1 /*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 /* this file is part of ehci-hcd.c */
21
22 /*-------------------------------------------------------------------------*/
23
24 /*
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
27 *
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
31 *
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
35 */
36
37 static int ehci_get_frame (struct usb_hcd *hcd);
38
39 /*-------------------------------------------------------------------------*/
40
41 /*
42 * periodic_next_shadow - return "next" pointer on shadow list
43 * @periodic: host pointer to qh/itd/sitd
44 * @tag: hardware tag for type of this record
45 */
46 static union ehci_shadow *
periodic_next_shadow(struct ehci_hcd * ehci,union ehci_shadow * periodic,__hc32 tag)47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 __hc32 tag)
49 {
50 switch (hc32_to_cpu(ehci, tag)) {
51 case Q_TYPE_QH:
52 return &periodic->qh->qh_next;
53 case Q_TYPE_FSTN:
54 return &periodic->fstn->fstn_next;
55 case Q_TYPE_ITD:
56 return &periodic->itd->itd_next;
57 // case Q_TYPE_SITD:
58 default:
59 return &periodic->sitd->sitd_next;
60 }
61 }
62
63 static __hc32 *
shadow_next_periodic(struct ehci_hcd * ehci,union ehci_shadow * periodic,__hc32 tag)64 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
65 __hc32 tag)
66 {
67 switch (hc32_to_cpu(ehci, tag)) {
68 /* our ehci_shadow.qh is actually software part */
69 case Q_TYPE_QH:
70 return &periodic->qh->hw->hw_next;
71 /* others are hw parts */
72 default:
73 return periodic->hw_next;
74 }
75 }
76
77 /* caller must hold ehci->lock */
periodic_unlink(struct ehci_hcd * ehci,unsigned frame,void * ptr)78 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
79 {
80 union ehci_shadow *prev_p = &ehci->pshadow[frame];
81 __hc32 *hw_p = &ehci->periodic[frame];
82 union ehci_shadow here = *prev_p;
83
84 /* find predecessor of "ptr"; hw and shadow lists are in sync */
85 while (here.ptr && here.ptr != ptr) {
86 prev_p = periodic_next_shadow(ehci, prev_p,
87 Q_NEXT_TYPE(ehci, *hw_p));
88 hw_p = shadow_next_periodic(ehci, &here,
89 Q_NEXT_TYPE(ehci, *hw_p));
90 here = *prev_p;
91 }
92 /* an interrupt entry (at list end) could have been shared */
93 if (!here.ptr)
94 return;
95
96 /* update shadow and hardware lists ... the old "next" pointers
97 * from ptr may still be in use, the caller updates them.
98 */
99 *prev_p = *periodic_next_shadow(ehci, &here,
100 Q_NEXT_TYPE(ehci, *hw_p));
101
102 if (!ehci->use_dummy_qh ||
103 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
104 != EHCI_LIST_END(ehci))
105 *hw_p = *shadow_next_periodic(ehci, &here,
106 Q_NEXT_TYPE(ehci, *hw_p));
107 else
108 *hw_p = ehci->dummy->qh_dma;
109 }
110
111 /* how many of the uframe's 125 usecs are allocated? */
112 static unsigned short
periodic_usecs(struct ehci_hcd * ehci,unsigned frame,unsigned uframe)113 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
114 {
115 __hc32 *hw_p = &ehci->periodic [frame];
116 union ehci_shadow *q = &ehci->pshadow [frame];
117 unsigned usecs = 0;
118 struct ehci_qh_hw *hw;
119
120 while (q->ptr) {
121 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
122 case Q_TYPE_QH:
123 hw = q->qh->hw;
124 /* is it in the S-mask? */
125 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
126 usecs += q->qh->usecs;
127 /* ... or C-mask? */
128 if (hw->hw_info2 & cpu_to_hc32(ehci,
129 1 << (8 + uframe)))
130 usecs += q->qh->c_usecs;
131 hw_p = &hw->hw_next;
132 q = &q->qh->qh_next;
133 break;
134 // case Q_TYPE_FSTN:
135 default:
136 /* for "save place" FSTNs, count the relevant INTR
137 * bandwidth from the previous frame
138 */
139 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
140 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
141 }
142 hw_p = &q->fstn->hw_next;
143 q = &q->fstn->fstn_next;
144 break;
145 case Q_TYPE_ITD:
146 if (q->itd->hw_transaction[uframe])
147 usecs += q->itd->stream->usecs;
148 hw_p = &q->itd->hw_next;
149 q = &q->itd->itd_next;
150 break;
151 case Q_TYPE_SITD:
152 /* is it in the S-mask? (count SPLIT, DATA) */
153 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
154 1 << uframe)) {
155 if (q->sitd->hw_fullspeed_ep &
156 cpu_to_hc32(ehci, 1<<31))
157 usecs += q->sitd->stream->usecs;
158 else /* worst case for OUT start-split */
159 usecs += HS_USECS_ISO (188);
160 }
161
162 /* ... C-mask? (count CSPLIT, DATA) */
163 if (q->sitd->hw_uframe &
164 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
165 /* worst case for IN complete-split */
166 usecs += q->sitd->stream->c_usecs;
167 }
168
169 hw_p = &q->sitd->hw_next;
170 q = &q->sitd->sitd_next;
171 break;
172 }
173 }
174 #ifdef DEBUG
175 if (usecs > 100)
176 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
177 frame * 8 + uframe, usecs);
178 #endif
179 return usecs;
180 }
181
182 /*-------------------------------------------------------------------------*/
183
same_tt(struct usb_device * dev1,struct usb_device * dev2)184 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
185 {
186 if (!dev1->tt || !dev2->tt)
187 return 0;
188 if (dev1->tt != dev2->tt)
189 return 0;
190 if (dev1->tt->multi)
191 return dev1->ttport == dev2->ttport;
192 else
193 return 1;
194 }
195
196 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
197
198 /* Which uframe does the low/fullspeed transfer start in?
199 *
200 * The parameter is the mask of ssplits in "H-frame" terms
201 * and this returns the transfer start uframe in "B-frame" terms,
202 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
203 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
204 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
205 */
tt_start_uframe(struct ehci_hcd * ehci,__hc32 mask)206 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
207 {
208 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
209 if (!smask) {
210 ehci_err(ehci, "invalid empty smask!\n");
211 /* uframe 7 can't have bw so this will indicate failure */
212 return 7;
213 }
214 return ffs(smask) - 1;
215 }
216
217 static const unsigned char
218 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
219
220 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
carryover_tt_bandwidth(unsigned short tt_usecs[8])221 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
222 {
223 int i;
224 for (i=0; i<7; i++) {
225 if (max_tt_usecs[i] < tt_usecs[i]) {
226 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
227 tt_usecs[i] = max_tt_usecs[i];
228 }
229 }
230 }
231
232 /* How many of the tt's periodic downstream 1000 usecs are allocated?
233 *
234 * While this measures the bandwidth in terms of usecs/uframe,
235 * the low/fullspeed bus has no notion of uframes, so any particular
236 * low/fullspeed transfer can "carry over" from one uframe to the next,
237 * since the TT just performs downstream transfers in sequence.
238 *
239 * For example two separate 100 usec transfers can start in the same uframe,
240 * and the second one would "carry over" 75 usecs into the next uframe.
241 */
242 static void
periodic_tt_usecs(struct ehci_hcd * ehci,struct usb_device * dev,unsigned frame,unsigned short tt_usecs[8])243 periodic_tt_usecs (
244 struct ehci_hcd *ehci,
245 struct usb_device *dev,
246 unsigned frame,
247 unsigned short tt_usecs[8]
248 )
249 {
250 __hc32 *hw_p = &ehci->periodic [frame];
251 union ehci_shadow *q = &ehci->pshadow [frame];
252 unsigned char uf;
253
254 memset(tt_usecs, 0, 16);
255
256 while (q->ptr) {
257 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
258 case Q_TYPE_ITD:
259 hw_p = &q->itd->hw_next;
260 q = &q->itd->itd_next;
261 continue;
262 case Q_TYPE_QH:
263 if (same_tt(dev, q->qh->dev)) {
264 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
265 tt_usecs[uf] += q->qh->tt_usecs;
266 }
267 hw_p = &q->qh->hw->hw_next;
268 q = &q->qh->qh_next;
269 continue;
270 case Q_TYPE_SITD:
271 if (same_tt(dev, q->sitd->urb->dev)) {
272 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
273 tt_usecs[uf] += q->sitd->stream->tt_usecs;
274 }
275 hw_p = &q->sitd->hw_next;
276 q = &q->sitd->sitd_next;
277 continue;
278 // case Q_TYPE_FSTN:
279 default:
280 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
281 frame);
282 hw_p = &q->fstn->hw_next;
283 q = &q->fstn->fstn_next;
284 }
285 }
286
287 carryover_tt_bandwidth(tt_usecs);
288
289 if (max_tt_usecs[7] < tt_usecs[7])
290 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
291 frame, tt_usecs[7] - max_tt_usecs[7]);
292 }
293
294 /*
295 * Return true if the device's tt's downstream bus is available for a
296 * periodic transfer of the specified length (usecs), starting at the
297 * specified frame/uframe. Note that (as summarized in section 11.19
298 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
299 * uframe.
300 *
301 * The uframe parameter is when the fullspeed/lowspeed transfer
302 * should be executed in "B-frame" terms, which is the same as the
303 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
304 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
305 * See the EHCI spec sec 4.5 and fig 4.7.
306 *
307 * This checks if the full/lowspeed bus, at the specified starting uframe,
308 * has the specified bandwidth available, according to rules listed
309 * in USB 2.0 spec section 11.18.1 fig 11-60.
310 *
311 * This does not check if the transfer would exceed the max ssplit
312 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
313 * since proper scheduling limits ssplits to less than 16 per uframe.
314 */
tt_available(struct ehci_hcd * ehci,unsigned period,struct usb_device * dev,unsigned frame,unsigned uframe,u16 usecs)315 static int tt_available (
316 struct ehci_hcd *ehci,
317 unsigned period,
318 struct usb_device *dev,
319 unsigned frame,
320 unsigned uframe,
321 u16 usecs
322 )
323 {
324 if ((period == 0) || (uframe >= 7)) /* error */
325 return 0;
326
327 for (; frame < ehci->periodic_size; frame += period) {
328 unsigned short tt_usecs[8];
329
330 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
331
332 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
333 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
334 frame, usecs, uframe,
335 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
336 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
337
338 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
339 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
340 frame, uframe);
341 return 0;
342 }
343
344 /* special case for isoc transfers larger than 125us:
345 * the first and each subsequent fully used uframe
346 * must be empty, so as to not illegally delay
347 * already scheduled transactions
348 */
349 if (125 < usecs) {
350 int ufs = (usecs / 125);
351 int i;
352 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
353 if (0 < tt_usecs[i]) {
354 ehci_vdbg(ehci,
355 "multi-uframe xfer can't fit "
356 "in frame %d uframe %d\n",
357 frame, i);
358 return 0;
359 }
360 }
361
362 tt_usecs[uframe] += usecs;
363
364 carryover_tt_bandwidth(tt_usecs);
365
366 /* fail if the carryover pushed bw past the last uframe's limit */
367 if (max_tt_usecs[7] < tt_usecs[7]) {
368 ehci_vdbg(ehci,
369 "tt unavailable usecs %d frame %d uframe %d\n",
370 usecs, frame, uframe);
371 return 0;
372 }
373 }
374
375 return 1;
376 }
377
378 #else
379
380 /* return true iff the device's transaction translator is available
381 * for a periodic transfer starting at the specified frame, using
382 * all the uframes in the mask.
383 */
tt_no_collision(struct ehci_hcd * ehci,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)384 static int tt_no_collision (
385 struct ehci_hcd *ehci,
386 unsigned period,
387 struct usb_device *dev,
388 unsigned frame,
389 u32 uf_mask
390 )
391 {
392 if (period == 0) /* error */
393 return 0;
394
395 /* note bandwidth wastage: split never follows csplit
396 * (different dev or endpoint) until the next uframe.
397 * calling convention doesn't make that distinction.
398 */
399 for (; frame < ehci->periodic_size; frame += period) {
400 union ehci_shadow here;
401 __hc32 type;
402 struct ehci_qh_hw *hw;
403
404 here = ehci->pshadow [frame];
405 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
406 while (here.ptr) {
407 switch (hc32_to_cpu(ehci, type)) {
408 case Q_TYPE_ITD:
409 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
410 here = here.itd->itd_next;
411 continue;
412 case Q_TYPE_QH:
413 hw = here.qh->hw;
414 if (same_tt (dev, here.qh->dev)) {
415 u32 mask;
416
417 mask = hc32_to_cpu(ehci,
418 hw->hw_info2);
419 /* "knows" no gap is needed */
420 mask |= mask >> 8;
421 if (mask & uf_mask)
422 break;
423 }
424 type = Q_NEXT_TYPE(ehci, hw->hw_next);
425 here = here.qh->qh_next;
426 continue;
427 case Q_TYPE_SITD:
428 if (same_tt (dev, here.sitd->urb->dev)) {
429 u16 mask;
430
431 mask = hc32_to_cpu(ehci, here.sitd
432 ->hw_uframe);
433 /* FIXME assumes no gap for IN! */
434 mask |= mask >> 8;
435 if (mask & uf_mask)
436 break;
437 }
438 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
439 here = here.sitd->sitd_next;
440 continue;
441 // case Q_TYPE_FSTN:
442 default:
443 ehci_dbg (ehci,
444 "periodic frame %d bogus type %d\n",
445 frame, type);
446 }
447
448 /* collision or error */
449 return 0;
450 }
451 }
452
453 /* no collision */
454 return 1;
455 }
456
457 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
458
459 /*-------------------------------------------------------------------------*/
460
enable_periodic(struct ehci_hcd * ehci)461 static int enable_periodic (struct ehci_hcd *ehci)
462 {
463 u32 cmd;
464 int status;
465
466 if (ehci->periodic_sched++)
467 return 0;
468
469 /* did clearing PSE did take effect yet?
470 * takes effect only at frame boundaries...
471 */
472 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
473 STS_PSS, 0, 9 * 125);
474 if (status)
475 return status;
476
477 cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
478 ehci_writel(ehci, cmd, &ehci->regs->command);
479 /* posted write ... PSS happens later */
480 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
481
482 /* make sure ehci_work scans these */
483 ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
484 % (ehci->periodic_size << 3);
485 if (unlikely(ehci->broken_periodic))
486 ehci->last_periodic_enable = ktime_get_real();
487 return 0;
488 }
489
disable_periodic(struct ehci_hcd * ehci)490 static int disable_periodic (struct ehci_hcd *ehci)
491 {
492 u32 cmd;
493 int status;
494
495 if (--ehci->periodic_sched)
496 return 0;
497
498 if (unlikely(ehci->broken_periodic)) {
499 /* delay experimentally determined */
500 ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000);
501 ktime_t now = ktime_get_real();
502 s64 delay = ktime_us_delta(safe, now);
503
504 if (unlikely(delay > 0))
505 udelay(delay);
506 }
507
508 /* did setting PSE not take effect yet?
509 * takes effect only at frame boundaries...
510 */
511 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
512 STS_PSS, STS_PSS, 9 * 125);
513 if (status)
514 return status;
515
516 cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
517 ehci_writel(ehci, cmd, &ehci->regs->command);
518 /* posted write ... */
519
520 free_cached_lists(ehci);
521
522 ehci->next_uframe = -1;
523 return 0;
524 }
525
526 /*-------------------------------------------------------------------------*/
527
528 /* periodic schedule slots have iso tds (normal or split) first, then a
529 * sparse tree for active interrupt transfers.
530 *
531 * this just links in a qh; caller guarantees uframe masks are set right.
532 * no FSTN support (yet; ehci 0.96+)
533 */
qh_link_periodic(struct ehci_hcd * ehci,struct ehci_qh * qh)534 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
535 {
536 unsigned i;
537 unsigned period = qh->period;
538
539 dev_dbg (&qh->dev->dev,
540 "link qh%d-%04x/%p start %d [%d/%d us]\n",
541 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
542 & (QH_CMASK | QH_SMASK),
543 qh, qh->start, qh->usecs, qh->c_usecs);
544
545 /* high bandwidth, or otherwise every microframe */
546 if (period == 0)
547 period = 1;
548
549 for (i = qh->start; i < ehci->periodic_size; i += period) {
550 union ehci_shadow *prev = &ehci->pshadow[i];
551 __hc32 *hw_p = &ehci->periodic[i];
552 union ehci_shadow here = *prev;
553 __hc32 type = 0;
554
555 /* skip the iso nodes at list head */
556 while (here.ptr) {
557 type = Q_NEXT_TYPE(ehci, *hw_p);
558 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
559 break;
560 prev = periodic_next_shadow(ehci, prev, type);
561 hw_p = shadow_next_periodic(ehci, &here, type);
562 here = *prev;
563 }
564
565 /* sorting each branch by period (slow-->fast)
566 * enables sharing interior tree nodes
567 */
568 while (here.ptr && qh != here.qh) {
569 if (qh->period > here.qh->period)
570 break;
571 prev = &here.qh->qh_next;
572 hw_p = &here.qh->hw->hw_next;
573 here = *prev;
574 }
575 /* link in this qh, unless some earlier pass did that */
576 if (qh != here.qh) {
577 qh->qh_next = here;
578 if (here.qh)
579 qh->hw->hw_next = *hw_p;
580 wmb ();
581 prev->qh = qh;
582 *hw_p = QH_NEXT (ehci, qh->qh_dma);
583 }
584 }
585 qh->qh_state = QH_STATE_LINKED;
586 qh->xacterrs = 0;
587 qh_get (qh);
588
589 /* update per-qh bandwidth for usbfs */
590 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
591 ? ((qh->usecs + qh->c_usecs) / qh->period)
592 : (qh->usecs * 8);
593
594 /* maybe enable periodic schedule processing */
595 return enable_periodic(ehci);
596 }
597
qh_unlink_periodic(struct ehci_hcd * ehci,struct ehci_qh * qh)598 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
599 {
600 unsigned i;
601 unsigned period;
602
603 // FIXME:
604 // IF this isn't high speed
605 // and this qh is active in the current uframe
606 // (and overlay token SplitXstate is false?)
607 // THEN
608 // qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
609
610 /* high bandwidth, or otherwise part of every microframe */
611 if ((period = qh->period) == 0)
612 period = 1;
613
614 for (i = qh->start; i < ehci->periodic_size; i += period)
615 periodic_unlink (ehci, i, qh);
616
617 /* update per-qh bandwidth for usbfs */
618 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
619 ? ((qh->usecs + qh->c_usecs) / qh->period)
620 : (qh->usecs * 8);
621
622 dev_dbg (&qh->dev->dev,
623 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
624 qh->period,
625 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
626 qh, qh->start, qh->usecs, qh->c_usecs);
627
628 /* qh->qh_next still "live" to HC */
629 qh->qh_state = QH_STATE_UNLINK;
630 qh->qh_next.ptr = NULL;
631 qh_put (qh);
632
633 /* maybe turn off periodic schedule */
634 return disable_periodic(ehci);
635 }
636
intr_deschedule(struct ehci_hcd * ehci,struct ehci_qh * qh)637 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
638 {
639 unsigned wait;
640 struct ehci_qh_hw *hw = qh->hw;
641 int rc;
642
643 /* If the QH isn't linked then there's nothing we can do
644 * unless we were called during a giveback, in which case
645 * qh_completions() has to deal with it.
646 */
647 if (qh->qh_state != QH_STATE_LINKED) {
648 if (qh->qh_state == QH_STATE_COMPLETING)
649 qh->needs_rescan = 1;
650 return;
651 }
652
653 qh_unlink_periodic (ehci, qh);
654
655 /* simple/paranoid: always delay, expecting the HC needs to read
656 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
657 * expect khubd to clean up after any CSPLITs we won't issue.
658 * active high speed queues may need bigger delays...
659 */
660 if (list_empty (&qh->qtd_list)
661 || (cpu_to_hc32(ehci, QH_CMASK)
662 & hw->hw_info2) != 0)
663 wait = 2;
664 else
665 wait = 55; /* worst case: 3 * 1024 */
666
667 udelay (wait);
668 qh->qh_state = QH_STATE_IDLE;
669 hw->hw_next = EHCI_LIST_END(ehci);
670 wmb ();
671
672 qh_completions(ehci, qh);
673
674 /* reschedule QH iff another request is queued */
675 if (!list_empty(&qh->qtd_list) &&
676 HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
677 rc = qh_schedule(ehci, qh);
678
679 /* An error here likely indicates handshake failure
680 * or no space left in the schedule. Neither fault
681 * should happen often ...
682 *
683 * FIXME kill the now-dysfunctional queued urbs
684 */
685 if (rc != 0)
686 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
687 qh, rc);
688 }
689 }
690
691 /*-------------------------------------------------------------------------*/
692
check_period(struct ehci_hcd * ehci,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)693 static int check_period (
694 struct ehci_hcd *ehci,
695 unsigned frame,
696 unsigned uframe,
697 unsigned period,
698 unsigned usecs
699 ) {
700 int claimed;
701
702 /* complete split running into next frame?
703 * given FSTN support, we could sometimes check...
704 */
705 if (uframe >= 8)
706 return 0;
707
708 /*
709 * 80% periodic == 100 usec/uframe available
710 * convert "usecs we need" to "max already claimed"
711 */
712 usecs = 100 - usecs;
713
714 /* we "know" 2 and 4 uframe intervals were rejected; so
715 * for period 0, check _every_ microframe in the schedule.
716 */
717 if (unlikely (period == 0)) {
718 do {
719 for (uframe = 0; uframe < 7; uframe++) {
720 claimed = periodic_usecs (ehci, frame, uframe);
721 if (claimed > usecs)
722 return 0;
723 }
724 } while ((frame += 1) < ehci->periodic_size);
725
726 /* just check the specified uframe, at that period */
727 } else {
728 do {
729 claimed = periodic_usecs (ehci, frame, uframe);
730 if (claimed > usecs)
731 return 0;
732 } while ((frame += period) < ehci->periodic_size);
733 }
734
735 // success!
736 return 1;
737 }
738
check_intr_schedule(struct ehci_hcd * ehci,unsigned frame,unsigned uframe,const struct ehci_qh * qh,__hc32 * c_maskp)739 static int check_intr_schedule (
740 struct ehci_hcd *ehci,
741 unsigned frame,
742 unsigned uframe,
743 const struct ehci_qh *qh,
744 __hc32 *c_maskp
745 )
746 {
747 int retval = -ENOSPC;
748 u8 mask = 0;
749
750 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
751 goto done;
752
753 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
754 goto done;
755 if (!qh->c_usecs) {
756 retval = 0;
757 *c_maskp = 0;
758 goto done;
759 }
760
761 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
762 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
763 qh->tt_usecs)) {
764 unsigned i;
765
766 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
767 for (i=uframe+1; i<8 && i<uframe+4; i++)
768 if (!check_period (ehci, frame, i,
769 qh->period, qh->c_usecs))
770 goto done;
771 else
772 mask |= 1 << i;
773
774 retval = 0;
775
776 *c_maskp = cpu_to_hc32(ehci, mask << 8);
777 }
778 #else
779 /* Make sure this tt's buffer is also available for CSPLITs.
780 * We pessimize a bit; probably the typical full speed case
781 * doesn't need the second CSPLIT.
782 *
783 * NOTE: both SPLIT and CSPLIT could be checked in just
784 * one smart pass...
785 */
786 mask = 0x03 << (uframe + qh->gap_uf);
787 *c_maskp = cpu_to_hc32(ehci, mask << 8);
788
789 mask |= 1 << uframe;
790 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
791 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
792 qh->period, qh->c_usecs))
793 goto done;
794 if (!check_period (ehci, frame, uframe + qh->gap_uf,
795 qh->period, qh->c_usecs))
796 goto done;
797 retval = 0;
798 }
799 #endif
800 done:
801 return retval;
802 }
803
804 /* "first fit" scheduling policy used the first time through,
805 * or when the previous schedule slot can't be re-used.
806 */
qh_schedule(struct ehci_hcd * ehci,struct ehci_qh * qh)807 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
808 {
809 int status;
810 unsigned uframe;
811 __hc32 c_mask;
812 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
813 struct ehci_qh_hw *hw = qh->hw;
814
815 qh_refresh(ehci, qh);
816 hw->hw_next = EHCI_LIST_END(ehci);
817 frame = qh->start;
818
819 /* reuse the previous schedule slots, if we can */
820 if (frame < qh->period) {
821 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
822 status = check_intr_schedule (ehci, frame, --uframe,
823 qh, &c_mask);
824 } else {
825 uframe = 0;
826 c_mask = 0;
827 status = -ENOSPC;
828 }
829
830 /* else scan the schedule to find a group of slots such that all
831 * uframes have enough periodic bandwidth available.
832 */
833 if (status) {
834 /* "normal" case, uframing flexible except with splits */
835 if (qh->period) {
836 int i;
837
838 for (i = qh->period; status && i > 0; --i) {
839 frame = ++ehci->random_frame % qh->period;
840 for (uframe = 0; uframe < 8; uframe++) {
841 status = check_intr_schedule (ehci,
842 frame, uframe, qh,
843 &c_mask);
844 if (status == 0)
845 break;
846 }
847 }
848
849 /* qh->period == 0 means every uframe */
850 } else {
851 frame = 0;
852 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
853 }
854 if (status)
855 goto done;
856 qh->start = frame;
857
858 /* reset S-frame and (maybe) C-frame masks */
859 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
860 hw->hw_info2 |= qh->period
861 ? cpu_to_hc32(ehci, 1 << uframe)
862 : cpu_to_hc32(ehci, QH_SMASK);
863 hw->hw_info2 |= c_mask;
864 } else
865 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
866
867 /* stuff into the periodic schedule */
868 status = qh_link_periodic (ehci, qh);
869 done:
870 return status;
871 }
872
intr_submit(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)873 static int intr_submit (
874 struct ehci_hcd *ehci,
875 struct urb *urb,
876 struct list_head *qtd_list,
877 gfp_t mem_flags
878 ) {
879 unsigned epnum;
880 unsigned long flags;
881 struct ehci_qh *qh;
882 int status;
883 struct list_head empty;
884
885 /* get endpoint and transfer/schedule data */
886 epnum = urb->ep->desc.bEndpointAddress;
887
888 spin_lock_irqsave (&ehci->lock, flags);
889
890 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
891 status = -ESHUTDOWN;
892 goto done_not_linked;
893 }
894 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
895 if (unlikely(status))
896 goto done_not_linked;
897
898 /* get qh and force any scheduling errors */
899 INIT_LIST_HEAD (&empty);
900 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
901 if (qh == NULL) {
902 status = -ENOMEM;
903 goto done;
904 }
905 if (qh->qh_state == QH_STATE_IDLE) {
906 if ((status = qh_schedule (ehci, qh)) != 0)
907 goto done;
908 }
909
910 /* then queue the urb's tds to the qh */
911 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
912 BUG_ON (qh == NULL);
913
914 /* ... update usbfs periodic stats */
915 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
916
917 done:
918 if (unlikely(status))
919 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
920 done_not_linked:
921 spin_unlock_irqrestore (&ehci->lock, flags);
922 if (status)
923 qtd_list_free (ehci, urb, qtd_list);
924
925 return status;
926 }
927
928 /*-------------------------------------------------------------------------*/
929
930 /* ehci_iso_stream ops work with both ITD and SITD */
931
932 static struct ehci_iso_stream *
iso_stream_alloc(gfp_t mem_flags)933 iso_stream_alloc (gfp_t mem_flags)
934 {
935 struct ehci_iso_stream *stream;
936
937 stream = kzalloc(sizeof *stream, mem_flags);
938 if (likely (stream != NULL)) {
939 INIT_LIST_HEAD(&stream->td_list);
940 INIT_LIST_HEAD(&stream->free_list);
941 stream->next_uframe = -1;
942 stream->refcount = 1;
943 }
944 return stream;
945 }
946
947 static void
iso_stream_init(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)948 iso_stream_init (
949 struct ehci_hcd *ehci,
950 struct ehci_iso_stream *stream,
951 struct usb_device *dev,
952 int pipe,
953 unsigned interval
954 )
955 {
956 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
957
958 u32 buf1;
959 unsigned epnum, maxp;
960 int is_input;
961 long bandwidth;
962
963 /*
964 * this might be a "high bandwidth" highspeed endpoint,
965 * as encoded in the ep descriptor's wMaxPacket field
966 */
967 epnum = usb_pipeendpoint (pipe);
968 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
969 maxp = usb_maxpacket(dev, pipe, !is_input);
970 if (is_input) {
971 buf1 = (1 << 11);
972 } else {
973 buf1 = 0;
974 }
975
976 /* knows about ITD vs SITD */
977 if (dev->speed == USB_SPEED_HIGH) {
978 unsigned multi = hb_mult(maxp);
979
980 stream->highspeed = 1;
981
982 maxp = max_packet(maxp);
983 buf1 |= maxp;
984 maxp *= multi;
985
986 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
987 stream->buf1 = cpu_to_hc32(ehci, buf1);
988 stream->buf2 = cpu_to_hc32(ehci, multi);
989
990 /* usbfs wants to report the average usecs per frame tied up
991 * when transfers on this endpoint are scheduled ...
992 */
993 stream->usecs = HS_USECS_ISO (maxp);
994 bandwidth = stream->usecs * 8;
995 bandwidth /= interval;
996
997 } else {
998 u32 addr;
999 int think_time;
1000 int hs_transfers;
1001
1002 addr = dev->ttport << 24;
1003 if (!ehci_is_TDI(ehci)
1004 || (dev->tt->hub !=
1005 ehci_to_hcd(ehci)->self.root_hub))
1006 addr |= dev->tt->hub->devnum << 16;
1007 addr |= epnum << 8;
1008 addr |= dev->devnum;
1009 stream->usecs = HS_USECS_ISO (maxp);
1010 think_time = dev->tt ? dev->tt->think_time : 0;
1011 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1012 dev->speed, is_input, 1, maxp));
1013 hs_transfers = max (1u, (maxp + 187) / 188);
1014 if (is_input) {
1015 u32 tmp;
1016
1017 addr |= 1 << 31;
1018 stream->c_usecs = stream->usecs;
1019 stream->usecs = HS_USECS_ISO (1);
1020 stream->raw_mask = 1;
1021
1022 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1023 tmp = (1 << (hs_transfers + 2)) - 1;
1024 stream->raw_mask |= tmp << (8 + 2);
1025 } else
1026 stream->raw_mask = smask_out [hs_transfers - 1];
1027 bandwidth = stream->usecs + stream->c_usecs;
1028 bandwidth /= interval << 3;
1029
1030 /* stream->splits gets created from raw_mask later */
1031 stream->address = cpu_to_hc32(ehci, addr);
1032 }
1033 stream->bandwidth = bandwidth;
1034
1035 stream->udev = dev;
1036
1037 stream->bEndpointAddress = is_input | epnum;
1038 stream->interval = interval;
1039 stream->maxp = maxp;
1040 }
1041
1042 static void
iso_stream_put(struct ehci_hcd * ehci,struct ehci_iso_stream * stream)1043 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1044 {
1045 stream->refcount--;
1046
1047 /* free whenever just a dev->ep reference remains.
1048 * not like a QH -- no persistent state (toggle, halt)
1049 */
1050 if (stream->refcount == 1) {
1051 // BUG_ON (!list_empty(&stream->td_list));
1052
1053 while (!list_empty (&stream->free_list)) {
1054 struct list_head *entry;
1055
1056 entry = stream->free_list.next;
1057 list_del (entry);
1058
1059 /* knows about ITD vs SITD */
1060 if (stream->highspeed) {
1061 struct ehci_itd *itd;
1062
1063 itd = list_entry (entry, struct ehci_itd,
1064 itd_list);
1065 dma_pool_free (ehci->itd_pool, itd,
1066 itd->itd_dma);
1067 } else {
1068 struct ehci_sitd *sitd;
1069
1070 sitd = list_entry (entry, struct ehci_sitd,
1071 sitd_list);
1072 dma_pool_free (ehci->sitd_pool, sitd,
1073 sitd->sitd_dma);
1074 }
1075 }
1076
1077 stream->bEndpointAddress &= 0x0f;
1078 if (stream->ep)
1079 stream->ep->hcpriv = NULL;
1080
1081 kfree(stream);
1082 }
1083 }
1084
1085 static inline struct ehci_iso_stream *
iso_stream_get(struct ehci_iso_stream * stream)1086 iso_stream_get (struct ehci_iso_stream *stream)
1087 {
1088 if (likely (stream != NULL))
1089 stream->refcount++;
1090 return stream;
1091 }
1092
1093 static struct ehci_iso_stream *
iso_stream_find(struct ehci_hcd * ehci,struct urb * urb)1094 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1095 {
1096 unsigned epnum;
1097 struct ehci_iso_stream *stream;
1098 struct usb_host_endpoint *ep;
1099 unsigned long flags;
1100
1101 epnum = usb_pipeendpoint (urb->pipe);
1102 if (usb_pipein(urb->pipe))
1103 ep = urb->dev->ep_in[epnum];
1104 else
1105 ep = urb->dev->ep_out[epnum];
1106
1107 spin_lock_irqsave (&ehci->lock, flags);
1108 stream = ep->hcpriv;
1109
1110 if (unlikely (stream == NULL)) {
1111 stream = iso_stream_alloc(GFP_ATOMIC);
1112 if (likely (stream != NULL)) {
1113 /* dev->ep owns the initial refcount */
1114 ep->hcpriv = stream;
1115 stream->ep = ep;
1116 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1117 urb->interval);
1118 }
1119
1120 /* if dev->ep [epnum] is a QH, hw is set */
1121 } else if (unlikely (stream->hw != NULL)) {
1122 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1123 urb->dev->devpath, epnum,
1124 usb_pipein(urb->pipe) ? "in" : "out");
1125 stream = NULL;
1126 }
1127
1128 /* caller guarantees an eventual matching iso_stream_put */
1129 stream = iso_stream_get (stream);
1130
1131 spin_unlock_irqrestore (&ehci->lock, flags);
1132 return stream;
1133 }
1134
1135 /*-------------------------------------------------------------------------*/
1136
1137 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1138
1139 static struct ehci_iso_sched *
iso_sched_alloc(unsigned packets,gfp_t mem_flags)1140 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1141 {
1142 struct ehci_iso_sched *iso_sched;
1143 int size = sizeof *iso_sched;
1144
1145 size += packets * sizeof (struct ehci_iso_packet);
1146 iso_sched = kzalloc(size, mem_flags);
1147 if (likely (iso_sched != NULL)) {
1148 INIT_LIST_HEAD (&iso_sched->td_list);
1149 }
1150 return iso_sched;
1151 }
1152
1153 static inline void
itd_sched_init(struct ehci_hcd * ehci,struct ehci_iso_sched * iso_sched,struct ehci_iso_stream * stream,struct urb * urb)1154 itd_sched_init(
1155 struct ehci_hcd *ehci,
1156 struct ehci_iso_sched *iso_sched,
1157 struct ehci_iso_stream *stream,
1158 struct urb *urb
1159 )
1160 {
1161 unsigned i;
1162 dma_addr_t dma = urb->transfer_dma;
1163
1164 /* how many uframes are needed for these transfers */
1165 iso_sched->span = urb->number_of_packets * stream->interval;
1166
1167 /* figure out per-uframe itd fields that we'll need later
1168 * when we fit new itds into the schedule.
1169 */
1170 for (i = 0; i < urb->number_of_packets; i++) {
1171 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1172 unsigned length;
1173 dma_addr_t buf;
1174 u32 trans;
1175
1176 length = urb->iso_frame_desc [i].length;
1177 buf = dma + urb->iso_frame_desc [i].offset;
1178
1179 trans = EHCI_ISOC_ACTIVE;
1180 trans |= buf & 0x0fff;
1181 if (unlikely (((i + 1) == urb->number_of_packets))
1182 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1183 trans |= EHCI_ITD_IOC;
1184 trans |= length << 16;
1185 uframe->transaction = cpu_to_hc32(ehci, trans);
1186
1187 /* might need to cross a buffer page within a uframe */
1188 uframe->bufp = (buf & ~(u64)0x0fff);
1189 buf += length;
1190 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1191 uframe->cross = 1;
1192 }
1193 }
1194
1195 static void
iso_sched_free(struct ehci_iso_stream * stream,struct ehci_iso_sched * iso_sched)1196 iso_sched_free (
1197 struct ehci_iso_stream *stream,
1198 struct ehci_iso_sched *iso_sched
1199 )
1200 {
1201 if (!iso_sched)
1202 return;
1203 // caller must hold ehci->lock!
1204 list_splice (&iso_sched->td_list, &stream->free_list);
1205 kfree (iso_sched);
1206 }
1207
1208 static int
itd_urb_transaction(struct ehci_iso_stream * stream,struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)1209 itd_urb_transaction (
1210 struct ehci_iso_stream *stream,
1211 struct ehci_hcd *ehci,
1212 struct urb *urb,
1213 gfp_t mem_flags
1214 )
1215 {
1216 struct ehci_itd *itd;
1217 dma_addr_t itd_dma;
1218 int i;
1219 unsigned num_itds;
1220 struct ehci_iso_sched *sched;
1221 unsigned long flags;
1222
1223 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1224 if (unlikely (sched == NULL))
1225 return -ENOMEM;
1226
1227 itd_sched_init(ehci, sched, stream, urb);
1228
1229 if (urb->interval < 8)
1230 num_itds = 1 + (sched->span + 7) / 8;
1231 else
1232 num_itds = urb->number_of_packets;
1233
1234 /* allocate/init ITDs */
1235 spin_lock_irqsave (&ehci->lock, flags);
1236 for (i = 0; i < num_itds; i++) {
1237
1238 /* free_list.next might be cache-hot ... but maybe
1239 * the HC caches it too. avoid that issue for now.
1240 */
1241
1242 /* prefer previously-allocated itds */
1243 if (likely (!list_empty(&stream->free_list))) {
1244 itd = list_entry (stream->free_list.prev,
1245 struct ehci_itd, itd_list);
1246 list_del (&itd->itd_list);
1247 itd_dma = itd->itd_dma;
1248 } else {
1249 spin_unlock_irqrestore (&ehci->lock, flags);
1250 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1251 &itd_dma);
1252 spin_lock_irqsave (&ehci->lock, flags);
1253 if (!itd) {
1254 iso_sched_free(stream, sched);
1255 spin_unlock_irqrestore(&ehci->lock, flags);
1256 return -ENOMEM;
1257 }
1258 }
1259
1260 memset (itd, 0, sizeof *itd);
1261 itd->itd_dma = itd_dma;
1262 list_add (&itd->itd_list, &sched->td_list);
1263 }
1264 spin_unlock_irqrestore (&ehci->lock, flags);
1265
1266 /* temporarily store schedule info in hcpriv */
1267 urb->hcpriv = sched;
1268 urb->error_count = 0;
1269 return 0;
1270 }
1271
1272 /*-------------------------------------------------------------------------*/
1273
1274 static inline int
itd_slot_ok(struct ehci_hcd * ehci,u32 mod,u32 uframe,u8 usecs,u32 period)1275 itd_slot_ok (
1276 struct ehci_hcd *ehci,
1277 u32 mod,
1278 u32 uframe,
1279 u8 usecs,
1280 u32 period
1281 )
1282 {
1283 uframe %= period;
1284 do {
1285 /* can't commit more than 80% periodic == 100 usec */
1286 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1287 > (100 - usecs))
1288 return 0;
1289
1290 /* we know urb->interval is 2^N uframes */
1291 uframe += period;
1292 } while (uframe < mod);
1293 return 1;
1294 }
1295
1296 static inline int
sitd_slot_ok(struct ehci_hcd * ehci,u32 mod,struct ehci_iso_stream * stream,u32 uframe,struct ehci_iso_sched * sched,u32 period_uframes)1297 sitd_slot_ok (
1298 struct ehci_hcd *ehci,
1299 u32 mod,
1300 struct ehci_iso_stream *stream,
1301 u32 uframe,
1302 struct ehci_iso_sched *sched,
1303 u32 period_uframes
1304 )
1305 {
1306 u32 mask, tmp;
1307 u32 frame, uf;
1308
1309 mask = stream->raw_mask << (uframe & 7);
1310
1311 /* for IN, don't wrap CSPLIT into the next frame */
1312 if (mask & ~0xffff)
1313 return 0;
1314
1315 /* this multi-pass logic is simple, but performance may
1316 * suffer when the schedule data isn't cached.
1317 */
1318
1319 /* check bandwidth */
1320 uframe %= period_uframes;
1321 do {
1322 u32 max_used;
1323
1324 frame = uframe >> 3;
1325 uf = uframe & 7;
1326
1327 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1328 /* The tt's fullspeed bus bandwidth must be available.
1329 * tt_available scheduling guarantees 10+% for control/bulk.
1330 */
1331 if (!tt_available (ehci, period_uframes << 3,
1332 stream->udev, frame, uf, stream->tt_usecs))
1333 return 0;
1334 #else
1335 /* tt must be idle for start(s), any gap, and csplit.
1336 * assume scheduling slop leaves 10+% for control/bulk.
1337 */
1338 if (!tt_no_collision (ehci, period_uframes << 3,
1339 stream->udev, frame, mask))
1340 return 0;
1341 #endif
1342
1343 /* check starts (OUT uses more than one) */
1344 max_used = 100 - stream->usecs;
1345 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1346 if (periodic_usecs (ehci, frame, uf) > max_used)
1347 return 0;
1348 }
1349
1350 /* for IN, check CSPLIT */
1351 if (stream->c_usecs) {
1352 uf = uframe & 7;
1353 max_used = 100 - stream->c_usecs;
1354 do {
1355 tmp = 1 << uf;
1356 tmp <<= 8;
1357 if ((stream->raw_mask & tmp) == 0)
1358 continue;
1359 if (periodic_usecs (ehci, frame, uf)
1360 > max_used)
1361 return 0;
1362 } while (++uf < 8);
1363 }
1364
1365 /* we know urb->interval is 2^N uframes */
1366 uframe += period_uframes;
1367 } while (uframe < mod);
1368
1369 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1370 return 1;
1371 }
1372
1373 /*
1374 * This scheduler plans almost as far into the future as it has actual
1375 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1376 * "as small as possible" to be cache-friendlier.) That limits the size
1377 * transfers you can stream reliably; avoid more than 64 msec per urb.
1378 * Also avoid queue depths of less than ehci's worst irq latency (affected
1379 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1380 * and other factors); or more than about 230 msec total (for portability,
1381 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1382 */
1383
1384 #define SCHEDULE_SLOP 80 /* microframes */
1385
1386 static int
iso_stream_schedule(struct ehci_hcd * ehci,struct urb * urb,struct ehci_iso_stream * stream)1387 iso_stream_schedule (
1388 struct ehci_hcd *ehci,
1389 struct urb *urb,
1390 struct ehci_iso_stream *stream
1391 )
1392 {
1393 u32 now, next, start, period, span;
1394 int status;
1395 unsigned mod = ehci->periodic_size << 3;
1396 struct ehci_iso_sched *sched = urb->hcpriv;
1397
1398 period = urb->interval;
1399 span = sched->span;
1400 if (!stream->highspeed) {
1401 period <<= 3;
1402 span <<= 3;
1403 }
1404
1405 if (span > mod - SCHEDULE_SLOP) {
1406 ehci_dbg (ehci, "iso request %p too long\n", urb);
1407 status = -EFBIG;
1408 goto fail;
1409 }
1410
1411 now = ehci_readl(ehci, &ehci->regs->frame_index) & (mod - 1);
1412
1413 /* Typical case: reuse current schedule, stream is still active.
1414 * Hopefully there are no gaps from the host falling behind
1415 * (irq delays etc), but if there are we'll take the next
1416 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1417 */
1418 if (likely (!list_empty (&stream->td_list))) {
1419 u32 excess;
1420
1421 /* For high speed devices, allow scheduling within the
1422 * isochronous scheduling threshold. For full speed devices
1423 * and Intel PCI-based controllers, don't (work around for
1424 * Intel ICH9 bug).
1425 */
1426 if (!stream->highspeed && ehci->fs_i_thresh)
1427 next = now + ehci->i_thresh;
1428 else
1429 next = now;
1430
1431 /* Fell behind (by up to twice the slop amount)?
1432 * We decide based on the time of the last currently-scheduled
1433 * slot, not the time of the next available slot.
1434 */
1435 excess = (stream->next_uframe - period - next) & (mod - 1);
1436 if (excess >= mod - 2 * SCHEDULE_SLOP)
1437 start = next + excess - mod + period *
1438 DIV_ROUND_UP(mod - excess, period);
1439 else
1440 start = next + excess + period;
1441 if (start - now >= mod) {
1442 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1443 urb, start - now - period, period,
1444 mod);
1445 status = -EFBIG;
1446 goto fail;
1447 }
1448 }
1449
1450 /* need to schedule; when's the next (u)frame we could start?
1451 * this is bigger than ehci->i_thresh allows; scheduling itself
1452 * isn't free, the slop should handle reasonably slow cpus. it
1453 * can also help high bandwidth if the dma and irq loads don't
1454 * jump until after the queue is primed.
1455 */
1456 else {
1457 start = SCHEDULE_SLOP + (now & ~0x07);
1458
1459 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
1460
1461 /* find a uframe slot with enough bandwidth */
1462 next = start + period;
1463 for (; start < next; start++) {
1464
1465 /* check schedule: enough space? */
1466 if (stream->highspeed) {
1467 if (itd_slot_ok(ehci, mod, start,
1468 stream->usecs, period))
1469 break;
1470 } else {
1471 if ((start % 8) >= 6)
1472 continue;
1473 if (sitd_slot_ok(ehci, mod, stream,
1474 start, sched, period))
1475 break;
1476 }
1477 }
1478
1479 /* no room in the schedule */
1480 if (start == next) {
1481 ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1482 urb, now, now + mod);
1483 status = -ENOSPC;
1484 goto fail;
1485 }
1486 }
1487
1488 /* Tried to schedule too far into the future? */
1489 if (unlikely(start - now + span - period
1490 >= mod - 2 * SCHEDULE_SLOP)) {
1491 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1492 urb, start - now, span - period,
1493 mod - 2 * SCHEDULE_SLOP);
1494 status = -EFBIG;
1495 goto fail;
1496 }
1497
1498 stream->next_uframe = start & (mod - 1);
1499
1500 /* report high speed start in uframes; full speed, in frames */
1501 urb->start_frame = stream->next_uframe;
1502 if (!stream->highspeed)
1503 urb->start_frame >>= 3;
1504 return 0;
1505
1506 fail:
1507 iso_sched_free(stream, sched);
1508 urb->hcpriv = NULL;
1509 return status;
1510 }
1511
1512 /*-------------------------------------------------------------------------*/
1513
1514 static inline void
itd_init(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,struct ehci_itd * itd)1515 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1516 struct ehci_itd *itd)
1517 {
1518 int i;
1519
1520 /* it's been recently zeroed */
1521 itd->hw_next = EHCI_LIST_END(ehci);
1522 itd->hw_bufp [0] = stream->buf0;
1523 itd->hw_bufp [1] = stream->buf1;
1524 itd->hw_bufp [2] = stream->buf2;
1525
1526 for (i = 0; i < 8; i++)
1527 itd->index[i] = -1;
1528
1529 /* All other fields are filled when scheduling */
1530 }
1531
1532 static inline void
itd_patch(struct ehci_hcd * ehci,struct ehci_itd * itd,struct ehci_iso_sched * iso_sched,unsigned index,u16 uframe)1533 itd_patch(
1534 struct ehci_hcd *ehci,
1535 struct ehci_itd *itd,
1536 struct ehci_iso_sched *iso_sched,
1537 unsigned index,
1538 u16 uframe
1539 )
1540 {
1541 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1542 unsigned pg = itd->pg;
1543
1544 // BUG_ON (pg == 6 && uf->cross);
1545
1546 uframe &= 0x07;
1547 itd->index [uframe] = index;
1548
1549 itd->hw_transaction[uframe] = uf->transaction;
1550 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1551 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1552 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1553
1554 /* iso_frame_desc[].offset must be strictly increasing */
1555 if (unlikely (uf->cross)) {
1556 u64 bufp = uf->bufp + 4096;
1557
1558 itd->pg = ++pg;
1559 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1560 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1561 }
1562 }
1563
1564 static inline void
itd_link(struct ehci_hcd * ehci,unsigned frame,struct ehci_itd * itd)1565 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1566 {
1567 union ehci_shadow *prev = &ehci->pshadow[frame];
1568 __hc32 *hw_p = &ehci->periodic[frame];
1569 union ehci_shadow here = *prev;
1570 __hc32 type = 0;
1571
1572 /* skip any iso nodes which might belong to previous microframes */
1573 while (here.ptr) {
1574 type = Q_NEXT_TYPE(ehci, *hw_p);
1575 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1576 break;
1577 prev = periodic_next_shadow(ehci, prev, type);
1578 hw_p = shadow_next_periodic(ehci, &here, type);
1579 here = *prev;
1580 }
1581
1582 itd->itd_next = here;
1583 itd->hw_next = *hw_p;
1584 prev->itd = itd;
1585 itd->frame = frame;
1586 wmb ();
1587 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1588 }
1589
1590 /* fit urb's itds into the selected schedule slot; activate as needed */
1591 static int
itd_link_urb(struct ehci_hcd * ehci,struct urb * urb,unsigned mod,struct ehci_iso_stream * stream)1592 itd_link_urb (
1593 struct ehci_hcd *ehci,
1594 struct urb *urb,
1595 unsigned mod,
1596 struct ehci_iso_stream *stream
1597 )
1598 {
1599 int packet;
1600 unsigned next_uframe, uframe, frame;
1601 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1602 struct ehci_itd *itd;
1603
1604 next_uframe = stream->next_uframe & (mod - 1);
1605
1606 if (unlikely (list_empty(&stream->td_list))) {
1607 ehci_to_hcd(ehci)->self.bandwidth_allocated
1608 += stream->bandwidth;
1609 ehci_vdbg (ehci,
1610 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1611 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1612 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1613 urb->interval,
1614 next_uframe >> 3, next_uframe & 0x7);
1615 }
1616
1617 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1618 if (ehci->amd_pll_fix == 1)
1619 usb_amd_quirk_pll_disable();
1620 }
1621
1622 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1623
1624 /* fill iTDs uframe by uframe */
1625 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1626 if (itd == NULL) {
1627 /* ASSERT: we have all necessary itds */
1628 // BUG_ON (list_empty (&iso_sched->td_list));
1629
1630 /* ASSERT: no itds for this endpoint in this uframe */
1631
1632 itd = list_entry (iso_sched->td_list.next,
1633 struct ehci_itd, itd_list);
1634 list_move_tail (&itd->itd_list, &stream->td_list);
1635 itd->stream = iso_stream_get (stream);
1636 itd->urb = urb;
1637 itd_init (ehci, stream, itd);
1638 }
1639
1640 uframe = next_uframe & 0x07;
1641 frame = next_uframe >> 3;
1642
1643 itd_patch(ehci, itd, iso_sched, packet, uframe);
1644
1645 next_uframe += stream->interval;
1646 next_uframe &= mod - 1;
1647 packet++;
1648
1649 /* link completed itds into the schedule */
1650 if (((next_uframe >> 3) != frame)
1651 || packet == urb->number_of_packets) {
1652 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1653 itd = NULL;
1654 }
1655 }
1656 stream->next_uframe = next_uframe;
1657
1658 /* don't need that schedule data any more */
1659 iso_sched_free (stream, iso_sched);
1660 urb->hcpriv = NULL;
1661
1662 timer_action (ehci, TIMER_IO_WATCHDOG);
1663 return enable_periodic(ehci);
1664 }
1665
1666 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1667
1668 /* Process and recycle a completed ITD. Return true iff its urb completed,
1669 * and hence its completion callback probably added things to the hardware
1670 * schedule.
1671 *
1672 * Note that we carefully avoid recycling this descriptor until after any
1673 * completion callback runs, so that it won't be reused quickly. That is,
1674 * assuming (a) no more than two urbs per frame on this endpoint, and also
1675 * (b) only this endpoint's completions submit URBs. It seems some silicon
1676 * corrupts things if you reuse completed descriptors very quickly...
1677 */
1678 static unsigned
itd_complete(struct ehci_hcd * ehci,struct ehci_itd * itd)1679 itd_complete (
1680 struct ehci_hcd *ehci,
1681 struct ehci_itd *itd
1682 ) {
1683 struct urb *urb = itd->urb;
1684 struct usb_iso_packet_descriptor *desc;
1685 u32 t;
1686 unsigned uframe;
1687 int urb_index = -1;
1688 struct ehci_iso_stream *stream = itd->stream;
1689 struct usb_device *dev;
1690 unsigned retval = false;
1691
1692 /* for each uframe with a packet */
1693 for (uframe = 0; uframe < 8; uframe++) {
1694 if (likely (itd->index[uframe] == -1))
1695 continue;
1696 urb_index = itd->index[uframe];
1697 desc = &urb->iso_frame_desc [urb_index];
1698
1699 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1700 itd->hw_transaction [uframe] = 0;
1701
1702 /* report transfer status */
1703 if (unlikely (t & ISO_ERRS)) {
1704 urb->error_count++;
1705 if (t & EHCI_ISOC_BUF_ERR)
1706 desc->status = usb_pipein (urb->pipe)
1707 ? -ENOSR /* hc couldn't read */
1708 : -ECOMM; /* hc couldn't write */
1709 else if (t & EHCI_ISOC_BABBLE)
1710 desc->status = -EOVERFLOW;
1711 else /* (t & EHCI_ISOC_XACTERR) */
1712 desc->status = -EPROTO;
1713
1714 /* HC need not update length with this error */
1715 if (!(t & EHCI_ISOC_BABBLE)) {
1716 desc->actual_length = EHCI_ITD_LENGTH(t);
1717 urb->actual_length += desc->actual_length;
1718 }
1719 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1720 desc->status = 0;
1721 desc->actual_length = EHCI_ITD_LENGTH(t);
1722 urb->actual_length += desc->actual_length;
1723 } else {
1724 /* URB was too late */
1725 desc->status = -EXDEV;
1726 }
1727 }
1728
1729 /* handle completion now? */
1730 if (likely ((urb_index + 1) != urb->number_of_packets))
1731 goto done;
1732
1733 /* ASSERT: it's really the last itd for this urb
1734 list_for_each_entry (itd, &stream->td_list, itd_list)
1735 BUG_ON (itd->urb == urb);
1736 */
1737
1738 /* give urb back to the driver; completion often (re)submits */
1739 dev = urb->dev;
1740 ehci_urb_done(ehci, urb, 0);
1741 retval = true;
1742 urb = NULL;
1743 (void) disable_periodic(ehci);
1744 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1745
1746 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1747 if (ehci->amd_pll_fix == 1)
1748 usb_amd_quirk_pll_enable();
1749 }
1750
1751 if (unlikely(list_is_singular(&stream->td_list))) {
1752 ehci_to_hcd(ehci)->self.bandwidth_allocated
1753 -= stream->bandwidth;
1754 ehci_vdbg (ehci,
1755 "deschedule devp %s ep%d%s-iso\n",
1756 dev->devpath, stream->bEndpointAddress & 0x0f,
1757 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1758 }
1759 iso_stream_put (ehci, stream);
1760
1761 done:
1762 itd->urb = NULL;
1763 if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1764 /* OK to recycle this ITD now. */
1765 itd->stream = NULL;
1766 list_move(&itd->itd_list, &stream->free_list);
1767 iso_stream_put(ehci, stream);
1768 } else {
1769 /* HW might remember this ITD, so we can't recycle it yet.
1770 * Move it to a safe place until a new frame starts.
1771 */
1772 list_move(&itd->itd_list, &ehci->cached_itd_list);
1773 if (stream->refcount == 2) {
1774 /* If iso_stream_put() were called here, stream
1775 * would be freed. Instead, just prevent reuse.
1776 */
1777 stream->ep->hcpriv = NULL;
1778 stream->ep = NULL;
1779 }
1780 }
1781 return retval;
1782 }
1783
1784 /*-------------------------------------------------------------------------*/
1785
itd_submit(struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)1786 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1787 gfp_t mem_flags)
1788 {
1789 int status = -EINVAL;
1790 unsigned long flags;
1791 struct ehci_iso_stream *stream;
1792
1793 /* Get iso_stream head */
1794 stream = iso_stream_find (ehci, urb);
1795 if (unlikely (stream == NULL)) {
1796 ehci_dbg (ehci, "can't get iso stream\n");
1797 return -ENOMEM;
1798 }
1799 if (unlikely (urb->interval != stream->interval)) {
1800 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1801 stream->interval, urb->interval);
1802 goto done;
1803 }
1804
1805 #ifdef EHCI_URB_TRACE
1806 ehci_dbg (ehci,
1807 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1808 __func__, urb->dev->devpath, urb,
1809 usb_pipeendpoint (urb->pipe),
1810 usb_pipein (urb->pipe) ? "in" : "out",
1811 urb->transfer_buffer_length,
1812 urb->number_of_packets, urb->interval,
1813 stream);
1814 #endif
1815
1816 /* allocate ITDs w/o locking anything */
1817 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1818 if (unlikely (status < 0)) {
1819 ehci_dbg (ehci, "can't init itds\n");
1820 goto done;
1821 }
1822
1823 /* schedule ... need to lock */
1824 spin_lock_irqsave (&ehci->lock, flags);
1825 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1826 status = -ESHUTDOWN;
1827 goto done_not_linked;
1828 }
1829 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1830 if (unlikely(status))
1831 goto done_not_linked;
1832 status = iso_stream_schedule(ehci, urb, stream);
1833 if (likely (status == 0))
1834 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1835 else
1836 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1837 done_not_linked:
1838 spin_unlock_irqrestore (&ehci->lock, flags);
1839
1840 done:
1841 if (unlikely (status < 0))
1842 iso_stream_put (ehci, stream);
1843 return status;
1844 }
1845
1846 /*-------------------------------------------------------------------------*/
1847
1848 /*
1849 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1850 * TTs in USB 2.0 hubs. These need microframe scheduling.
1851 */
1852
1853 static inline void
sitd_sched_init(struct ehci_hcd * ehci,struct ehci_iso_sched * iso_sched,struct ehci_iso_stream * stream,struct urb * urb)1854 sitd_sched_init(
1855 struct ehci_hcd *ehci,
1856 struct ehci_iso_sched *iso_sched,
1857 struct ehci_iso_stream *stream,
1858 struct urb *urb
1859 )
1860 {
1861 unsigned i;
1862 dma_addr_t dma = urb->transfer_dma;
1863
1864 /* how many frames are needed for these transfers */
1865 iso_sched->span = urb->number_of_packets * stream->interval;
1866
1867 /* figure out per-frame sitd fields that we'll need later
1868 * when we fit new sitds into the schedule.
1869 */
1870 for (i = 0; i < urb->number_of_packets; i++) {
1871 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1872 unsigned length;
1873 dma_addr_t buf;
1874 u32 trans;
1875
1876 length = urb->iso_frame_desc [i].length & 0x03ff;
1877 buf = dma + urb->iso_frame_desc [i].offset;
1878
1879 trans = SITD_STS_ACTIVE;
1880 if (((i + 1) == urb->number_of_packets)
1881 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1882 trans |= SITD_IOC;
1883 trans |= length << 16;
1884 packet->transaction = cpu_to_hc32(ehci, trans);
1885
1886 /* might need to cross a buffer page within a td */
1887 packet->bufp = buf;
1888 packet->buf1 = (buf + length) & ~0x0fff;
1889 if (packet->buf1 != (buf & ~(u64)0x0fff))
1890 packet->cross = 1;
1891
1892 /* OUT uses multiple start-splits */
1893 if (stream->bEndpointAddress & USB_DIR_IN)
1894 continue;
1895 length = (length + 187) / 188;
1896 if (length > 1) /* BEGIN vs ALL */
1897 length |= 1 << 3;
1898 packet->buf1 |= length;
1899 }
1900 }
1901
1902 static int
sitd_urb_transaction(struct ehci_iso_stream * stream,struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)1903 sitd_urb_transaction (
1904 struct ehci_iso_stream *stream,
1905 struct ehci_hcd *ehci,
1906 struct urb *urb,
1907 gfp_t mem_flags
1908 )
1909 {
1910 struct ehci_sitd *sitd;
1911 dma_addr_t sitd_dma;
1912 int i;
1913 struct ehci_iso_sched *iso_sched;
1914 unsigned long flags;
1915
1916 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1917 if (iso_sched == NULL)
1918 return -ENOMEM;
1919
1920 sitd_sched_init(ehci, iso_sched, stream, urb);
1921
1922 /* allocate/init sITDs */
1923 spin_lock_irqsave (&ehci->lock, flags);
1924 for (i = 0; i < urb->number_of_packets; i++) {
1925
1926 /* NOTE: for now, we don't try to handle wraparound cases
1927 * for IN (using sitd->hw_backpointer, like a FSTN), which
1928 * means we never need two sitds for full speed packets.
1929 */
1930
1931 /* free_list.next might be cache-hot ... but maybe
1932 * the HC caches it too. avoid that issue for now.
1933 */
1934
1935 /* prefer previously-allocated sitds */
1936 if (!list_empty(&stream->free_list)) {
1937 sitd = list_entry (stream->free_list.prev,
1938 struct ehci_sitd, sitd_list);
1939 list_del (&sitd->sitd_list);
1940 sitd_dma = sitd->sitd_dma;
1941 } else {
1942 spin_unlock_irqrestore (&ehci->lock, flags);
1943 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1944 &sitd_dma);
1945 spin_lock_irqsave (&ehci->lock, flags);
1946 if (!sitd) {
1947 iso_sched_free(stream, iso_sched);
1948 spin_unlock_irqrestore(&ehci->lock, flags);
1949 return -ENOMEM;
1950 }
1951 }
1952
1953 memset (sitd, 0, sizeof *sitd);
1954 sitd->sitd_dma = sitd_dma;
1955 list_add (&sitd->sitd_list, &iso_sched->td_list);
1956 }
1957
1958 /* temporarily store schedule info in hcpriv */
1959 urb->hcpriv = iso_sched;
1960 urb->error_count = 0;
1961
1962 spin_unlock_irqrestore (&ehci->lock, flags);
1963 return 0;
1964 }
1965
1966 /*-------------------------------------------------------------------------*/
1967
1968 static inline void
sitd_patch(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,struct ehci_sitd * sitd,struct ehci_iso_sched * iso_sched,unsigned index)1969 sitd_patch(
1970 struct ehci_hcd *ehci,
1971 struct ehci_iso_stream *stream,
1972 struct ehci_sitd *sitd,
1973 struct ehci_iso_sched *iso_sched,
1974 unsigned index
1975 )
1976 {
1977 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1978 u64 bufp = uf->bufp;
1979
1980 sitd->hw_next = EHCI_LIST_END(ehci);
1981 sitd->hw_fullspeed_ep = stream->address;
1982 sitd->hw_uframe = stream->splits;
1983 sitd->hw_results = uf->transaction;
1984 sitd->hw_backpointer = EHCI_LIST_END(ehci);
1985
1986 bufp = uf->bufp;
1987 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1988 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1989
1990 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1991 if (uf->cross)
1992 bufp += 4096;
1993 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1994 sitd->index = index;
1995 }
1996
1997 static inline void
sitd_link(struct ehci_hcd * ehci,unsigned frame,struct ehci_sitd * sitd)1998 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1999 {
2000 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2001 sitd->sitd_next = ehci->pshadow [frame];
2002 sitd->hw_next = ehci->periodic [frame];
2003 ehci->pshadow [frame].sitd = sitd;
2004 sitd->frame = frame;
2005 wmb ();
2006 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2007 }
2008
2009 /* fit urb's sitds into the selected schedule slot; activate as needed */
2010 static int
sitd_link_urb(struct ehci_hcd * ehci,struct urb * urb,unsigned mod,struct ehci_iso_stream * stream)2011 sitd_link_urb (
2012 struct ehci_hcd *ehci,
2013 struct urb *urb,
2014 unsigned mod,
2015 struct ehci_iso_stream *stream
2016 )
2017 {
2018 int packet;
2019 unsigned next_uframe;
2020 struct ehci_iso_sched *sched = urb->hcpriv;
2021 struct ehci_sitd *sitd;
2022
2023 next_uframe = stream->next_uframe;
2024
2025 if (list_empty(&stream->td_list)) {
2026 /* usbfs ignores TT bandwidth */
2027 ehci_to_hcd(ehci)->self.bandwidth_allocated
2028 += stream->bandwidth;
2029 ehci_vdbg (ehci,
2030 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2031 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2032 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2033 (next_uframe >> 3) & (ehci->periodic_size - 1),
2034 stream->interval, hc32_to_cpu(ehci, stream->splits));
2035 }
2036
2037 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2038 if (ehci->amd_pll_fix == 1)
2039 usb_amd_quirk_pll_disable();
2040 }
2041
2042 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2043
2044 /* fill sITDs frame by frame */
2045 for (packet = 0, sitd = NULL;
2046 packet < urb->number_of_packets;
2047 packet++) {
2048
2049 /* ASSERT: we have all necessary sitds */
2050 BUG_ON (list_empty (&sched->td_list));
2051
2052 /* ASSERT: no itds for this endpoint in this frame */
2053
2054 sitd = list_entry (sched->td_list.next,
2055 struct ehci_sitd, sitd_list);
2056 list_move_tail (&sitd->sitd_list, &stream->td_list);
2057 sitd->stream = iso_stream_get (stream);
2058 sitd->urb = urb;
2059
2060 sitd_patch(ehci, stream, sitd, sched, packet);
2061 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2062 sitd);
2063
2064 next_uframe += stream->interval << 3;
2065 }
2066 stream->next_uframe = next_uframe & (mod - 1);
2067
2068 /* don't need that schedule data any more */
2069 iso_sched_free (stream, sched);
2070 urb->hcpriv = NULL;
2071
2072 timer_action (ehci, TIMER_IO_WATCHDOG);
2073 return enable_periodic(ehci);
2074 }
2075
2076 /*-------------------------------------------------------------------------*/
2077
2078 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2079 | SITD_STS_XACT | SITD_STS_MMF)
2080
2081 /* Process and recycle a completed SITD. Return true iff its urb completed,
2082 * and hence its completion callback probably added things to the hardware
2083 * schedule.
2084 *
2085 * Note that we carefully avoid recycling this descriptor until after any
2086 * completion callback runs, so that it won't be reused quickly. That is,
2087 * assuming (a) no more than two urbs per frame on this endpoint, and also
2088 * (b) only this endpoint's completions submit URBs. It seems some silicon
2089 * corrupts things if you reuse completed descriptors very quickly...
2090 */
2091 static unsigned
sitd_complete(struct ehci_hcd * ehci,struct ehci_sitd * sitd)2092 sitd_complete (
2093 struct ehci_hcd *ehci,
2094 struct ehci_sitd *sitd
2095 ) {
2096 struct urb *urb = sitd->urb;
2097 struct usb_iso_packet_descriptor *desc;
2098 u32 t;
2099 int urb_index = -1;
2100 struct ehci_iso_stream *stream = sitd->stream;
2101 struct usb_device *dev;
2102 unsigned retval = false;
2103
2104 urb_index = sitd->index;
2105 desc = &urb->iso_frame_desc [urb_index];
2106 t = hc32_to_cpup(ehci, &sitd->hw_results);
2107
2108 /* report transfer status */
2109 if (t & SITD_ERRS) {
2110 urb->error_count++;
2111 if (t & SITD_STS_DBE)
2112 desc->status = usb_pipein (urb->pipe)
2113 ? -ENOSR /* hc couldn't read */
2114 : -ECOMM; /* hc couldn't write */
2115 else if (t & SITD_STS_BABBLE)
2116 desc->status = -EOVERFLOW;
2117 else /* XACT, MMF, etc */
2118 desc->status = -EPROTO;
2119 } else {
2120 desc->status = 0;
2121 desc->actual_length = desc->length - SITD_LENGTH(t);
2122 urb->actual_length += desc->actual_length;
2123 }
2124
2125 /* handle completion now? */
2126 if ((urb_index + 1) != urb->number_of_packets)
2127 goto done;
2128
2129 /* ASSERT: it's really the last sitd for this urb
2130 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2131 BUG_ON (sitd->urb == urb);
2132 */
2133
2134 /* give urb back to the driver; completion often (re)submits */
2135 dev = urb->dev;
2136 ehci_urb_done(ehci, urb, 0);
2137 retval = true;
2138 urb = NULL;
2139 (void) disable_periodic(ehci);
2140 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2141
2142 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2143 if (ehci->amd_pll_fix == 1)
2144 usb_amd_quirk_pll_enable();
2145 }
2146
2147 if (list_is_singular(&stream->td_list)) {
2148 ehci_to_hcd(ehci)->self.bandwidth_allocated
2149 -= stream->bandwidth;
2150 ehci_vdbg (ehci,
2151 "deschedule devp %s ep%d%s-iso\n",
2152 dev->devpath, stream->bEndpointAddress & 0x0f,
2153 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2154 }
2155 iso_stream_put (ehci, stream);
2156
2157 done:
2158 sitd->urb = NULL;
2159 if (ehci->clock_frame != sitd->frame) {
2160 /* OK to recycle this SITD now. */
2161 sitd->stream = NULL;
2162 list_move(&sitd->sitd_list, &stream->free_list);
2163 iso_stream_put(ehci, stream);
2164 } else {
2165 /* HW might remember this SITD, so we can't recycle it yet.
2166 * Move it to a safe place until a new frame starts.
2167 */
2168 list_move(&sitd->sitd_list, &ehci->cached_sitd_list);
2169 if (stream->refcount == 2) {
2170 /* If iso_stream_put() were called here, stream
2171 * would be freed. Instead, just prevent reuse.
2172 */
2173 stream->ep->hcpriv = NULL;
2174 stream->ep = NULL;
2175 }
2176 }
2177 return retval;
2178 }
2179
2180
sitd_submit(struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)2181 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2182 gfp_t mem_flags)
2183 {
2184 int status = -EINVAL;
2185 unsigned long flags;
2186 struct ehci_iso_stream *stream;
2187
2188 /* Get iso_stream head */
2189 stream = iso_stream_find (ehci, urb);
2190 if (stream == NULL) {
2191 ehci_dbg (ehci, "can't get iso stream\n");
2192 return -ENOMEM;
2193 }
2194 if (urb->interval != stream->interval) {
2195 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2196 stream->interval, urb->interval);
2197 goto done;
2198 }
2199
2200 #ifdef EHCI_URB_TRACE
2201 ehci_dbg (ehci,
2202 "submit %p dev%s ep%d%s-iso len %d\n",
2203 urb, urb->dev->devpath,
2204 usb_pipeendpoint (urb->pipe),
2205 usb_pipein (urb->pipe) ? "in" : "out",
2206 urb->transfer_buffer_length);
2207 #endif
2208
2209 /* allocate SITDs */
2210 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2211 if (status < 0) {
2212 ehci_dbg (ehci, "can't init sitds\n");
2213 goto done;
2214 }
2215
2216 /* schedule ... need to lock */
2217 spin_lock_irqsave (&ehci->lock, flags);
2218 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2219 status = -ESHUTDOWN;
2220 goto done_not_linked;
2221 }
2222 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2223 if (unlikely(status))
2224 goto done_not_linked;
2225 status = iso_stream_schedule(ehci, urb, stream);
2226 if (status == 0)
2227 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2228 else
2229 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2230 done_not_linked:
2231 spin_unlock_irqrestore (&ehci->lock, flags);
2232
2233 done:
2234 if (status < 0)
2235 iso_stream_put (ehci, stream);
2236 return status;
2237 }
2238
2239 /*-------------------------------------------------------------------------*/
2240
free_cached_lists(struct ehci_hcd * ehci)2241 static void free_cached_lists(struct ehci_hcd *ehci)
2242 {
2243 struct ehci_itd *itd, *n;
2244 struct ehci_sitd *sitd, *sn;
2245
2246 list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2247 struct ehci_iso_stream *stream = itd->stream;
2248 itd->stream = NULL;
2249 list_move(&itd->itd_list, &stream->free_list);
2250 iso_stream_put(ehci, stream);
2251 }
2252
2253 list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) {
2254 struct ehci_iso_stream *stream = sitd->stream;
2255 sitd->stream = NULL;
2256 list_move(&sitd->sitd_list, &stream->free_list);
2257 iso_stream_put(ehci, stream);
2258 }
2259 }
2260
2261 /*-------------------------------------------------------------------------*/
2262
2263 static void
scan_periodic(struct ehci_hcd * ehci)2264 scan_periodic (struct ehci_hcd *ehci)
2265 {
2266 unsigned now_uframe, frame, clock, clock_frame, mod;
2267 unsigned modified;
2268
2269 mod = ehci->periodic_size << 3;
2270
2271 /*
2272 * When running, scan from last scan point up to "now"
2273 * else clean up by scanning everything that's left.
2274 * Touches as few pages as possible: cache-friendly.
2275 */
2276 now_uframe = ehci->next_uframe;
2277 if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2278 clock = ehci_readl(ehci, &ehci->regs->frame_index);
2279 clock_frame = (clock >> 3) & (ehci->periodic_size - 1);
2280 } else {
2281 clock = now_uframe + mod - 1;
2282 clock_frame = -1;
2283 }
2284 if (ehci->clock_frame != clock_frame) {
2285 free_cached_lists(ehci);
2286 ehci->clock_frame = clock_frame;
2287 }
2288 clock &= mod - 1;
2289 clock_frame = clock >> 3;
2290
2291 for (;;) {
2292 union ehci_shadow q, *q_p;
2293 __hc32 type, *hw_p;
2294 unsigned incomplete = false;
2295
2296 frame = now_uframe >> 3;
2297
2298 restart:
2299 /* scan each element in frame's queue for completions */
2300 q_p = &ehci->pshadow [frame];
2301 hw_p = &ehci->periodic [frame];
2302 q.ptr = q_p->ptr;
2303 type = Q_NEXT_TYPE(ehci, *hw_p);
2304 modified = 0;
2305
2306 while (q.ptr != NULL) {
2307 unsigned uf;
2308 union ehci_shadow temp;
2309 int live;
2310
2311 live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2312 switch (hc32_to_cpu(ehci, type)) {
2313 case Q_TYPE_QH:
2314 /* handle any completions */
2315 temp.qh = qh_get (q.qh);
2316 type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2317 q = q.qh->qh_next;
2318 modified = qh_completions (ehci, temp.qh);
2319 if (unlikely(list_empty(&temp.qh->qtd_list) ||
2320 temp.qh->needs_rescan))
2321 intr_deschedule (ehci, temp.qh);
2322 qh_put (temp.qh);
2323 break;
2324 case Q_TYPE_FSTN:
2325 /* for "save place" FSTNs, look at QH entries
2326 * in the previous frame for completions.
2327 */
2328 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2329 dbg ("ignoring completions from FSTNs");
2330 }
2331 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2332 q = q.fstn->fstn_next;
2333 break;
2334 case Q_TYPE_ITD:
2335 /* If this ITD is still active, leave it for
2336 * later processing ... check the next entry.
2337 * No need to check for activity unless the
2338 * frame is current.
2339 */
2340 if (frame == clock_frame && live) {
2341 rmb();
2342 for (uf = 0; uf < 8; uf++) {
2343 if (q.itd->hw_transaction[uf] &
2344 ITD_ACTIVE(ehci))
2345 break;
2346 }
2347 if (uf < 8) {
2348 incomplete = true;
2349 q_p = &q.itd->itd_next;
2350 hw_p = &q.itd->hw_next;
2351 type = Q_NEXT_TYPE(ehci,
2352 q.itd->hw_next);
2353 q = *q_p;
2354 break;
2355 }
2356 }
2357
2358 /* Take finished ITDs out of the schedule
2359 * and process them: recycle, maybe report
2360 * URB completion. HC won't cache the
2361 * pointer for much longer, if at all.
2362 */
2363 *q_p = q.itd->itd_next;
2364 if (!ehci->use_dummy_qh ||
2365 q.itd->hw_next != EHCI_LIST_END(ehci))
2366 *hw_p = q.itd->hw_next;
2367 else
2368 *hw_p = ehci->dummy->qh_dma;
2369 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2370 wmb();
2371 modified = itd_complete (ehci, q.itd);
2372 q = *q_p;
2373 break;
2374 case Q_TYPE_SITD:
2375 /* If this SITD is still active, leave it for
2376 * later processing ... check the next entry.
2377 * No need to check for activity unless the
2378 * frame is current.
2379 */
2380 if (((frame == clock_frame) ||
2381 (((frame + 1) & (ehci->periodic_size - 1))
2382 == clock_frame))
2383 && live
2384 && (q.sitd->hw_results &
2385 SITD_ACTIVE(ehci))) {
2386
2387 incomplete = true;
2388 q_p = &q.sitd->sitd_next;
2389 hw_p = &q.sitd->hw_next;
2390 type = Q_NEXT_TYPE(ehci,
2391 q.sitd->hw_next);
2392 q = *q_p;
2393 break;
2394 }
2395
2396 /* Take finished SITDs out of the schedule
2397 * and process them: recycle, maybe report
2398 * URB completion.
2399 */
2400 *q_p = q.sitd->sitd_next;
2401 if (!ehci->use_dummy_qh ||
2402 q.sitd->hw_next != EHCI_LIST_END(ehci))
2403 *hw_p = q.sitd->hw_next;
2404 else
2405 *hw_p = ehci->dummy->qh_dma;
2406 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2407 wmb();
2408 modified = sitd_complete (ehci, q.sitd);
2409 q = *q_p;
2410 break;
2411 default:
2412 dbg ("corrupt type %d frame %d shadow %p",
2413 type, frame, q.ptr);
2414 // BUG ();
2415 q.ptr = NULL;
2416 }
2417
2418 /* assume completion callbacks modify the queue */
2419 if (unlikely (modified)) {
2420 if (likely(ehci->periodic_sched > 0))
2421 goto restart;
2422 /* short-circuit this scan */
2423 now_uframe = clock;
2424 break;
2425 }
2426 }
2427
2428 /* If we can tell we caught up to the hardware, stop now.
2429 * We can't advance our scan without collecting the ISO
2430 * transfers that are still pending in this frame.
2431 */
2432 if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2433 ehci->next_uframe = now_uframe;
2434 break;
2435 }
2436
2437 // FIXME: this assumes we won't get lapped when
2438 // latencies climb; that should be rare, but...
2439 // detect it, and just go all the way around.
2440 // FLR might help detect this case, so long as latencies
2441 // don't exceed periodic_size msec (default 1.024 sec).
2442
2443 // FIXME: likewise assumes HC doesn't halt mid-scan
2444
2445 if (now_uframe == clock) {
2446 unsigned now;
2447
2448 if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2449 || ehci->periodic_sched == 0)
2450 break;
2451 ehci->next_uframe = now_uframe;
2452 now = ehci_readl(ehci, &ehci->regs->frame_index) &
2453 (mod - 1);
2454 if (now_uframe == now)
2455 break;
2456
2457 /* rescan the rest of this frame, then ... */
2458 clock = now;
2459 clock_frame = clock >> 3;
2460 if (ehci->clock_frame != clock_frame) {
2461 free_cached_lists(ehci);
2462 ehci->clock_frame = clock_frame;
2463 }
2464 } else {
2465 now_uframe++;
2466 now_uframe &= mod - 1;
2467 }
2468 }
2469 }
2470