) {
1443 scaling->busy_start_t = curr_t;
1444 scaling->is_busy_started = true;
1445 } else {
1446 scaling->busy_start_t = 0;
1447 scaling->is_busy_started = false;
1448 }
1449 spin_unlock_irqrestore(hba->host->host_lock, flags);
1450 return 0;
1451 }
1452
ufshcd_devfreq_init(struct ufs_hba * hba)1453 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1454 {
1455 struct list_head *clk_list = &hba->clk_list_head;
1456 struct ufs_clk_info *clki;
1457 struct devfreq *devfreq;
1458 int ret;
1459
1460 /* Skip devfreq if we don't have any clocks in the list */
1461 if (list_empty(clk_list))
1462 return 0;
1463
1464 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1465 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1466 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1467
1468 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1469 &hba->vps->ondemand_data);
1470 devfreq = devfreq_add_device(hba->dev,
1471 &hba->vps->devfreq_profile,
1472 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1473 &hba->vps->ondemand_data);
1474 if (IS_ERR(devfreq)) {
1475 ret = PTR_ERR(devfreq);
1476 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1477
1478 dev_pm_opp_remove(hba->dev, clki->min_freq);
1479 dev_pm_opp_remove(hba->dev, clki->max_freq);
1480 return ret;
1481 }
1482
1483 hba->devfreq = devfreq;
1484
1485 return 0;
1486 }
1487
ufshcd_devfreq_remove(struct ufs_hba * hba)1488 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1489 {
1490 struct list_head *clk_list = &hba->clk_list_head;
1491 struct ufs_clk_info *clki;
1492
1493 if (!hba->devfreq)
1494 return;
1495
1496 devfreq_remove_device(hba->devfreq);
1497 hba->devfreq = NULL;
1498
1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 dev_pm_opp_remove(hba->dev, clki->min_freq);
1501 dev_pm_opp_remove(hba->dev, clki->max_freq);
1502 }
1503
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1504 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1505 {
1506 unsigned long flags;
1507
1508 devfreq_suspend_device(hba->devfreq);
1509 spin_lock_irqsave(hba->host->host_lock, flags);
1510 hba->clk_scaling.window_start_t = 0;
1511 spin_unlock_irqrestore(hba->host->host_lock, flags);
1512 }
1513
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1514 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1515 {
1516 unsigned long flags;
1517 bool suspend = false;
1518
1519 cancel_work_sync(&hba->clk_scaling.suspend_work);
1520 cancel_work_sync(&hba->clk_scaling.resume_work);
1521
1522 spin_lock_irqsave(hba->host->host_lock, flags);
1523 if (!hba->clk_scaling.is_suspended) {
1524 suspend = true;
1525 hba->clk_scaling.is_suspended = true;
1526 }
1527 spin_unlock_irqrestore(hba->host->host_lock, flags);
1528
1529 if (suspend)
1530 __ufshcd_suspend_clkscaling(hba);
1531 }
1532
ufshcd_resume_clkscaling(struct ufs_hba * hba)1533 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1534 {
1535 unsigned long flags;
1536 bool resume = false;
1537
1538 spin_lock_irqsave(hba->host->host_lock, flags);
1539 if (hba->clk_scaling.is_suspended) {
1540 resume = true;
1541 hba->clk_scaling.is_suspended = false;
1542 }
1543 spin_unlock_irqrestore(hba->host->host_lock, flags);
1544
1545 if (resume)
1546 devfreq_resume_device(hba->devfreq);
1547 }
1548
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1549 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1550 struct device_attribute *attr, char *buf)
1551 {
1552 struct ufs_hba *hba = dev_get_drvdata(dev);
1553
1554 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1555 }
1556
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1557 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1558 struct device_attribute *attr, const char *buf, size_t count)
1559 {
1560 struct ufs_hba *hba = dev_get_drvdata(dev);
1561 u32 value;
1562 int err = 0;
1563
1564 if (kstrtou32(buf, 0, &value))
1565 return -EINVAL;
1566
1567 down(&hba->host_sem);
1568 if (!ufshcd_is_user_access_allowed(hba)) {
1569 err = -EBUSY;
1570 goto out;
1571 }
1572
1573 value = !!value;
1574 if (value == hba->clk_scaling.is_enabled)
1575 goto out;
1576
1577 ufshcd_rpm_get_sync(hba);
1578 ufshcd_hold(hba, false);
1579
1580 hba->clk_scaling.is_enabled = value;
1581
1582 if (value) {
1583 ufshcd_resume_clkscaling(hba);
1584 } else {
1585 ufshcd_suspend_clkscaling(hba);
1586 err = ufshcd_devfreq_scale(hba, true);
1587 if (err)
1588 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1589 __func__, err);
1590 }
1591
1592 ufshcd_release(hba);
1593 ufshcd_rpm_put_sync(hba);
1594 out:
1595 up(&hba->host_sem);
1596 return err ? err : count;
1597 }
1598
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1599 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1600 {
1601 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1602 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1603 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1604 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1605 hba->clk_scaling.enable_attr.attr.mode = 0644;
1606 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1607 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1608 }
1609
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1610 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1611 {
1612 if (hba->clk_scaling.enable_attr.attr.name)
1613 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1614 }
1615
ufshcd_init_clk_scaling(struct ufs_hba * hba)1616 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1617 {
1618 char wq_name[sizeof("ufs_clkscaling_00")];
1619
1620 if (!ufshcd_is_clkscaling_supported(hba))
1621 return;
1622
1623 if (!hba->clk_scaling.min_gear)
1624 hba->clk_scaling.min_gear = UFS_HS_G1;
1625
1626 INIT_WORK(&hba->clk_scaling.suspend_work,
1627 ufshcd_clk_scaling_suspend_work);
1628 INIT_WORK(&hba->clk_scaling.resume_work,
1629 ufshcd_clk_scaling_resume_work);
1630
1631 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1632 hba->host->host_no);
1633 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1634
1635 hba->clk_scaling.is_initialized = true;
1636 }
1637
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1638 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1639 {
1640 if (!hba->clk_scaling.is_initialized)
1641 return;
1642
1643 ufshcd_remove_clk_scaling_sysfs(hba);
1644 destroy_workqueue(hba->clk_scaling.workq);
1645 ufshcd_devfreq_remove(hba);
1646 hba->clk_scaling.is_initialized = false;
1647 }
1648
ufshcd_ungate_work(struct work_struct * work)1649 static void ufshcd_ungate_work(struct work_struct *work)
1650 {
1651 int ret;
1652 unsigned long flags;
1653 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1654 clk_gating.ungate_work);
1655
1656 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1657
1658 spin_lock_irqsave(hba->host->host_lock, flags);
1659 if (hba->clk_gating.state == CLKS_ON) {
1660 spin_unlock_irqrestore(hba->host->host_lock, flags);
1661 goto unblock_reqs;
1662 }
1663
1664 spin_unlock_irqrestore(hba->host->host_lock, flags);
1665 ufshcd_hba_vreg_set_hpm(hba);
1666 ufshcd_setup_clocks(hba, true);
1667
1668 ufshcd_enable_irq(hba);
1669
1670 /* Exit from hibern8 */
1671 if (ufshcd_can_hibern8_during_gating(hba)) {
1672 /* Prevent gating in this path */
1673 hba->clk_gating.is_suspended = true;
1674 if (ufshcd_is_link_hibern8(hba)) {
1675 ret = ufshcd_uic_hibern8_exit(hba);
1676 if (ret)
1677 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1678 __func__, ret);
1679 else
1680 ufshcd_set_link_active(hba);
1681 }
1682 hba->clk_gating.is_suspended = false;
1683 }
1684 unblock_reqs:
1685 ufshcd_scsi_unblock_requests(hba);
1686 }
1687
1688 /**
1689 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1690 * Also, exit from hibern8 mode and set the link as active.
1691 * @hba: per adapter instance
1692 * @async: This indicates whether caller should ungate clocks asynchronously.
1693 */
ufshcd_hold(struct ufs_hba * hba,bool async)1694 int ufshcd_hold(struct ufs_hba *hba, bool async)
1695 {
1696 int rc = 0;
1697 bool flush_result;
1698 unsigned long flags;
1699
1700 if (!ufshcd_is_clkgating_allowed(hba) ||
1701 !hba->clk_gating.is_initialized)
1702 goto out;
1703 spin_lock_irqsave(hba->host->host_lock, flags);
1704 hba->clk_gating.active_reqs++;
1705
1706 start:
1707 switch (hba->clk_gating.state) {
1708 case CLKS_ON:
1709 /*
1710 * Wait for the ungate work to complete if in progress.
1711 * Though the clocks may be in ON state, the link could
1712 * still be in hibner8 state if hibern8 is allowed
1713 * during clock gating.
1714 * Make sure we exit hibern8 state also in addition to
1715 * clocks being ON.
1716 */
1717 if (ufshcd_can_hibern8_during_gating(hba) &&
1718 ufshcd_is_link_hibern8(hba)) {
1719 if (async) {
1720 rc = -EAGAIN;
1721 hba->clk_gating.active_reqs--;
1722 break;
1723 }
1724 spin_unlock_irqrestore(hba->host->host_lock, flags);
1725 flush_result = flush_work(&hba->clk_gating.ungate_work);
1726 if (hba->clk_gating.is_suspended && !flush_result)
1727 goto out;
1728 spin_lock_irqsave(hba->host->host_lock, flags);
1729 goto start;
1730 }
1731 break;
1732 case REQ_CLKS_OFF:
1733 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1734 hba->clk_gating.state = CLKS_ON;
1735 trace_ufshcd_clk_gating(dev_name(hba->dev),
1736 hba->clk_gating.state);
1737 break;
1738 }
1739 /*
1740 * If we are here, it means gating work is either done or
1741 * currently running. Hence, fall through to cancel gating
1742 * work and to enable clocks.
1743 */
1744 fallthrough;
1745 case CLKS_OFF:
1746 hba->clk_gating.state = REQ_CLKS_ON;
1747 trace_ufshcd_clk_gating(dev_name(hba->dev),
1748 hba->clk_gating.state);
1749 if (queue_work(hba->clk_gating.clk_gating_workq,
1750 &hba->clk_gating.ungate_work))
1751 ufshcd_scsi_block_requests(hba);
1752 /*
1753 * fall through to check if we should wait for this
1754 * work to be done or not.
1755 */
1756 fallthrough;
1757 case REQ_CLKS_ON:
1758 if (async) {
1759 rc = -EAGAIN;
1760 hba->clk_gating.active_reqs--;
1761 break;
1762 }
1763
1764 spin_unlock_irqrestore(hba->host->host_lock, flags);
1765 flush_work(&hba->clk_gating.ungate_work);
1766 /* Make sure state is CLKS_ON before returning */
1767 spin_lock_irqsave(hba->host->host_lock, flags);
1768 goto start;
1769 default:
1770 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1771 __func__, hba->clk_gating.state);
1772 break;
1773 }
1774 spin_unlock_irqrestore(hba->host->host_lock, flags);
1775 out:
1776 return rc;
1777 }
1778 EXPORT_SYMBOL_GPL(ufshcd_hold);
1779
ufshcd_gate_work(struct work_struct * work)1780 static void ufshcd_gate_work(struct work_struct *work)
1781 {
1782 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1783 clk_gating.gate_work.work);
1784 unsigned long flags;
1785 int ret;
1786
1787 spin_lock_irqsave(hba->host->host_lock, flags);
1788 /*
1789 * In case you are here to cancel this work the gating state
1790 * would be marked as REQ_CLKS_ON. In this case save time by
1791 * skipping the gating work and exit after changing the clock
1792 * state to CLKS_ON.
1793 */
1794 if (hba->clk_gating.is_suspended ||
1795 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1796 hba->clk_gating.state = CLKS_ON;
1797 trace_ufshcd_clk_gating(dev_name(hba->dev),
1798 hba->clk_gating.state);
1799 goto rel_lock;
1800 }
1801
1802 if (hba->clk_gating.active_reqs
1803 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1804 || hba->outstanding_reqs || hba->outstanding_tasks
1805 || hba->active_uic_cmd || hba->uic_async_done)
1806 goto rel_lock;
1807
1808 spin_unlock_irqrestore(hba->host->host_lock, flags);
1809
1810 /* put the link into hibern8 mode before turning off clocks */
1811 if (ufshcd_can_hibern8_during_gating(hba)) {
1812 ret = ufshcd_uic_hibern8_enter(hba);
1813 if (ret) {
1814 hba->clk_gating.state = CLKS_ON;
1815 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1816 __func__, ret);
1817 trace_ufshcd_clk_gating(dev_name(hba->dev),
1818 hba->clk_gating.state);
1819 goto out;
1820 }
1821 ufshcd_set_link_hibern8(hba);
1822 }
1823
1824 ufshcd_disable_irq(hba);
1825
1826 ufshcd_setup_clocks(hba, false);
1827
1828 /* Put the host controller in low power mode if possible */
1829 ufshcd_hba_vreg_set_lpm(hba);
1830 /*
1831 * In case you are here to cancel this work the gating state
1832 * would be marked as REQ_CLKS_ON. In this case keep the state
1833 * as REQ_CLKS_ON which would anyway imply that clocks are off
1834 * and a request to turn them on is pending. By doing this way,
1835 * we keep the state machine in tact and this would ultimately
1836 * prevent from doing cancel work multiple times when there are
1837 * new requests arriving before the current cancel work is done.
1838 */
1839 spin_lock_irqsave(hba->host->host_lock, flags);
1840 if (hba->clk_gating.state == REQ_CLKS_OFF) {
1841 hba->clk_gating.state = CLKS_OFF;
1842 trace_ufshcd_clk_gating(dev_name(hba->dev),
1843 hba->clk_gating.state);
1844 }
1845 rel_lock:
1846 spin_unlock_irqrestore(hba->host->host_lock, flags);
1847 out:
1848 return;
1849 }
1850
1851 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1852 static void __ufshcd_release(struct ufs_hba *hba)
1853 {
1854 if (!ufshcd_is_clkgating_allowed(hba))
1855 return;
1856
1857 hba->clk_gating.active_reqs--;
1858
1859 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1860 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1861 hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1862 hba->active_uic_cmd || hba->uic_async_done ||
1863 hba->clk_gating.state == CLKS_OFF)
1864 return;
1865
1866 hba->clk_gating.state = REQ_CLKS_OFF;
1867 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1868 queue_delayed_work(hba->clk_gating.clk_gating_workq,
1869 &hba->clk_gating.gate_work,
1870 msecs_to_jiffies(hba->clk_gating.delay_ms));
1871 }
1872
ufshcd_release(struct ufs_hba * hba)1873 void ufshcd_release(struct ufs_hba *hba)
1874 {
1875 unsigned long flags;
1876
1877 spin_lock_irqsave(hba->host->host_lock, flags);
1878 __ufshcd_release(hba);
1879 spin_unlock_irqrestore(hba->host->host_lock, flags);
1880 }
1881 EXPORT_SYMBOL_GPL(ufshcd_release);
1882
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1883 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1884 struct device_attribute *attr, char *buf)
1885 {
1886 struct ufs_hba *hba = dev_get_drvdata(dev);
1887
1888 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1889 }
1890
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)1891 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1892 {
1893 struct ufs_hba *hba = dev_get_drvdata(dev);
1894 unsigned long flags;
1895
1896 spin_lock_irqsave(hba->host->host_lock, flags);
1897 hba->clk_gating.delay_ms = value;
1898 spin_unlock_irqrestore(hba->host->host_lock, flags);
1899 }
1900 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1901
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1902 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1903 struct device_attribute *attr, const char *buf, size_t count)
1904 {
1905 unsigned long value;
1906
1907 if (kstrtoul(buf, 0, &value))
1908 return -EINVAL;
1909
1910 ufshcd_clkgate_delay_set(dev, value);
1911 return count;
1912 }
1913
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1914 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1915 struct device_attribute *attr, char *buf)
1916 {
1917 struct ufs_hba *hba = dev_get_drvdata(dev);
1918
1919 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1920 }
1921
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1922 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1923 struct device_attribute *attr, const char *buf, size_t count)
1924 {
1925 struct ufs_hba *hba = dev_get_drvdata(dev);
1926 unsigned long flags;
1927 u32 value;
1928
1929 if (kstrtou32(buf, 0, &value))
1930 return -EINVAL;
1931
1932 value = !!value;
1933
1934 spin_lock_irqsave(hba->host->host_lock, flags);
1935 if (value == hba->clk_gating.is_enabled)
1936 goto out;
1937
1938 if (value)
1939 __ufshcd_release(hba);
1940 else
1941 hba->clk_gating.active_reqs++;
1942
1943 hba->clk_gating.is_enabled = value;
1944 out:
1945 spin_unlock_irqrestore(hba->host->host_lock, flags);
1946 return count;
1947 }
1948
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1949 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1950 {
1951 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1952 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1953 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1954 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1955 hba->clk_gating.delay_attr.attr.mode = 0644;
1956 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1957 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1958
1959 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1960 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1961 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1962 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1963 hba->clk_gating.enable_attr.attr.mode = 0644;
1964 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1965 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1966 }
1967
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)1968 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1969 {
1970 if (hba->clk_gating.delay_attr.attr.name)
1971 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1972 if (hba->clk_gating.enable_attr.attr.name)
1973 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1974 }
1975
ufshcd_init_clk_gating(struct ufs_hba * hba)1976 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1977 {
1978 char wq_name[sizeof("ufs_clk_gating_00")];
1979
1980 if (!ufshcd_is_clkgating_allowed(hba))
1981 return;
1982
1983 hba->clk_gating.state = CLKS_ON;
1984
1985 hba->clk_gating.delay_ms = 150;
1986 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1987 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1988
1989 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1990 hba->host->host_no);
1991 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1992 WQ_MEM_RECLAIM | WQ_HIGHPRI);
1993
1994 ufshcd_init_clk_gating_sysfs(hba);
1995
1996 hba->clk_gating.is_enabled = true;
1997 hba->clk_gating.is_initialized = true;
1998 }
1999
ufshcd_exit_clk_gating(struct ufs_hba * hba)2000 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2001 {
2002 if (!hba->clk_gating.is_initialized)
2003 return;
2004
2005 ufshcd_remove_clk_gating_sysfs(hba);
2006
2007 /* Ungate the clock if necessary. */
2008 ufshcd_hold(hba, false);
2009 hba->clk_gating.is_initialized = false;
2010 ufshcd_release(hba);
2011
2012 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2013 }
2014
2015 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2016 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2017 {
2018 bool queue_resume_work = false;
2019 ktime_t curr_t = ktime_get();
2020 unsigned long flags;
2021
2022 if (!ufshcd_is_clkscaling_supported(hba))
2023 return;
2024
2025 spin_lock_irqsave(hba->host->host_lock, flags);
2026 if (!hba->clk_scaling.active_reqs++)
2027 queue_resume_work = true;
2028
2029 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2030 spin_unlock_irqrestore(hba->host->host_lock, flags);
2031 return;
2032 }
2033
2034 if (queue_resume_work)
2035 queue_work(hba->clk_scaling.workq,
2036 &hba->clk_scaling.resume_work);
2037
2038 if (!hba->clk_scaling.window_start_t) {
2039 hba->clk_scaling.window_start_t = curr_t;
2040 hba->clk_scaling.tot_busy_t = 0;
2041 hba->clk_scaling.is_busy_started = false;
2042 }
2043
2044 if (!hba->clk_scaling.is_busy_started) {
2045 hba->clk_scaling.busy_start_t = curr_t;
2046 hba->clk_scaling.is_busy_started = true;
2047 }
2048 spin_unlock_irqrestore(hba->host->host_lock, flags);
2049 }
2050
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2051 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2052 {
2053 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2054 unsigned long flags;
2055
2056 if (!ufshcd_is_clkscaling_supported(hba))
2057 return;
2058
2059 spin_lock_irqsave(hba->host->host_lock, flags);
2060 hba->clk_scaling.active_reqs--;
2061 if (!hba->outstanding_reqs && scaling->is_busy_started) {
2062 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2063 scaling->busy_start_t));
2064 scaling->busy_start_t = 0;
2065 scaling->is_busy_started = false;
2066 }
2067 spin_unlock_irqrestore(hba->host->host_lock, flags);
2068 }
2069
ufshcd_monitor_opcode2dir(u8 opcode)2070 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2071 {
2072 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2073 return READ;
2074 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2075 return WRITE;
2076 else
2077 return -EINVAL;
2078 }
2079
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2080 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2081 struct ufshcd_lrb *lrbp)
2082 {
2083 struct ufs_hba_monitor *m = &hba->monitor;
2084
2085 return (m->enabled && lrbp && lrbp->cmd &&
2086 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2087 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2088 }
2089
ufshcd_start_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2090 static void ufshcd_start_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2091 {
2092 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2093 unsigned long flags;
2094
2095 spin_lock_irqsave(hba->host->host_lock, flags);
2096 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2097 hba->monitor.busy_start_ts[dir] = ktime_get();
2098 spin_unlock_irqrestore(hba->host->host_lock, flags);
2099 }
2100
ufshcd_update_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2101 static void ufshcd_update_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2102 {
2103 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2104 unsigned long flags;
2105
2106 spin_lock_irqsave(hba->host->host_lock, flags);
2107 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2108 struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2109 struct ufs_hba_monitor *m = &hba->monitor;
2110 ktime_t now, inc, lat;
2111
2112 now = lrbp->compl_time_stamp;
2113 inc = ktime_sub(now, m->busy_start_ts[dir]);
2114 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2115 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2116
2117 /* Update latencies */
2118 m->nr_req[dir]++;
2119 lat = ktime_sub(now, lrbp->issue_time_stamp);
2120 m->lat_sum[dir] += lat;
2121 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2122 m->lat_max[dir] = lat;
2123 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2124 m->lat_min[dir] = lat;
2125
2126 m->nr_queued[dir]--;
2127 /* Push forward the busy start of monitor */
2128 m->busy_start_ts[dir] = now;
2129 }
2130 spin_unlock_irqrestore(hba->host->host_lock, flags);
2131 }
2132
2133 /**
2134 * ufshcd_send_command - Send SCSI or device management commands
2135 * @hba: per adapter instance
2136 * @task_tag: Task tag of the command
2137 */
2138 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)2139 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
2140 {
2141 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2142 unsigned long flags;
2143
2144 lrbp->issue_time_stamp = ktime_get();
2145 lrbp->compl_time_stamp = ktime_set(0, 0);
2146 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2147 ufshcd_clk_scaling_start_busy(hba);
2148 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2149 ufshcd_start_monitor(hba, lrbp);
2150
2151 spin_lock_irqsave(&hba->outstanding_lock, flags);
2152 if (hba->vops && hba->vops->setup_xfer_req)
2153 hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
2154 __set_bit(task_tag, &hba->outstanding_reqs);
2155 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2156 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2157 }
2158
2159 /**
2160 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2161 * @lrbp: pointer to local reference block
2162 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2163 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2164 {
2165 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2166 int len;
2167
2168 if (sense_buffer &&
2169 ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2170 int len_to_copy;
2171
2172 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2173 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2174
2175 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2176 len_to_copy);
2177 }
2178 }
2179
2180 /**
2181 * ufshcd_copy_query_response() - Copy the Query Response and the data
2182 * descriptor
2183 * @hba: per adapter instance
2184 * @lrbp: pointer to local reference block
2185 */
2186 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2187 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2188 {
2189 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2190
2191 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2192
2193 /* Get the descriptor */
2194 if (hba->dev_cmd.query.descriptor &&
2195 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2196 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2197 GENERAL_UPIU_REQUEST_SIZE;
2198 u16 resp_len;
2199 u16 buf_len;
2200
2201 /* data segment length */
2202 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2203 MASK_QUERY_DATA_SEG_LEN;
2204 buf_len = be16_to_cpu(
2205 hba->dev_cmd.query.request.upiu_req.length);
2206 if (likely(buf_len >= resp_len)) {
2207 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2208 } else {
2209 dev_warn(hba->dev,
2210 "%s: rsp size %d is bigger than buffer size %d",
2211 __func__, resp_len, buf_len);
2212 return -EINVAL;
2213 }
2214 }
2215
2216 return 0;
2217 }
2218
2219 /**
2220 * ufshcd_hba_capabilities - Read controller capabilities
2221 * @hba: per adapter instance
2222 *
2223 * Return: 0 on success, negative on error.
2224 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2225 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2226 {
2227 int err;
2228
2229 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2230 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2231 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2232
2233 /* nutrs and nutmrs are 0 based values */
2234 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2235 hba->nutmrs =
2236 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2237 hba->reserved_slot = hba->nutrs - 1;
2238
2239 /* Read crypto capabilities */
2240 err = ufshcd_hba_init_crypto_capabilities(hba);
2241 if (err)
2242 dev_err(hba->dev, "crypto setup failed\n");
2243
2244 return err;
2245 }
2246
2247 /**
2248 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2249 * to accept UIC commands
2250 * @hba: per adapter instance
2251 * Return true on success, else false
2252 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2253 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2254 {
2255 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2256 }
2257
2258 /**
2259 * ufshcd_get_upmcrs - Get the power mode change request status
2260 * @hba: Pointer to adapter instance
2261 *
2262 * This function gets the UPMCRS field of HCS register
2263 * Returns value of UPMCRS field
2264 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2265 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2266 {
2267 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2268 }
2269
2270 /**
2271 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2272 * @hba: per adapter instance
2273 * @uic_cmd: UIC command
2274 */
2275 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2276 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2277 {
2278 lockdep_assert_held(&hba->uic_cmd_mutex);
2279
2280 WARN_ON(hba->active_uic_cmd);
2281
2282 hba->active_uic_cmd = uic_cmd;
2283
2284 /* Write Args */
2285 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2286 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2287 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2288
2289 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2290
2291 /* Write UIC Cmd */
2292 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2293 REG_UIC_COMMAND);
2294 }
2295
2296 /**
2297 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2298 * @hba: per adapter instance
2299 * @uic_cmd: UIC command
2300 *
2301 * Returns 0 only if success.
2302 */
2303 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2304 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2305 {
2306 int ret;
2307 unsigned long flags;
2308
2309 lockdep_assert_held(&hba->uic_cmd_mutex);
2310
2311 if (wait_for_completion_timeout(&uic_cmd->done,
2312 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2313 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2314 } else {
2315 ret = -ETIMEDOUT;
2316 dev_err(hba->dev,
2317 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2318 uic_cmd->command, uic_cmd->argument3);
2319
2320 if (!uic_cmd->cmd_active) {
2321 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2322 __func__);
2323 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2324 }
2325 }
2326
2327 spin_lock_irqsave(hba->host->host_lock, flags);
2328 hba->active_uic_cmd = NULL;
2329 spin_unlock_irqrestore(hba->host->host_lock, flags);
2330
2331 return ret;
2332 }
2333
2334 /**
2335 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2336 * @hba: per adapter instance
2337 * @uic_cmd: UIC command
2338 * @completion: initialize the completion only if this is set to true
2339 *
2340 * Returns 0 only if success.
2341 */
2342 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2343 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2344 bool completion)
2345 {
2346 lockdep_assert_held(&hba->uic_cmd_mutex);
2347 lockdep_assert_held(hba->host->host_lock);
2348
2349 if (!ufshcd_ready_for_uic_cmd(hba)) {
2350 dev_err(hba->dev,
2351 "Controller not ready to accept UIC commands\n");
2352 return -EIO;
2353 }
2354
2355 if (completion)
2356 init_completion(&uic_cmd->done);
2357
2358 uic_cmd->cmd_active = 1;
2359 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2360
2361 return 0;
2362 }
2363
2364 /**
2365 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2366 * @hba: per adapter instance
2367 * @uic_cmd: UIC command
2368 *
2369 * Returns 0 only if success.
2370 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2371 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2372 {
2373 int ret;
2374 unsigned long flags;
2375
2376 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2377 return 0;
2378
2379 ufshcd_hold(hba, false);
2380 mutex_lock(&hba->uic_cmd_mutex);
2381 ufshcd_add_delay_before_dme_cmd(hba);
2382
2383 spin_lock_irqsave(hba->host->host_lock, flags);
2384 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2385 spin_unlock_irqrestore(hba->host->host_lock, flags);
2386 if (!ret)
2387 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2388
2389 mutex_unlock(&hba->uic_cmd_mutex);
2390
2391 ufshcd_release(hba);
2392 return ret;
2393 }
2394
2395 /**
2396 * ufshcd_map_sg - Map scatter-gather list to prdt
2397 * @hba: per adapter instance
2398 * @lrbp: pointer to local reference block
2399 *
2400 * Returns 0 in case of success, non-zero value in case of failure
2401 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2402 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2403 {
2404 struct ufshcd_sg_entry *prd_table;
2405 struct scatterlist *sg;
2406 struct scsi_cmnd *cmd;
2407 int sg_segments;
2408 int i;
2409
2410 cmd = lrbp->cmd;
2411 sg_segments = scsi_dma_map(cmd);
2412 if (sg_segments < 0)
2413 return sg_segments;
2414
2415 if (sg_segments) {
2416
2417 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2418 lrbp->utr_descriptor_ptr->prd_table_length =
2419 cpu_to_le16((sg_segments *
2420 sizeof(struct ufshcd_sg_entry)));
2421 else
2422 lrbp->utr_descriptor_ptr->prd_table_length =
2423 cpu_to_le16(sg_segments);
2424
2425 prd_table = lrbp->ucd_prdt_ptr;
2426
2427 scsi_for_each_sg(cmd, sg, sg_segments, i) {
2428 const unsigned int len = sg_dma_len(sg);
2429
2430 /*
2431 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2432 * based value that indicates the length, in bytes, of
2433 * the data block. A maximum of length of 256KB may
2434 * exist for any entry. Bits 1:0 of this field shall be
2435 * 11b to indicate Dword granularity. A value of '3'
2436 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2437 */
2438 WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2439 prd_table[i].size = cpu_to_le32(len - 1);
2440 prd_table[i].addr = cpu_to_le64(sg->dma_address);
2441 prd_table[i].reserved = 0;
2442 }
2443 } else {
2444 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2445 }
2446
2447 return 0;
2448 }
2449
2450 /**
2451 * ufshcd_enable_intr - enable interrupts
2452 * @hba: per adapter instance
2453 * @intrs: interrupt bits
2454 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2455 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2456 {
2457 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2458
2459 if (hba->ufs_version == ufshci_version(1, 0)) {
2460 u32 rw;
2461 rw = set & INTERRUPT_MASK_RW_VER_10;
2462 set = rw | ((set ^ intrs) & intrs);
2463 } else {
2464 set |= intrs;
2465 }
2466
2467 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2468 }
2469
2470 /**
2471 * ufshcd_disable_intr - disable interrupts
2472 * @hba: per adapter instance
2473 * @intrs: interrupt bits
2474 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2475 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2476 {
2477 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2478
2479 if (hba->ufs_version == ufshci_version(1, 0)) {
2480 u32 rw;
2481 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2482 ~(intrs & INTERRUPT_MASK_RW_VER_10);
2483 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2484
2485 } else {
2486 set &= ~intrs;
2487 }
2488
2489 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2490 }
2491
2492 /**
2493 * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2494 * descriptor according to request
2495 * @lrbp: pointer to local reference block
2496 * @upiu_flags: flags required in the header
2497 * @cmd_dir: requests data direction
2498 */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2499 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2500 u8 *upiu_flags, enum dma_data_direction cmd_dir)
2501 {
2502 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2503 u32 data_direction;
2504 u32 dword_0;
2505 u32 dword_1 = 0;
2506 u32 dword_3 = 0;
2507
2508 if (cmd_dir == DMA_FROM_DEVICE) {
2509 data_direction = UTP_DEVICE_TO_HOST;
2510 *upiu_flags = UPIU_CMD_FLAGS_READ;
2511 } else if (cmd_dir == DMA_TO_DEVICE) {
2512 data_direction = UTP_HOST_TO_DEVICE;
2513 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2514 } else {
2515 data_direction = UTP_NO_DATA_TRANSFER;
2516 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2517 }
2518
2519 dword_0 = data_direction | (lrbp->command_type
2520 << UPIU_COMMAND_TYPE_OFFSET);
2521 if (lrbp->intr_cmd)
2522 dword_0 |= UTP_REQ_DESC_INT_CMD;
2523
2524 /* Prepare crypto related dwords */
2525 ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2526
2527 /* Transfer request descriptor header fields */
2528 req_desc->header.dword_0 = cpu_to_le32(dword_0);
2529 req_desc->header.dword_1 = cpu_to_le32(dword_1);
2530 /*
2531 * assigning invalid value for command status. Controller
2532 * updates OCS on command completion, with the command
2533 * status
2534 */
2535 req_desc->header.dword_2 =
2536 cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2537 req_desc->header.dword_3 = cpu_to_le32(dword_3);
2538
2539 req_desc->prd_table_length = 0;
2540 }
2541
2542 /**
2543 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2544 * for scsi commands
2545 * @lrbp: local reference block pointer
2546 * @upiu_flags: flags
2547 */
2548 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2549 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2550 {
2551 struct scsi_cmnd *cmd = lrbp->cmd;
2552 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2553 unsigned short cdb_len;
2554
2555 /* command descriptor fields */
2556 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2557 UPIU_TRANSACTION_COMMAND, upiu_flags,
2558 lrbp->lun, lrbp->task_tag);
2559 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2560 UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2561
2562 /* Total EHS length and Data segment length will be zero */
2563 ucd_req_ptr->header.dword_2 = 0;
2564
2565 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2566
2567 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2568 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2569 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2570
2571 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2572 }
2573
2574 /**
2575 * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2576 * for query requsts
2577 * @hba: UFS hba
2578 * @lrbp: local reference block pointer
2579 * @upiu_flags: flags
2580 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2581 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2582 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2583 {
2584 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2585 struct ufs_query *query = &hba->dev_cmd.query;
2586 u16 len = be16_to_cpu(query->request.upiu_req.length);
2587
2588 /* Query request header */
2589 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2590 UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2591 lrbp->lun, lrbp->task_tag);
2592 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2593 0, query->request.query_func, 0, 0);
2594
2595 /* Data segment length only need for WRITE_DESC */
2596 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2597 ucd_req_ptr->header.dword_2 =
2598 UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2599 else
2600 ucd_req_ptr->header.dword_2 = 0;
2601
2602 /* Copy the Query Request buffer as is */
2603 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2604 QUERY_OSF_SIZE);
2605
2606 /* Copy the Descriptor */
2607 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2608 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2609
2610 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2611 }
2612
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2613 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2614 {
2615 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2616
2617 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2618
2619 /* command descriptor fields */
2620 ucd_req_ptr->header.dword_0 =
2621 UPIU_HEADER_DWORD(
2622 UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2623 /* clear rest of the fields of basic header */
2624 ucd_req_ptr->header.dword_1 = 0;
2625 ucd_req_ptr->header.dword_2 = 0;
2626
2627 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2628 }
2629
2630 /**
2631 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2632 * for Device Management Purposes
2633 * @hba: per adapter instance
2634 * @lrbp: pointer to local reference block
2635 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2636 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2637 struct ufshcd_lrb *lrbp)
2638 {
2639 u8 upiu_flags;
2640 int ret = 0;
2641
2642 if (hba->ufs_version <= ufshci_version(1, 1))
2643 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2644 else
2645 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2646
2647 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2648 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2649 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2650 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2651 ufshcd_prepare_utp_nop_upiu(lrbp);
2652 else
2653 ret = -EINVAL;
2654
2655 return ret;
2656 }
2657
2658 /**
2659 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2660 * for SCSI Purposes
2661 * @hba: per adapter instance
2662 * @lrbp: pointer to local reference block
2663 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2664 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2665 {
2666 u8 upiu_flags;
2667 int ret = 0;
2668
2669 if (hba->ufs_version <= ufshci_version(1, 1))
2670 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2671 else
2672 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2673
2674 if (likely(lrbp->cmd)) {
2675 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2676 lrbp->cmd->sc_data_direction);
2677 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2678 } else {
2679 ret = -EINVAL;
2680 }
2681
2682 return ret;
2683 }
2684
2685 /**
2686 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2687 * @upiu_wlun_id: UPIU W-LUN id
2688 *
2689 * Returns SCSI W-LUN id
2690 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2691 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2692 {
2693 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2694 }
2695
is_device_wlun(struct scsi_device * sdev)2696 static inline bool is_device_wlun(struct scsi_device *sdev)
2697 {
2698 return sdev->lun ==
2699 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2700 }
2701
2702 /*
2703 * Associate the UFS controller queue with the default and poll HCTX types.
2704 * Initialize the mq_map[] arrays.
2705 */
ufshcd_map_queues(struct Scsi_Host * shost)2706 static int ufshcd_map_queues(struct Scsi_Host *shost)
2707 {
2708 int i, ret;
2709
2710 for (i = 0; i < shost->nr_maps; i++) {
2711 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2712
2713 switch (i) {
2714 case HCTX_TYPE_DEFAULT:
2715 case HCTX_TYPE_POLL:
2716 map->nr_queues = 1;
2717 break;
2718 case HCTX_TYPE_READ:
2719 map->nr_queues = 0;
2720 continue;
2721 default:
2722 WARN_ON_ONCE(true);
2723 }
2724 map->queue_offset = 0;
2725 ret = blk_mq_map_queues(map);
2726 WARN_ON_ONCE(ret);
2727 }
2728
2729 return 0;
2730 }
2731
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2732 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2733 {
2734 struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
2735 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2736 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2737 i * sizeof(struct utp_transfer_cmd_desc);
2738 u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2739 response_upiu);
2740 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2741
2742 lrb->utr_descriptor_ptr = utrdlp + i;
2743 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2744 i * sizeof(struct utp_transfer_req_desc);
2745 lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
2746 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2747 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
2748 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2749 lrb->ucd_prdt_ptr = cmd_descp[i].prd_table;
2750 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2751 }
2752
2753 /**
2754 * ufshcd_queuecommand - main entry point for SCSI requests
2755 * @host: SCSI host pointer
2756 * @cmd: command from SCSI Midlayer
2757 *
2758 * Returns 0 for success, non-zero in case of failure
2759 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2760 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2761 {
2762 struct ufs_hba *hba = shost_priv(host);
2763 int tag = scsi_cmd_to_rq(cmd)->tag;
2764 struct ufshcd_lrb *lrbp;
2765 int err = 0;
2766
2767 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2768
2769 /*
2770 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2771 * calls.
2772 */
2773 rcu_read_lock();
2774
2775 switch (hba->ufshcd_state) {
2776 case UFSHCD_STATE_OPERATIONAL:
2777 break;
2778 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2779 /*
2780 * SCSI error handler can call ->queuecommand() while UFS error
2781 * handler is in progress. Error interrupts could change the
2782 * state from UFSHCD_STATE_RESET to
2783 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2784 * being issued in that case.
2785 */
2786 if (ufshcd_eh_in_progress(hba)) {
2787 err = SCSI_MLQUEUE_HOST_BUSY;
2788 goto out;
2789 }
2790 break;
2791 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2792 /*
2793 * pm_runtime_get_sync() is used at error handling preparation
2794 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2795 * PM ops, it can never be finished if we let SCSI layer keep
2796 * retrying it, which gets err handler stuck forever. Neither
2797 * can we let the scsi cmd pass through, because UFS is in bad
2798 * state, the scsi cmd may eventually time out, which will get
2799 * err handler blocked for too long. So, just fail the scsi cmd
2800 * sent from PM ops, err handler can recover PM error anyways.
2801 */
2802 if (hba->pm_op_in_progress) {
2803 hba->force_reset = true;
2804 set_host_byte(cmd, DID_BAD_TARGET);
2805 scsi_done(cmd);
2806 goto out;
2807 }
2808 fallthrough;
2809 case UFSHCD_STATE_RESET:
2810 err = SCSI_MLQUEUE_HOST_BUSY;
2811 goto out;
2812 case UFSHCD_STATE_ERROR:
2813 set_host_byte(cmd, DID_ERROR);
2814 scsi_done(cmd);
2815 goto out;
2816 }
2817
2818 hba->req_abort_count = 0;
2819
2820 err = ufshcd_hold(hba, true);
2821 if (err) {
2822 err = SCSI_MLQUEUE_HOST_BUSY;
2823 goto out;
2824 }
2825 WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2826 (hba->clk_gating.state != CLKS_ON));
2827
2828 lrbp = &hba->lrb[tag];
2829 WARN_ON(lrbp->cmd);
2830 lrbp->cmd = cmd;
2831 lrbp->task_tag = tag;
2832 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2833 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2834
2835 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2836
2837 lrbp->req_abort_skip = false;
2838
2839 ufshpb_prep(hba, lrbp);
2840
2841 ufshcd_comp_scsi_upiu(hba, lrbp);
2842
2843 err = ufshcd_map_sg(hba, lrbp);
2844 if (err) {
2845 lrbp->cmd = NULL;
2846 ufshcd_release(hba);
2847 goto out;
2848 }
2849
2850 ufshcd_send_command(hba, tag);
2851
2852 out:
2853 rcu_read_unlock();
2854
2855 if (ufs_trigger_eh()) {
2856 unsigned long flags;
2857
2858 spin_lock_irqsave(hba->host->host_lock, flags);
2859 ufshcd_schedule_eh_work(hba);
2860 spin_unlock_irqrestore(hba->host->host_lock, flags);
2861 }
2862
2863 return err;
2864 }
2865
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2866 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2867 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2868 {
2869 lrbp->cmd = NULL;
2870 lrbp->task_tag = tag;
2871 lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2872 lrbp->intr_cmd = true; /* No interrupt aggregation */
2873 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2874 hba->dev_cmd.type = cmd_type;
2875
2876 return ufshcd_compose_devman_upiu(hba, lrbp);
2877 }
2878
2879 /*
2880 * Clear all the requests from the controller for which a bit has been set in
2881 * @mask and wait until the controller confirms that these requests have been
2882 * cleared.
2883 */
ufshcd_clear_cmds(struct ufs_hba * hba,u32 mask)2884 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2885 {
2886 unsigned long flags;
2887
2888 /* clear outstanding transaction before retry */
2889 spin_lock_irqsave(hba->host->host_lock, flags);
2890 ufshcd_utrl_clear(hba, mask);
2891 spin_unlock_irqrestore(hba->host->host_lock, flags);
2892
2893 /*
2894 * wait for h/w to clear corresponding bit in door-bell.
2895 * max. wait is 1 sec.
2896 */
2897 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2898 mask, ~mask, 1000, 1000);
2899 }
2900
2901 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2902 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2903 {
2904 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2905
2906 /* Get the UPIU response */
2907 query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2908 UPIU_RSP_CODE_OFFSET;
2909 return query_res->response;
2910 }
2911
2912 /**
2913 * ufshcd_dev_cmd_completion() - handles device management command responses
2914 * @hba: per adapter instance
2915 * @lrbp: pointer to local reference block
2916 */
2917 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2918 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2919 {
2920 int resp;
2921 int err = 0;
2922
2923 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2924 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2925
2926 switch (resp) {
2927 case UPIU_TRANSACTION_NOP_IN:
2928 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2929 err = -EINVAL;
2930 dev_err(hba->dev, "%s: unexpected response %x\n",
2931 __func__, resp);
2932 }
2933 break;
2934 case UPIU_TRANSACTION_QUERY_RSP:
2935 err = ufshcd_check_query_response(hba, lrbp);
2936 if (!err)
2937 err = ufshcd_copy_query_response(hba, lrbp);
2938 break;
2939 case UPIU_TRANSACTION_REJECT_UPIU:
2940 /* TODO: handle Reject UPIU Response */
2941 err = -EPERM;
2942 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2943 __func__);
2944 break;
2945 default:
2946 err = -EINVAL;
2947 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2948 __func__, resp);
2949 break;
2950 }
2951
2952 return err;
2953 }
2954
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2955 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2956 struct ufshcd_lrb *lrbp, int max_timeout)
2957 {
2958 unsigned long time_left = msecs_to_jiffies(max_timeout);
2959 unsigned long flags;
2960 bool pending;
2961 int err;
2962
2963 retry:
2964 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2965 time_left);
2966
2967 if (likely(time_left)) {
2968 /*
2969 * The completion handler called complete() and the caller of
2970 * this function still owns the @lrbp tag so the code below does
2971 * not trigger any race conditions.
2972 */
2973 hba->dev_cmd.complete = NULL;
2974 err = ufshcd_get_tr_ocs(lrbp);
2975 if (!err)
2976 err = ufshcd_dev_cmd_completion(hba, lrbp);
2977 } else {
2978 err = -ETIMEDOUT;
2979 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2980 __func__, lrbp->task_tag);
2981 if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
2982 /* successfully cleared the command, retry if needed */
2983 err = -EAGAIN;
2984 /*
2985 * Since clearing the command succeeded we also need to
2986 * clear the task tag bit from the outstanding_reqs
2987 * variable.
2988 */
2989 spin_lock_irqsave(&hba->outstanding_lock, flags);
2990 pending = test_bit(lrbp->task_tag,
2991 &hba->outstanding_reqs);
2992 if (pending) {
2993 hba->dev_cmd.complete = NULL;
2994 __clear_bit(lrbp->task_tag,
2995 &hba->outstanding_reqs);
2996 }
2997 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2998
2999 if (!pending) {
3000 /*
3001 * The completion handler ran while we tried to
3002 * clear the command.
3003 */
3004 time_left = 1;
3005 goto retry;
3006 }
3007 } else {
3008 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3009 __func__, lrbp->task_tag);
3010 }
3011 }
3012
3013 return err;
3014 }
3015
3016 /**
3017 * ufshcd_exec_dev_cmd - API for sending device management requests
3018 * @hba: UFS hba
3019 * @cmd_type: specifies the type (NOP, Query...)
3020 * @timeout: timeout in milliseconds
3021 *
3022 * NOTE: Since there is only one available tag for device management commands,
3023 * it is expected you hold the hba->dev_cmd.lock mutex.
3024 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3025 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3026 enum dev_cmd_type cmd_type, int timeout)
3027 {
3028 DECLARE_COMPLETION_ONSTACK(wait);
3029 const u32 tag = hba->reserved_slot;
3030 struct ufshcd_lrb *lrbp;
3031 int err;
3032
3033 /* Protects use of hba->reserved_slot. */
3034 lockdep_assert_held(&hba->dev_cmd.lock);
3035
3036 down_read(&hba->clk_scaling_lock);
3037
3038 lrbp = &hba->lrb[tag];
3039 WARN_ON(lrbp->cmd);
3040 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3041 if (unlikely(err))
3042 goto out;
3043
3044 hba->dev_cmd.complete = &wait;
3045
3046 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3047
3048 ufshcd_send_command(hba, tag);
3049 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3050 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3051 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3052
3053 out:
3054 up_read(&hba->clk_scaling_lock);
3055 return err;
3056 }
3057
3058 /**
3059 * ufshcd_init_query() - init the query response and request parameters
3060 * @hba: per-adapter instance
3061 * @request: address of the request pointer to be initialized
3062 * @response: address of the response pointer to be initialized
3063 * @opcode: operation to perform
3064 * @idn: flag idn to access
3065 * @index: LU number to access
3066 * @selector: query/flag/descriptor further identification
3067 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3068 static inline void ufshcd_init_query(struct ufs_hba *hba,
3069 struct ufs_query_req **request, struct ufs_query_res **response,
3070 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3071 {
3072 *request = &hba->dev_cmd.query.request;
3073 *response = &hba->dev_cmd.query.response;
3074 memset(*request, 0, sizeof(struct ufs_query_req));
3075 memset(*response, 0, sizeof(struct ufs_query_res));
3076 (*request)->upiu_req.opcode = opcode;
3077 (*request)->upiu_req.idn = idn;
3078 (*request)->upiu_req.index = index;
3079 (*request)->upiu_req.selector = selector;
3080 }
3081
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3082 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3083 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3084 {
3085 int ret;
3086 int retries;
3087
3088 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3089 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3090 if (ret)
3091 dev_dbg(hba->dev,
3092 "%s: failed with error %d, retries %d\n",
3093 __func__, ret, retries);
3094 else
3095 break;
3096 }
3097
3098 if (ret)
3099 dev_err(hba->dev,
3100 "%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
3101 __func__, opcode, idn, ret, retries);
3102 return ret;
3103 }
3104
3105 /**
3106 * ufshcd_query_flag() - API function for sending flag query requests
3107 * @hba: per-adapter instance
3108 * @opcode: flag query to perform
3109 * @idn: flag idn to access
3110 * @index: flag index to access
3111 * @flag_res: the flag value after the query request completes
3112 *
3113 * Returns 0 for success, non-zero in case of failure
3114 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3115 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3116 enum flag_idn idn, u8 index, bool *flag_res)
3117 {
3118 struct ufs_query_req *request = NULL;
3119 struct ufs_query_res *response = NULL;
3120 int err, selector = 0;
3121 int timeout = QUERY_REQ_TIMEOUT;
3122
3123 BUG_ON(!hba);
3124
3125 ufshcd_hold(hba, false);
3126 mutex_lock(&hba->dev_cmd.lock);
3127 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3128 selector);
3129
3130 switch (opcode) {
3131 case UPIU_QUERY_OPCODE_SET_FLAG:
3132 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3133 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3134 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3135 break;
3136 case UPIU_QUERY_OPCODE_READ_FLAG:
3137 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3138 if (!flag_res) {
3139 /* No dummy reads */
3140 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3141 __func__);
3142 err = -EINVAL;
3143 goto out_unlock;
3144 }
3145 break;
3146 default:
3147 dev_err(hba->dev,
3148 "%s: Expected query flag opcode but got = %d\n",
3149 __func__, opcode);
3150 err = -EINVAL;
3151 goto out_unlock;
3152 }
3153
3154 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3155
3156 if (err) {
3157 dev_err(hba->dev,
3158 "%s: Sending flag query for idn %d failed, err = %d\n",
3159 __func__, idn, err);
3160 goto out_unlock;
3161 }
3162
3163 if (flag_res)
3164 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3165 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3166
3167 out_unlock:
3168 mutex_unlock(&hba->dev_cmd.lock);
3169 ufshcd_release(hba);
3170 return err;
3171 }
3172
3173 /**
3174 * ufshcd_query_attr - API function for sending attribute requests
3175 * @hba: per-adapter instance
3176 * @opcode: attribute opcode
3177 * @idn: attribute idn to access
3178 * @index: index field
3179 * @selector: selector field
3180 * @attr_val: the attribute value after the query request completes
3181 *
3182 * Returns 0 for success, non-zero in case of failure
3183 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3184 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3185 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3186 {
3187 struct ufs_query_req *request = NULL;
3188 struct ufs_query_res *response = NULL;
3189 int err;
3190
3191 BUG_ON(!hba);
3192
3193 if (!attr_val) {
3194 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3195 __func__, opcode);
3196 return -EINVAL;
3197 }
3198
3199 ufshcd_hold(hba, false);
3200
3201 mutex_lock(&hba->dev_cmd.lock);
3202 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3203 selector);
3204
3205 switch (opcode) {
3206 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3207 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3208 request->upiu_req.value = cpu_to_be32(*attr_val);
3209 break;
3210 case UPIU_QUERY_OPCODE_READ_ATTR:
3211 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3212 break;
3213 default:
3214 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3215 __func__, opcode);
3216 err = -EINVAL;
3217 goto out_unlock;
3218 }
3219
3220 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3221
3222 if (err) {
3223 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3224 __func__, opcode, idn, index, err);
3225 goto out_unlock;
3226 }
3227
3228 *attr_val = be32_to_cpu(response->upiu_res.value);
3229
3230 out_unlock:
3231 mutex_unlock(&hba->dev_cmd.lock);
3232 ufshcd_release(hba);
3233 return err;
3234 }
3235
3236 /**
3237 * ufshcd_query_attr_retry() - API function for sending query
3238 * attribute with retries
3239 * @hba: per-adapter instance
3240 * @opcode: attribute opcode
3241 * @idn: attribute idn to access
3242 * @index: index field
3243 * @selector: selector field
3244 * @attr_val: the attribute value after the query request
3245 * completes
3246 *
3247 * Returns 0 for success, non-zero in case of failure
3248 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3249 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3250 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3251 u32 *attr_val)
3252 {
3253 int ret = 0;
3254 u32 retries;
3255
3256 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3257 ret = ufshcd_query_attr(hba, opcode, idn, index,
3258 selector, attr_val);
3259 if (ret)
3260 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3261 __func__, ret, retries);
3262 else
3263 break;
3264 }
3265
3266 if (ret)
3267 dev_err(hba->dev,
3268 "%s: query attribute, idn %d, failed with error %d after %d retires\n",
3269 __func__, idn, ret, QUERY_REQ_RETRIES);
3270 return ret;
3271 }
3272
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3273 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3274 enum query_opcode opcode, enum desc_idn idn, u8 index,
3275 u8 selector, u8 *desc_buf, int *buf_len)
3276 {
3277 struct ufs_query_req *request = NULL;
3278 struct ufs_query_res *response = NULL;
3279 int err;
3280
3281 BUG_ON(!hba);
3282
3283 if (!desc_buf) {
3284 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3285 __func__, opcode);
3286 return -EINVAL;
3287 }
3288
3289 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3290 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3291 __func__, *buf_len);
3292 return -EINVAL;
3293 }
3294
3295 ufshcd_hold(hba, false);
3296
3297 mutex_lock(&hba->dev_cmd.lock);
3298 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3299 selector);
3300 hba->dev_cmd.query.descriptor = desc_buf;
3301 request->upiu_req.length = cpu_to_be16(*buf_len);
3302
3303 switch (opcode) {
3304 case UPIU_QUERY_OPCODE_WRITE_DESC:
3305 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3306 break;
3307 case UPIU_QUERY_OPCODE_READ_DESC:
3308 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3309 break;
3310 default:
3311 dev_err(hba->dev,
3312 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3313 __func__, opcode);
3314 err = -EINVAL;
3315 goto out_unlock;
3316 }
3317
3318 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3319
3320 if (err) {
3321 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3322 __func__, opcode, idn, index, err);
3323 goto out_unlock;
3324 }
3325
3326 *buf_len = be16_to_cpu(response->upiu_res.length);
3327
3328 out_unlock:
3329 hba->dev_cmd.query.descriptor = NULL;
3330 mutex_unlock(&hba->dev_cmd.lock);
3331 ufshcd_release(hba);
3332 return err;
3333 }
3334
3335 /**
3336 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3337 * @hba: per-adapter instance
3338 * @opcode: attribute opcode
3339 * @idn: attribute idn to access
3340 * @index: index field
3341 * @selector: selector field
3342 * @desc_buf: the buffer that contains the descriptor
3343 * @buf_len: length parameter passed to the device
3344 *
3345 * Returns 0 for success, non-zero in case of failure.
3346 * The buf_len parameter will contain, on return, the length parameter
3347 * received on the response.
3348 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3349 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3350 enum query_opcode opcode,
3351 enum desc_idn idn, u8 index,
3352 u8 selector,
3353 u8 *desc_buf, int *buf_len)
3354 {
3355 int err;
3356 int retries;
3357
3358 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3359 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3360 selector, desc_buf, buf_len);
3361 if (!err || err == -EINVAL)
3362 break;
3363 }
3364
3365 return err;
3366 }
3367
3368 /**
3369 * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3370 * @hba: Pointer to adapter instance
3371 * @desc_id: descriptor idn value
3372 * @desc_len: mapped desc length (out)
3373 */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3374 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3375 int *desc_len)
3376 {
3377 if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3378 desc_id == QUERY_DESC_IDN_RFU_1)
3379 *desc_len = 0;
3380 else
3381 *desc_len = hba->desc_size[desc_id];
3382 }
3383 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3384
ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3385 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3386 enum desc_idn desc_id, int desc_index,
3387 unsigned char desc_len)
3388 {
3389 if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3390 desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3391 /* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3392 * than the RPMB unit, however, both descriptors share the same
3393 * desc_idn, to cover both unit descriptors with one length, we
3394 * choose the normal unit descriptor length by desc_index.
3395 */
3396 hba->desc_size[desc_id] = desc_len;
3397 }
3398
3399 /**
3400 * ufshcd_read_desc_param - read the specified descriptor parameter
3401 * @hba: Pointer to adapter instance
3402 * @desc_id: descriptor idn value
3403 * @desc_index: descriptor index
3404 * @param_offset: offset of the parameter to read
3405 * @param_read_buf: pointer to buffer where parameter would be read
3406 * @param_size: sizeof(param_read_buf)
3407 *
3408 * Return 0 in case of success, non-zero otherwise
3409 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3410 int ufshcd_read_desc_param(struct ufs_hba *hba,
3411 enum desc_idn desc_id,
3412 int desc_index,
3413 u8 param_offset,
3414 u8 *param_read_buf,
3415 u8 param_size)
3416 {
3417 int ret;
3418 u8 *desc_buf;
3419 int buff_len;
3420 bool is_kmalloc = true;
3421
3422 /* Safety check */
3423 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3424 return -EINVAL;
3425
3426 /* Get the length of descriptor */
3427 ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3428 if (!buff_len) {
3429 dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3430 return -EINVAL;
3431 }
3432
3433 if (param_offset >= buff_len) {
3434 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3435 __func__, param_offset, desc_id, buff_len);
3436 return -EINVAL;
3437 }
3438
3439 /* Check whether we need temp memory */
3440 if (param_offset != 0 || param_size < buff_len) {
3441 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3442 if (!desc_buf)
3443 return -ENOMEM;
3444 } else {
3445 desc_buf = param_read_buf;
3446 is_kmalloc = false;
3447 }
3448
3449 /* Request for full descriptor */
3450 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3451 desc_id, desc_index, 0,
3452 desc_buf, &buff_len);
3453
3454 if (ret) {
3455 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3456 __func__, desc_id, desc_index, param_offset, ret);
3457 goto out;
3458 }
3459
3460 /* Sanity check */
3461 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3462 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3463 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3464 ret = -EINVAL;
3465 goto out;
3466 }
3467
3468 /* Update descriptor length */
3469 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3470 ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3471
3472 if (is_kmalloc) {
3473 /* Make sure we don't copy more data than available */
3474 if (param_offset >= buff_len)
3475 ret = -EINVAL;
3476 else
3477 memcpy(param_read_buf, &desc_buf[param_offset],
3478 min_t(u32, param_size, buff_len - param_offset));
3479 }
3480 out:
3481 if (is_kmalloc)
3482 kfree(desc_buf);
3483 return ret;
3484 }
3485
3486 /**
3487 * struct uc_string_id - unicode string
3488 *
3489 * @len: size of this descriptor inclusive
3490 * @type: descriptor type
3491 * @uc: unicode string character
3492 */
3493 struct uc_string_id {
3494 u8 len;
3495 u8 type;
3496 wchar_t uc[];
3497 } __packed;
3498
3499 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3500 static inline char ufshcd_remove_non_printable(u8 ch)
3501 {
3502 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3503 }
3504
3505 /**
3506 * ufshcd_read_string_desc - read string descriptor
3507 * @hba: pointer to adapter instance
3508 * @desc_index: descriptor index
3509 * @buf: pointer to buffer where descriptor would be read,
3510 * the caller should free the memory.
3511 * @ascii: if true convert from unicode to ascii characters
3512 * null terminated string.
3513 *
3514 * Return:
3515 * * string size on success.
3516 * * -ENOMEM: on allocation failure
3517 * * -EINVAL: on a wrong parameter
3518 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3519 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3520 u8 **buf, bool ascii)
3521 {
3522 struct uc_string_id *uc_str;
3523 u8 *str;
3524 int ret;
3525
3526 if (!buf)
3527 return -EINVAL;
3528
3529 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3530 if (!uc_str)
3531 return -ENOMEM;
3532
3533 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3534 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3535 if (ret < 0) {
3536 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3537 QUERY_REQ_RETRIES, ret);
3538 str = NULL;
3539 goto out;
3540 }
3541
3542 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3543 dev_dbg(hba->dev, "String Desc is of zero length\n");
3544 str = NULL;
3545 ret = 0;
3546 goto out;
3547 }
3548
3549 if (ascii) {
3550 ssize_t ascii_len;
3551 int i;
3552 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3553 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3554 str = kzalloc(ascii_len, GFP_KERNEL);
3555 if (!str) {
3556 ret = -ENOMEM;
3557 goto out;
3558 }
3559
3560 /*
3561 * the descriptor contains string in UTF16 format
3562 * we need to convert to utf-8 so it can be displayed
3563 */
3564 ret = utf16s_to_utf8s(uc_str->uc,
3565 uc_str->len - QUERY_DESC_HDR_SIZE,
3566 UTF16_BIG_ENDIAN, str, ascii_len);
3567
3568 /* replace non-printable or non-ASCII characters with spaces */
3569 for (i = 0; i < ret; i++)
3570 str[i] = ufshcd_remove_non_printable(str[i]);
3571
3572 str[ret++] = '\0';
3573
3574 } else {
3575 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3576 if (!str) {
3577 ret = -ENOMEM;
3578 goto out;
3579 }
3580 ret = uc_str->len;
3581 }
3582 out:
3583 *buf = str;
3584 kfree(uc_str);
3585 return ret;
3586 }
3587
3588 /**
3589 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3590 * @hba: Pointer to adapter instance
3591 * @lun: lun id
3592 * @param_offset: offset of the parameter to read
3593 * @param_read_buf: pointer to buffer where parameter would be read
3594 * @param_size: sizeof(param_read_buf)
3595 *
3596 * Return 0 in case of success, non-zero otherwise
3597 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3598 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3599 int lun,
3600 enum unit_desc_param param_offset,
3601 u8 *param_read_buf,
3602 u32 param_size)
3603 {
3604 /*
3605 * Unit descriptors are only available for general purpose LUs (LUN id
3606 * from 0 to 7) and RPMB Well known LU.
3607 */
3608 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3609 return -EOPNOTSUPP;
3610
3611 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3612 param_offset, param_read_buf, param_size);
3613 }
3614
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3615 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3616 {
3617 int err = 0;
3618 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3619
3620 if (hba->dev_info.wspecversion >= 0x300) {
3621 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3622 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3623 &gating_wait);
3624 if (err)
3625 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3626 err, gating_wait);
3627
3628 if (gating_wait == 0) {
3629 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3630 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3631 gating_wait);
3632 }
3633
3634 hba->dev_info.clk_gating_wait_us = gating_wait;
3635 }
3636
3637 return err;
3638 }
3639
3640 /**
3641 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3642 * @hba: per adapter instance
3643 *
3644 * 1. Allocate DMA memory for Command Descriptor array
3645 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3646 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3647 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3648 * (UTMRDL)
3649 * 4. Allocate memory for local reference block(lrb).
3650 *
3651 * Returns 0 for success, non-zero in case of failure
3652 */
ufshcd_memory_alloc(struct ufs_hba * hba)3653 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3654 {
3655 size_t utmrdl_size, utrdl_size, ucdl_size;
3656
3657 /* Allocate memory for UTP command descriptors */
3658 ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3659 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3660 ucdl_size,
3661 &hba->ucdl_dma_addr,
3662 GFP_KERNEL);
3663
3664 /*
3665 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3666 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3667 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3668 * be aligned to 128 bytes as well
3669 */
3670 if (!hba->ucdl_base_addr ||
3671 WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3672 dev_err(hba->dev,
3673 "Command Descriptor Memory allocation failed\n");
3674 goto out;
3675 }
3676
3677 /*
3678 * Allocate memory for UTP Transfer descriptors
3679 * UFSHCI requires 1024 byte alignment of UTRD
3680 */
3681 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3682 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3683 utrdl_size,
3684 &hba->utrdl_dma_addr,
3685 GFP_KERNEL);
3686 if (!hba->utrdl_base_addr ||
3687 WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3688 dev_err(hba->dev,
3689 "Transfer Descriptor Memory allocation failed\n");
3690 goto out;
3691 }
3692
3693 /*
3694 * Allocate memory for UTP Task Management descriptors
3695 * UFSHCI requires 1024 byte alignment of UTMRD
3696 */
3697 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3698 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3699 utmrdl_size,
3700 &hba->utmrdl_dma_addr,
3701 GFP_KERNEL);
3702 if (!hba->utmrdl_base_addr ||
3703 WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3704 dev_err(hba->dev,
3705 "Task Management Descriptor Memory allocation failed\n");
3706 goto out;
3707 }
3708
3709 /* Allocate memory for local reference block */
3710 hba->lrb = devm_kcalloc(hba->dev,
3711 hba->nutrs, sizeof(struct ufshcd_lrb),
3712 GFP_KERNEL);
3713 if (!hba->lrb) {
3714 dev_err(hba->dev, "LRB Memory allocation failed\n");
3715 goto out;
3716 }
3717 return 0;
3718 out:
3719 return -ENOMEM;
3720 }
3721
3722 /**
3723 * ufshcd_host_memory_configure - configure local reference block with
3724 * memory offsets
3725 * @hba: per adapter instance
3726 *
3727 * Configure Host memory space
3728 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3729 * address.
3730 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3731 * and PRDT offset.
3732 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3733 * into local reference block.
3734 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3735 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3736 {
3737 struct utp_transfer_req_desc *utrdlp;
3738 dma_addr_t cmd_desc_dma_addr;
3739 dma_addr_t cmd_desc_element_addr;
3740 u16 response_offset;
3741 u16 prdt_offset;
3742 int cmd_desc_size;
3743 int i;
3744
3745 utrdlp = hba->utrdl_base_addr;
3746
3747 response_offset =
3748 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3749 prdt_offset =
3750 offsetof(struct utp_transfer_cmd_desc, prd_table);
3751
3752 cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3753 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3754
3755 for (i = 0; i < hba->nutrs; i++) {
3756 /* Configure UTRD with command descriptor base address */
3757 cmd_desc_element_addr =
3758 (cmd_desc_dma_addr + (cmd_desc_size * i));
3759 utrdlp[i].command_desc_base_addr_lo =
3760 cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3761 utrdlp[i].command_desc_base_addr_hi =
3762 cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3763
3764 /* Response upiu and prdt offset should be in double words */
3765 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3766 utrdlp[i].response_upiu_offset =
3767 cpu_to_le16(response_offset);
3768 utrdlp[i].prd_table_offset =
3769 cpu_to_le16(prdt_offset);
3770 utrdlp[i].response_upiu_length =
3771 cpu_to_le16(ALIGNED_UPIU_SIZE);
3772 } else {
3773 utrdlp[i].response_upiu_offset =
3774 cpu_to_le16(response_offset >> 2);
3775 utrdlp[i].prd_table_offset =
3776 cpu_to_le16(prdt_offset >> 2);
3777 utrdlp[i].response_upiu_length =
3778 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3779 }
3780
3781 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3782 }
3783 }
3784
3785 /**
3786 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3787 * @hba: per adapter instance
3788 *
3789 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3790 * in order to initialize the Unipro link startup procedure.
3791 * Once the Unipro links are up, the device connected to the controller
3792 * is detected.
3793 *
3794 * Returns 0 on success, non-zero value on failure
3795 */
ufshcd_dme_link_startup(struct ufs_hba * hba)3796 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3797 {
3798 struct uic_command uic_cmd = {0};
3799 int ret;
3800
3801 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3802
3803 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3804 if (ret)
3805 dev_dbg(hba->dev,
3806 "dme-link-startup: error code %d\n", ret);
3807 return ret;
3808 }
3809 /**
3810 * ufshcd_dme_reset - UIC command for DME_RESET
3811 * @hba: per adapter instance
3812 *
3813 * DME_RESET command is issued in order to reset UniPro stack.
3814 * This function now deals with cold reset.
3815 *
3816 * Returns 0 on success, non-zero value on failure
3817 */
ufshcd_dme_reset(struct ufs_hba * hba)3818 static int ufshcd_dme_reset(struct ufs_hba *hba)
3819 {
3820 struct uic_command uic_cmd = {0};
3821 int ret;
3822
3823 uic_cmd.command = UIC_CMD_DME_RESET;
3824
3825 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3826 if (ret)
3827 dev_err(hba->dev,
3828 "dme-reset: error code %d\n", ret);
3829
3830 return ret;
3831 }
3832
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)3833 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3834 int agreed_gear,
3835 int adapt_val)
3836 {
3837 int ret;
3838
3839 if (agreed_gear != UFS_HS_G4)
3840 adapt_val = PA_NO_ADAPT;
3841
3842 ret = ufshcd_dme_set(hba,
3843 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3844 adapt_val);
3845 return ret;
3846 }
3847 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3848
3849 /**
3850 * ufshcd_dme_enable - UIC command for DME_ENABLE
3851 * @hba: per adapter instance
3852 *
3853 * DME_ENABLE command is issued in order to enable UniPro stack.
3854 *
3855 * Returns 0 on success, non-zero value on failure
3856 */
ufshcd_dme_enable(struct ufs_hba * hba)3857 static int ufshcd_dme_enable(struct ufs_hba *hba)
3858 {
3859 struct uic_command uic_cmd = {0};
3860 int ret;
3861
3862 uic_cmd.command = UIC_CMD_DME_ENABLE;
3863
3864 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3865 if (ret)
3866 dev_err(hba->dev,
3867 "dme-enable: error code %d\n", ret);
3868
3869 return ret;
3870 }
3871
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3872 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3873 {
3874 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
3875 unsigned long min_sleep_time_us;
3876
3877 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3878 return;
3879
3880 /*
3881 * last_dme_cmd_tstamp will be 0 only for 1st call to
3882 * this function
3883 */
3884 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3885 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3886 } else {
3887 unsigned long delta =
3888 (unsigned long) ktime_to_us(
3889 ktime_sub(ktime_get(),
3890 hba->last_dme_cmd_tstamp));
3891
3892 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3893 min_sleep_time_us =
3894 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3895 else
3896 return; /* no more delay required */
3897 }
3898
3899 /* allow sleep for extra 50us if needed */
3900 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3901 }
3902
3903 /**
3904 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3905 * @hba: per adapter instance
3906 * @attr_sel: uic command argument1
3907 * @attr_set: attribute set type as uic command argument2
3908 * @mib_val: setting value as uic command argument3
3909 * @peer: indicate whether peer or local
3910 *
3911 * Returns 0 on success, non-zero value on failure
3912 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3913 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3914 u8 attr_set, u32 mib_val, u8 peer)
3915 {
3916 struct uic_command uic_cmd = {0};
3917 static const char *const action[] = {
3918 "dme-set",
3919 "dme-peer-set"
3920 };
3921 const char *set = action[!!peer];
3922 int ret;
3923 int retries = UFS_UIC_COMMAND_RETRIES;
3924
3925 uic_cmd.command = peer ?
3926 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3927 uic_cmd.argument1 = attr_sel;
3928 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3929 uic_cmd.argument3 = mib_val;
3930
3931 do {
3932 /* for peer attributes we retry upon failure */
3933 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3934 if (ret)
3935 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3936 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3937 } while (ret && peer && --retries);
3938
3939 if (ret)
3940 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3941 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3942 UFS_UIC_COMMAND_RETRIES - retries);
3943
3944 return ret;
3945 }
3946 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3947
3948 /**
3949 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3950 * @hba: per adapter instance
3951 * @attr_sel: uic command argument1
3952 * @mib_val: the value of the attribute as returned by the UIC command
3953 * @peer: indicate whether peer or local
3954 *
3955 * Returns 0 on success, non-zero value on failure
3956 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3957 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3958 u32 *mib_val, u8 peer)
3959 {
3960 struct uic_command uic_cmd = {0};
3961 static const char *const action[] = {
3962 "dme-get",
3963 "dme-peer-get"
3964 };
3965 const char *get = action[!!peer];
3966 int ret;
3967 int retries = UFS_UIC_COMMAND_RETRIES;
3968 struct ufs_pa_layer_attr orig_pwr_info;
3969 struct ufs_pa_layer_attr temp_pwr_info;
3970 bool pwr_mode_change = false;
3971
3972 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3973 orig_pwr_info = hba->pwr_info;
3974 temp_pwr_info = orig_pwr_info;
3975
3976 if (orig_pwr_info.pwr_tx == FAST_MODE ||
3977 orig_pwr_info.pwr_rx == FAST_MODE) {
3978 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3979 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3980 pwr_mode_change = true;
3981 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3982 orig_pwr_info.pwr_rx == SLOW_MODE) {
3983 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3984 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3985 pwr_mode_change = true;
3986 }
3987 if (pwr_mode_change) {
3988 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3989 if (ret)
3990 goto out;
3991 }
3992 }
3993
3994 uic_cmd.command = peer ?
3995 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3996 uic_cmd.argument1 = attr_sel;
3997
3998 do {
3999 /* for peer attributes we retry upon failure */
4000 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4001 if (ret)
4002 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4003 get, UIC_GET_ATTR_ID(attr_sel), ret);
4004 } while (ret && peer && --retries);
4005
4006 if (ret)
4007 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4008 get, UIC_GET_ATTR_ID(attr_sel),
4009 UFS_UIC_COMMAND_RETRIES - retries);
4010
4011 if (mib_val && !ret)
4012 *mib_val = uic_cmd.argument3;
4013
4014 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4015 && pwr_mode_change)
4016 ufshcd_change_power_mode(hba, &orig_pwr_info);
4017 out:
4018 return ret;
4019 }
4020 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4021
4022 /**
4023 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4024 * state) and waits for it to take effect.
4025 *
4026 * @hba: per adapter instance
4027 * @cmd: UIC command to execute
4028 *
4029 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4030 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4031 * and device UniPro link and hence it's final completion would be indicated by
4032 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4033 * addition to normal UIC command completion Status (UCCS). This function only
4034 * returns after the relevant status bits indicate the completion.
4035 *
4036 * Returns 0 on success, non-zero value on failure
4037 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4038 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4039 {
4040 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4041 unsigned long flags;
4042 u8 status;
4043 int ret;
4044 bool reenable_intr = false;
4045
4046 mutex_lock(&hba->uic_cmd_mutex);
4047 ufshcd_add_delay_before_dme_cmd(hba);
4048
4049 spin_lock_irqsave(hba->host->host_lock, flags);
4050 if (ufshcd_is_link_broken(hba)) {
4051 ret = -ENOLINK;
4052 goto out_unlock;
4053 }
4054 hba->uic_async_done = &uic_async_done;
4055 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4056 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4057 /*
4058 * Make sure UIC command completion interrupt is disabled before
4059 * issuing UIC command.
4060 */
4061 wmb();
4062 reenable_intr = true;
4063 }
4064 ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4065 spin_unlock_irqrestore(hba->host->host_lock, flags);
4066 if (ret) {
4067 dev_err(hba->dev,
4068 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4069 cmd->command, cmd->argument3, ret);
4070 goto out;
4071 }
4072
4073 if (!wait_for_completion_timeout(hba->uic_async_done,
4074 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4075 dev_err(hba->dev,
4076 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4077 cmd->command, cmd->argument3);
4078
4079 if (!cmd->cmd_active) {
4080 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4081 __func__);
4082 goto check_upmcrs;
4083 }
4084
4085 ret = -ETIMEDOUT;
4086 goto out;
4087 }
4088
4089 check_upmcrs:
4090 status = ufshcd_get_upmcrs(hba);
4091 if (status != PWR_LOCAL) {
4092 dev_err(hba->dev,
4093 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4094 cmd->command, status);
4095 ret = (status != PWR_OK) ? status : -1;
4096 }
4097 out:
4098 if (ret) {
4099 ufshcd_print_host_state(hba);
4100 ufshcd_print_pwr_info(hba);
4101 ufshcd_print_evt_hist(hba);
4102 }
4103
4104 spin_lock_irqsave(hba->host->host_lock, flags);
4105 hba->active_uic_cmd = NULL;
4106 hba->uic_async_done = NULL;
4107 if (reenable_intr)
4108 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4109 if (ret) {
4110 ufshcd_set_link_broken(hba);
4111 ufshcd_schedule_eh_work(hba);
4112 }
4113 out_unlock:
4114 spin_unlock_irqrestore(hba->host->host_lock, flags);
4115 mutex_unlock(&hba->uic_cmd_mutex);
4116
4117 return ret;
4118 }
4119
4120 /**
4121 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4122 * using DME_SET primitives.
4123 * @hba: per adapter instance
4124 * @mode: powr mode value
4125 *
4126 * Returns 0 on success, non-zero value on failure
4127 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4128 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4129 {
4130 struct uic_command uic_cmd = {0};
4131 int ret;
4132
4133 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4134 ret = ufshcd_dme_set(hba,
4135 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4136 if (ret) {
4137 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4138 __func__, ret);
4139 goto out;
4140 }
4141 }
4142
4143 uic_cmd.command = UIC_CMD_DME_SET;
4144 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4145 uic_cmd.argument3 = mode;
4146 ufshcd_hold(hba, false);
4147 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4148 ufshcd_release(hba);
4149
4150 out:
4151 return ret;
4152 }
4153
ufshcd_link_recovery(struct ufs_hba * hba)4154 int ufshcd_link_recovery(struct ufs_hba *hba)
4155 {
4156 int ret;
4157 unsigned long flags;
4158
4159 spin_lock_irqsave(hba->host->host_lock, flags);
4160 hba->ufshcd_state = UFSHCD_STATE_RESET;
4161 ufshcd_set_eh_in_progress(hba);
4162 spin_unlock_irqrestore(hba->host->host_lock, flags);
4163
4164 /* Reset the attached device */
4165 ufshcd_device_reset(hba);
4166
4167 ret = ufshcd_host_reset_and_restore(hba);
4168
4169 spin_lock_irqsave(hba->host->host_lock, flags);
4170 if (ret)
4171 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4172 ufshcd_clear_eh_in_progress(hba);
4173 spin_unlock_irqrestore(hba->host->host_lock, flags);
4174
4175 if (ret)
4176 dev_err(hba->dev, "%s: link recovery failed, err %d",
4177 __func__, ret);
4178
4179 return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4182
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4183 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4184 {
4185 int ret;
4186 struct uic_command uic_cmd = {0};
4187 ktime_t start = ktime_get();
4188
4189 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4190
4191 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4192 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4193 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4194 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4195
4196 if (ret)
4197 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4198 __func__, ret);
4199 else
4200 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4201 POST_CHANGE);
4202
4203 return ret;
4204 }
4205 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4206
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4207 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4208 {
4209 struct uic_command uic_cmd = {0};
4210 int ret;
4211 ktime_t start = ktime_get();
4212
4213 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4214
4215 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4216 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4217 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4218 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4219
4220 if (ret) {
4221 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4222 __func__, ret);
4223 } else {
4224 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4225 POST_CHANGE);
4226 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
4227 hba->ufs_stats.hibern8_exit_cnt++;
4228 }
4229
4230 return ret;
4231 }
4232 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4233
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4234 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4235 {
4236 unsigned long flags;
4237 bool update = false;
4238
4239 if (!ufshcd_is_auto_hibern8_supported(hba))
4240 return;
4241
4242 spin_lock_irqsave(hba->host->host_lock, flags);
4243 if (hba->ahit != ahit) {
4244 hba->ahit = ahit;
4245 update = true;
4246 }
4247 spin_unlock_irqrestore(hba->host->host_lock, flags);
4248
4249 if (update &&
4250 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4251 ufshcd_rpm_get_sync(hba);
4252 ufshcd_hold(hba, false);
4253 ufshcd_auto_hibern8_enable(hba);
4254 ufshcd_release(hba);
4255 ufshcd_rpm_put_sync(hba);
4256 }
4257 }
4258 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4259
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4260 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4261 {
4262 if (!ufshcd_is_auto_hibern8_supported(hba))
4263 return;
4264
4265 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4266 }
4267
4268 /**
4269 * ufshcd_init_pwr_info - setting the POR (power on reset)
4270 * values in hba power info
4271 * @hba: per-adapter instance
4272 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4273 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4274 {
4275 hba->pwr_info.gear_rx = UFS_PWM_G1;
4276 hba->pwr_info.gear_tx = UFS_PWM_G1;
4277 hba->pwr_info.lane_rx = 1;
4278 hba->pwr_info.lane_tx = 1;
4279 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4280 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4281 hba->pwr_info.hs_rate = 0;
4282 }
4283
4284 /**
4285 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4286 * @hba: per-adapter instance
4287 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4288 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4289 {
4290 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4291
4292 if (hba->max_pwr_info.is_valid)
4293 return 0;
4294
4295 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4296 pwr_info->pwr_tx = FASTAUTO_MODE;
4297 pwr_info->pwr_rx = FASTAUTO_MODE;
4298 } else {
4299 pwr_info->pwr_tx = FAST_MODE;
4300 pwr_info->pwr_rx = FAST_MODE;
4301 }
4302 pwr_info->hs_rate = PA_HS_MODE_B;
4303
4304 /* Get the connected lane count */
4305 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4306 &pwr_info->lane_rx);
4307 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4308 &pwr_info->lane_tx);
4309
4310 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4311 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4312 __func__,
4313 pwr_info->lane_rx,
4314 pwr_info->lane_tx);
4315 return -EINVAL;
4316 }
4317
4318 /*
4319 * First, get the maximum gears of HS speed.
4320 * If a zero value, it means there is no HSGEAR capability.
4321 * Then, get the maximum gears of PWM speed.
4322 */
4323 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4324 if (!pwr_info->gear_rx) {
4325 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4326 &pwr_info->gear_rx);
4327 if (!pwr_info->gear_rx) {
4328 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4329 __func__, pwr_info->gear_rx);
4330 return -EINVAL;
4331 }
4332 pwr_info->pwr_rx = SLOW_MODE;
4333 }
4334
4335 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4336 &pwr_info->gear_tx);
4337 if (!pwr_info->gear_tx) {
4338 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4339 &pwr_info->gear_tx);
4340 if (!pwr_info->gear_tx) {
4341 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4342 __func__, pwr_info->gear_tx);
4343 return -EINVAL;
4344 }
4345 pwr_info->pwr_tx = SLOW_MODE;
4346 }
4347
4348 hba->max_pwr_info.is_valid = true;
4349 return 0;
4350 }
4351
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4352 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4353 struct ufs_pa_layer_attr *pwr_mode)
4354 {
4355 int ret;
4356
4357 /* if already configured to the requested pwr_mode */
4358 if (!hba->force_pmc &&
4359 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4360 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4361 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4362 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4363 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4364 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4365 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4366 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4367 return 0;
4368 }
4369
4370 /*
4371 * Configure attributes for power mode change with below.
4372 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4373 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4374 * - PA_HSSERIES
4375 */
4376 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4377 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4378 pwr_mode->lane_rx);
4379 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4380 pwr_mode->pwr_rx == FAST_MODE)
4381 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4382 else
4383 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4384
4385 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4386 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4387 pwr_mode->lane_tx);
4388 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4389 pwr_mode->pwr_tx == FAST_MODE)
4390 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4391 else
4392 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4393
4394 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4395 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4396 pwr_mode->pwr_rx == FAST_MODE ||
4397 pwr_mode->pwr_tx == FAST_MODE)
4398 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4399 pwr_mode->hs_rate);
4400
4401 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4402 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4403 DL_FC0ProtectionTimeOutVal_Default);
4404 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4405 DL_TC0ReplayTimeOutVal_Default);
4406 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4407 DL_AFC0ReqTimeOutVal_Default);
4408 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4409 DL_FC1ProtectionTimeOutVal_Default);
4410 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4411 DL_TC1ReplayTimeOutVal_Default);
4412 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4413 DL_AFC1ReqTimeOutVal_Default);
4414
4415 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4416 DL_FC0ProtectionTimeOutVal_Default);
4417 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4418 DL_TC0ReplayTimeOutVal_Default);
4419 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4420 DL_AFC0ReqTimeOutVal_Default);
4421 }
4422
4423 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4424 | pwr_mode->pwr_tx);
4425
4426 if (ret) {
4427 dev_err(hba->dev,
4428 "%s: power mode change failed %d\n", __func__, ret);
4429 } else {
4430 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4431 pwr_mode);
4432
4433 memcpy(&hba->pwr_info, pwr_mode,
4434 sizeof(struct ufs_pa_layer_attr));
4435 }
4436
4437 return ret;
4438 }
4439
4440 /**
4441 * ufshcd_config_pwr_mode - configure a new power mode
4442 * @hba: per-adapter instance
4443 * @desired_pwr_mode: desired power configuration
4444 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4445 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4446 struct ufs_pa_layer_attr *desired_pwr_mode)
4447 {
4448 struct ufs_pa_layer_attr final_params = { 0 };
4449 int ret;
4450
4451 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4452 desired_pwr_mode, &final_params);
4453
4454 if (ret)
4455 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4456
4457 ret = ufshcd_change_power_mode(hba, &final_params);
4458
4459 return ret;
4460 }
4461 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4462
4463 /**
4464 * ufshcd_complete_dev_init() - checks device readiness
4465 * @hba: per-adapter instance
4466 *
4467 * Set fDeviceInit flag and poll until device toggles it.
4468 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4469 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4470 {
4471 int err;
4472 bool flag_res = true;
4473 ktime_t timeout;
4474
4475 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4476 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4477 if (err) {
4478 dev_err(hba->dev,
4479 "%s setting fDeviceInit flag failed with error %d\n",
4480 __func__, err);
4481 goto out;
4482 }
4483
4484 /* Poll fDeviceInit flag to be cleared */
4485 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4486 do {
4487 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4488 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4489 if (!flag_res)
4490 break;
4491 usleep_range(500, 1000);
4492 } while (ktime_before(ktime_get(), timeout));
4493
4494 if (err) {
4495 dev_err(hba->dev,
4496 "%s reading fDeviceInit flag failed with error %d\n",
4497 __func__, err);
4498 } else if (flag_res) {
4499 dev_err(hba->dev,
4500 "%s fDeviceInit was not cleared by the device\n",
4501 __func__);
4502 err = -EBUSY;
4503 }
4504 out:
4505 return err;
4506 }
4507
4508 /**
4509 * ufshcd_make_hba_operational - Make UFS controller operational
4510 * @hba: per adapter instance
4511 *
4512 * To bring UFS host controller to operational state,
4513 * 1. Enable required interrupts
4514 * 2. Configure interrupt aggregation
4515 * 3. Program UTRL and UTMRL base address
4516 * 4. Configure run-stop-registers
4517 *
4518 * Returns 0 on success, non-zero value on failure
4519 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4520 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4521 {
4522 int err = 0;
4523 u32 reg;
4524
4525 /* Enable required interrupts */
4526 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4527
4528 /* Configure interrupt aggregation */
4529 if (ufshcd_is_intr_aggr_allowed(hba))
4530 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4531 else
4532 ufshcd_disable_intr_aggr(hba);
4533
4534 /* Configure UTRL and UTMRL base address registers */
4535 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4536 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4537 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4538 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4539 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4540 REG_UTP_TASK_REQ_LIST_BASE_L);
4541 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4542 REG_UTP_TASK_REQ_LIST_BASE_H);
4543
4544 /*
4545 * Make sure base address and interrupt setup are updated before
4546 * enabling the run/stop registers below.
4547 */
4548 wmb();
4549
4550 /*
4551 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4552 */
4553 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4554 if (!(ufshcd_get_lists_status(reg))) {
4555 ufshcd_enable_run_stop_reg(hba);
4556 } else {
4557 dev_err(hba->dev,
4558 "Host controller not ready to process requests");
4559 err = -EIO;
4560 }
4561
4562 return err;
4563 }
4564 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4565
4566 /**
4567 * ufshcd_hba_stop - Send controller to reset state
4568 * @hba: per adapter instance
4569 */
ufshcd_hba_stop(struct ufs_hba * hba)4570 void ufshcd_hba_stop(struct ufs_hba *hba)
4571 {
4572 unsigned long flags;
4573 int err;
4574
4575 /*
4576 * Obtain the host lock to prevent that the controller is disabled
4577 * while the UFS interrupt handler is active on another CPU.
4578 */
4579 spin_lock_irqsave(hba->host->host_lock, flags);
4580 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4581 spin_unlock_irqrestore(hba->host->host_lock, flags);
4582
4583 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4584 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4585 10, 1);
4586 if (err)
4587 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4588 }
4589 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4590
4591 /**
4592 * ufshcd_hba_execute_hce - initialize the controller
4593 * @hba: per adapter instance
4594 *
4595 * The controller resets itself and controller firmware initialization
4596 * sequence kicks off. When controller is ready it will set
4597 * the Host Controller Enable bit to 1.
4598 *
4599 * Returns 0 on success, non-zero value on failure
4600 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4601 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4602 {
4603 int retry_outer = 3;
4604 int retry_inner;
4605
4606 start:
4607 if (ufshcd_is_hba_active(hba))
4608 /* change controller state to "reset state" */
4609 ufshcd_hba_stop(hba);
4610
4611 /* UniPro link is disabled at this point */
4612 ufshcd_set_link_off(hba);
4613
4614 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4615
4616 /* start controller initialization sequence */
4617 ufshcd_hba_start(hba);
4618
4619 /*
4620 * To initialize a UFS host controller HCE bit must be set to 1.
4621 * During initialization the HCE bit value changes from 1->0->1.
4622 * When the host controller completes initialization sequence
4623 * it sets the value of HCE bit to 1. The same HCE bit is read back
4624 * to check if the controller has completed initialization sequence.
4625 * So without this delay the value HCE = 1, set in the previous
4626 * instruction might be read back.
4627 * This delay can be changed based on the controller.
4628 */
4629 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4630
4631 /* wait for the host controller to complete initialization */
4632 retry_inner = 50;
4633 while (!ufshcd_is_hba_active(hba)) {
4634 if (retry_inner) {
4635 retry_inner--;
4636 } else {
4637 dev_err(hba->dev,
4638 "Controller enable failed\n");
4639 if (retry_outer) {
4640 retry_outer--;
4641 goto start;
4642 }
4643 return -EIO;
4644 }
4645 usleep_range(1000, 1100);
4646 }
4647
4648 /* enable UIC related interrupts */
4649 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4650
4651 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4652
4653 return 0;
4654 }
4655
ufshcd_hba_enable(struct ufs_hba * hba)4656 int ufshcd_hba_enable(struct ufs_hba *hba)
4657 {
4658 int ret;
4659
4660 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4661 ufshcd_set_link_off(hba);
4662 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4663
4664 /* enable UIC related interrupts */
4665 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4666 ret = ufshcd_dme_reset(hba);
4667 if (!ret) {
4668 ret = ufshcd_dme_enable(hba);
4669 if (!ret)
4670 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4671 if (ret)
4672 dev_err(hba->dev,
4673 "Host controller enable failed with non-hce\n");
4674 }
4675 } else {
4676 ret = ufshcd_hba_execute_hce(hba);
4677 }
4678
4679 return ret;
4680 }
4681 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4682
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4683 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4684 {
4685 int tx_lanes = 0, i, err = 0;
4686
4687 if (!peer)
4688 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4689 &tx_lanes);
4690 else
4691 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4692 &tx_lanes);
4693 for (i = 0; i < tx_lanes; i++) {
4694 if (!peer)
4695 err = ufshcd_dme_set(hba,
4696 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4697 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4698 0);
4699 else
4700 err = ufshcd_dme_peer_set(hba,
4701 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4702 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4703 0);
4704 if (err) {
4705 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4706 __func__, peer, i, err);
4707 break;
4708 }
4709 }
4710
4711 return err;
4712 }
4713
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4714 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4715 {
4716 return ufshcd_disable_tx_lcc(hba, true);
4717 }
4718
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4719 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4720 {
4721 struct ufs_event_hist *e;
4722
4723 if (id >= UFS_EVT_CNT)
4724 return;
4725
4726 e = &hba->ufs_stats.event[id];
4727 e->val[e->pos] = val;
4728 e->tstamp[e->pos] = ktime_get();
4729 e->cnt += 1;
4730 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4731
4732 ufshcd_vops_event_notify(hba, id, &val);
4733 }
4734 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4735
4736 /**
4737 * ufshcd_link_startup - Initialize unipro link startup
4738 * @hba: per adapter instance
4739 *
4740 * Returns 0 for success, non-zero in case of failure
4741 */
ufshcd_link_startup(struct ufs_hba * hba)4742 static int ufshcd_link_startup(struct ufs_hba *hba)
4743 {
4744 int ret;
4745 int retries = DME_LINKSTARTUP_RETRIES;
4746 bool link_startup_again = false;
4747
4748 /*
4749 * If UFS device isn't active then we will have to issue link startup
4750 * 2 times to make sure the device state move to active.
4751 */
4752 if (!ufshcd_is_ufs_dev_active(hba))
4753 link_startup_again = true;
4754
4755 link_startup:
4756 do {
4757 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4758
4759 ret = ufshcd_dme_link_startup(hba);
4760
4761 /* check if device is detected by inter-connect layer */
4762 if (!ret && !ufshcd_is_device_present(hba)) {
4763 ufshcd_update_evt_hist(hba,
4764 UFS_EVT_LINK_STARTUP_FAIL,
4765 0);
4766 dev_err(hba->dev, "%s: Device not present\n", __func__);
4767 ret = -ENXIO;
4768 goto out;
4769 }
4770
4771 /*
4772 * DME link lost indication is only received when link is up,
4773 * but we can't be sure if the link is up until link startup
4774 * succeeds. So reset the local Uni-Pro and try again.
4775 */
4776 if (ret && ufshcd_hba_enable(hba)) {
4777 ufshcd_update_evt_hist(hba,
4778 UFS_EVT_LINK_STARTUP_FAIL,
4779 (u32)ret);
4780 goto out;
4781 }
4782 } while (ret && retries--);
4783
4784 if (ret) {
4785 /* failed to get the link up... retire */
4786 ufshcd_update_evt_hist(hba,
4787 UFS_EVT_LINK_STARTUP_FAIL,
4788 (u32)ret);
4789 goto out;
4790 }
4791
4792 if (link_startup_again) {
4793 link_startup_again = false;
4794 retries = DME_LINKSTARTUP_RETRIES;
4795 goto link_startup;
4796 }
4797
4798 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4799 ufshcd_init_pwr_info(hba);
4800 ufshcd_print_pwr_info(hba);
4801
4802 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4803 ret = ufshcd_disable_device_tx_lcc(hba);
4804 if (ret)
4805 goto out;
4806 }
4807
4808 /* Include any host controller configuration via UIC commands */
4809 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4810 if (ret)
4811 goto out;
4812
4813 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4814 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4815 ret = ufshcd_make_hba_operational(hba);
4816 out:
4817 if (ret) {
4818 dev_err(hba->dev, "link startup failed %d\n", ret);
4819 ufshcd_print_host_state(hba);
4820 ufshcd_print_pwr_info(hba);
4821 ufshcd_print_evt_hist(hba);
4822 }
4823 return ret;
4824 }
4825
4826 /**
4827 * ufshcd_verify_dev_init() - Verify device initialization
4828 * @hba: per-adapter instance
4829 *
4830 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4831 * device Transport Protocol (UTP) layer is ready after a reset.
4832 * If the UTP layer at the device side is not initialized, it may
4833 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4834 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4835 */
ufshcd_verify_dev_init(struct ufs_hba * hba)4836 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4837 {
4838 int err = 0;
4839 int retries;
4840
4841 ufshcd_hold(hba, false);
4842 mutex_lock(&hba->dev_cmd.lock);
4843 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4844 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4845 hba->nop_out_timeout);
4846
4847 if (!err || err == -ETIMEDOUT)
4848 break;
4849
4850 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4851 }
4852 mutex_unlock(&hba->dev_cmd.lock);
4853 ufshcd_release(hba);
4854
4855 if (err)
4856 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4857 return err;
4858 }
4859
4860 /**
4861 * ufshcd_set_queue_depth - set lun queue depth
4862 * @sdev: pointer to SCSI device
4863 *
4864 * Read bLUQueueDepth value and activate scsi tagged command
4865 * queueing. For WLUN, queue depth is set to 1. For best-effort
4866 * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4867 * value that host can queue.
4868 */
ufshcd_set_queue_depth(struct scsi_device * sdev)4869 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4870 {
4871 int ret = 0;
4872 u8 lun_qdepth;
4873 struct ufs_hba *hba;
4874
4875 hba = shost_priv(sdev->host);
4876
4877 lun_qdepth = hba->nutrs;
4878 ret = ufshcd_read_unit_desc_param(hba,
4879 ufshcd_scsi_to_upiu_lun(sdev->lun),
4880 UNIT_DESC_PARAM_LU_Q_DEPTH,
4881 &lun_qdepth,
4882 sizeof(lun_qdepth));
4883
4884 /* Some WLUN doesn't support unit descriptor */
4885 if (ret == -EOPNOTSUPP)
4886 lun_qdepth = 1;
4887 else if (!lun_qdepth)
4888 /* eventually, we can figure out the real queue depth */
4889 lun_qdepth = hba->nutrs;
4890 else
4891 lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4892
4893 dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4894 __func__, lun_qdepth);
4895 scsi_change_queue_depth(sdev, lun_qdepth);
4896 }
4897
4898 /*
4899 * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4900 * @hba: per-adapter instance
4901 * @lun: UFS device lun id
4902 * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4903 *
4904 * Returns 0 in case of success and b_lu_write_protect status would be returned
4905 * @b_lu_write_protect parameter.
4906 * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4907 * Returns -EINVAL in case of invalid parameters passed to this function.
4908 */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4909 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4910 u8 lun,
4911 u8 *b_lu_write_protect)
4912 {
4913 int ret;
4914
4915 if (!b_lu_write_protect)
4916 ret = -EINVAL;
4917 /*
4918 * According to UFS device spec, RPMB LU can't be write
4919 * protected so skip reading bLUWriteProtect parameter for
4920 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4921 */
4922 else if (lun >= hba->dev_info.max_lu_supported)
4923 ret = -ENOTSUPP;
4924 else
4925 ret = ufshcd_read_unit_desc_param(hba,
4926 lun,
4927 UNIT_DESC_PARAM_LU_WR_PROTECT,
4928 b_lu_write_protect,
4929 sizeof(*b_lu_write_protect));
4930 return ret;
4931 }
4932
4933 /**
4934 * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4935 * status
4936 * @hba: per-adapter instance
4937 * @sdev: pointer to SCSI device
4938 *
4939 */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4940 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4941 struct scsi_device *sdev)
4942 {
4943 if (hba->dev_info.f_power_on_wp_en &&
4944 !hba->dev_info.is_lu_power_on_wp) {
4945 u8 b_lu_write_protect;
4946
4947 if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4948 &b_lu_write_protect) &&
4949 (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4950 hba->dev_info.is_lu_power_on_wp = true;
4951 }
4952 }
4953
4954 /**
4955 * ufshcd_setup_links - associate link b/w device wlun and other luns
4956 * @sdev: pointer to SCSI device
4957 * @hba: pointer to ufs hba
4958 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)4959 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4960 {
4961 struct device_link *link;
4962
4963 /*
4964 * Device wlun is the supplier & rest of the luns are consumers.
4965 * This ensures that device wlun suspends after all other luns.
4966 */
4967 if (hba->ufs_device_wlun) {
4968 link = device_link_add(&sdev->sdev_gendev,
4969 &hba->ufs_device_wlun->sdev_gendev,
4970 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4971 if (!link) {
4972 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4973 dev_name(&hba->ufs_device_wlun->sdev_gendev));
4974 return;
4975 }
4976 hba->luns_avail--;
4977 /* Ignore REPORT_LUN wlun probing */
4978 if (hba->luns_avail == 1) {
4979 ufshcd_rpm_put(hba);
4980 return;
4981 }
4982 } else {
4983 /*
4984 * Device wlun is probed. The assumption is that WLUNs are
4985 * scanned before other LUNs.
4986 */
4987 hba->luns_avail--;
4988 }
4989 }
4990
4991 /**
4992 * ufshcd_slave_alloc - handle initial SCSI device configurations
4993 * @sdev: pointer to SCSI device
4994 *
4995 * Returns success
4996 */
ufshcd_slave_alloc(struct scsi_device * sdev)4997 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4998 {
4999 struct ufs_hba *hba;
5000
5001 hba = shost_priv(sdev->host);
5002
5003 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5004 sdev->use_10_for_ms = 1;
5005
5006 /* DBD field should be set to 1 in mode sense(10) */
5007 sdev->set_dbd_for_ms = 1;
5008
5009 /* allow SCSI layer to restart the device in case of errors */
5010 sdev->allow_restart = 1;
5011
5012 /* REPORT SUPPORTED OPERATION CODES is not supported */
5013 sdev->no_report_opcodes = 1;
5014
5015 /* WRITE_SAME command is not supported */
5016 sdev->no_write_same = 1;
5017
5018 ufshcd_set_queue_depth(sdev);
5019
5020 ufshcd_get_lu_power_on_wp_status(hba, sdev);
5021
5022 ufshcd_setup_links(hba, sdev);
5023
5024 return 0;
5025 }
5026
5027 /**
5028 * ufshcd_change_queue_depth - change queue depth
5029 * @sdev: pointer to SCSI device
5030 * @depth: required depth to set
5031 *
5032 * Change queue depth and make sure the max. limits are not crossed.
5033 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5034 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5035 {
5036 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5037 }
5038
ufshcd_hpb_destroy(struct ufs_hba * hba,struct scsi_device * sdev)5039 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5040 {
5041 /* skip well-known LU */
5042 if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5043 !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5044 return;
5045
5046 ufshpb_destroy_lu(hba, sdev);
5047 }
5048
ufshcd_hpb_configure(struct ufs_hba * hba,struct scsi_device * sdev)5049 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5050 {
5051 /* skip well-known LU */
5052 if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5053 !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5054 return;
5055
5056 ufshpb_init_hpb_lu(hba, sdev);
5057 }
5058
5059 /**
5060 * ufshcd_slave_configure - adjust SCSI device configurations
5061 * @sdev: pointer to SCSI device
5062 */
ufshcd_slave_configure(struct scsi_device * sdev)5063 static int ufshcd_slave_configure(struct scsi_device *sdev)
5064 {
5065 struct ufs_hba *hba = shost_priv(sdev->host);
5066 struct request_queue *q = sdev->request_queue;
5067
5068 ufshcd_hpb_configure(hba, sdev);
5069
5070 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5071 if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
5072 blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
5073 /*
5074 * Block runtime-pm until all consumers are added.
5075 * Refer ufshcd_setup_links().
5076 */
5077 if (is_device_wlun(sdev))
5078 pm_runtime_get_noresume(&sdev->sdev_gendev);
5079 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5080 sdev->rpm_autosuspend = 1;
5081 /*
5082 * Do not print messages during runtime PM to avoid never-ending cycles
5083 * of messages written back to storage by user space causing runtime
5084 * resume, causing more messages and so on.
5085 */
5086 sdev->silence_suspend = 1;
5087
5088 ufshcd_crypto_register(hba, q);
5089
5090 return 0;
5091 }
5092
5093 /**
5094 * ufshcd_slave_destroy - remove SCSI device configurations
5095 * @sdev: pointer to SCSI device
5096 */
ufshcd_slave_destroy(struct scsi_device * sdev)5097 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5098 {
5099 struct ufs_hba *hba;
5100 unsigned long flags;
5101
5102 hba = shost_priv(sdev->host);
5103
5104 ufshcd_hpb_destroy(hba, sdev);
5105
5106 /* Drop the reference as it won't be needed anymore */
5107 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5108 spin_lock_irqsave(hba->host->host_lock, flags);
5109 hba->ufs_device_wlun = NULL;
5110 spin_unlock_irqrestore(hba->host->host_lock, flags);
5111 } else if (hba->ufs_device_wlun) {
5112 struct device *supplier = NULL;
5113
5114 /* Ensure UFS Device WLUN exists and does not disappear */
5115 spin_lock_irqsave(hba->host->host_lock, flags);
5116 if (hba->ufs_device_wlun) {
5117 supplier = &hba->ufs_device_wlun->sdev_gendev;
5118 get_device(supplier);
5119 }
5120 spin_unlock_irqrestore(hba->host->host_lock, flags);
5121
5122 if (supplier) {
5123 /*
5124 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5125 * device will not have been registered but can still
5126 * have a device link holding a reference to the device.
5127 */
5128 device_link_remove(&sdev->sdev_gendev, supplier);
5129 put_device(supplier);
5130 }
5131 }
5132 }
5133
5134 /**
5135 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5136 * @lrbp: pointer to local reference block of completed command
5137 * @scsi_status: SCSI command status
5138 *
5139 * Returns value base on SCSI command status
5140 */
5141 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5142 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5143 {
5144 int result = 0;
5145
5146 switch (scsi_status) {
5147 case SAM_STAT_CHECK_CONDITION:
5148 ufshcd_copy_sense_data(lrbp);
5149 fallthrough;
5150 case SAM_STAT_GOOD:
5151 result |= DID_OK << 16 | scsi_status;
5152 break;
5153 case SAM_STAT_TASK_SET_FULL:
5154 case SAM_STAT_BUSY:
5155 case SAM_STAT_TASK_ABORTED:
5156 ufshcd_copy_sense_data(lrbp);
5157 result |= scsi_status;
5158 break;
5159 default:
5160 result |= DID_ERROR << 16;
5161 break;
5162 } /* end of switch */
5163
5164 return result;
5165 }
5166
5167 /**
5168 * ufshcd_transfer_rsp_status - Get overall status of the response
5169 * @hba: per adapter instance
5170 * @lrbp: pointer to local reference block of completed command
5171 *
5172 * Returns result of the command to notify SCSI midlayer
5173 */
5174 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5175 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
5176 {
5177 int result = 0;
5178 int scsi_status;
5179 enum utp_ocs ocs;
5180
5181 /* overall command status of utrd */
5182 ocs = ufshcd_get_tr_ocs(lrbp);
5183
5184 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5185 if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5186 MASK_RSP_UPIU_RESULT)
5187 ocs = OCS_SUCCESS;
5188 }
5189
5190 switch (ocs) {
5191 case OCS_SUCCESS:
5192 result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5193 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5194 switch (result) {
5195 case UPIU_TRANSACTION_RESPONSE:
5196 /*
5197 * get the response UPIU result to extract
5198 * the SCSI command status
5199 */
5200 result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5201
5202 /*
5203 * get the result based on SCSI status response
5204 * to notify the SCSI midlayer of the command status
5205 */
5206 scsi_status = result & MASK_SCSI_STATUS;
5207 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5208
5209 /*
5210 * Currently we are only supporting BKOPs exception
5211 * events hence we can ignore BKOPs exception event
5212 * during power management callbacks. BKOPs exception
5213 * event is not expected to be raised in runtime suspend
5214 * callback as it allows the urgent bkops.
5215 * During system suspend, we are anyway forcefully
5216 * disabling the bkops and if urgent bkops is needed
5217 * it will be enabled on system resume. Long term
5218 * solution could be to abort the system suspend if
5219 * UFS device needs urgent BKOPs.
5220 */
5221 if (!hba->pm_op_in_progress &&
5222 !ufshcd_eh_in_progress(hba) &&
5223 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5224 /* Flushed in suspend */
5225 schedule_work(&hba->eeh_work);
5226
5227 if (scsi_status == SAM_STAT_GOOD)
5228 ufshpb_rsp_upiu(hba, lrbp);
5229 break;
5230 case UPIU_TRANSACTION_REJECT_UPIU:
5231 /* TODO: handle Reject UPIU Response */
5232 result = DID_ERROR << 16;
5233 dev_err(hba->dev,
5234 "Reject UPIU not fully implemented\n");
5235 break;
5236 default:
5237 dev_err(hba->dev,
5238 "Unexpected request response code = %x\n",
5239 result);
5240 result = DID_ERROR << 16;
5241 break;
5242 }
5243 break;
5244 case OCS_ABORTED:
5245 result |= DID_ABORT << 16;
5246 break;
5247 case OCS_INVALID_COMMAND_STATUS:
5248 result |= DID_REQUEUE << 16;
5249 break;
5250 case OCS_INVALID_CMD_TABLE_ATTR:
5251 case OCS_INVALID_PRDT_ATTR:
5252 case OCS_MISMATCH_DATA_BUF_SIZE:
5253 case OCS_MISMATCH_RESP_UPIU_SIZE:
5254 case OCS_PEER_COMM_FAILURE:
5255 case OCS_FATAL_ERROR:
5256 case OCS_DEVICE_FATAL_ERROR:
5257 case OCS_INVALID_CRYPTO_CONFIG:
5258 case OCS_GENERAL_CRYPTO_ERROR:
5259 default:
5260 result |= DID_ERROR << 16;
5261 dev_err(hba->dev,
5262 "OCS error from controller = %x for tag %d\n",
5263 ocs, lrbp->task_tag);
5264 ufshcd_print_evt_hist(hba);
5265 ufshcd_print_host_state(hba);
5266 break;
5267 } /* end of switch */
5268
5269 if ((host_byte(result) != DID_OK) &&
5270 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5271 ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5272 return result;
5273 }
5274
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5275 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5276 u32 intr_mask)
5277 {
5278 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5279 !ufshcd_is_auto_hibern8_enabled(hba))
5280 return false;
5281
5282 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5283 return false;
5284
5285 if (hba->active_uic_cmd &&
5286 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5287 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5288 return false;
5289
5290 return true;
5291 }
5292
5293 /**
5294 * ufshcd_uic_cmd_compl - handle completion of uic command
5295 * @hba: per adapter instance
5296 * @intr_status: interrupt status generated by the controller
5297 *
5298 * Returns
5299 * IRQ_HANDLED - If interrupt is valid
5300 * IRQ_NONE - If invalid interrupt
5301 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5302 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5303 {
5304 irqreturn_t retval = IRQ_NONE;
5305
5306 spin_lock(hba->host->host_lock);
5307 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5308 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5309
5310 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5311 hba->active_uic_cmd->argument2 |=
5312 ufshcd_get_uic_cmd_result(hba);
5313 hba->active_uic_cmd->argument3 =
5314 ufshcd_get_dme_attr_val(hba);
5315 if (!hba->uic_async_done)
5316 hba->active_uic_cmd->cmd_active = 0;
5317 complete(&hba->active_uic_cmd->done);
5318 retval = IRQ_HANDLED;
5319 }
5320
5321 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5322 hba->active_uic_cmd->cmd_active = 0;
5323 complete(hba->uic_async_done);
5324 retval = IRQ_HANDLED;
5325 }
5326
5327 if (retval == IRQ_HANDLED)
5328 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5329 UFS_CMD_COMP);
5330 spin_unlock(hba->host->host_lock);
5331 return retval;
5332 }
5333
5334 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5335 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5336 struct ufshcd_lrb *lrbp)
5337 {
5338 struct scsi_cmnd *cmd = lrbp->cmd;
5339
5340 scsi_dma_unmap(cmd);
5341 lrbp->cmd = NULL; /* Mark the command as completed. */
5342 ufshcd_release(hba);
5343 ufshcd_clk_scaling_update_busy(hba);
5344 }
5345
5346 /**
5347 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5348 * @hba: per adapter instance
5349 * @completed_reqs: bitmask that indicates which requests to complete
5350 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5351 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5352 unsigned long completed_reqs)
5353 {
5354 struct ufshcd_lrb *lrbp;
5355 struct scsi_cmnd *cmd;
5356 int index;
5357
5358 for_each_set_bit(index, &completed_reqs, hba->nutrs) {
5359 lrbp = &hba->lrb[index];
5360 lrbp->compl_time_stamp = ktime_get();
5361 cmd = lrbp->cmd;
5362 if (cmd) {
5363 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5364 ufshcd_update_monitor(hba, lrbp);
5365 ufshcd_add_command_trace(hba, index, UFS_CMD_COMP);
5366 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp);
5367 ufshcd_release_scsi_cmd(hba, lrbp);
5368 /* Do not touch lrbp after scsi done */
5369 scsi_done(cmd);
5370 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5371 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5372 if (hba->dev_cmd.complete) {
5373 ufshcd_add_command_trace(hba, index,
5374 UFS_DEV_COMP);
5375 complete(hba->dev_cmd.complete);
5376 ufshcd_clk_scaling_update_busy(hba);
5377 }
5378 }
5379 }
5380 }
5381
5382 /*
5383 * Returns > 0 if one or more commands have been completed or 0 if no
5384 * requests have been completed.
5385 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5386 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5387 {
5388 struct ufs_hba *hba = shost_priv(shost);
5389 unsigned long completed_reqs, flags;
5390 u32 tr_doorbell;
5391
5392 spin_lock_irqsave(&hba->outstanding_lock, flags);
5393 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5394 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5395 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5396 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5397 hba->outstanding_reqs);
5398 hba->outstanding_reqs &= ~completed_reqs;
5399 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5400
5401 if (completed_reqs)
5402 __ufshcd_transfer_req_compl(hba, completed_reqs);
5403
5404 return completed_reqs;
5405 }
5406
5407 /**
5408 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5409 * @hba: per adapter instance
5410 *
5411 * Returns
5412 * IRQ_HANDLED - If interrupt is valid
5413 * IRQ_NONE - If invalid interrupt
5414 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5415 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5416 {
5417 /* Resetting interrupt aggregation counters first and reading the
5418 * DOOR_BELL afterward allows us to handle all the completed requests.
5419 * In order to prevent other interrupts starvation the DB is read once
5420 * after reset. The down side of this solution is the possibility of
5421 * false interrupt if device completes another request after resetting
5422 * aggregation and before reading the DB.
5423 */
5424 if (ufshcd_is_intr_aggr_allowed(hba) &&
5425 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5426 ufshcd_reset_intr_aggr(hba);
5427
5428 if (ufs_fail_completion())
5429 return IRQ_HANDLED;
5430
5431 /*
5432 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5433 * do not want polling to trigger spurious interrupt complaints.
5434 */
5435 ufshcd_poll(hba->host, 0);
5436
5437 return IRQ_HANDLED;
5438 }
5439
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5440 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5441 {
5442 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5443 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5444 &ee_ctrl_mask);
5445 }
5446
ufshcd_write_ee_control(struct ufs_hba * hba)5447 int ufshcd_write_ee_control(struct ufs_hba *hba)
5448 {
5449 int err;
5450
5451 mutex_lock(&hba->ee_ctrl_mutex);
5452 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5453 mutex_unlock(&hba->ee_ctrl_mutex);
5454 if (err)
5455 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5456 __func__, err);
5457 return err;
5458 }
5459
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,u16 * other_mask,u16 set,u16 clr)5460 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, u16 *other_mask,
5461 u16 set, u16 clr)
5462 {
5463 u16 new_mask, ee_ctrl_mask;
5464 int err = 0;
5465
5466 mutex_lock(&hba->ee_ctrl_mutex);
5467 new_mask = (*mask & ~clr) | set;
5468 ee_ctrl_mask = new_mask | *other_mask;
5469 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5470 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5471 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5472 if (!err) {
5473 hba->ee_ctrl_mask = ee_ctrl_mask;
5474 *mask = new_mask;
5475 }
5476 mutex_unlock(&hba->ee_ctrl_mutex);
5477 return err;
5478 }
5479
5480 /**
5481 * ufshcd_disable_ee - disable exception event
5482 * @hba: per-adapter instance
5483 * @mask: exception event to disable
5484 *
5485 * Disables exception event in the device so that the EVENT_ALERT
5486 * bit is not set.
5487 *
5488 * Returns zero on success, non-zero error value on failure.
5489 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5490 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5491 {
5492 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5493 }
5494
5495 /**
5496 * ufshcd_enable_ee - enable exception event
5497 * @hba: per-adapter instance
5498 * @mask: exception event to enable
5499 *
5500 * Enable corresponding exception event in the device to allow
5501 * device to alert host in critical scenarios.
5502 *
5503 * Returns zero on success, non-zero error value on failure.
5504 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5505 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5506 {
5507 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5508 }
5509
5510 /**
5511 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5512 * @hba: per-adapter instance
5513 *
5514 * Allow device to manage background operations on its own. Enabling
5515 * this might lead to inconsistent latencies during normal data transfers
5516 * as the device is allowed to manage its own way of handling background
5517 * operations.
5518 *
5519 * Returns zero on success, non-zero on failure.
5520 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5521 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5522 {
5523 int err = 0;
5524
5525 if (hba->auto_bkops_enabled)
5526 goto out;
5527
5528 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5529 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5530 if (err) {
5531 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5532 __func__, err);
5533 goto out;
5534 }
5535
5536 hba->auto_bkops_enabled = true;
5537 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5538
5539 /* No need of URGENT_BKOPS exception from the device */
5540 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5541 if (err)
5542 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5543 __func__, err);
5544 out:
5545 return err;
5546 }
5547
5548 /**
5549 * ufshcd_disable_auto_bkops - block device in doing background operations
5550 * @hba: per-adapter instance
5551 *
5552 * Disabling background operations improves command response latency but
5553 * has drawback of device moving into critical state where the device is
5554 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5555 * host is idle so that BKOPS are managed effectively without any negative
5556 * impacts.
5557 *
5558 * Returns zero on success, non-zero on failure.
5559 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5560 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5561 {
5562 int err = 0;
5563
5564 if (!hba->auto_bkops_enabled)
5565 goto out;
5566
5567 /*
5568 * If host assisted BKOPs is to be enabled, make sure
5569 * urgent bkops exception is allowed.
5570 */
5571 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5572 if (err) {
5573 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5574 __func__, err);
5575 goto out;
5576 }
5577
5578 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5579 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5580 if (err) {
5581 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5582 __func__, err);
5583 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5584 goto out;
5585 }
5586
5587 hba->auto_bkops_enabled = false;
5588 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5589 hba->is_urgent_bkops_lvl_checked = false;
5590 out:
5591 return err;
5592 }
5593
5594 /**
5595 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5596 * @hba: per adapter instance
5597 *
5598 * After a device reset the device may toggle the BKOPS_EN flag
5599 * to default value. The s/w tracking variables should be updated
5600 * as well. This function would change the auto-bkops state based on
5601 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5602 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5603 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5604 {
5605 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5606 hba->auto_bkops_enabled = false;
5607 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5608 ufshcd_enable_auto_bkops(hba);
5609 } else {
5610 hba->auto_bkops_enabled = true;
5611 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5612 ufshcd_disable_auto_bkops(hba);
5613 }
5614 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5615 hba->is_urgent_bkops_lvl_checked = false;
5616 }
5617
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5618 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5619 {
5620 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5621 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5622 }
5623
5624 /**
5625 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5626 * @hba: per-adapter instance
5627 * @status: bkops_status value
5628 *
5629 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5630 * flag in the device to permit background operations if the device
5631 * bkops_status is greater than or equal to "status" argument passed to
5632 * this function, disable otherwise.
5633 *
5634 * Returns 0 for success, non-zero in case of failure.
5635 *
5636 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5637 * to know whether auto bkops is enabled or disabled after this function
5638 * returns control to it.
5639 */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5640 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5641 enum bkops_status status)
5642 {
5643 int err;
5644 u32 curr_status = 0;
5645
5646 err = ufshcd_get_bkops_status(hba, &curr_status);
5647 if (err) {
5648 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5649 __func__, err);
5650 goto out;
5651 } else if (curr_status > BKOPS_STATUS_MAX) {
5652 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5653 __func__, curr_status);
5654 err = -EINVAL;
5655 goto out;
5656 }
5657
5658 if (curr_status >= status)
5659 err = ufshcd_enable_auto_bkops(hba);
5660 else
5661 err = ufshcd_disable_auto_bkops(hba);
5662 out:
5663 return err;
5664 }
5665
5666 /**
5667 * ufshcd_urgent_bkops - handle urgent bkops exception event
5668 * @hba: per-adapter instance
5669 *
5670 * Enable fBackgroundOpsEn flag in the device to permit background
5671 * operations.
5672 *
5673 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5674 * and negative error value for any other failure.
5675 */
ufshcd_urgent_bkops(struct ufs_hba * hba)5676 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5677 {
5678 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5679 }
5680
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5681 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5682 {
5683 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5684 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5685 }
5686
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5687 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5688 {
5689 int err;
5690 u32 curr_status = 0;
5691
5692 if (hba->is_urgent_bkops_lvl_checked)
5693 goto enable_auto_bkops;
5694
5695 err = ufshcd_get_bkops_status(hba, &curr_status);
5696 if (err) {
5697 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5698 __func__, err);
5699 goto out;
5700 }
5701
5702 /*
5703 * We are seeing that some devices are raising the urgent bkops
5704 * exception events even when BKOPS status doesn't indicate performace
5705 * impacted or critical. Handle these device by determining their urgent
5706 * bkops status at runtime.
5707 */
5708 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5709 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5710 __func__, curr_status);
5711 /* update the current status as the urgent bkops level */
5712 hba->urgent_bkops_lvl = curr_status;
5713 hba->is_urgent_bkops_lvl_checked = true;
5714 }
5715
5716 enable_auto_bkops:
5717 err = ufshcd_enable_auto_bkops(hba);
5718 out:
5719 if (err < 0)
5720 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5721 __func__, err);
5722 }
5723
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)5724 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5725 {
5726 u32 value;
5727
5728 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5729 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5730 return;
5731
5732 dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5733
5734 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5735
5736 /*
5737 * A placeholder for the platform vendors to add whatever additional
5738 * steps required
5739 */
5740 }
5741
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)5742 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5743 {
5744 u8 index;
5745 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5746 UPIU_QUERY_OPCODE_CLEAR_FLAG;
5747
5748 index = ufshcd_wb_get_query_index(hba);
5749 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5750 }
5751
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)5752 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5753 {
5754 int ret;
5755
5756 if (!ufshcd_is_wb_allowed(hba))
5757 return 0;
5758
5759 if (!(enable ^ hba->dev_info.wb_enabled))
5760 return 0;
5761
5762 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5763 if (ret) {
5764 dev_err(hba->dev, "%s Write Booster %s failed %d\n",
5765 __func__, enable ? "enable" : "disable", ret);
5766 return ret;
5767 }
5768
5769 hba->dev_info.wb_enabled = enable;
5770 dev_dbg(hba->dev, "%s Write Booster %s\n",
5771 __func__, enable ? "enabled" : "disabled");
5772
5773 return ret;
5774 }
5775
ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5776 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5777 {
5778 int ret;
5779
5780 ret = __ufshcd_wb_toggle(hba, set,
5781 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5782 if (ret) {
5783 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed: %d\n",
5784 __func__, set ? "enable" : "disable", ret);
5785 return;
5786 }
5787 dev_dbg(hba->dev, "%s WB-Buf Flush during H8 %s\n",
5788 __func__, set ? "enabled" : "disabled");
5789 }
5790
ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5791 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5792 {
5793 int ret;
5794
5795 if (!ufshcd_is_wb_allowed(hba) ||
5796 hba->dev_info.wb_buf_flush_enabled == enable)
5797 return;
5798
5799 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5800 if (ret) {
5801 dev_err(hba->dev, "%s WB-Buf Flush %s failed %d\n", __func__,
5802 enable ? "enable" : "disable", ret);
5803 return;
5804 }
5805
5806 hba->dev_info.wb_buf_flush_enabled = enable;
5807
5808 dev_dbg(hba->dev, "%s WB-Buf Flush %s\n",
5809 __func__, enable ? "enabled" : "disabled");
5810 }
5811
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5812 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5813 u32 avail_buf)
5814 {
5815 u32 cur_buf;
5816 int ret;
5817 u8 index;
5818
5819 index = ufshcd_wb_get_query_index(hba);
5820 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5821 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5822 index, 0, &cur_buf);
5823 if (ret) {
5824 dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5825 __func__, ret);
5826 return false;
5827 }
5828
5829 if (!cur_buf) {
5830 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5831 cur_buf);
5832 return false;
5833 }
5834 /* Let it continue to flush when available buffer exceeds threshold */
5835 return avail_buf < hba->vps->wb_flush_threshold;
5836 }
5837
ufshcd_wb_force_disable(struct ufs_hba * hba)5838 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5839 {
5840 if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
5841 ufshcd_wb_toggle_flush(hba, false);
5842
5843 ufshcd_wb_toggle_flush_during_h8(hba, false);
5844 ufshcd_wb_toggle(hba, false);
5845 hba->caps &= ~UFSHCD_CAP_WB_EN;
5846
5847 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5848 }
5849
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)5850 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5851 {
5852 u32 lifetime;
5853 int ret;
5854 u8 index;
5855
5856 index = ufshcd_wb_get_query_index(hba);
5857 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5858 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5859 index, 0, &lifetime);
5860 if (ret) {
5861 dev_err(hba->dev,
5862 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5863 __func__, ret);
5864 return false;
5865 }
5866
5867 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5868 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5869 __func__, lifetime);
5870 return false;
5871 }
5872
5873 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5874 __func__, lifetime);
5875
5876 return true;
5877 }
5878
ufshcd_wb_need_flush(struct ufs_hba * hba)5879 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5880 {
5881 int ret;
5882 u32 avail_buf;
5883 u8 index;
5884
5885 if (!ufshcd_is_wb_allowed(hba))
5886 return false;
5887
5888 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
5889 ufshcd_wb_force_disable(hba);
5890 return false;
5891 }
5892
5893 /*
5894 * The ufs device needs the vcc to be ON to flush.
5895 * With user-space reduction enabled, it's enough to enable flush
5896 * by checking only the available buffer. The threshold
5897 * defined here is > 90% full.
5898 * With user-space preserved enabled, the current-buffer
5899 * should be checked too because the wb buffer size can reduce
5900 * when disk tends to be full. This info is provided by current
5901 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5902 * keeping vcc on when current buffer is empty.
5903 */
5904 index = ufshcd_wb_get_query_index(hba);
5905 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5906 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5907 index, 0, &avail_buf);
5908 if (ret) {
5909 dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5910 __func__, ret);
5911 return false;
5912 }
5913
5914 if (!hba->dev_info.b_presrv_uspc_en)
5915 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
5916
5917 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5918 }
5919
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)5920 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5921 {
5922 struct ufs_hba *hba = container_of(to_delayed_work(work),
5923 struct ufs_hba,
5924 rpm_dev_flush_recheck_work);
5925 /*
5926 * To prevent unnecessary VCC power drain after device finishes
5927 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5928 * after a certain delay to recheck the threshold by next runtime
5929 * suspend.
5930 */
5931 ufshcd_rpm_get_sync(hba);
5932 ufshcd_rpm_put_sync(hba);
5933 }
5934
5935 /**
5936 * ufshcd_exception_event_handler - handle exceptions raised by device
5937 * @work: pointer to work data
5938 *
5939 * Read bExceptionEventStatus attribute from the device and handle the
5940 * exception event accordingly.
5941 */
ufshcd_exception_event_handler(struct work_struct * work)5942 static void ufshcd_exception_event_handler(struct work_struct *work)
5943 {
5944 struct ufs_hba *hba;
5945 int err;
5946 u32 status = 0;
5947 hba = container_of(work, struct ufs_hba, eeh_work);
5948
5949 ufshcd_scsi_block_requests(hba);
5950 err = ufshcd_get_ee_status(hba, &status);
5951 if (err) {
5952 dev_err(hba->dev, "%s: failed to get exception status %d\n",
5953 __func__, err);
5954 goto out;
5955 }
5956
5957 trace_ufshcd_exception_event(dev_name(hba->dev), status);
5958
5959 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
5960 ufshcd_bkops_exception_event_handler(hba);
5961
5962 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
5963 ufshcd_temp_exception_event_handler(hba, status);
5964
5965 ufs_debugfs_exception_event(hba, status);
5966 out:
5967 ufshcd_scsi_unblock_requests(hba);
5968 }
5969
5970 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5971 static void ufshcd_complete_requests(struct ufs_hba *hba)
5972 {
5973 ufshcd_transfer_req_compl(hba);
5974 ufshcd_tmc_handler(hba);
5975 }
5976
5977 /**
5978 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5979 * to recover from the DL NAC errors or not.
5980 * @hba: per-adapter instance
5981 *
5982 * Returns true if error handling is required, false otherwise
5983 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5984 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5985 {
5986 unsigned long flags;
5987 bool err_handling = true;
5988
5989 spin_lock_irqsave(hba->host->host_lock, flags);
5990 /*
5991 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5992 * device fatal error and/or DL NAC & REPLAY timeout errors.
5993 */
5994 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5995 goto out;
5996
5997 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5998 ((hba->saved_err & UIC_ERROR) &&
5999 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6000 goto out;
6001
6002 if ((hba->saved_err & UIC_ERROR) &&
6003 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6004 int err;
6005 /*
6006 * wait for 50ms to see if we can get any other errors or not.
6007 */
6008 spin_unlock_irqrestore(hba->host->host_lock, flags);
6009 msleep(50);
6010 spin_lock_irqsave(hba->host->host_lock, flags);
6011
6012 /*
6013 * now check if we have got any other severe errors other than
6014 * DL NAC error?
6015 */
6016 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6017 ((hba->saved_err & UIC_ERROR) &&
6018 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6019 goto out;
6020
6021 /*
6022 * As DL NAC is the only error received so far, send out NOP
6023 * command to confirm if link is still active or not.
6024 * - If we don't get any response then do error recovery.
6025 * - If we get response then clear the DL NAC error bit.
6026 */
6027
6028 spin_unlock_irqrestore(hba->host->host_lock, flags);
6029 err = ufshcd_verify_dev_init(hba);
6030 spin_lock_irqsave(hba->host->host_lock, flags);
6031
6032 if (err)
6033 goto out;
6034
6035 /* Link seems to be alive hence ignore the DL NAC errors */
6036 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6037 hba->saved_err &= ~UIC_ERROR;
6038 /* clear NAC error */
6039 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6040 if (!hba->saved_uic_err)
6041 err_handling = false;
6042 }
6043 out:
6044 spin_unlock_irqrestore(hba->host->host_lock, flags);
6045 return err_handling;
6046 }
6047
6048 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6049 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6050 {
6051 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6052 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6053 }
6054
ufshcd_schedule_eh_work(struct ufs_hba * hba)6055 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6056 {
6057 lockdep_assert_held(hba->host->host_lock);
6058
6059 /* handle fatal errors only when link is not in error state */
6060 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6061 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6062 ufshcd_is_saved_err_fatal(hba))
6063 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6064 else
6065 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6066 queue_work(hba->eh_wq, &hba->eh_work);
6067 }
6068 }
6069
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6070 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6071 {
6072 down_write(&hba->clk_scaling_lock);
6073 hba->clk_scaling.is_allowed = allow;
6074 up_write(&hba->clk_scaling_lock);
6075 }
6076
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6077 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6078 {
6079 if (suspend) {
6080 if (hba->clk_scaling.is_enabled)
6081 ufshcd_suspend_clkscaling(hba);
6082 ufshcd_clk_scaling_allow(hba, false);
6083 } else {
6084 ufshcd_clk_scaling_allow(hba, true);
6085 if (hba->clk_scaling.is_enabled)
6086 ufshcd_resume_clkscaling(hba);
6087 }
6088 }
6089
ufshcd_err_handling_prepare(struct ufs_hba * hba)6090 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6091 {
6092 ufshcd_rpm_get_sync(hba);
6093 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6094 hba->is_sys_suspended) {
6095 enum ufs_pm_op pm_op;
6096
6097 /*
6098 * Don't assume anything of resume, if
6099 * resume fails, irq and clocks can be OFF, and powers
6100 * can be OFF or in LPM.
6101 */
6102 ufshcd_setup_hba_vreg(hba, true);
6103 ufshcd_enable_irq(hba);
6104 ufshcd_setup_vreg(hba, true);
6105 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6106 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6107 ufshcd_hold(hba, false);
6108 if (!ufshcd_is_clkgating_allowed(hba))
6109 ufshcd_setup_clocks(hba, true);
6110 ufshcd_release(hba);
6111 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6112 ufshcd_vops_resume(hba, pm_op);
6113 } else {
6114 ufshcd_hold(hba, false);
6115 if (ufshcd_is_clkscaling_supported(hba) &&
6116 hba->clk_scaling.is_enabled)
6117 ufshcd_suspend_clkscaling(hba);
6118 ufshcd_clk_scaling_allow(hba, false);
6119 }
6120 ufshcd_scsi_block_requests(hba);
6121 /* Drain ufshcd_queuecommand() */
6122 synchronize_rcu();
6123 cancel_work_sync(&hba->eeh_work);
6124 }
6125
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6126 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6127 {
6128 ufshcd_scsi_unblock_requests(hba);
6129 ufshcd_release(hba);
6130 if (ufshcd_is_clkscaling_supported(hba))
6131 ufshcd_clk_scaling_suspend(hba, false);
6132 ufshcd_rpm_put(hba);
6133 }
6134
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6135 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6136 {
6137 return (!hba->is_powered || hba->shutting_down ||
6138 !hba->ufs_device_wlun ||
6139 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6140 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6141 ufshcd_is_link_broken(hba))));
6142 }
6143
6144 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6145 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6146 {
6147 struct Scsi_Host *shost = hba->host;
6148 struct scsi_device *sdev;
6149 struct request_queue *q;
6150 int ret;
6151
6152 hba->is_sys_suspended = false;
6153 /*
6154 * Set RPM status of wlun device to RPM_ACTIVE,
6155 * this also clears its runtime error.
6156 */
6157 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6158
6159 /* hba device might have a runtime error otherwise */
6160 if (ret)
6161 ret = pm_runtime_set_active(hba->dev);
6162 /*
6163 * If wlun device had runtime error, we also need to resume those
6164 * consumer scsi devices in case any of them has failed to be
6165 * resumed due to supplier runtime resume failure. This is to unblock
6166 * blk_queue_enter in case there are bios waiting inside it.
6167 */
6168 if (!ret) {
6169 shost_for_each_device(sdev, shost) {
6170 q = sdev->request_queue;
6171 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6172 q->rpm_status == RPM_SUSPENDING))
6173 pm_request_resume(q->dev);
6174 }
6175 }
6176 }
6177 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6178 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6179 {
6180 }
6181 #endif
6182
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6183 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6184 {
6185 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6186 u32 mode;
6187
6188 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6189
6190 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6191 return true;
6192
6193 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6194 return true;
6195
6196 return false;
6197 }
6198
6199 /**
6200 * ufshcd_err_handler - handle UFS errors that require s/w attention
6201 * @work: pointer to work structure
6202 */
ufshcd_err_handler(struct work_struct * work)6203 static void ufshcd_err_handler(struct work_struct *work)
6204 {
6205 int retries = MAX_ERR_HANDLER_RETRIES;
6206 struct ufs_hba *hba;
6207 unsigned long flags;
6208 bool needs_restore;
6209 bool needs_reset;
6210 bool err_xfer;
6211 bool err_tm;
6212 int pmc_err;
6213 int tag;
6214
6215 hba = container_of(work, struct ufs_hba, eh_work);
6216
6217 dev_info(hba->dev,
6218 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6219 __func__, ufshcd_state_name[hba->ufshcd_state],
6220 hba->is_powered, hba->shutting_down, hba->saved_err,
6221 hba->saved_uic_err, hba->force_reset,
6222 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6223
6224 down(&hba->host_sem);
6225 spin_lock_irqsave(hba->host->host_lock, flags);
6226 if (ufshcd_err_handling_should_stop(hba)) {
6227 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6228 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6229 spin_unlock_irqrestore(hba->host->host_lock, flags);
6230 up(&hba->host_sem);
6231 return;
6232 }
6233 ufshcd_set_eh_in_progress(hba);
6234 spin_unlock_irqrestore(hba->host->host_lock, flags);
6235 ufshcd_err_handling_prepare(hba);
6236 /* Complete requests that have door-bell cleared by h/w */
6237 ufshcd_complete_requests(hba);
6238 spin_lock_irqsave(hba->host->host_lock, flags);
6239 again:
6240 needs_restore = false;
6241 needs_reset = false;
6242 err_xfer = false;
6243 err_tm = false;
6244
6245 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6246 hba->ufshcd_state = UFSHCD_STATE_RESET;
6247 /*
6248 * A full reset and restore might have happened after preparation
6249 * is finished, double check whether we should stop.
6250 */
6251 if (ufshcd_err_handling_should_stop(hba))
6252 goto skip_err_handling;
6253
6254 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6255 bool ret;
6256
6257 spin_unlock_irqrestore(hba->host->host_lock, flags);
6258 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6259 ret = ufshcd_quirk_dl_nac_errors(hba);
6260 spin_lock_irqsave(hba->host->host_lock, flags);
6261 if (!ret && ufshcd_err_handling_should_stop(hba))
6262 goto skip_err_handling;
6263 }
6264
6265 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6266 (hba->saved_uic_err &&
6267 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6268 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6269
6270 spin_unlock_irqrestore(hba->host->host_lock, flags);
6271 ufshcd_print_host_state(hba);
6272 ufshcd_print_pwr_info(hba);
6273 ufshcd_print_evt_hist(hba);
6274 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6275 ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6276 spin_lock_irqsave(hba->host->host_lock, flags);
6277 }
6278
6279 /*
6280 * if host reset is required then skip clearing the pending
6281 * transfers forcefully because they will get cleared during
6282 * host reset and restore
6283 */
6284 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6285 ufshcd_is_saved_err_fatal(hba) ||
6286 ((hba->saved_err & UIC_ERROR) &&
6287 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6288 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6289 needs_reset = true;
6290 goto do_reset;
6291 }
6292
6293 /*
6294 * If LINERESET was caught, UFS might have been put to PWM mode,
6295 * check if power mode restore is needed.
6296 */
6297 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6298 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6299 if (!hba->saved_uic_err)
6300 hba->saved_err &= ~UIC_ERROR;
6301 spin_unlock_irqrestore(hba->host->host_lock, flags);
6302 if (ufshcd_is_pwr_mode_restore_needed(hba))
6303 needs_restore = true;
6304 spin_lock_irqsave(hba->host->host_lock, flags);
6305 if (!hba->saved_err && !needs_restore)
6306 goto skip_err_handling;
6307 }
6308
6309 hba->silence_err_logs = true;
6310 /* release lock as clear command might sleep */
6311 spin_unlock_irqrestore(hba->host->host_lock, flags);
6312 /* Clear pending transfer requests */
6313 for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6314 if (ufshcd_try_to_abort_task(hba, tag)) {
6315 err_xfer = true;
6316 goto lock_skip_pending_xfer_clear;
6317 }
6318 dev_err(hba->dev, "Aborted tag %d / CDB %#02x\n", tag,
6319 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1);
6320 }
6321
6322 /* Clear pending task management requests */
6323 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6324 if (ufshcd_clear_tm_cmd(hba, tag)) {
6325 err_tm = true;
6326 goto lock_skip_pending_xfer_clear;
6327 }
6328 }
6329
6330 lock_skip_pending_xfer_clear:
6331 /* Complete the requests that are cleared by s/w */
6332 ufshcd_complete_requests(hba);
6333
6334 spin_lock_irqsave(hba->host->host_lock, flags);
6335 hba->silence_err_logs = false;
6336 if (err_xfer || err_tm) {
6337 needs_reset = true;
6338 goto do_reset;
6339 }
6340
6341 /*
6342 * After all reqs and tasks are cleared from doorbell,
6343 * now it is safe to retore power mode.
6344 */
6345 if (needs_restore) {
6346 spin_unlock_irqrestore(hba->host->host_lock, flags);
6347 /*
6348 * Hold the scaling lock just in case dev cmds
6349 * are sent via bsg and/or sysfs.
6350 */
6351 down_write(&hba->clk_scaling_lock);
6352 hba->force_pmc = true;
6353 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6354 if (pmc_err) {
6355 needs_reset = true;
6356 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6357 __func__, pmc_err);
6358 }
6359 hba->force_pmc = false;
6360 ufshcd_print_pwr_info(hba);
6361 up_write(&hba->clk_scaling_lock);
6362 spin_lock_irqsave(hba->host->host_lock, flags);
6363 }
6364
6365 do_reset:
6366 /* Fatal errors need reset */
6367 if (needs_reset) {
6368 int err;
6369
6370 hba->force_reset = false;
6371 spin_unlock_irqrestore(hba->host->host_lock, flags);
6372 err = ufshcd_reset_and_restore(hba);
6373 if (err)
6374 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6375 __func__, err);
6376 else
6377 ufshcd_recover_pm_error(hba);
6378 spin_lock_irqsave(hba->host->host_lock, flags);
6379 }
6380
6381 skip_err_handling:
6382 if (!needs_reset) {
6383 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6384 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6385 if (hba->saved_err || hba->saved_uic_err)
6386 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6387 __func__, hba->saved_err, hba->saved_uic_err);
6388 }
6389 /* Exit in an operational state or dead */
6390 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6391 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6392 if (--retries)
6393 goto again;
6394 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6395 }
6396 ufshcd_clear_eh_in_progress(hba);
6397 spin_unlock_irqrestore(hba->host->host_lock, flags);
6398 ufshcd_err_handling_unprepare(hba);
6399 up(&hba->host_sem);
6400
6401 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6402 ufshcd_state_name[hba->ufshcd_state]);
6403 }
6404
6405 /**
6406 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6407 * @hba: per-adapter instance
6408 *
6409 * Returns
6410 * IRQ_HANDLED - If interrupt is valid
6411 * IRQ_NONE - If invalid interrupt
6412 */
ufshcd_update_uic_error(struct ufs_hba * hba)6413 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6414 {
6415 u32 reg;
6416 irqreturn_t retval = IRQ_NONE;
6417
6418 /* PHY layer error */
6419 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6420 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6421 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6422 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6423 /*
6424 * To know whether this error is fatal or not, DB timeout
6425 * must be checked but this error is handled separately.
6426 */
6427 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6428 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6429 __func__);
6430
6431 /* Got a LINERESET indication. */
6432 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6433 struct uic_command *cmd = NULL;
6434
6435 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6436 if (hba->uic_async_done && hba->active_uic_cmd)
6437 cmd = hba->active_uic_cmd;
6438 /*
6439 * Ignore the LINERESET during power mode change
6440 * operation via DME_SET command.
6441 */
6442 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6443 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6444 }
6445 retval |= IRQ_HANDLED;
6446 }
6447
6448 /* PA_INIT_ERROR is fatal and needs UIC reset */
6449 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6450 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6451 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6452 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6453
6454 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6455 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6456 else if (hba->dev_quirks &
6457 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6458 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6459 hba->uic_error |=
6460 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6461 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6462 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6463 }
6464 retval |= IRQ_HANDLED;
6465 }
6466
6467 /* UIC NL/TL/DME errors needs software retry */
6468 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6469 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6470 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6471 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6472 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6473 retval |= IRQ_HANDLED;
6474 }
6475
6476 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6477 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6478 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6479 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6480 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6481 retval |= IRQ_HANDLED;
6482 }
6483
6484 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6485 if ((reg & UIC_DME_ERROR) &&
6486 (reg & UIC_DME_ERROR_CODE_MASK)) {
6487 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6488 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6489 retval |= IRQ_HANDLED;
6490 }
6491
6492 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6493 __func__, hba->uic_error);
6494 return retval;
6495 }
6496
6497 /**
6498 * ufshcd_check_errors - Check for errors that need s/w attention
6499 * @hba: per-adapter instance
6500 * @intr_status: interrupt status generated by the controller
6501 *
6502 * Returns
6503 * IRQ_HANDLED - If interrupt is valid
6504 * IRQ_NONE - If invalid interrupt
6505 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6506 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6507 {
6508 bool queue_eh_work = false;
6509 irqreturn_t retval = IRQ_NONE;
6510
6511 spin_lock(hba->host->host_lock);
6512 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6513
6514 if (hba->errors & INT_FATAL_ERRORS) {
6515 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6516 hba->errors);
6517 queue_eh_work = true;
6518 }
6519
6520 if (hba->errors & UIC_ERROR) {
6521 hba->uic_error = 0;
6522 retval = ufshcd_update_uic_error(hba);
6523 if (hba->uic_error)
6524 queue_eh_work = true;
6525 }
6526
6527 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6528 dev_err(hba->dev,
6529 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6530 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6531 "Enter" : "Exit",
6532 hba->errors, ufshcd_get_upmcrs(hba));
6533 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6534 hba->errors);
6535 ufshcd_set_link_broken(hba);
6536 queue_eh_work = true;
6537 }
6538
6539 if (queue_eh_work) {
6540 /*
6541 * update the transfer error masks to sticky bits, let's do this
6542 * irrespective of current ufshcd_state.
6543 */
6544 hba->saved_err |= hba->errors;
6545 hba->saved_uic_err |= hba->uic_error;
6546
6547 /* dump controller state before resetting */
6548 if ((hba->saved_err &
6549 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6550 (hba->saved_uic_err &&
6551 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6552 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6553 __func__, hba->saved_err,
6554 hba->saved_uic_err);
6555 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6556 "host_regs: ");
6557 ufshcd_print_pwr_info(hba);
6558 }
6559 ufshcd_schedule_eh_work(hba);
6560 retval |= IRQ_HANDLED;
6561 }
6562 /*
6563 * if (!queue_eh_work) -
6564 * Other errors are either non-fatal where host recovers
6565 * itself without s/w intervention or errors that will be
6566 * handled by the SCSI core layer.
6567 */
6568 hba->errors = 0;
6569 hba->uic_error = 0;
6570 spin_unlock(hba->host->host_lock);
6571 return retval;
6572 }
6573
6574 /**
6575 * ufshcd_tmc_handler - handle task management function completion
6576 * @hba: per adapter instance
6577 *
6578 * Returns
6579 * IRQ_HANDLED - If interrupt is valid
6580 * IRQ_NONE - If invalid interrupt
6581 */
ufshcd_tmc_handler(struct ufs_hba * hba)6582 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6583 {
6584 unsigned long flags, pending, issued;
6585 irqreturn_t ret = IRQ_NONE;
6586 int tag;
6587
6588 spin_lock_irqsave(hba->host->host_lock, flags);
6589 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6590 issued = hba->outstanding_tasks & ~pending;
6591 for_each_set_bit(tag, &issued, hba->nutmrs) {
6592 struct request *req = hba->tmf_rqs[tag];
6593 struct completion *c = req->end_io_data;
6594
6595 complete(c);
6596 ret = IRQ_HANDLED;
6597 }
6598 spin_unlock_irqrestore(hba->host->host_lock, flags);
6599
6600 return ret;
6601 }
6602
6603 /**
6604 * ufshcd_sl_intr - Interrupt service routine
6605 * @hba: per adapter instance
6606 * @intr_status: contains interrupts generated by the controller
6607 *
6608 * Returns
6609 * IRQ_HANDLED - If interrupt is valid
6610 * IRQ_NONE - If invalid interrupt
6611 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6612 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6613 {
6614 irqreturn_t retval = IRQ_NONE;
6615
6616 if (intr_status & UFSHCD_UIC_MASK)
6617 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6618
6619 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6620 retval |= ufshcd_check_errors(hba, intr_status);
6621
6622 if (intr_status & UTP_TASK_REQ_COMPL)
6623 retval |= ufshcd_tmc_handler(hba);
6624
6625 if (intr_status & UTP_TRANSFER_REQ_COMPL)
6626 retval |= ufshcd_transfer_req_compl(hba);
6627
6628 return retval;
6629 }
6630
6631 /**
6632 * ufshcd_intr - Main interrupt service routine
6633 * @irq: irq number
6634 * @__hba: pointer to adapter instance
6635 *
6636 * Returns
6637 * IRQ_HANDLED - If interrupt is valid
6638 * IRQ_NONE - If invalid interrupt
6639 */
ufshcd_intr(int irq,void * __hba)6640 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6641 {
6642 u32 intr_status, enabled_intr_status = 0;
6643 irqreturn_t retval = IRQ_NONE;
6644 struct ufs_hba *hba = __hba;
6645 int retries = hba->nutrs;
6646
6647 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6648 hba->ufs_stats.last_intr_status = intr_status;
6649 hba->ufs_stats.last_intr_ts = ktime_get();
6650
6651 /*
6652 * There could be max of hba->nutrs reqs in flight and in worst case
6653 * if the reqs get finished 1 by 1 after the interrupt status is
6654 * read, make sure we handle them by checking the interrupt status
6655 * again in a loop until we process all of the reqs before returning.
6656 */
6657 while (intr_status && retries--) {
6658 enabled_intr_status =
6659 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6660 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6661 if (enabled_intr_status)
6662 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6663
6664 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6665 }
6666
6667 if (enabled_intr_status && retval == IRQ_NONE &&
6668 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6669 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6670 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6671 __func__,
6672 intr_status,
6673 hba->ufs_stats.last_intr_status,
6674 enabled_intr_status);
6675 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6676 }
6677
6678 return retval;
6679 }
6680
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6681 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6682 {
6683 int err = 0;
6684 u32 mask = 1 << tag;
6685 unsigned long flags;
6686
6687 if (!test_bit(tag, &hba->outstanding_tasks))
6688 goto out;
6689
6690 spin_lock_irqsave(hba->host->host_lock, flags);
6691 ufshcd_utmrl_clear(hba, tag);
6692 spin_unlock_irqrestore(hba->host->host_lock, flags);
6693
6694 /* poll for max. 1 sec to clear door bell register by h/w */
6695 err = ufshcd_wait_for_register(hba,
6696 REG_UTP_TASK_REQ_DOOR_BELL,
6697 mask, 0, 1000, 1000);
6698
6699 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6700 tag, err ? "succeeded" : "failed");
6701
6702 out:
6703 return err;
6704 }
6705
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6706 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6707 struct utp_task_req_desc *treq, u8 tm_function)
6708 {
6709 struct request_queue *q = hba->tmf_queue;
6710 struct Scsi_Host *host = hba->host;
6711 DECLARE_COMPLETION_ONSTACK(wait);
6712 struct request *req;
6713 unsigned long flags;
6714 int task_tag, err;
6715
6716 /*
6717 * blk_mq_alloc_request() is used here only to get a free tag.
6718 */
6719 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6720 if (IS_ERR(req))
6721 return PTR_ERR(req);
6722
6723 req->end_io_data = &wait;
6724 ufshcd_hold(hba, false);
6725
6726 spin_lock_irqsave(host->host_lock, flags);
6727
6728 task_tag = req->tag;
6729 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6730 task_tag);
6731 hba->tmf_rqs[req->tag] = req;
6732 treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6733
6734 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6735 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6736
6737 /* send command to the controller */
6738 __set_bit(task_tag, &hba->outstanding_tasks);
6739
6740 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6741 /* Make sure that doorbell is committed immediately */
6742 wmb();
6743
6744 spin_unlock_irqrestore(host->host_lock, flags);
6745
6746 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6747
6748 /* wait until the task management command is completed */
6749 err = wait_for_completion_io_timeout(&wait,
6750 msecs_to_jiffies(TM_CMD_TIMEOUT));
6751 if (!err) {
6752 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6753 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6754 __func__, tm_function);
6755 if (ufshcd_clear_tm_cmd(hba, task_tag))
6756 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6757 __func__, task_tag);
6758 err = -ETIMEDOUT;
6759 } else {
6760 err = 0;
6761 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6762
6763 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6764 }
6765
6766 spin_lock_irqsave(hba->host->host_lock, flags);
6767 hba->tmf_rqs[req->tag] = NULL;
6768 __clear_bit(task_tag, &hba->outstanding_tasks);
6769 spin_unlock_irqrestore(hba->host->host_lock, flags);
6770
6771 ufshcd_release(hba);
6772 blk_mq_free_request(req);
6773
6774 return err;
6775 }
6776
6777 /**
6778 * ufshcd_issue_tm_cmd - issues task management commands to controller
6779 * @hba: per adapter instance
6780 * @lun_id: LUN ID to which TM command is sent
6781 * @task_id: task ID to which the TM command is applicable
6782 * @tm_function: task management function opcode
6783 * @tm_response: task management service response return value
6784 *
6785 * Returns non-zero value on error, zero on success.
6786 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6787 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6788 u8 tm_function, u8 *tm_response)
6789 {
6790 struct utp_task_req_desc treq = { { 0 }, };
6791 enum utp_ocs ocs_value;
6792 int err;
6793
6794 /* Configure task request descriptor */
6795 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6796 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6797
6798 /* Configure task request UPIU */
6799 treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6800 cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6801 treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6802
6803 /*
6804 * The host shall provide the same value for LUN field in the basic
6805 * header and for Input Parameter.
6806 */
6807 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6808 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6809
6810 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6811 if (err == -ETIMEDOUT)
6812 return err;
6813
6814 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6815 if (ocs_value != OCS_SUCCESS)
6816 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6817 __func__, ocs_value);
6818 else if (tm_response)
6819 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6820 MASK_TM_SERVICE_RESP;
6821 return err;
6822 }
6823
6824 /**
6825 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6826 * @hba: per-adapter instance
6827 * @req_upiu: upiu request
6828 * @rsp_upiu: upiu reply
6829 * @desc_buff: pointer to descriptor buffer, NULL if NA
6830 * @buff_len: descriptor size, 0 if NA
6831 * @cmd_type: specifies the type (NOP, Query...)
6832 * @desc_op: descriptor operation
6833 *
6834 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6835 * Therefore, it "rides" the device management infrastructure: uses its tag and
6836 * tasks work queues.
6837 *
6838 * Since there is only one available tag for device management commands,
6839 * the caller is expected to hold the hba->dev_cmd.lock mutex.
6840 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6841 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6842 struct utp_upiu_req *req_upiu,
6843 struct utp_upiu_req *rsp_upiu,
6844 u8 *desc_buff, int *buff_len,
6845 enum dev_cmd_type cmd_type,
6846 enum query_opcode desc_op)
6847 {
6848 DECLARE_COMPLETION_ONSTACK(wait);
6849 const u32 tag = hba->reserved_slot;
6850 struct ufshcd_lrb *lrbp;
6851 int err = 0;
6852 u8 upiu_flags;
6853
6854 /* Protects use of hba->reserved_slot. */
6855 lockdep_assert_held(&hba->dev_cmd.lock);
6856
6857 down_read(&hba->clk_scaling_lock);
6858
6859 lrbp = &hba->lrb[tag];
6860 WARN_ON(lrbp->cmd);
6861 lrbp->cmd = NULL;
6862 lrbp->task_tag = tag;
6863 lrbp->lun = 0;
6864 lrbp->intr_cmd = true;
6865 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6866 hba->dev_cmd.type = cmd_type;
6867
6868 if (hba->ufs_version <= ufshci_version(1, 1))
6869 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6870 else
6871 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6872
6873 /* update the task tag in the request upiu */
6874 req_upiu->header.dword_0 |= cpu_to_be32(tag);
6875
6876 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6877
6878 /* just copy the upiu request as it is */
6879 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6880 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6881 /* The Data Segment Area is optional depending upon the query
6882 * function value. for WRITE DESCRIPTOR, the data segment
6883 * follows right after the tsf.
6884 */
6885 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6886 *buff_len = 0;
6887 }
6888
6889 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6890
6891 hba->dev_cmd.complete = &wait;
6892
6893 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
6894
6895 ufshcd_send_command(hba, tag);
6896 /*
6897 * ignore the returning value here - ufshcd_check_query_response is
6898 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6899 * read the response directly ignoring all errors.
6900 */
6901 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6902
6903 /* just copy the upiu response as it is */
6904 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6905 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6906 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6907 u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6908 MASK_QUERY_DATA_SEG_LEN;
6909
6910 if (*buff_len >= resp_len) {
6911 memcpy(desc_buff, descp, resp_len);
6912 *buff_len = resp_len;
6913 } else {
6914 dev_warn(hba->dev,
6915 "%s: rsp size %d is bigger than buffer size %d",
6916 __func__, resp_len, *buff_len);
6917 *buff_len = 0;
6918 err = -EINVAL;
6919 }
6920 }
6921 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
6922 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
6923
6924 up_read(&hba->clk_scaling_lock);
6925 return err;
6926 }
6927
6928 /**
6929 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6930 * @hba: per-adapter instance
6931 * @req_upiu: upiu request
6932 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
6933 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
6934 * @desc_buff: pointer to descriptor buffer, NULL if NA
6935 * @buff_len: descriptor size, 0 if NA
6936 * @desc_op: descriptor operation
6937 *
6938 * Supports UTP Transfer requests (nop and query), and UTP Task
6939 * Management requests.
6940 * It is up to the caller to fill the upiu conent properly, as it will
6941 * be copied without any further input validations.
6942 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6943 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6944 struct utp_upiu_req *req_upiu,
6945 struct utp_upiu_req *rsp_upiu,
6946 int msgcode,
6947 u8 *desc_buff, int *buff_len,
6948 enum query_opcode desc_op)
6949 {
6950 int err;
6951 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6952 struct utp_task_req_desc treq = { { 0 }, };
6953 enum utp_ocs ocs_value;
6954 u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6955
6956 switch (msgcode) {
6957 case UPIU_TRANSACTION_NOP_OUT:
6958 cmd_type = DEV_CMD_TYPE_NOP;
6959 fallthrough;
6960 case UPIU_TRANSACTION_QUERY_REQ:
6961 ufshcd_hold(hba, false);
6962 mutex_lock(&hba->dev_cmd.lock);
6963 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6964 desc_buff, buff_len,
6965 cmd_type, desc_op);
6966 mutex_unlock(&hba->dev_cmd.lock);
6967 ufshcd_release(hba);
6968
6969 break;
6970 case UPIU_TRANSACTION_TASK_REQ:
6971 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6972 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6973
6974 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
6975
6976 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6977 if (err == -ETIMEDOUT)
6978 break;
6979
6980 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6981 if (ocs_value != OCS_SUCCESS) {
6982 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6983 ocs_value);
6984 break;
6985 }
6986
6987 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
6988
6989 break;
6990 default:
6991 err = -EINVAL;
6992
6993 break;
6994 }
6995
6996 return err;
6997 }
6998
6999 /**
7000 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7001 * @cmd: SCSI command pointer
7002 *
7003 * Returns SUCCESS/FAILED
7004 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7005 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7006 {
7007 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7008 struct Scsi_Host *host;
7009 struct ufs_hba *hba;
7010 u32 pos;
7011 int err;
7012 u8 resp = 0xF, lun;
7013
7014 host = cmd->device->host;
7015 hba = shost_priv(host);
7016
7017 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7018 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7019 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7020 if (!err)
7021 err = resp;
7022 goto out;
7023 }
7024
7025 /* clear the commands that were pending for corresponding LUN */
7026 spin_lock_irqsave(&hba->outstanding_lock, flags);
7027 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7028 if (hba->lrb[pos].lun == lun)
7029 __set_bit(pos, &pending_reqs);
7030 hba->outstanding_reqs &= ~pending_reqs;
7031 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7032
7033 if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7034 spin_lock_irqsave(&hba->outstanding_lock, flags);
7035 not_cleared = pending_reqs &
7036 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7037 hba->outstanding_reqs |= not_cleared;
7038 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7039
7040 dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7041 __func__, not_cleared);
7042 }
7043 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7044
7045 out:
7046 hba->req_abort_count = 0;
7047 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7048 if (!err) {
7049 err = SUCCESS;
7050 } else {
7051 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7052 err = FAILED;
7053 }
7054 return err;
7055 }
7056
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7057 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7058 {
7059 struct ufshcd_lrb *lrbp;
7060 int tag;
7061
7062 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7063 lrbp = &hba->lrb[tag];
7064 lrbp->req_abort_skip = true;
7065 }
7066 }
7067
7068 /**
7069 * ufshcd_try_to_abort_task - abort a specific task
7070 * @hba: Pointer to adapter instance
7071 * @tag: Task tag/index to be aborted
7072 *
7073 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7074 * command, and in host controller by clearing the door-bell register. There can
7075 * be race between controller sending the command to the device while abort is
7076 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7077 * really issued and then try to abort it.
7078 *
7079 * Returns zero on success, non-zero on failure
7080 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7081 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7082 {
7083 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7084 int err = 0;
7085 int poll_cnt;
7086 u8 resp = 0xF;
7087 u32 reg;
7088
7089 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7090 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7091 UFS_QUERY_TASK, &resp);
7092 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7093 /* cmd pending in the device */
7094 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7095 __func__, tag);
7096 break;
7097 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7098 /*
7099 * cmd not pending in the device, check if it is
7100 * in transition.
7101 */
7102 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7103 __func__, tag);
7104 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7105 if (reg & (1 << tag)) {
7106 /* sleep for max. 200us to stabilize */
7107 usleep_range(100, 200);
7108 continue;
7109 }
7110 /* command completed already */
7111 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7112 __func__, tag);
7113 goto out;
7114 } else {
7115 dev_err(hba->dev,
7116 "%s: no response from device. tag = %d, err %d\n",
7117 __func__, tag, err);
7118 if (!err)
7119 err = resp; /* service response error */
7120 goto out;
7121 }
7122 }
7123
7124 if (!poll_cnt) {
7125 err = -EBUSY;
7126 goto out;
7127 }
7128
7129 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7130 UFS_ABORT_TASK, &resp);
7131 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7132 if (!err) {
7133 err = resp; /* service response error */
7134 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7135 __func__, tag, err);
7136 }
7137 goto out;
7138 }
7139
7140 err = ufshcd_clear_cmds(hba, 1U << tag);
7141 if (err)
7142 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7143 __func__, tag, err);
7144
7145 out:
7146 return err;
7147 }
7148
7149 /**
7150 * ufshcd_abort - scsi host template eh_abort_handler callback
7151 * @cmd: SCSI command pointer
7152 *
7153 * Returns SUCCESS/FAILED
7154 */
ufshcd_abort(struct scsi_cmnd * cmd)7155 static int ufshcd_abort(struct scsi_cmnd *cmd)
7156 {
7157 struct Scsi_Host *host = cmd->device->host;
7158 struct ufs_hba *hba = shost_priv(host);
7159 int tag = scsi_cmd_to_rq(cmd)->tag;
7160 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7161 unsigned long flags;
7162 int err = FAILED;
7163 bool outstanding;
7164 u32 reg;
7165
7166 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7167
7168 ufshcd_hold(hba, false);
7169 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7170 /* If command is already aborted/completed, return FAILED. */
7171 if (!(test_bit(tag, &hba->outstanding_reqs))) {
7172 dev_err(hba->dev,
7173 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7174 __func__, tag, hba->outstanding_reqs, reg);
7175 goto release;
7176 }
7177
7178 /* Print Transfer Request of aborted task */
7179 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7180
7181 /*
7182 * Print detailed info about aborted request.
7183 * As more than one request might get aborted at the same time,
7184 * print full information only for the first aborted request in order
7185 * to reduce repeated printouts. For other aborted requests only print
7186 * basic details.
7187 */
7188 scsi_print_command(cmd);
7189 if (!hba->req_abort_count) {
7190 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7191 ufshcd_print_evt_hist(hba);
7192 ufshcd_print_host_state(hba);
7193 ufshcd_print_pwr_info(hba);
7194 ufshcd_print_trs(hba, 1 << tag, true);
7195 } else {
7196 ufshcd_print_trs(hba, 1 << tag, false);
7197 }
7198 hba->req_abort_count++;
7199
7200 if (!(reg & (1 << tag))) {
7201 dev_err(hba->dev,
7202 "%s: cmd was completed, but without a notifying intr, tag = %d",
7203 __func__, tag);
7204 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7205 goto release;
7206 }
7207
7208 /*
7209 * Task abort to the device W-LUN is illegal. When this command
7210 * will fail, due to spec violation, scsi err handling next step
7211 * will be to send LU reset which, again, is a spec violation.
7212 * To avoid these unnecessary/illegal steps, first we clean up
7213 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7214 * then queue the eh_work and bail.
7215 */
7216 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7217 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7218
7219 spin_lock_irqsave(host->host_lock, flags);
7220 hba->force_reset = true;
7221 ufshcd_schedule_eh_work(hba);
7222 spin_unlock_irqrestore(host->host_lock, flags);
7223 goto release;
7224 }
7225
7226 /* Skip task abort in case previous aborts failed and report failure */
7227 if (lrbp->req_abort_skip) {
7228 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7229 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7230 goto release;
7231 }
7232
7233 err = ufshcd_try_to_abort_task(hba, tag);
7234 if (err) {
7235 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7236 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7237 err = FAILED;
7238 goto release;
7239 }
7240
7241 /*
7242 * Clear the corresponding bit from outstanding_reqs since the command
7243 * has been aborted successfully.
7244 */
7245 spin_lock_irqsave(&hba->outstanding_lock, flags);
7246 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7247 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7248
7249 if (outstanding)
7250 ufshcd_release_scsi_cmd(hba, lrbp);
7251
7252 err = SUCCESS;
7253
7254 release:
7255 /* Matches the ufshcd_hold() call at the start of this function. */
7256 ufshcd_release(hba);
7257 return err;
7258 }
7259
7260 /**
7261 * ufshcd_host_reset_and_restore - reset and restore host controller
7262 * @hba: per-adapter instance
7263 *
7264 * Note that host controller reset may issue DME_RESET to
7265 * local and remote (device) Uni-Pro stack and the attributes
7266 * are reset to default state.
7267 *
7268 * Returns zero on success, non-zero on failure
7269 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7270 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7271 {
7272 int err;
7273
7274 /*
7275 * Stop the host controller and complete the requests
7276 * cleared by h/w
7277 */
7278 ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7279 ufshcd_hba_stop(hba);
7280 hba->silence_err_logs = true;
7281 ufshcd_complete_requests(hba);
7282 hba->silence_err_logs = false;
7283
7284 /* scale up clocks to max frequency before full reinitialization */
7285 ufshcd_scale_clks(hba, true);
7286
7287 err = ufshcd_hba_enable(hba);
7288
7289 /* Establish the link again and restore the device */
7290 if (!err)
7291 err = ufshcd_probe_hba(hba, false);
7292
7293 if (err)
7294 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7295 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7296 return err;
7297 }
7298
7299 /**
7300 * ufshcd_reset_and_restore - reset and re-initialize host/device
7301 * @hba: per-adapter instance
7302 *
7303 * Reset and recover device, host and re-establish link. This
7304 * is helpful to recover the communication in fatal error conditions.
7305 *
7306 * Returns zero on success, non-zero on failure
7307 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7308 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7309 {
7310 u32 saved_err = 0;
7311 u32 saved_uic_err = 0;
7312 int err = 0;
7313 unsigned long flags;
7314 int retries = MAX_HOST_RESET_RETRIES;
7315
7316 spin_lock_irqsave(hba->host->host_lock, flags);
7317 do {
7318 /*
7319 * This is a fresh start, cache and clear saved error first,
7320 * in case new error generated during reset and restore.
7321 */
7322 saved_err |= hba->saved_err;
7323 saved_uic_err |= hba->saved_uic_err;
7324 hba->saved_err = 0;
7325 hba->saved_uic_err = 0;
7326 hba->force_reset = false;
7327 hba->ufshcd_state = UFSHCD_STATE_RESET;
7328 spin_unlock_irqrestore(hba->host->host_lock, flags);
7329
7330 /* Reset the attached device */
7331 ufshcd_device_reset(hba);
7332
7333 err = ufshcd_host_reset_and_restore(hba);
7334
7335 spin_lock_irqsave(hba->host->host_lock, flags);
7336 if (err)
7337 continue;
7338 /* Do not exit unless operational or dead */
7339 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7340 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7341 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7342 err = -EAGAIN;
7343 } while (err && --retries);
7344
7345 /*
7346 * Inform scsi mid-layer that we did reset and allow to handle
7347 * Unit Attention properly.
7348 */
7349 scsi_report_bus_reset(hba->host, 0);
7350 if (err) {
7351 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7352 hba->saved_err |= saved_err;
7353 hba->saved_uic_err |= saved_uic_err;
7354 }
7355 spin_unlock_irqrestore(hba->host->host_lock, flags);
7356
7357 return err;
7358 }
7359
7360 /**
7361 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7362 * @cmd: SCSI command pointer
7363 *
7364 * Returns SUCCESS/FAILED
7365 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7366 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7367 {
7368 int err = SUCCESS;
7369 unsigned long flags;
7370 struct ufs_hba *hba;
7371
7372 hba = shost_priv(cmd->device->host);
7373
7374 spin_lock_irqsave(hba->host->host_lock, flags);
7375 hba->force_reset = true;
7376 ufshcd_schedule_eh_work(hba);
7377 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7378 spin_unlock_irqrestore(hba->host->host_lock, flags);
7379
7380 flush_work(&hba->eh_work);
7381
7382 spin_lock_irqsave(hba->host->host_lock, flags);
7383 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7384 err = FAILED;
7385 spin_unlock_irqrestore(hba->host->host_lock, flags);
7386
7387 return err;
7388 }
7389
7390 /**
7391 * ufshcd_get_max_icc_level - calculate the ICC level
7392 * @sup_curr_uA: max. current supported by the regulator
7393 * @start_scan: row at the desc table to start scan from
7394 * @buff: power descriptor buffer
7395 *
7396 * Returns calculated max ICC level for specific regulator
7397 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)7398 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
7399 {
7400 int i;
7401 int curr_uA;
7402 u16 data;
7403 u16 unit;
7404
7405 for (i = start_scan; i >= 0; i--) {
7406 data = get_unaligned_be16(&buff[2 * i]);
7407 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7408 ATTR_ICC_LVL_UNIT_OFFSET;
7409 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7410 switch (unit) {
7411 case UFSHCD_NANO_AMP:
7412 curr_uA = curr_uA / 1000;
7413 break;
7414 case UFSHCD_MILI_AMP:
7415 curr_uA = curr_uA * 1000;
7416 break;
7417 case UFSHCD_AMP:
7418 curr_uA = curr_uA * 1000 * 1000;
7419 break;
7420 case UFSHCD_MICRO_AMP:
7421 default:
7422 break;
7423 }
7424 if (sup_curr_uA >= curr_uA)
7425 break;
7426 }
7427 if (i < 0) {
7428 i = 0;
7429 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7430 }
7431
7432 return (u32)i;
7433 }
7434
7435 /**
7436 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7437 * In case regulators are not initialized we'll return 0
7438 * @hba: per-adapter instance
7439 * @desc_buf: power descriptor buffer to extract ICC levels from.
7440 * @len: length of desc_buff
7441 *
7442 * Returns calculated ICC level
7443 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)7444 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7445 u8 *desc_buf, int len)
7446 {
7447 u32 icc_level = 0;
7448
7449 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7450 !hba->vreg_info.vccq2) {
7451 /*
7452 * Using dev_dbg to avoid messages during runtime PM to avoid
7453 * never-ending cycles of messages written back to storage by
7454 * user space causing runtime resume, causing more messages and
7455 * so on.
7456 */
7457 dev_dbg(hba->dev,
7458 "%s: Regulator capability was not set, actvIccLevel=%d",
7459 __func__, icc_level);
7460 goto out;
7461 }
7462
7463 if (hba->vreg_info.vcc->max_uA)
7464 icc_level = ufshcd_get_max_icc_level(
7465 hba->vreg_info.vcc->max_uA,
7466 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7467 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7468
7469 if (hba->vreg_info.vccq->max_uA)
7470 icc_level = ufshcd_get_max_icc_level(
7471 hba->vreg_info.vccq->max_uA,
7472 icc_level,
7473 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7474
7475 if (hba->vreg_info.vccq2->max_uA)
7476 icc_level = ufshcd_get_max_icc_level(
7477 hba->vreg_info.vccq2->max_uA,
7478 icc_level,
7479 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7480 out:
7481 return icc_level;
7482 }
7483
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7484 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7485 {
7486 int ret;
7487 int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7488 u8 *desc_buf;
7489 u32 icc_level;
7490
7491 desc_buf = kmalloc(buff_len, GFP_KERNEL);
7492 if (!desc_buf)
7493 return;
7494
7495 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7496 desc_buf, buff_len);
7497 if (ret) {
7498 dev_err(hba->dev,
7499 "%s: Failed reading power descriptor.len = %d ret = %d",
7500 __func__, buff_len, ret);
7501 goto out;
7502 }
7503
7504 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7505 buff_len);
7506 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7507
7508 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7509 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7510
7511 if (ret)
7512 dev_err(hba->dev,
7513 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7514 __func__, icc_level, ret);
7515
7516 out:
7517 kfree(desc_buf);
7518 }
7519
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7520 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7521 {
7522 scsi_autopm_get_device(sdev);
7523 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7524 if (sdev->rpm_autosuspend)
7525 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7526 RPM_AUTOSUSPEND_DELAY_MS);
7527 scsi_autopm_put_device(sdev);
7528 }
7529
7530 /**
7531 * ufshcd_scsi_add_wlus - Adds required W-LUs
7532 * @hba: per-adapter instance
7533 *
7534 * UFS device specification requires the UFS devices to support 4 well known
7535 * logical units:
7536 * "REPORT_LUNS" (address: 01h)
7537 * "UFS Device" (address: 50h)
7538 * "RPMB" (address: 44h)
7539 * "BOOT" (address: 30h)
7540 * UFS device's power management needs to be controlled by "POWER CONDITION"
7541 * field of SSU (START STOP UNIT) command. But this "power condition" field
7542 * will take effect only when its sent to "UFS device" well known logical unit
7543 * hence we require the scsi_device instance to represent this logical unit in
7544 * order for the UFS host driver to send the SSU command for power management.
7545 *
7546 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7547 * Block) LU so user space process can control this LU. User space may also
7548 * want to have access to BOOT LU.
7549 *
7550 * This function adds scsi device instances for each of all well known LUs
7551 * (except "REPORT LUNS" LU).
7552 *
7553 * Returns zero on success (all required W-LUs are added successfully),
7554 * non-zero error value on failure (if failed to add any of the required W-LU).
7555 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7556 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7557 {
7558 int ret = 0;
7559 struct scsi_device *sdev_boot, *sdev_rpmb;
7560
7561 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7562 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7563 if (IS_ERR(hba->ufs_device_wlun)) {
7564 ret = PTR_ERR(hba->ufs_device_wlun);
7565 hba->ufs_device_wlun = NULL;
7566 goto out;
7567 }
7568 scsi_device_put(hba->ufs_device_wlun);
7569
7570 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7571 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7572 if (IS_ERR(sdev_rpmb)) {
7573 ret = PTR_ERR(sdev_rpmb);
7574 goto remove_ufs_device_wlun;
7575 }
7576 ufshcd_blk_pm_runtime_init(sdev_rpmb);
7577 scsi_device_put(sdev_rpmb);
7578
7579 sdev_boot = __scsi_add_device(hba->host, 0, 0,
7580 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7581 if (IS_ERR(sdev_boot)) {
7582 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7583 } else {
7584 ufshcd_blk_pm_runtime_init(sdev_boot);
7585 scsi_device_put(sdev_boot);
7586 }
7587 goto out;
7588
7589 remove_ufs_device_wlun:
7590 scsi_remove_device(hba->ufs_device_wlun);
7591 out:
7592 return ret;
7593 }
7594
ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7595 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7596 {
7597 struct ufs_dev_info *dev_info = &hba->dev_info;
7598 u8 lun;
7599 u32 d_lu_wb_buf_alloc;
7600 u32 ext_ufs_feature;
7601
7602 if (!ufshcd_is_wb_allowed(hba))
7603 return;
7604
7605 /*
7606 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7607 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7608 * enabled
7609 */
7610 if (!(dev_info->wspecversion >= 0x310 ||
7611 dev_info->wspecversion == 0x220 ||
7612 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7613 goto wb_disabled;
7614
7615 if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7616 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7617 goto wb_disabled;
7618
7619 ext_ufs_feature = get_unaligned_be32(desc_buf +
7620 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7621
7622 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7623 goto wb_disabled;
7624
7625 /*
7626 * WB may be supported but not configured while provisioning. The spec
7627 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7628 * buffer configured.
7629 */
7630 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7631
7632 dev_info->b_presrv_uspc_en =
7633 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7634
7635 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7636 if (!get_unaligned_be32(desc_buf +
7637 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7638 goto wb_disabled;
7639 } else {
7640 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7641 d_lu_wb_buf_alloc = 0;
7642 ufshcd_read_unit_desc_param(hba,
7643 lun,
7644 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7645 (u8 *)&d_lu_wb_buf_alloc,
7646 sizeof(d_lu_wb_buf_alloc));
7647 if (d_lu_wb_buf_alloc) {
7648 dev_info->wb_dedicated_lu = lun;
7649 break;
7650 }
7651 }
7652
7653 if (!d_lu_wb_buf_alloc)
7654 goto wb_disabled;
7655 }
7656
7657 if (!ufshcd_is_wb_buf_lifetime_available(hba))
7658 goto wb_disabled;
7659
7660 return;
7661
7662 wb_disabled:
7663 hba->caps &= ~UFSHCD_CAP_WB_EN;
7664 }
7665
ufshcd_temp_notif_probe(struct ufs_hba * hba,u8 * desc_buf)7666 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, u8 *desc_buf)
7667 {
7668 struct ufs_dev_info *dev_info = &hba->dev_info;
7669 u32 ext_ufs_feature;
7670 u8 mask = 0;
7671
7672 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7673 return;
7674
7675 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7676
7677 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7678 mask |= MASK_EE_TOO_LOW_TEMP;
7679
7680 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7681 mask |= MASK_EE_TOO_HIGH_TEMP;
7682
7683 if (mask) {
7684 ufshcd_enable_ee(hba, mask);
7685 ufs_hwmon_probe(hba, mask);
7686 }
7687 }
7688
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)7689 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7690 const struct ufs_dev_quirk *fixups)
7691 {
7692 const struct ufs_dev_quirk *f;
7693 struct ufs_dev_info *dev_info = &hba->dev_info;
7694
7695 if (!fixups)
7696 return;
7697
7698 for (f = fixups; f->quirk; f++) {
7699 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7700 f->wmanufacturerid == UFS_ANY_VENDOR) &&
7701 ((dev_info->model &&
7702 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7703 !strcmp(f->model, UFS_ANY_MODEL)))
7704 hba->dev_quirks |= f->quirk;
7705 }
7706 }
7707 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7708
ufs_fixup_device_setup(struct ufs_hba * hba)7709 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7710 {
7711 /* fix by general quirk table */
7712 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7713
7714 /* allow vendors to fix quirks */
7715 ufshcd_vops_fixup_dev_quirks(hba);
7716 }
7717
ufs_get_device_desc(struct ufs_hba * hba)7718 static int ufs_get_device_desc(struct ufs_hba *hba)
7719 {
7720 int err;
7721 u8 model_index;
7722 u8 b_ufs_feature_sup;
7723 u8 *desc_buf;
7724 struct ufs_dev_info *dev_info = &hba->dev_info;
7725
7726 desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7727 if (!desc_buf) {
7728 err = -ENOMEM;
7729 goto out;
7730 }
7731
7732 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7733 hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7734 if (err) {
7735 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7736 __func__, err);
7737 goto out;
7738 }
7739
7740 /*
7741 * getting vendor (manufacturerID) and Bank Index in big endian
7742 * format
7743 */
7744 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7745 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7746
7747 /* getting Specification Version in big endian format */
7748 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7749 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7750 b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
7751
7752 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7753
7754 if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
7755 (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
7756 bool hpb_en = false;
7757
7758 ufshpb_get_dev_info(hba, desc_buf);
7759
7760 if (!ufshpb_is_legacy(hba))
7761 err = ufshcd_query_flag_retry(hba,
7762 UPIU_QUERY_OPCODE_READ_FLAG,
7763 QUERY_FLAG_IDN_HPB_EN, 0,
7764 &hpb_en);
7765
7766 if (ufshpb_is_legacy(hba) || (!err && hpb_en))
7767 dev_info->hpb_enabled = true;
7768 }
7769
7770 err = ufshcd_read_string_desc(hba, model_index,
7771 &dev_info->model, SD_ASCII_STD);
7772 if (err < 0) {
7773 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7774 __func__, err);
7775 goto out;
7776 }
7777
7778 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
7779 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
7780
7781 ufs_fixup_device_setup(hba);
7782
7783 ufshcd_wb_probe(hba, desc_buf);
7784
7785 ufshcd_temp_notif_probe(hba, desc_buf);
7786
7787 /*
7788 * ufshcd_read_string_desc returns size of the string
7789 * reset the error value
7790 */
7791 err = 0;
7792
7793 out:
7794 kfree(desc_buf);
7795 return err;
7796 }
7797
ufs_put_device_desc(struct ufs_hba * hba)7798 static void ufs_put_device_desc(struct ufs_hba *hba)
7799 {
7800 struct ufs_dev_info *dev_info = &hba->dev_info;
7801
7802 kfree(dev_info->model);
7803 dev_info->model = NULL;
7804 }
7805
7806 /**
7807 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7808 * @hba: per-adapter instance
7809 *
7810 * PA_TActivate parameter can be tuned manually if UniPro version is less than
7811 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7812 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7813 * the hibern8 exit latency.
7814 *
7815 * Returns zero on success, non-zero error value on failure.
7816 */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7817 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7818 {
7819 int ret = 0;
7820 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7821
7822 ret = ufshcd_dme_peer_get(hba,
7823 UIC_ARG_MIB_SEL(
7824 RX_MIN_ACTIVATETIME_CAPABILITY,
7825 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7826 &peer_rx_min_activatetime);
7827 if (ret)
7828 goto out;
7829
7830 /* make sure proper unit conversion is applied */
7831 tuned_pa_tactivate =
7832 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7833 / PA_TACTIVATE_TIME_UNIT_US);
7834 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7835 tuned_pa_tactivate);
7836
7837 out:
7838 return ret;
7839 }
7840
7841 /**
7842 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7843 * @hba: per-adapter instance
7844 *
7845 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7846 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7847 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7848 * This optimal value can help reduce the hibern8 exit latency.
7849 *
7850 * Returns zero on success, non-zero error value on failure.
7851 */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7852 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7853 {
7854 int ret = 0;
7855 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7856 u32 max_hibern8_time, tuned_pa_hibern8time;
7857
7858 ret = ufshcd_dme_get(hba,
7859 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7860 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7861 &local_tx_hibern8_time_cap);
7862 if (ret)
7863 goto out;
7864
7865 ret = ufshcd_dme_peer_get(hba,
7866 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7867 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7868 &peer_rx_hibern8_time_cap);
7869 if (ret)
7870 goto out;
7871
7872 max_hibern8_time = max(local_tx_hibern8_time_cap,
7873 peer_rx_hibern8_time_cap);
7874 /* make sure proper unit conversion is applied */
7875 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7876 / PA_HIBERN8_TIME_UNIT_US);
7877 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7878 tuned_pa_hibern8time);
7879 out:
7880 return ret;
7881 }
7882
7883 /**
7884 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7885 * less than device PA_TACTIVATE time.
7886 * @hba: per-adapter instance
7887 *
7888 * Some UFS devices require host PA_TACTIVATE to be lower than device
7889 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7890 * for such devices.
7891 *
7892 * Returns zero on success, non-zero error value on failure.
7893 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)7894 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7895 {
7896 int ret = 0;
7897 u32 granularity, peer_granularity;
7898 u32 pa_tactivate, peer_pa_tactivate;
7899 u32 pa_tactivate_us, peer_pa_tactivate_us;
7900 u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7901
7902 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7903 &granularity);
7904 if (ret)
7905 goto out;
7906
7907 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7908 &peer_granularity);
7909 if (ret)
7910 goto out;
7911
7912 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7913 (granularity > PA_GRANULARITY_MAX_VAL)) {
7914 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7915 __func__, granularity);
7916 return -EINVAL;
7917 }
7918
7919 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7920 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7921 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7922 __func__, peer_granularity);
7923 return -EINVAL;
7924 }
7925
7926 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7927 if (ret)
7928 goto out;
7929
7930 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7931 &peer_pa_tactivate);
7932 if (ret)
7933 goto out;
7934
7935 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7936 peer_pa_tactivate_us = peer_pa_tactivate *
7937 gran_to_us_table[peer_granularity - 1];
7938
7939 if (pa_tactivate_us >= peer_pa_tactivate_us) {
7940 u32 new_peer_pa_tactivate;
7941
7942 new_peer_pa_tactivate = pa_tactivate_us /
7943 gran_to_us_table[peer_granularity - 1];
7944 new_peer_pa_tactivate++;
7945 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7946 new_peer_pa_tactivate);
7947 }
7948
7949 out:
7950 return ret;
7951 }
7952
ufshcd_tune_unipro_params(struct ufs_hba * hba)7953 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7954 {
7955 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7956 ufshcd_tune_pa_tactivate(hba);
7957 ufshcd_tune_pa_hibern8time(hba);
7958 }
7959
7960 ufshcd_vops_apply_dev_quirks(hba);
7961
7962 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7963 /* set 1ms timeout for PA_TACTIVATE */
7964 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7965
7966 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7967 ufshcd_quirk_tune_host_pa_tactivate(hba);
7968 }
7969
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)7970 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7971 {
7972 hba->ufs_stats.hibern8_exit_cnt = 0;
7973 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7974 hba->req_abort_count = 0;
7975 }
7976
ufshcd_device_geo_params_init(struct ufs_hba * hba)7977 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7978 {
7979 int err;
7980 size_t buff_len;
7981 u8 *desc_buf;
7982
7983 buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7984 desc_buf = kmalloc(buff_len, GFP_KERNEL);
7985 if (!desc_buf) {
7986 err = -ENOMEM;
7987 goto out;
7988 }
7989
7990 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7991 desc_buf, buff_len);
7992 if (err) {
7993 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7994 __func__, err);
7995 goto out;
7996 }
7997
7998 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7999 hba->dev_info.max_lu_supported = 32;
8000 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8001 hba->dev_info.max_lu_supported = 8;
8002
8003 if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >=
8004 GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8005 ufshpb_get_geo_info(hba, desc_buf);
8006
8007 out:
8008 kfree(desc_buf);
8009 return err;
8010 }
8011
8012 struct ufs_ref_clk {
8013 unsigned long freq_hz;
8014 enum ufs_ref_clk_freq val;
8015 };
8016
8017 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8018 {19200000, REF_CLK_FREQ_19_2_MHZ},
8019 {26000000, REF_CLK_FREQ_26_MHZ},
8020 {38400000, REF_CLK_FREQ_38_4_MHZ},
8021 {52000000, REF_CLK_FREQ_52_MHZ},
8022 {0, REF_CLK_FREQ_INVAL},
8023 };
8024
8025 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8026 ufs_get_bref_clk_from_hz(unsigned long freq)
8027 {
8028 int i;
8029
8030 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8031 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8032 return ufs_ref_clk_freqs[i].val;
8033
8034 return REF_CLK_FREQ_INVAL;
8035 }
8036
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8037 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8038 {
8039 unsigned long freq;
8040
8041 freq = clk_get_rate(refclk);
8042
8043 hba->dev_ref_clk_freq =
8044 ufs_get_bref_clk_from_hz(freq);
8045
8046 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8047 dev_err(hba->dev,
8048 "invalid ref_clk setting = %ld\n", freq);
8049 }
8050
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8051 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8052 {
8053 int err;
8054 u32 ref_clk;
8055 u32 freq = hba->dev_ref_clk_freq;
8056
8057 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8058 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8059
8060 if (err) {
8061 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8062 err);
8063 goto out;
8064 }
8065
8066 if (ref_clk == freq)
8067 goto out; /* nothing to update */
8068
8069 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8070 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8071
8072 if (err) {
8073 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8074 ufs_ref_clk_freqs[freq].freq_hz);
8075 goto out;
8076 }
8077
8078 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8079 ufs_ref_clk_freqs[freq].freq_hz);
8080
8081 out:
8082 return err;
8083 }
8084
ufshcd_device_params_init(struct ufs_hba * hba)8085 static int ufshcd_device_params_init(struct ufs_hba *hba)
8086 {
8087 bool flag;
8088 int ret, i;
8089
8090 /* Init device descriptor sizes */
8091 for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
8092 hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
8093
8094 /* Init UFS geometry descriptor related parameters */
8095 ret = ufshcd_device_geo_params_init(hba);
8096 if (ret)
8097 goto out;
8098
8099 /* Check and apply UFS device quirks */
8100 ret = ufs_get_device_desc(hba);
8101 if (ret) {
8102 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8103 __func__, ret);
8104 goto out;
8105 }
8106
8107 ufshcd_get_ref_clk_gating_wait(hba);
8108
8109 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8110 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8111 hba->dev_info.f_power_on_wp_en = flag;
8112
8113 /* Probe maximum power mode co-supported by both UFS host and device */
8114 if (ufshcd_get_max_pwr_mode(hba))
8115 dev_err(hba->dev,
8116 "%s: Failed getting max supported power mode\n",
8117 __func__);
8118 out:
8119 return ret;
8120 }
8121
8122 /**
8123 * ufshcd_add_lus - probe and add UFS logical units
8124 * @hba: per-adapter instance
8125 */
ufshcd_add_lus(struct ufs_hba * hba)8126 static int ufshcd_add_lus(struct ufs_hba *hba)
8127 {
8128 int ret;
8129
8130 /* Add required well known logical units to scsi mid layer */
8131 ret = ufshcd_scsi_add_wlus(hba);
8132 if (ret)
8133 goto out;
8134
8135 /* Initialize devfreq after UFS device is detected */
8136 if (ufshcd_is_clkscaling_supported(hba)) {
8137 memcpy(&hba->clk_scaling.saved_pwr_info.info,
8138 &hba->pwr_info,
8139 sizeof(struct ufs_pa_layer_attr));
8140 hba->clk_scaling.saved_pwr_info.is_valid = true;
8141 hba->clk_scaling.is_allowed = true;
8142
8143 ret = ufshcd_devfreq_init(hba);
8144 if (ret)
8145 goto out;
8146
8147 hba->clk_scaling.is_enabled = true;
8148 ufshcd_init_clk_scaling_sysfs(hba);
8149 }
8150
8151 ufs_bsg_probe(hba);
8152 ufshpb_init(hba);
8153 scsi_scan_host(hba->host);
8154 pm_runtime_put_sync(hba->dev);
8155
8156 out:
8157 return ret;
8158 }
8159
8160 /**
8161 * ufshcd_probe_hba - probe hba to detect device and initialize it
8162 * @hba: per-adapter instance
8163 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8164 *
8165 * Execute link-startup and verify device initialization
8166 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8167 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8168 {
8169 int ret;
8170 unsigned long flags;
8171 ktime_t start = ktime_get();
8172
8173 hba->ufshcd_state = UFSHCD_STATE_RESET;
8174
8175 ret = ufshcd_link_startup(hba);
8176 if (ret)
8177 goto out;
8178
8179 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8180 goto out;
8181
8182 /* Debug counters initialization */
8183 ufshcd_clear_dbg_ufs_stats(hba);
8184
8185 /* UniPro link is active now */
8186 ufshcd_set_link_active(hba);
8187
8188 /* Verify device initialization by sending NOP OUT UPIU */
8189 ret = ufshcd_verify_dev_init(hba);
8190 if (ret)
8191 goto out;
8192
8193 /* Initiate UFS initialization, and waiting until completion */
8194 ret = ufshcd_complete_dev_init(hba);
8195 if (ret)
8196 goto out;
8197
8198 /*
8199 * Initialize UFS device parameters used by driver, these
8200 * parameters are associated with UFS descriptors.
8201 */
8202 if (init_dev_params) {
8203 ret = ufshcd_device_params_init(hba);
8204 if (ret)
8205 goto out;
8206 }
8207
8208 ufshcd_tune_unipro_params(hba);
8209
8210 /* UFS device is also active now */
8211 ufshcd_set_ufs_dev_active(hba);
8212 ufshcd_force_reset_auto_bkops(hba);
8213
8214 /* Gear up to HS gear if supported */
8215 if (hba->max_pwr_info.is_valid) {
8216 /*
8217 * Set the right value to bRefClkFreq before attempting to
8218 * switch to HS gears.
8219 */
8220 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8221 ufshcd_set_dev_ref_clk(hba);
8222 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8223 if (ret) {
8224 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8225 __func__, ret);
8226 goto out;
8227 }
8228 ufshcd_print_pwr_info(hba);
8229 }
8230
8231 /*
8232 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8233 * and for removable UFS card as well, hence always set the parameter.
8234 * Note: Error handler may issue the device reset hence resetting
8235 * bActiveICCLevel as well so it is always safe to set this here.
8236 */
8237 ufshcd_set_active_icc_lvl(hba);
8238
8239 ufshcd_wb_config(hba);
8240 if (hba->ee_usr_mask)
8241 ufshcd_write_ee_control(hba);
8242 /* Enable Auto-Hibernate if configured */
8243 ufshcd_auto_hibern8_enable(hba);
8244
8245 ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8246 out:
8247 spin_lock_irqsave(hba->host->host_lock, flags);
8248 if (ret)
8249 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8250 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8251 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8252 spin_unlock_irqrestore(hba->host->host_lock, flags);
8253
8254 trace_ufshcd_init(dev_name(hba->dev), ret,
8255 ktime_to_us(ktime_sub(ktime_get(), start)),
8256 hba->curr_dev_pwr_mode, hba->uic_link_state);
8257 return ret;
8258 }
8259
8260 /**
8261 * ufshcd_async_scan - asynchronous execution for probing hba
8262 * @data: data pointer to pass to this function
8263 * @cookie: cookie data
8264 */
ufshcd_async_scan(void * data,async_cookie_t cookie)8265 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8266 {
8267 struct ufs_hba *hba = (struct ufs_hba *)data;
8268 int ret;
8269
8270 down(&hba->host_sem);
8271 /* Initialize hba, detect and initialize UFS device */
8272 ret = ufshcd_probe_hba(hba, true);
8273 up(&hba->host_sem);
8274 if (ret)
8275 goto out;
8276
8277 /* Probe and add UFS logical units */
8278 ret = ufshcd_add_lus(hba);
8279 out:
8280 /*
8281 * If we failed to initialize the device or the device is not
8282 * present, turn off the power/clocks etc.
8283 */
8284 if (ret) {
8285 pm_runtime_put_sync(hba->dev);
8286 ufshcd_hba_exit(hba);
8287 }
8288 }
8289
8290 static const struct attribute_group *ufshcd_driver_groups[] = {
8291 &ufs_sysfs_unit_descriptor_group,
8292 &ufs_sysfs_lun_attributes_group,
8293 #ifdef CONFIG_SCSI_UFS_HPB
8294 &ufs_sysfs_hpb_stat_group,
8295 &ufs_sysfs_hpb_param_group,
8296 #endif
8297 NULL,
8298 };
8299
8300 static struct ufs_hba_variant_params ufs_hba_vps = {
8301 .hba_enable_delay_us = 1000,
8302 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
8303 .devfreq_profile.polling_ms = 100,
8304 .devfreq_profile.target = ufshcd_devfreq_target,
8305 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8306 .ondemand_data.upthreshold = 70,
8307 .ondemand_data.downdifferential = 5,
8308 };
8309
8310 static struct scsi_host_template ufshcd_driver_template = {
8311 .module = THIS_MODULE,
8312 .name = UFSHCD,
8313 .proc_name = UFSHCD,
8314 .map_queues = ufshcd_map_queues,
8315 .queuecommand = ufshcd_queuecommand,
8316 .mq_poll = ufshcd_poll,
8317 .slave_alloc = ufshcd_slave_alloc,
8318 .slave_configure = ufshcd_slave_configure,
8319 .slave_destroy = ufshcd_slave_destroy,
8320 .change_queue_depth = ufshcd_change_queue_depth,
8321 .eh_abort_handler = ufshcd_abort,
8322 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8323 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
8324 .this_id = -1,
8325 .sg_tablesize = SG_ALL,
8326 .cmd_per_lun = UFSHCD_CMD_PER_LUN,
8327 .can_queue = UFSHCD_CAN_QUEUE,
8328 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
8329 .max_host_blocked = 1,
8330 .track_queue_depth = 1,
8331 .sdev_groups = ufshcd_driver_groups,
8332 .dma_boundary = PAGE_SIZE - 1,
8333 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS,
8334 };
8335
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8336 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8337 int ua)
8338 {
8339 int ret;
8340
8341 if (!vreg)
8342 return 0;
8343
8344 /*
8345 * "set_load" operation shall be required on those regulators
8346 * which specifically configured current limitation. Otherwise
8347 * zero max_uA may cause unexpected behavior when regulator is
8348 * enabled or set as high power mode.
8349 */
8350 if (!vreg->max_uA)
8351 return 0;
8352
8353 ret = regulator_set_load(vreg->reg, ua);
8354 if (ret < 0) {
8355 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8356 __func__, vreg->name, ua, ret);
8357 }
8358
8359 return ret;
8360 }
8361
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8362 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8363 struct ufs_vreg *vreg)
8364 {
8365 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8366 }
8367
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8368 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8369 struct ufs_vreg *vreg)
8370 {
8371 if (!vreg)
8372 return 0;
8373
8374 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8375 }
8376
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)8377 static int ufshcd_config_vreg(struct device *dev,
8378 struct ufs_vreg *vreg, bool on)
8379 {
8380 if (regulator_count_voltages(vreg->reg) <= 0)
8381 return 0;
8382
8383 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8384 }
8385
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)8386 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8387 {
8388 int ret = 0;
8389
8390 if (!vreg || vreg->enabled)
8391 goto out;
8392
8393 ret = ufshcd_config_vreg(dev, vreg, true);
8394 if (!ret)
8395 ret = regulator_enable(vreg->reg);
8396
8397 if (!ret)
8398 vreg->enabled = true;
8399 else
8400 dev_err(dev, "%s: %s enable failed, err=%d\n",
8401 __func__, vreg->name, ret);
8402 out:
8403 return ret;
8404 }
8405
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)8406 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8407 {
8408 int ret = 0;
8409
8410 if (!vreg || !vreg->enabled || vreg->always_on)
8411 goto out;
8412
8413 ret = regulator_disable(vreg->reg);
8414
8415 if (!ret) {
8416 /* ignore errors on applying disable config */
8417 ufshcd_config_vreg(dev, vreg, false);
8418 vreg->enabled = false;
8419 } else {
8420 dev_err(dev, "%s: %s disable failed, err=%d\n",
8421 __func__, vreg->name, ret);
8422 }
8423 out:
8424 return ret;
8425 }
8426
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)8427 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8428 {
8429 int ret = 0;
8430 struct device *dev = hba->dev;
8431 struct ufs_vreg_info *info = &hba->vreg_info;
8432
8433 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8434 if (ret)
8435 goto out;
8436
8437 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8438 if (ret)
8439 goto out;
8440
8441 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8442
8443 out:
8444 if (ret) {
8445 ufshcd_toggle_vreg(dev, info->vccq2, false);
8446 ufshcd_toggle_vreg(dev, info->vccq, false);
8447 ufshcd_toggle_vreg(dev, info->vcc, false);
8448 }
8449 return ret;
8450 }
8451
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)8452 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8453 {
8454 struct ufs_vreg_info *info = &hba->vreg_info;
8455
8456 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8457 }
8458
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)8459 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8460 {
8461 int ret = 0;
8462
8463 if (!vreg)
8464 goto out;
8465
8466 vreg->reg = devm_regulator_get(dev, vreg->name);
8467 if (IS_ERR(vreg->reg)) {
8468 ret = PTR_ERR(vreg->reg);
8469 dev_err(dev, "%s: %s get failed, err=%d\n",
8470 __func__, vreg->name, ret);
8471 }
8472 out:
8473 return ret;
8474 }
8475
ufshcd_init_vreg(struct ufs_hba * hba)8476 static int ufshcd_init_vreg(struct ufs_hba *hba)
8477 {
8478 int ret = 0;
8479 struct device *dev = hba->dev;
8480 struct ufs_vreg_info *info = &hba->vreg_info;
8481
8482 ret = ufshcd_get_vreg(dev, info->vcc);
8483 if (ret)
8484 goto out;
8485
8486 ret = ufshcd_get_vreg(dev, info->vccq);
8487 if (!ret)
8488 ret = ufshcd_get_vreg(dev, info->vccq2);
8489 out:
8490 return ret;
8491 }
8492
ufshcd_init_hba_vreg(struct ufs_hba * hba)8493 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8494 {
8495 struct ufs_vreg_info *info = &hba->vreg_info;
8496
8497 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8498 }
8499
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8500 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8501 {
8502 int ret = 0;
8503 struct ufs_clk_info *clki;
8504 struct list_head *head = &hba->clk_list_head;
8505 unsigned long flags;
8506 ktime_t start = ktime_get();
8507 bool clk_state_changed = false;
8508
8509 if (list_empty(head))
8510 goto out;
8511
8512 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8513 if (ret)
8514 return ret;
8515
8516 list_for_each_entry(clki, head, list) {
8517 if (!IS_ERR_OR_NULL(clki->clk)) {
8518 /*
8519 * Don't disable clocks which are needed
8520 * to keep the link active.
8521 */
8522 if (ufshcd_is_link_active(hba) &&
8523 clki->keep_link_active)
8524 continue;
8525
8526 clk_state_changed = on ^ clki->enabled;
8527 if (on && !clki->enabled) {
8528 ret = clk_prepare_enable(clki->clk);
8529 if (ret) {
8530 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8531 __func__, clki->name, ret);
8532 goto out;
8533 }
8534 } else if (!on && clki->enabled) {
8535 clk_disable_unprepare(clki->clk);
8536 }
8537 clki->enabled = on;
8538 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8539 clki->name, on ? "en" : "dis");
8540 }
8541 }
8542
8543 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8544 if (ret)
8545 return ret;
8546
8547 out:
8548 if (ret) {
8549 list_for_each_entry(clki, head, list) {
8550 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8551 clk_disable_unprepare(clki->clk);
8552 }
8553 } else if (!ret && on) {
8554 spin_lock_irqsave(hba->host->host_lock, flags);
8555 hba->clk_gating.state = CLKS_ON;
8556 trace_ufshcd_clk_gating(dev_name(hba->dev),
8557 hba->clk_gating.state);
8558 spin_unlock_irqrestore(hba->host->host_lock, flags);
8559 }
8560
8561 if (clk_state_changed)
8562 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8563 (on ? "on" : "off"),
8564 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8565 return ret;
8566 }
8567
ufshcd_init_clocks(struct ufs_hba * hba)8568 static int ufshcd_init_clocks(struct ufs_hba *hba)
8569 {
8570 int ret = 0;
8571 struct ufs_clk_info *clki;
8572 struct device *dev = hba->dev;
8573 struct list_head *head = &hba->clk_list_head;
8574
8575 if (list_empty(head))
8576 goto out;
8577
8578 list_for_each_entry(clki, head, list) {
8579 if (!clki->name)
8580 continue;
8581
8582 clki->clk = devm_clk_get(dev, clki->name);
8583 if (IS_ERR(clki->clk)) {
8584 ret = PTR_ERR(clki->clk);
8585 dev_err(dev, "%s: %s clk get failed, %d\n",
8586 __func__, clki->name, ret);
8587 goto out;
8588 }
8589
8590 /*
8591 * Parse device ref clk freq as per device tree "ref_clk".
8592 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8593 * in ufshcd_alloc_host().
8594 */
8595 if (!strcmp(clki->name, "ref_clk"))
8596 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8597
8598 if (clki->max_freq) {
8599 ret = clk_set_rate(clki->clk, clki->max_freq);
8600 if (ret) {
8601 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8602 __func__, clki->name,
8603 clki->max_freq, ret);
8604 goto out;
8605 }
8606 clki->curr_freq = clki->max_freq;
8607 }
8608 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8609 clki->name, clk_get_rate(clki->clk));
8610 }
8611 out:
8612 return ret;
8613 }
8614
ufshcd_variant_hba_init(struct ufs_hba * hba)8615 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8616 {
8617 int err = 0;
8618
8619 if (!hba->vops)
8620 goto out;
8621
8622 err = ufshcd_vops_init(hba);
8623 if (err)
8624 dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8625 __func__, ufshcd_get_var_name(hba), err);
8626 out:
8627 return err;
8628 }
8629
ufshcd_variant_hba_exit(struct ufs_hba * hba)8630 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8631 {
8632 if (!hba->vops)
8633 return;
8634
8635 ufshcd_vops_exit(hba);
8636 }
8637
ufshcd_hba_init(struct ufs_hba * hba)8638 static int ufshcd_hba_init(struct ufs_hba *hba)
8639 {
8640 int err;
8641
8642 /*
8643 * Handle host controller power separately from the UFS device power
8644 * rails as it will help controlling the UFS host controller power
8645 * collapse easily which is different than UFS device power collapse.
8646 * Also, enable the host controller power before we go ahead with rest
8647 * of the initialization here.
8648 */
8649 err = ufshcd_init_hba_vreg(hba);
8650 if (err)
8651 goto out;
8652
8653 err = ufshcd_setup_hba_vreg(hba, true);
8654 if (err)
8655 goto out;
8656
8657 err = ufshcd_init_clocks(hba);
8658 if (err)
8659 goto out_disable_hba_vreg;
8660
8661 err = ufshcd_setup_clocks(hba, true);
8662 if (err)
8663 goto out_disable_hba_vreg;
8664
8665 err = ufshcd_init_vreg(hba);
8666 if (err)
8667 goto out_disable_clks;
8668
8669 err = ufshcd_setup_vreg(hba, true);
8670 if (err)
8671 goto out_disable_clks;
8672
8673 err = ufshcd_variant_hba_init(hba);
8674 if (err)
8675 goto out_disable_vreg;
8676
8677 ufs_debugfs_hba_init(hba);
8678
8679 hba->is_powered = true;
8680 goto out;
8681
8682 out_disable_vreg:
8683 ufshcd_setup_vreg(hba, false);
8684 out_disable_clks:
8685 ufshcd_setup_clocks(hba, false);
8686 out_disable_hba_vreg:
8687 ufshcd_setup_hba_vreg(hba, false);
8688 out:
8689 return err;
8690 }
8691
ufshcd_hba_exit(struct ufs_hba * hba)8692 static void ufshcd_hba_exit(struct ufs_hba *hba)
8693 {
8694 if (hba->is_powered) {
8695 ufshcd_exit_clk_scaling(hba);
8696 ufshcd_exit_clk_gating(hba);
8697 if (hba->eh_wq)
8698 destroy_workqueue(hba->eh_wq);
8699 ufs_debugfs_hba_exit(hba);
8700 ufshcd_variant_hba_exit(hba);
8701 ufshcd_setup_vreg(hba, false);
8702 ufshcd_setup_clocks(hba, false);
8703 ufshcd_setup_hba_vreg(hba, false);
8704 hba->is_powered = false;
8705 ufs_put_device_desc(hba);
8706 }
8707 }
8708
8709 /**
8710 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8711 * power mode
8712 * @hba: per adapter instance
8713 * @pwr_mode: device power mode to set
8714 *
8715 * Returns 0 if requested power mode is set successfully
8716 * Returns < 0 if failed to set the requested power mode
8717 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8718 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8719 enum ufs_dev_pwr_mode pwr_mode)
8720 {
8721 unsigned char cmd[6] = { START_STOP };
8722 struct scsi_sense_hdr sshdr;
8723 struct scsi_device *sdp;
8724 unsigned long flags;
8725 int ret, retries;
8726 unsigned long deadline;
8727 int32_t remaining;
8728
8729 spin_lock_irqsave(hba->host->host_lock, flags);
8730 sdp = hba->ufs_device_wlun;
8731 if (sdp) {
8732 ret = scsi_device_get(sdp);
8733 if (!ret && !scsi_device_online(sdp)) {
8734 ret = -ENODEV;
8735 scsi_device_put(sdp);
8736 }
8737 } else {
8738 ret = -ENODEV;
8739 }
8740 spin_unlock_irqrestore(hba->host->host_lock, flags);
8741
8742 if (ret)
8743 return ret;
8744
8745 /*
8746 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8747 * handling, which would wait for host to be resumed. Since we know
8748 * we are functional while we are here, skip host resume in error
8749 * handling context.
8750 */
8751 hba->host->eh_noresume = 1;
8752
8753 cmd[4] = pwr_mode << 4;
8754
8755 /*
8756 * Current function would be generally called from the power management
8757 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8758 * already suspended childs.
8759 */
8760 deadline = jiffies + 10 * HZ;
8761 for (retries = 3; retries > 0; --retries) {
8762 ret = -ETIMEDOUT;
8763 remaining = deadline - jiffies;
8764 if (remaining <= 0)
8765 break;
8766 ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8767 remaining / HZ, 0, 0, RQF_PM, NULL);
8768 if (!scsi_status_is_check_condition(ret) ||
8769 !scsi_sense_valid(&sshdr) ||
8770 sshdr.sense_key != UNIT_ATTENTION)
8771 break;
8772 }
8773 if (ret) {
8774 sdev_printk(KERN_WARNING, sdp,
8775 "START_STOP failed for power mode: %d, result %x\n",
8776 pwr_mode, ret);
8777 if (ret > 0) {
8778 if (scsi_sense_valid(&sshdr))
8779 scsi_print_sense_hdr(sdp, NULL, &sshdr);
8780 ret = -EIO;
8781 }
8782 }
8783
8784 if (!ret)
8785 hba->curr_dev_pwr_mode = pwr_mode;
8786
8787 scsi_device_put(sdp);
8788 hba->host->eh_noresume = 0;
8789 return ret;
8790 }
8791
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8792 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8793 enum uic_link_state req_link_state,
8794 int check_for_bkops)
8795 {
8796 int ret = 0;
8797
8798 if (req_link_state == hba->uic_link_state)
8799 return 0;
8800
8801 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8802 ret = ufshcd_uic_hibern8_enter(hba);
8803 if (!ret) {
8804 ufshcd_set_link_hibern8(hba);
8805 } else {
8806 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8807 __func__, ret);
8808 goto out;
8809 }
8810 }
8811 /*
8812 * If autobkops is enabled, link can't be turned off because
8813 * turning off the link would also turn off the device, except in the
8814 * case of DeepSleep where the device is expected to remain powered.
8815 */
8816 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8817 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8818 /*
8819 * Let's make sure that link is in low power mode, we are doing
8820 * this currently by putting the link in Hibern8. Otherway to
8821 * put the link in low power mode is to send the DME end point
8822 * to device and then send the DME reset command to local
8823 * unipro. But putting the link in hibern8 is much faster.
8824 *
8825 * Note also that putting the link in Hibern8 is a requirement
8826 * for entering DeepSleep.
8827 */
8828 ret = ufshcd_uic_hibern8_enter(hba);
8829 if (ret) {
8830 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8831 __func__, ret);
8832 goto out;
8833 }
8834 /*
8835 * Change controller state to "reset state" which
8836 * should also put the link in off/reset state
8837 */
8838 ufshcd_hba_stop(hba);
8839 /*
8840 * TODO: Check if we need any delay to make sure that
8841 * controller is reset
8842 */
8843 ufshcd_set_link_off(hba);
8844 }
8845
8846 out:
8847 return ret;
8848 }
8849
ufshcd_vreg_set_lpm(struct ufs_hba * hba)8850 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8851 {
8852 bool vcc_off = false;
8853
8854 /*
8855 * It seems some UFS devices may keep drawing more than sleep current
8856 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8857 * To avoid this situation, add 2ms delay before putting these UFS
8858 * rails in LPM mode.
8859 */
8860 if (!ufshcd_is_link_active(hba) &&
8861 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8862 usleep_range(2000, 2100);
8863
8864 /*
8865 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8866 * power.
8867 *
8868 * If UFS device and link is in OFF state, all power supplies (VCC,
8869 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8870 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8871 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8872 *
8873 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8874 * in low power state which would save some power.
8875 *
8876 * If Write Booster is enabled and the device needs to flush the WB
8877 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8878 */
8879 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8880 !hba->dev_info.is_lu_power_on_wp) {
8881 ufshcd_setup_vreg(hba, false);
8882 vcc_off = true;
8883 } else if (!ufshcd_is_ufs_dev_active(hba)) {
8884 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8885 vcc_off = true;
8886 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8887 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8888 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8889 }
8890 }
8891
8892 /*
8893 * Some UFS devices require delay after VCC power rail is turned-off.
8894 */
8895 if (vcc_off && hba->vreg_info.vcc &&
8896 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8897 usleep_range(5000, 5100);
8898 }
8899
8900 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)8901 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8902 {
8903 int ret = 0;
8904
8905 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8906 !hba->dev_info.is_lu_power_on_wp) {
8907 ret = ufshcd_setup_vreg(hba, true);
8908 } else if (!ufshcd_is_ufs_dev_active(hba)) {
8909 if (!ufshcd_is_link_active(hba)) {
8910 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8911 if (ret)
8912 goto vcc_disable;
8913 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8914 if (ret)
8915 goto vccq_lpm;
8916 }
8917 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8918 }
8919 goto out;
8920
8921 vccq_lpm:
8922 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8923 vcc_disable:
8924 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8925 out:
8926 return ret;
8927 }
8928 #endif /* CONFIG_PM */
8929
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)8930 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8931 {
8932 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8933 ufshcd_setup_hba_vreg(hba, false);
8934 }
8935
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)8936 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8937 {
8938 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8939 ufshcd_setup_hba_vreg(hba, true);
8940 }
8941
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)8942 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8943 {
8944 int ret = 0;
8945 int check_for_bkops;
8946 enum ufs_pm_level pm_lvl;
8947 enum ufs_dev_pwr_mode req_dev_pwr_mode;
8948 enum uic_link_state req_link_state;
8949
8950 hba->pm_op_in_progress = true;
8951 if (pm_op != UFS_SHUTDOWN_PM) {
8952 pm_lvl = pm_op == UFS_RUNTIME_PM ?
8953 hba->rpm_lvl : hba->spm_lvl;
8954 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8955 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8956 } else {
8957 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8958 req_link_state = UIC_LINK_OFF_STATE;
8959 }
8960
8961 ufshpb_suspend(hba);
8962
8963 /*
8964 * If we can't transition into any of the low power modes
8965 * just gate the clocks.
8966 */
8967 ufshcd_hold(hba, false);
8968 hba->clk_gating.is_suspended = true;
8969
8970 if (ufshcd_is_clkscaling_supported(hba))
8971 ufshcd_clk_scaling_suspend(hba, true);
8972
8973 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8974 req_link_state == UIC_LINK_ACTIVE_STATE) {
8975 goto vops_suspend;
8976 }
8977
8978 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8979 (req_link_state == hba->uic_link_state))
8980 goto enable_scaling;
8981
8982 /* UFS device & link must be active before we enter in this function */
8983 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
8984 ret = -EINVAL;
8985 goto enable_scaling;
8986 }
8987
8988 if (pm_op == UFS_RUNTIME_PM) {
8989 if (ufshcd_can_autobkops_during_suspend(hba)) {
8990 /*
8991 * The device is idle with no requests in the queue,
8992 * allow background operations if bkops status shows
8993 * that performance might be impacted.
8994 */
8995 ret = ufshcd_urgent_bkops(hba);
8996 if (ret)
8997 goto enable_scaling;
8998 } else {
8999 /* make sure that auto bkops is disabled */
9000 ufshcd_disable_auto_bkops(hba);
9001 }
9002 /*
9003 * If device needs to do BKOP or WB buffer flush during
9004 * Hibern8, keep device power mode as "active power mode"
9005 * and VCC supply.
9006 */
9007 hba->dev_info.b_rpm_dev_flush_capable =
9008 hba->auto_bkops_enabled ||
9009 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9010 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9011 ufshcd_is_auto_hibern8_enabled(hba))) &&
9012 ufshcd_wb_need_flush(hba));
9013 }
9014
9015 flush_work(&hba->eeh_work);
9016
9017 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9018 if (ret)
9019 goto enable_scaling;
9020
9021 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9022 if (pm_op != UFS_RUNTIME_PM)
9023 /* ensure that bkops is disabled */
9024 ufshcd_disable_auto_bkops(hba);
9025
9026 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9027 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9028 if (ret)
9029 goto enable_scaling;
9030 }
9031 }
9032
9033 /*
9034 * In the case of DeepSleep, the device is expected to remain powered
9035 * with the link off, so do not check for bkops.
9036 */
9037 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9038 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9039 if (ret)
9040 goto set_dev_active;
9041
9042 vops_suspend:
9043 /*
9044 * Call vendor specific suspend callback. As these callbacks may access
9045 * vendor specific host controller register space call them before the
9046 * host clocks are ON.
9047 */
9048 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9049 if (ret)
9050 goto set_link_active;
9051 goto out;
9052
9053 set_link_active:
9054 /*
9055 * Device hardware reset is required to exit DeepSleep. Also, for
9056 * DeepSleep, the link is off so host reset and restore will be done
9057 * further below.
9058 */
9059 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9060 ufshcd_device_reset(hba);
9061 WARN_ON(!ufshcd_is_link_off(hba));
9062 }
9063 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9064 ufshcd_set_link_active(hba);
9065 else if (ufshcd_is_link_off(hba))
9066 ufshcd_host_reset_and_restore(hba);
9067 set_dev_active:
9068 /* Can also get here needing to exit DeepSleep */
9069 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9070 ufshcd_device_reset(hba);
9071 ufshcd_host_reset_and_restore(hba);
9072 }
9073 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9074 ufshcd_disable_auto_bkops(hba);
9075 enable_scaling:
9076 if (ufshcd_is_clkscaling_supported(hba))
9077 ufshcd_clk_scaling_suspend(hba, false);
9078
9079 hba->dev_info.b_rpm_dev_flush_capable = false;
9080 out:
9081 if (hba->dev_info.b_rpm_dev_flush_capable) {
9082 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9083 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9084 }
9085
9086 if (ret) {
9087 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9088 hba->clk_gating.is_suspended = false;
9089 ufshcd_release(hba);
9090 ufshpb_resume(hba);
9091 }
9092 hba->pm_op_in_progress = false;
9093 return ret;
9094 }
9095
9096 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9097 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9098 {
9099 int ret;
9100 enum uic_link_state old_link_state = hba->uic_link_state;
9101
9102 hba->pm_op_in_progress = true;
9103
9104 /*
9105 * Call vendor specific resume callback. As these callbacks may access
9106 * vendor specific host controller register space call them when the
9107 * host clocks are ON.
9108 */
9109 ret = ufshcd_vops_resume(hba, pm_op);
9110 if (ret)
9111 goto out;
9112
9113 /* For DeepSleep, the only supported option is to have the link off */
9114 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9115
9116 if (ufshcd_is_link_hibern8(hba)) {
9117 ret = ufshcd_uic_hibern8_exit(hba);
9118 if (!ret) {
9119 ufshcd_set_link_active(hba);
9120 } else {
9121 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9122 __func__, ret);
9123 goto vendor_suspend;
9124 }
9125 } else if (ufshcd_is_link_off(hba)) {
9126 /*
9127 * A full initialization of the host and the device is
9128 * required since the link was put to off during suspend.
9129 * Note, in the case of DeepSleep, the device will exit
9130 * DeepSleep due to device reset.
9131 */
9132 ret = ufshcd_reset_and_restore(hba);
9133 /*
9134 * ufshcd_reset_and_restore() should have already
9135 * set the link state as active
9136 */
9137 if (ret || !ufshcd_is_link_active(hba))
9138 goto vendor_suspend;
9139 }
9140
9141 if (!ufshcd_is_ufs_dev_active(hba)) {
9142 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9143 if (ret)
9144 goto set_old_link_state;
9145 }
9146
9147 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9148 ufshcd_enable_auto_bkops(hba);
9149 else
9150 /*
9151 * If BKOPs operations are urgently needed at this moment then
9152 * keep auto-bkops enabled or else disable it.
9153 */
9154 ufshcd_urgent_bkops(hba);
9155
9156 if (hba->ee_usr_mask)
9157 ufshcd_write_ee_control(hba);
9158
9159 if (ufshcd_is_clkscaling_supported(hba))
9160 ufshcd_clk_scaling_suspend(hba, false);
9161
9162 if (hba->dev_info.b_rpm_dev_flush_capable) {
9163 hba->dev_info.b_rpm_dev_flush_capable = false;
9164 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9165 }
9166
9167 /* Enable Auto-Hibernate if configured */
9168 ufshcd_auto_hibern8_enable(hba);
9169
9170 ufshpb_resume(hba);
9171 goto out;
9172
9173 set_old_link_state:
9174 ufshcd_link_state_transition(hba, old_link_state, 0);
9175 vendor_suspend:
9176 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9177 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9178 out:
9179 if (ret)
9180 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9181 hba->clk_gating.is_suspended = false;
9182 ufshcd_release(hba);
9183 hba->pm_op_in_progress = false;
9184 return ret;
9185 }
9186
ufshcd_wl_runtime_suspend(struct device * dev)9187 static int ufshcd_wl_runtime_suspend(struct device *dev)
9188 {
9189 struct scsi_device *sdev = to_scsi_device(dev);
9190 struct ufs_hba *hba;
9191 int ret;
9192 ktime_t start = ktime_get();
9193
9194 hba = shost_priv(sdev->host);
9195
9196 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9197 if (ret)
9198 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9199
9200 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9201 ktime_to_us(ktime_sub(ktime_get(), start)),
9202 hba->curr_dev_pwr_mode, hba->uic_link_state);
9203
9204 return ret;
9205 }
9206
ufshcd_wl_runtime_resume(struct device * dev)9207 static int ufshcd_wl_runtime_resume(struct device *dev)
9208 {
9209 struct scsi_device *sdev = to_scsi_device(dev);
9210 struct ufs_hba *hba;
9211 int ret = 0;
9212 ktime_t start = ktime_get();
9213
9214 hba = shost_priv(sdev->host);
9215
9216 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9217 if (ret)
9218 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9219
9220 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9221 ktime_to_us(ktime_sub(ktime_get(), start)),
9222 hba->curr_dev_pwr_mode, hba->uic_link_state);
9223
9224 return ret;
9225 }
9226 #endif
9227
9228 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9229 static int ufshcd_wl_suspend(struct device *dev)
9230 {
9231 struct scsi_device *sdev = to_scsi_device(dev);
9232 struct ufs_hba *hba;
9233 int ret = 0;
9234 ktime_t start = ktime_get();
9235
9236 hba = shost_priv(sdev->host);
9237 down(&hba->host_sem);
9238
9239 if (pm_runtime_suspended(dev))
9240 goto out;
9241
9242 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9243 if (ret) {
9244 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9245 up(&hba->host_sem);
9246 }
9247
9248 out:
9249 if (!ret)
9250 hba->is_sys_suspended = true;
9251 trace_ufshcd_wl_suspend(dev_name(dev), ret,
9252 ktime_to_us(ktime_sub(ktime_get(), start)),
9253 hba->curr_dev_pwr_mode, hba->uic_link_state);
9254
9255 return ret;
9256 }
9257
ufshcd_wl_resume(struct device * dev)9258 static int ufshcd_wl_resume(struct device *dev)
9259 {
9260 struct scsi_device *sdev = to_scsi_device(dev);
9261 struct ufs_hba *hba;
9262 int ret = 0;
9263 ktime_t start = ktime_get();
9264
9265 hba = shost_priv(sdev->host);
9266
9267 if (pm_runtime_suspended(dev))
9268 goto out;
9269
9270 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9271 if (ret)
9272 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9273 out:
9274 trace_ufshcd_wl_resume(dev_name(dev), ret,
9275 ktime_to_us(ktime_sub(ktime_get(), start)),
9276 hba->curr_dev_pwr_mode, hba->uic_link_state);
9277 if (!ret)
9278 hba->is_sys_suspended = false;
9279 up(&hba->host_sem);
9280 return ret;
9281 }
9282 #endif
9283
ufshcd_wl_shutdown(struct device * dev)9284 static void ufshcd_wl_shutdown(struct device *dev)
9285 {
9286 struct scsi_device *sdev = to_scsi_device(dev);
9287 struct ufs_hba *hba;
9288
9289 hba = shost_priv(sdev->host);
9290
9291 down(&hba->host_sem);
9292 hba->shutting_down = true;
9293 up(&hba->host_sem);
9294
9295 /* Turn on everything while shutting down */
9296 ufshcd_rpm_get_sync(hba);
9297 scsi_device_quiesce(sdev);
9298 shost_for_each_device(sdev, hba->host) {
9299 if (sdev == hba->ufs_device_wlun)
9300 continue;
9301 scsi_device_quiesce(sdev);
9302 }
9303 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9304 }
9305
9306 /**
9307 * ufshcd_suspend - helper function for suspend operations
9308 * @hba: per adapter instance
9309 *
9310 * This function will put disable irqs, turn off clocks
9311 * and set vreg and hba-vreg in lpm mode.
9312 */
ufshcd_suspend(struct ufs_hba * hba)9313 static int ufshcd_suspend(struct ufs_hba *hba)
9314 {
9315 int ret;
9316
9317 if (!hba->is_powered)
9318 return 0;
9319 /*
9320 * Disable the host irq as host controller as there won't be any
9321 * host controller transaction expected till resume.
9322 */
9323 ufshcd_disable_irq(hba);
9324 ret = ufshcd_setup_clocks(hba, false);
9325 if (ret) {
9326 ufshcd_enable_irq(hba);
9327 return ret;
9328 }
9329 if (ufshcd_is_clkgating_allowed(hba)) {
9330 hba->clk_gating.state = CLKS_OFF;
9331 trace_ufshcd_clk_gating(dev_name(hba->dev),
9332 hba->clk_gating.state);
9333 }
9334
9335 ufshcd_vreg_set_lpm(hba);
9336 /* Put the host controller in low power mode if possible */
9337 ufshcd_hba_vreg_set_lpm(hba);
9338 return ret;
9339 }
9340
9341 #ifdef CONFIG_PM
9342 /**
9343 * ufshcd_resume - helper function for resume operations
9344 * @hba: per adapter instance
9345 *
9346 * This function basically turns on the regulators, clocks and
9347 * irqs of the hba.
9348 *
9349 * Returns 0 for success and non-zero for failure
9350 */
ufshcd_resume(struct ufs_hba * hba)9351 static int ufshcd_resume(struct ufs_hba *hba)
9352 {
9353 int ret;
9354
9355 if (!hba->is_powered)
9356 return 0;
9357
9358 ufshcd_hba_vreg_set_hpm(hba);
9359 ret = ufshcd_vreg_set_hpm(hba);
9360 if (ret)
9361 goto out;
9362
9363 /* Make sure clocks are enabled before accessing controller */
9364 ret = ufshcd_setup_clocks(hba, true);
9365 if (ret)
9366 goto disable_vreg;
9367
9368 /* enable the host irq as host controller would be active soon */
9369 ufshcd_enable_irq(hba);
9370 goto out;
9371
9372 disable_vreg:
9373 ufshcd_vreg_set_lpm(hba);
9374 out:
9375 if (ret)
9376 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9377 return ret;
9378 }
9379 #endif /* CONFIG_PM */
9380
9381 #ifdef CONFIG_PM_SLEEP
9382 /**
9383 * ufshcd_system_suspend - system suspend callback
9384 * @dev: Device associated with the UFS controller.
9385 *
9386 * Executed before putting the system into a sleep state in which the contents
9387 * of main memory are preserved.
9388 *
9389 * Returns 0 for success and non-zero for failure
9390 */
ufshcd_system_suspend(struct device * dev)9391 int ufshcd_system_suspend(struct device *dev)
9392 {
9393 struct ufs_hba *hba = dev_get_drvdata(dev);
9394 int ret = 0;
9395 ktime_t start = ktime_get();
9396
9397 if (pm_runtime_suspended(hba->dev))
9398 goto out;
9399
9400 ret = ufshcd_suspend(hba);
9401 out:
9402 trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9403 ktime_to_us(ktime_sub(ktime_get(), start)),
9404 hba->curr_dev_pwr_mode, hba->uic_link_state);
9405 return ret;
9406 }
9407 EXPORT_SYMBOL(ufshcd_system_suspend);
9408
9409 /**
9410 * ufshcd_system_resume - system resume callback
9411 * @dev: Device associated with the UFS controller.
9412 *
9413 * Executed after waking the system up from a sleep state in which the contents
9414 * of main memory were preserved.
9415 *
9416 * Returns 0 for success and non-zero for failure
9417 */
ufshcd_system_resume(struct device * dev)9418 int ufshcd_system_resume(struct device *dev)
9419 {
9420 struct ufs_hba *hba = dev_get_drvdata(dev);
9421 ktime_t start = ktime_get();
9422 int ret = 0;
9423
9424 if (pm_runtime_suspended(hba->dev))
9425 goto out;
9426
9427 ret = ufshcd_resume(hba);
9428
9429 out:
9430 trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9431 ktime_to_us(ktime_sub(ktime_get(), start)),
9432 hba->curr_dev_pwr_mode, hba->uic_link_state);
9433
9434 return ret;
9435 }
9436 EXPORT_SYMBOL(ufshcd_system_resume);
9437 #endif /* CONFIG_PM_SLEEP */
9438
9439 #ifdef CONFIG_PM
9440 /**
9441 * ufshcd_runtime_suspend - runtime suspend callback
9442 * @dev: Device associated with the UFS controller.
9443 *
9444 * Check the description of ufshcd_suspend() function for more details.
9445 *
9446 * Returns 0 for success and non-zero for failure
9447 */
ufshcd_runtime_suspend(struct device * dev)9448 int ufshcd_runtime_suspend(struct device *dev)
9449 {
9450 struct ufs_hba *hba = dev_get_drvdata(dev);
9451 int ret;
9452 ktime_t start = ktime_get();
9453
9454 ret = ufshcd_suspend(hba);
9455
9456 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9457 ktime_to_us(ktime_sub(ktime_get(), start)),
9458 hba->curr_dev_pwr_mode, hba->uic_link_state);
9459 return ret;
9460 }
9461 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9462
9463 /**
9464 * ufshcd_runtime_resume - runtime resume routine
9465 * @dev: Device associated with the UFS controller.
9466 *
9467 * This function basically brings controller
9468 * to active state. Following operations are done in this function:
9469 *
9470 * 1. Turn on all the controller related clocks
9471 * 2. Turn ON VCC rail
9472 */
ufshcd_runtime_resume(struct device * dev)9473 int ufshcd_runtime_resume(struct device *dev)
9474 {
9475 struct ufs_hba *hba = dev_get_drvdata(dev);
9476 int ret;
9477 ktime_t start = ktime_get();
9478
9479 ret = ufshcd_resume(hba);
9480
9481 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9482 ktime_to_us(ktime_sub(ktime_get(), start)),
9483 hba->curr_dev_pwr_mode, hba->uic_link_state);
9484 return ret;
9485 }
9486 EXPORT_SYMBOL(ufshcd_runtime_resume);
9487 #endif /* CONFIG_PM */
9488
9489 /**
9490 * ufshcd_shutdown - shutdown routine
9491 * @hba: per adapter instance
9492 *
9493 * This function would turn off both UFS device and UFS hba
9494 * regulators. It would also disable clocks.
9495 *
9496 * Returns 0 always to allow force shutdown even in case of errors.
9497 */
ufshcd_shutdown(struct ufs_hba * hba)9498 int ufshcd_shutdown(struct ufs_hba *hba)
9499 {
9500 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9501 ufshcd_suspend(hba);
9502
9503 hba->is_powered = false;
9504 /* allow force shutdown even in case of errors */
9505 return 0;
9506 }
9507 EXPORT_SYMBOL(ufshcd_shutdown);
9508
9509 /**
9510 * ufshcd_remove - de-allocate SCSI host and host memory space
9511 * data structure memory
9512 * @hba: per adapter instance
9513 */
ufshcd_remove(struct ufs_hba * hba)9514 void ufshcd_remove(struct ufs_hba *hba)
9515 {
9516 if (hba->ufs_device_wlun)
9517 ufshcd_rpm_get_sync(hba);
9518 ufs_hwmon_remove(hba);
9519 ufs_bsg_remove(hba);
9520 ufshpb_remove(hba);
9521 ufs_sysfs_remove_nodes(hba->dev);
9522 blk_cleanup_queue(hba->tmf_queue);
9523 blk_mq_free_tag_set(&hba->tmf_tag_set);
9524 scsi_remove_host(hba->host);
9525 /* disable interrupts */
9526 ufshcd_disable_intr(hba, hba->intr_mask);
9527 ufshcd_hba_stop(hba);
9528 ufshcd_hba_exit(hba);
9529 }
9530 EXPORT_SYMBOL_GPL(ufshcd_remove);
9531
9532 /**
9533 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9534 * @hba: pointer to Host Bus Adapter (HBA)
9535 */
ufshcd_dealloc_host(struct ufs_hba * hba)9536 void ufshcd_dealloc_host(struct ufs_hba *hba)
9537 {
9538 scsi_host_put(hba->host);
9539 }
9540 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9541
9542 /**
9543 * ufshcd_set_dma_mask - Set dma mask based on the controller
9544 * addressing capability
9545 * @hba: per adapter instance
9546 *
9547 * Returns 0 for success, non-zero for failure
9548 */
ufshcd_set_dma_mask(struct ufs_hba * hba)9549 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9550 {
9551 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9552 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9553 return 0;
9554 }
9555 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9556 }
9557
9558 /**
9559 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9560 * @dev: pointer to device handle
9561 * @hba_handle: driver private handle
9562 * Returns 0 on success, non-zero value on failure
9563 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)9564 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9565 {
9566 struct Scsi_Host *host;
9567 struct ufs_hba *hba;
9568 int err = 0;
9569
9570 if (!dev) {
9571 dev_err(dev,
9572 "Invalid memory reference for dev is NULL\n");
9573 err = -ENODEV;
9574 goto out_error;
9575 }
9576
9577 host = scsi_host_alloc(&ufshcd_driver_template,
9578 sizeof(struct ufs_hba));
9579 if (!host) {
9580 dev_err(dev, "scsi_host_alloc failed\n");
9581 err = -ENOMEM;
9582 goto out_error;
9583 }
9584 host->nr_maps = HCTX_TYPE_POLL + 1;
9585 hba = shost_priv(host);
9586 hba->host = host;
9587 hba->dev = dev;
9588 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9589 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
9590 INIT_LIST_HEAD(&hba->clk_list_head);
9591 spin_lock_init(&hba->outstanding_lock);
9592
9593 *hba_handle = hba;
9594
9595 out_error:
9596 return err;
9597 }
9598 EXPORT_SYMBOL(ufshcd_alloc_host);
9599
9600 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9601 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9602 const struct blk_mq_queue_data *qd)
9603 {
9604 WARN_ON_ONCE(true);
9605 return BLK_STS_NOTSUPP;
9606 }
9607
9608 static const struct blk_mq_ops ufshcd_tmf_ops = {
9609 .queue_rq = ufshcd_queue_tmf,
9610 };
9611
9612 /**
9613 * ufshcd_init - Driver initialization routine
9614 * @hba: per-adapter instance
9615 * @mmio_base: base register address
9616 * @irq: Interrupt line of device
9617 * Returns 0 on success, non-zero value on failure
9618 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9619 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9620 {
9621 int err;
9622 struct Scsi_Host *host = hba->host;
9623 struct device *dev = hba->dev;
9624 char eh_wq_name[sizeof("ufs_eh_wq_00")];
9625
9626 /*
9627 * dev_set_drvdata() must be called before any callbacks are registered
9628 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9629 * sysfs).
9630 */
9631 dev_set_drvdata(dev, hba);
9632
9633 if (!mmio_base) {
9634 dev_err(hba->dev,
9635 "Invalid memory reference for mmio_base is NULL\n");
9636 err = -ENODEV;
9637 goto out_error;
9638 }
9639
9640 hba->mmio_base = mmio_base;
9641 hba->irq = irq;
9642 hba->vps = &ufs_hba_vps;
9643
9644 err = ufshcd_hba_init(hba);
9645 if (err)
9646 goto out_error;
9647
9648 /* Read capabilities registers */
9649 err = ufshcd_hba_capabilities(hba);
9650 if (err)
9651 goto out_disable;
9652
9653 /* Get UFS version supported by the controller */
9654 hba->ufs_version = ufshcd_get_ufs_version(hba);
9655
9656 /* Get Interrupt bit mask per version */
9657 hba->intr_mask = ufshcd_get_intr_mask(hba);
9658
9659 err = ufshcd_set_dma_mask(hba);
9660 if (err) {
9661 dev_err(hba->dev, "set dma mask failed\n");
9662 goto out_disable;
9663 }
9664
9665 /* Allocate memory for host memory space */
9666 err = ufshcd_memory_alloc(hba);
9667 if (err) {
9668 dev_err(hba->dev, "Memory allocation failed\n");
9669 goto out_disable;
9670 }
9671
9672 /* Configure LRB */
9673 ufshcd_host_memory_configure(hba);
9674
9675 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9676 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
9677 host->max_id = UFSHCD_MAX_ID;
9678 host->max_lun = UFS_MAX_LUNS;
9679 host->max_channel = UFSHCD_MAX_CHANNEL;
9680 host->unique_id = host->host_no;
9681 host->max_cmd_len = UFS_CDB_SIZE;
9682
9683 hba->max_pwr_info.is_valid = false;
9684
9685 /* Initialize work queues */
9686 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9687 hba->host->host_no);
9688 hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9689 if (!hba->eh_wq) {
9690 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9691 __func__);
9692 err = -ENOMEM;
9693 goto out_disable;
9694 }
9695 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9696 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9697
9698 sema_init(&hba->host_sem, 1);
9699
9700 /* Initialize UIC command mutex */
9701 mutex_init(&hba->uic_cmd_mutex);
9702
9703 /* Initialize mutex for device management commands */
9704 mutex_init(&hba->dev_cmd.lock);
9705
9706 /* Initialize mutex for exception event control */
9707 mutex_init(&hba->ee_ctrl_mutex);
9708
9709 init_rwsem(&hba->clk_scaling_lock);
9710
9711 ufshcd_init_clk_gating(hba);
9712
9713 ufshcd_init_clk_scaling(hba);
9714
9715 /*
9716 * In order to avoid any spurious interrupt immediately after
9717 * registering UFS controller interrupt handler, clear any pending UFS
9718 * interrupt status and disable all the UFS interrupts.
9719 */
9720 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9721 REG_INTERRUPT_STATUS);
9722 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9723 /*
9724 * Make sure that UFS interrupts are disabled and any pending interrupt
9725 * status is cleared before registering UFS interrupt handler.
9726 */
9727 mb();
9728
9729 /* IRQ registration */
9730 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9731 if (err) {
9732 dev_err(hba->dev, "request irq failed\n");
9733 goto out_disable;
9734 } else {
9735 hba->is_irq_enabled = true;
9736 }
9737
9738 err = scsi_add_host(host, hba->dev);
9739 if (err) {
9740 dev_err(hba->dev, "scsi_add_host failed\n");
9741 goto out_disable;
9742 }
9743
9744 hba->tmf_tag_set = (struct blk_mq_tag_set) {
9745 .nr_hw_queues = 1,
9746 .queue_depth = hba->nutmrs,
9747 .ops = &ufshcd_tmf_ops,
9748 .flags = BLK_MQ_F_NO_SCHED,
9749 };
9750 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9751 if (err < 0)
9752 goto out_remove_scsi_host;
9753 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9754 if (IS_ERR(hba->tmf_queue)) {
9755 err = PTR_ERR(hba->tmf_queue);
9756 goto free_tmf_tag_set;
9757 }
9758 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
9759 sizeof(*hba->tmf_rqs), GFP_KERNEL);
9760 if (!hba->tmf_rqs) {
9761 err = -ENOMEM;
9762 goto free_tmf_queue;
9763 }
9764
9765 /* Reset the attached device */
9766 ufshcd_device_reset(hba);
9767
9768 ufshcd_init_crypto(hba);
9769
9770 /* Host controller enable */
9771 err = ufshcd_hba_enable(hba);
9772 if (err) {
9773 dev_err(hba->dev, "Host controller enable failed\n");
9774 ufshcd_print_evt_hist(hba);
9775 ufshcd_print_host_state(hba);
9776 goto free_tmf_queue;
9777 }
9778
9779 /*
9780 * Set the default power management level for runtime and system PM.
9781 * Default power saving mode is to keep UFS link in Hibern8 state
9782 * and UFS device in sleep state.
9783 */
9784 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9785 UFS_SLEEP_PWR_MODE,
9786 UIC_LINK_HIBERN8_STATE);
9787 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9788 UFS_SLEEP_PWR_MODE,
9789 UIC_LINK_HIBERN8_STATE);
9790
9791 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9792 ufshcd_rpm_dev_flush_recheck_work);
9793
9794 /* Set the default auto-hiberate idle timer value to 150 ms */
9795 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9796 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9797 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9798 }
9799
9800 /* Hold auto suspend until async scan completes */
9801 pm_runtime_get_sync(dev);
9802 atomic_set(&hba->scsi_block_reqs_cnt, 0);
9803 /*
9804 * We are assuming that device wasn't put in sleep/power-down
9805 * state exclusively during the boot stage before kernel.
9806 * This assumption helps avoid doing link startup twice during
9807 * ufshcd_probe_hba().
9808 */
9809 ufshcd_set_ufs_dev_active(hba);
9810
9811 async_schedule(ufshcd_async_scan, hba);
9812 ufs_sysfs_add_nodes(hba->dev);
9813
9814 device_enable_async_suspend(dev);
9815 return 0;
9816
9817 free_tmf_queue:
9818 blk_cleanup_queue(hba->tmf_queue);
9819 free_tmf_tag_set:
9820 blk_mq_free_tag_set(&hba->tmf_tag_set);
9821 out_remove_scsi_host:
9822 scsi_remove_host(hba->host);
9823 out_disable:
9824 hba->is_irq_enabled = false;
9825 ufshcd_hba_exit(hba);
9826 out_error:
9827 return err;
9828 }
9829 EXPORT_SYMBOL_GPL(ufshcd_init);
9830
ufshcd_resume_complete(struct device * dev)9831 void ufshcd_resume_complete(struct device *dev)
9832 {
9833 struct ufs_hba *hba = dev_get_drvdata(dev);
9834
9835 if (hba->complete_put) {
9836 ufshcd_rpm_put(hba);
9837 hba->complete_put = false;
9838 }
9839 }
9840 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
9841
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)9842 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
9843 {
9844 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
9845 enum ufs_dev_pwr_mode dev_pwr_mode;
9846 enum uic_link_state link_state;
9847 unsigned long flags;
9848 bool res;
9849
9850 spin_lock_irqsave(&dev->power.lock, flags);
9851 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
9852 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
9853 res = pm_runtime_suspended(dev) &&
9854 hba->curr_dev_pwr_mode == dev_pwr_mode &&
9855 hba->uic_link_state == link_state &&
9856 !hba->dev_info.b_rpm_dev_flush_capable;
9857 spin_unlock_irqrestore(&dev->power.lock, flags);
9858
9859 return res;
9860 }
9861
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)9862 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
9863 {
9864 struct ufs_hba *hba = dev_get_drvdata(dev);
9865 int ret;
9866
9867 /*
9868 * SCSI assumes that runtime-pm and system-pm for scsi drivers
9869 * are same. And it doesn't wake up the device for system-suspend
9870 * if it's runtime suspended. But ufs doesn't follow that.
9871 * Refer ufshcd_resume_complete()
9872 */
9873 if (hba->ufs_device_wlun) {
9874 /* Prevent runtime suspend */
9875 ufshcd_rpm_get_noresume(hba);
9876 /*
9877 * Check if already runtime suspended in same state as system
9878 * suspend would be.
9879 */
9880 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
9881 /* RPM state is not ok for SPM, so runtime resume */
9882 ret = ufshcd_rpm_resume(hba);
9883 if (ret < 0 && ret != -EACCES) {
9884 ufshcd_rpm_put(hba);
9885 return ret;
9886 }
9887 }
9888 hba->complete_put = true;
9889 }
9890 return 0;
9891 }
9892 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
9893
ufshcd_suspend_prepare(struct device * dev)9894 int ufshcd_suspend_prepare(struct device *dev)
9895 {
9896 return __ufshcd_suspend_prepare(dev, true);
9897 }
9898 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
9899
9900 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)9901 static int ufshcd_wl_poweroff(struct device *dev)
9902 {
9903 struct scsi_device *sdev = to_scsi_device(dev);
9904 struct ufs_hba *hba = shost_priv(sdev->host);
9905
9906 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9907 return 0;
9908 }
9909 #endif
9910
ufshcd_wl_probe(struct device * dev)9911 static int ufshcd_wl_probe(struct device *dev)
9912 {
9913 struct scsi_device *sdev = to_scsi_device(dev);
9914
9915 if (!is_device_wlun(sdev))
9916 return -ENODEV;
9917
9918 blk_pm_runtime_init(sdev->request_queue, dev);
9919 pm_runtime_set_autosuspend_delay(dev, 0);
9920 pm_runtime_allow(dev);
9921
9922 return 0;
9923 }
9924
ufshcd_wl_remove(struct device * dev)9925 static int ufshcd_wl_remove(struct device *dev)
9926 {
9927 pm_runtime_forbid(dev);
9928 return 0;
9929 }
9930
9931 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
9932 #ifdef CONFIG_PM_SLEEP
9933 .suspend = ufshcd_wl_suspend,
9934 .resume = ufshcd_wl_resume,
9935 .freeze = ufshcd_wl_suspend,
9936 .thaw = ufshcd_wl_resume,
9937 .poweroff = ufshcd_wl_poweroff,
9938 .restore = ufshcd_wl_resume,
9939 #endif
9940 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
9941 };
9942
9943 /*
9944 * ufs_dev_wlun_template - describes ufs device wlun
9945 * ufs-device wlun - used to send pm commands
9946 * All luns are consumers of ufs-device wlun.
9947 *
9948 * Currently, no sd driver is present for wluns.
9949 * Hence the no specific pm operations are performed.
9950 * With ufs design, SSU should be sent to ufs-device wlun.
9951 * Hence register a scsi driver for ufs wluns only.
9952 */
9953 static struct scsi_driver ufs_dev_wlun_template = {
9954 .gendrv = {
9955 .name = "ufs_device_wlun",
9956 .owner = THIS_MODULE,
9957 .probe = ufshcd_wl_probe,
9958 .remove = ufshcd_wl_remove,
9959 .pm = &ufshcd_wl_pm_ops,
9960 .shutdown = ufshcd_wl_shutdown,
9961 },
9962 };
9963
ufshcd_core_init(void)9964 static int __init ufshcd_core_init(void)
9965 {
9966 int ret;
9967
9968 /* Verify that there are no gaps in struct utp_transfer_cmd_desc. */
9969 static_assert(sizeof(struct utp_transfer_cmd_desc) ==
9970 2 * ALIGNED_UPIU_SIZE +
9971 SG_ALL * sizeof(struct ufshcd_sg_entry));
9972
9973 ufs_debugfs_init();
9974
9975 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
9976 if (ret)
9977 ufs_debugfs_exit();
9978 return ret;
9979 }
9980
ufshcd_core_exit(void)9981 static void __exit ufshcd_core_exit(void)
9982 {
9983 ufs_debugfs_exit();
9984 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
9985 }
9986
9987 module_init(ufshcd_core_init);
9988 module_exit(ufshcd_core_exit);
9989
9990 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
9991 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
9992 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
9993 MODULE_LICENSE("GPL");
9994