1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include "udp_impl.h"
111
112 struct udp_table udp_table __read_mostly;
113 EXPORT_SYMBOL(udp_table);
114
115 long sysctl_udp_mem[3] __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_mem);
117
118 int sysctl_udp_rmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_rmem_min);
120
121 int sysctl_udp_wmem_min __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_wmem_min);
123
124 atomic_long_t udp_memory_allocated;
125 EXPORT_SYMBOL(udp_memory_allocated);
126
127 #define MAX_UDP_PORTS 65536
128 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
129
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int log)130 static int udp_lib_lport_inuse(struct net *net, __u16 num,
131 const struct udp_hslot *hslot,
132 unsigned long *bitmap,
133 struct sock *sk,
134 int (*saddr_comp)(const struct sock *sk1,
135 const struct sock *sk2),
136 unsigned int log)
137 {
138 struct sock *sk2;
139 struct hlist_nulls_node *node;
140
141 sk_nulls_for_each(sk2, node, &hslot->head)
142 if (net_eq(sock_net(sk2), net) &&
143 sk2 != sk &&
144 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
145 (!sk2->sk_reuse || !sk->sk_reuse) &&
146 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
147 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
148 (*saddr_comp)(sk, sk2)) {
149 if (bitmap)
150 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
151 bitmap);
152 else
153 return 1;
154 }
155 return 0;
156 }
157
158 /*
159 * Note: we still hold spinlock of primary hash chain, so no other writer
160 * can insert/delete a socket with local_port == num
161 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2))162 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
163 struct udp_hslot *hslot2,
164 struct sock *sk,
165 int (*saddr_comp)(const struct sock *sk1,
166 const struct sock *sk2))
167 {
168 struct sock *sk2;
169 struct hlist_nulls_node *node;
170 int res = 0;
171
172 spin_lock(&hslot2->lock);
173 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
174 if (net_eq(sock_net(sk2), net) &&
175 sk2 != sk &&
176 (udp_sk(sk2)->udp_port_hash == num) &&
177 (!sk2->sk_reuse || !sk->sk_reuse) &&
178 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
179 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
180 (*saddr_comp)(sk, sk2)) {
181 res = 1;
182 break;
183 }
184 spin_unlock(&hslot2->lock);
185 return res;
186 }
187
188 /**
189 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
190 *
191 * @sk: socket struct in question
192 * @snum: port number to look up
193 * @saddr_comp: AF-dependent comparison of bound local IP addresses
194 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
195 * with NULL address
196 */
udp_lib_get_port(struct sock * sk,unsigned short snum,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int hash2_nulladdr)197 int udp_lib_get_port(struct sock *sk, unsigned short snum,
198 int (*saddr_comp)(const struct sock *sk1,
199 const struct sock *sk2),
200 unsigned int hash2_nulladdr)
201 {
202 struct udp_hslot *hslot, *hslot2;
203 struct udp_table *udptable = sk->sk_prot->h.udp_table;
204 int error = 1;
205 struct net *net = sock_net(sk);
206
207 if (!snum) {
208 int low, high, remaining;
209 unsigned rand;
210 unsigned short first, last;
211 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
212
213 inet_get_local_port_range(&low, &high);
214 remaining = (high - low) + 1;
215
216 rand = net_random();
217 first = (((u64)rand * remaining) >> 32) + low;
218 /*
219 * force rand to be an odd multiple of UDP_HTABLE_SIZE
220 */
221 rand = (rand | 1) * (udptable->mask + 1);
222 last = first + udptable->mask + 1;
223 do {
224 hslot = udp_hashslot(udptable, net, first);
225 bitmap_zero(bitmap, PORTS_PER_CHAIN);
226 spin_lock_bh(&hslot->lock);
227 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
228 saddr_comp, udptable->log);
229
230 snum = first;
231 /*
232 * Iterate on all possible values of snum for this hash.
233 * Using steps of an odd multiple of UDP_HTABLE_SIZE
234 * give us randomization and full range coverage.
235 */
236 do {
237 if (low <= snum && snum <= high &&
238 !test_bit(snum >> udptable->log, bitmap) &&
239 !inet_is_reserved_local_port(snum))
240 goto found;
241 snum += rand;
242 } while (snum != first);
243 spin_unlock_bh(&hslot->lock);
244 } while (++first != last);
245 goto fail;
246 } else {
247 hslot = udp_hashslot(udptable, net, snum);
248 spin_lock_bh(&hslot->lock);
249 if (hslot->count > 10) {
250 int exist;
251 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
252
253 slot2 &= udptable->mask;
254 hash2_nulladdr &= udptable->mask;
255
256 hslot2 = udp_hashslot2(udptable, slot2);
257 if (hslot->count < hslot2->count)
258 goto scan_primary_hash;
259
260 exist = udp_lib_lport_inuse2(net, snum, hslot2,
261 sk, saddr_comp);
262 if (!exist && (hash2_nulladdr != slot2)) {
263 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
264 exist = udp_lib_lport_inuse2(net, snum, hslot2,
265 sk, saddr_comp);
266 }
267 if (exist)
268 goto fail_unlock;
269 else
270 goto found;
271 }
272 scan_primary_hash:
273 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
274 saddr_comp, 0))
275 goto fail_unlock;
276 }
277 found:
278 inet_sk(sk)->inet_num = snum;
279 udp_sk(sk)->udp_port_hash = snum;
280 udp_sk(sk)->udp_portaddr_hash ^= snum;
281 if (sk_unhashed(sk)) {
282 sk_nulls_add_node_rcu(sk, &hslot->head);
283 hslot->count++;
284 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
285
286 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
287 spin_lock(&hslot2->lock);
288 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
289 &hslot2->head);
290 hslot2->count++;
291 spin_unlock(&hslot2->lock);
292 }
293 error = 0;
294 fail_unlock:
295 spin_unlock_bh(&hslot->lock);
296 fail:
297 return error;
298 }
299 EXPORT_SYMBOL(udp_lib_get_port);
300
ipv4_rcv_saddr_equal(const struct sock * sk1,const struct sock * sk2)301 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
302 {
303 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
304
305 return (!ipv6_only_sock(sk2) &&
306 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
307 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
308 }
309
udp4_portaddr_hash(struct net * net,__be32 saddr,unsigned int port)310 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
311 unsigned int port)
312 {
313 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
314 }
315
udp_v4_get_port(struct sock * sk,unsigned short snum)316 int udp_v4_get_port(struct sock *sk, unsigned short snum)
317 {
318 unsigned int hash2_nulladdr =
319 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
320 unsigned int hash2_partial =
321 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
322
323 /* precompute partial secondary hash */
324 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
325 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
326 }
327
compute_score(struct sock * sk,struct net * net,__be32 saddr,unsigned short hnum,__be16 sport,__be32 daddr,__be16 dport,int dif)328 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
329 unsigned short hnum,
330 __be16 sport, __be32 daddr, __be16 dport, int dif)
331 {
332 int score = -1;
333
334 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
335 !ipv6_only_sock(sk)) {
336 struct inet_sock *inet = inet_sk(sk);
337
338 score = (sk->sk_family == PF_INET ? 1 : 0);
339 if (inet->inet_rcv_saddr) {
340 if (inet->inet_rcv_saddr != daddr)
341 return -1;
342 score += 2;
343 }
344 if (inet->inet_daddr) {
345 if (inet->inet_daddr != saddr)
346 return -1;
347 score += 2;
348 }
349 if (inet->inet_dport) {
350 if (inet->inet_dport != sport)
351 return -1;
352 score += 2;
353 }
354 if (sk->sk_bound_dev_if) {
355 if (sk->sk_bound_dev_if != dif)
356 return -1;
357 score += 2;
358 }
359 }
360 return score;
361 }
362
363 /*
364 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
365 */
366 #define SCORE2_MAX (1 + 2 + 2 + 2)
compute_score2(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif)367 static inline int compute_score2(struct sock *sk, struct net *net,
368 __be32 saddr, __be16 sport,
369 __be32 daddr, unsigned int hnum, int dif)
370 {
371 int score = -1;
372
373 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
374 struct inet_sock *inet = inet_sk(sk);
375
376 if (inet->inet_rcv_saddr != daddr)
377 return -1;
378 if (inet->inet_num != hnum)
379 return -1;
380
381 score = (sk->sk_family == PF_INET ? 1 : 0);
382 if (inet->inet_daddr) {
383 if (inet->inet_daddr != saddr)
384 return -1;
385 score += 2;
386 }
387 if (inet->inet_dport) {
388 if (inet->inet_dport != sport)
389 return -1;
390 score += 2;
391 }
392 if (sk->sk_bound_dev_if) {
393 if (sk->sk_bound_dev_if != dif)
394 return -1;
395 score += 2;
396 }
397 }
398 return score;
399 }
400
401
402 /* called with read_rcu_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,struct udp_hslot * hslot2,unsigned int slot2)403 static struct sock *udp4_lib_lookup2(struct net *net,
404 __be32 saddr, __be16 sport,
405 __be32 daddr, unsigned int hnum, int dif,
406 struct udp_hslot *hslot2, unsigned int slot2)
407 {
408 struct sock *sk, *result;
409 struct hlist_nulls_node *node;
410 int score, badness;
411
412 begin:
413 result = NULL;
414 badness = -1;
415 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
416 score = compute_score2(sk, net, saddr, sport,
417 daddr, hnum, dif);
418 if (score > badness) {
419 result = sk;
420 badness = score;
421 if (score == SCORE2_MAX)
422 goto exact_match;
423 }
424 }
425 /*
426 * if the nulls value we got at the end of this lookup is
427 * not the expected one, we must restart lookup.
428 * We probably met an item that was moved to another chain.
429 */
430 if (get_nulls_value(node) != slot2)
431 goto begin;
432
433 if (result) {
434 exact_match:
435 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
436 result = NULL;
437 else if (unlikely(compute_score2(result, net, saddr, sport,
438 daddr, hnum, dif) < badness)) {
439 sock_put(result);
440 goto begin;
441 }
442 }
443 return result;
444 }
445
446 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
447 * harder than this. -DaveM
448 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,struct udp_table * udptable)449 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
450 __be16 sport, __be32 daddr, __be16 dport,
451 int dif, struct udp_table *udptable)
452 {
453 struct sock *sk, *result;
454 struct hlist_nulls_node *node;
455 unsigned short hnum = ntohs(dport);
456 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
457 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
458 int score, badness;
459
460 rcu_read_lock();
461 if (hslot->count > 10) {
462 hash2 = udp4_portaddr_hash(net, daddr, hnum);
463 slot2 = hash2 & udptable->mask;
464 hslot2 = &udptable->hash2[slot2];
465 if (hslot->count < hslot2->count)
466 goto begin;
467
468 result = udp4_lib_lookup2(net, saddr, sport,
469 daddr, hnum, dif,
470 hslot2, slot2);
471 if (!result) {
472 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
473 slot2 = hash2 & udptable->mask;
474 hslot2 = &udptable->hash2[slot2];
475 if (hslot->count < hslot2->count)
476 goto begin;
477
478 result = udp4_lib_lookup2(net, saddr, sport,
479 htonl(INADDR_ANY), hnum, dif,
480 hslot2, slot2);
481 }
482 rcu_read_unlock();
483 return result;
484 }
485 begin:
486 result = NULL;
487 badness = -1;
488 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
489 score = compute_score(sk, net, saddr, hnum, sport,
490 daddr, dport, dif);
491 if (score > badness) {
492 result = sk;
493 badness = score;
494 }
495 }
496 /*
497 * if the nulls value we got at the end of this lookup is
498 * not the expected one, we must restart lookup.
499 * We probably met an item that was moved to another chain.
500 */
501 if (get_nulls_value(node) != slot)
502 goto begin;
503
504 if (result) {
505 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
506 result = NULL;
507 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
508 daddr, dport, dif) < badness)) {
509 sock_put(result);
510 goto begin;
511 }
512 }
513 rcu_read_unlock();
514 return result;
515 }
516 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
517
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)518 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
519 __be16 sport, __be16 dport,
520 struct udp_table *udptable)
521 {
522 struct sock *sk;
523 const struct iphdr *iph = ip_hdr(skb);
524
525 if (unlikely(sk = skb_steal_sock(skb)))
526 return sk;
527 else
528 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
529 iph->daddr, dport, inet_iif(skb),
530 udptable);
531 }
532
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)533 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
534 __be32 daddr, __be16 dport, int dif)
535 {
536 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
537 }
538 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
539
udp_v4_mcast_next(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)540 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
541 __be16 loc_port, __be32 loc_addr,
542 __be16 rmt_port, __be32 rmt_addr,
543 int dif)
544 {
545 struct hlist_nulls_node *node;
546 struct sock *s = sk;
547 unsigned short hnum = ntohs(loc_port);
548
549 sk_nulls_for_each_from(s, node) {
550 struct inet_sock *inet = inet_sk(s);
551
552 if (!net_eq(sock_net(s), net) ||
553 udp_sk(s)->udp_port_hash != hnum ||
554 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
555 (inet->inet_dport != rmt_port && inet->inet_dport) ||
556 (inet->inet_rcv_saddr &&
557 inet->inet_rcv_saddr != loc_addr) ||
558 ipv6_only_sock(s) ||
559 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
560 continue;
561 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
562 continue;
563 goto found;
564 }
565 s = NULL;
566 found:
567 return s;
568 }
569
570 /*
571 * This routine is called by the ICMP module when it gets some
572 * sort of error condition. If err < 0 then the socket should
573 * be closed and the error returned to the user. If err > 0
574 * it's just the icmp type << 8 | icmp code.
575 * Header points to the ip header of the error packet. We move
576 * on past this. Then (as it used to claim before adjustment)
577 * header points to the first 8 bytes of the udp header. We need
578 * to find the appropriate port.
579 */
580
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)581 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
582 {
583 struct inet_sock *inet;
584 const struct iphdr *iph = (const struct iphdr *)skb->data;
585 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
586 const int type = icmp_hdr(skb)->type;
587 const int code = icmp_hdr(skb)->code;
588 struct sock *sk;
589 int harderr;
590 int err;
591 struct net *net = dev_net(skb->dev);
592
593 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
594 iph->saddr, uh->source, skb->dev->ifindex, udptable);
595 if (sk == NULL) {
596 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
597 return; /* No socket for error */
598 }
599
600 err = 0;
601 harderr = 0;
602 inet = inet_sk(sk);
603
604 switch (type) {
605 default:
606 case ICMP_TIME_EXCEEDED:
607 err = EHOSTUNREACH;
608 break;
609 case ICMP_SOURCE_QUENCH:
610 goto out;
611 case ICMP_PARAMETERPROB:
612 err = EPROTO;
613 harderr = 1;
614 break;
615 case ICMP_DEST_UNREACH:
616 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
617 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
618 err = EMSGSIZE;
619 harderr = 1;
620 break;
621 }
622 goto out;
623 }
624 err = EHOSTUNREACH;
625 if (code <= NR_ICMP_UNREACH) {
626 harderr = icmp_err_convert[code].fatal;
627 err = icmp_err_convert[code].errno;
628 }
629 break;
630 }
631
632 /*
633 * RFC1122: OK. Passes ICMP errors back to application, as per
634 * 4.1.3.3.
635 */
636 if (!inet->recverr) {
637 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
638 goto out;
639 } else
640 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
641
642 sk->sk_err = err;
643 sk->sk_error_report(sk);
644 out:
645 sock_put(sk);
646 }
647
udp_err(struct sk_buff * skb,u32 info)648 void udp_err(struct sk_buff *skb, u32 info)
649 {
650 __udp4_lib_err(skb, info, &udp_table);
651 }
652
653 /*
654 * Throw away all pending data and cancel the corking. Socket is locked.
655 */
udp_flush_pending_frames(struct sock * sk)656 void udp_flush_pending_frames(struct sock *sk)
657 {
658 struct udp_sock *up = udp_sk(sk);
659
660 if (up->pending) {
661 up->len = 0;
662 up->pending = 0;
663 ip_flush_pending_frames(sk);
664 }
665 }
666 EXPORT_SYMBOL(udp_flush_pending_frames);
667
668 /**
669 * udp4_hwcsum - handle outgoing HW checksumming
670 * @skb: sk_buff containing the filled-in UDP header
671 * (checksum field must be zeroed out)
672 * @src: source IP address
673 * @dst: destination IP address
674 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)675 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
676 {
677 struct udphdr *uh = udp_hdr(skb);
678 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
679 int offset = skb_transport_offset(skb);
680 int len = skb->len - offset;
681 int hlen = len;
682 __wsum csum = 0;
683
684 if (!frags) {
685 /*
686 * Only one fragment on the socket.
687 */
688 skb->csum_start = skb_transport_header(skb) - skb->head;
689 skb->csum_offset = offsetof(struct udphdr, check);
690 uh->check = ~csum_tcpudp_magic(src, dst, len,
691 IPPROTO_UDP, 0);
692 } else {
693 /*
694 * HW-checksum won't work as there are two or more
695 * fragments on the socket so that all csums of sk_buffs
696 * should be together
697 */
698 do {
699 csum = csum_add(csum, frags->csum);
700 hlen -= frags->len;
701 } while ((frags = frags->next));
702
703 csum = skb_checksum(skb, offset, hlen, csum);
704 skb->ip_summed = CHECKSUM_NONE;
705
706 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
707 if (uh->check == 0)
708 uh->check = CSUM_MANGLED_0;
709 }
710 }
711
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4)712 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
713 {
714 struct sock *sk = skb->sk;
715 struct inet_sock *inet = inet_sk(sk);
716 struct udphdr *uh;
717 int err = 0;
718 int is_udplite = IS_UDPLITE(sk);
719 int offset = skb_transport_offset(skb);
720 int len = skb->len - offset;
721 __wsum csum = 0;
722
723 /*
724 * Create a UDP header
725 */
726 uh = udp_hdr(skb);
727 uh->source = inet->inet_sport;
728 uh->dest = fl4->fl4_dport;
729 uh->len = htons(len);
730 uh->check = 0;
731
732 if (is_udplite) /* UDP-Lite */
733 csum = udplite_csum(skb);
734
735 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
736
737 skb->ip_summed = CHECKSUM_NONE;
738 goto send;
739
740 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
741
742 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
743 goto send;
744
745 } else
746 csum = udp_csum(skb);
747
748 /* add protocol-dependent pseudo-header */
749 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
750 sk->sk_protocol, csum);
751 if (uh->check == 0)
752 uh->check = CSUM_MANGLED_0;
753
754 send:
755 err = ip_send_skb(skb);
756 if (err) {
757 if (err == -ENOBUFS && !inet->recverr) {
758 UDP_INC_STATS_USER(sock_net(sk),
759 UDP_MIB_SNDBUFERRORS, is_udplite);
760 err = 0;
761 }
762 } else
763 UDP_INC_STATS_USER(sock_net(sk),
764 UDP_MIB_OUTDATAGRAMS, is_udplite);
765 return err;
766 }
767
768 /*
769 * Push out all pending data as one UDP datagram. Socket is locked.
770 */
udp_push_pending_frames(struct sock * sk)771 int udp_push_pending_frames(struct sock *sk)
772 {
773 struct udp_sock *up = udp_sk(sk);
774 struct inet_sock *inet = inet_sk(sk);
775 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
776 struct sk_buff *skb;
777 int err = 0;
778
779 skb = ip_finish_skb(sk, fl4);
780 if (!skb)
781 goto out;
782
783 err = udp_send_skb(skb, fl4);
784
785 out:
786 up->len = 0;
787 up->pending = 0;
788 return err;
789 }
790 EXPORT_SYMBOL(udp_push_pending_frames);
791
udp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len)792 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
793 size_t len)
794 {
795 struct inet_sock *inet = inet_sk(sk);
796 struct udp_sock *up = udp_sk(sk);
797 struct flowi4 fl4_stack;
798 struct flowi4 *fl4;
799 int ulen = len;
800 struct ipcm_cookie ipc;
801 struct rtable *rt = NULL;
802 int free = 0;
803 int connected = 0;
804 __be32 daddr, faddr, saddr;
805 __be16 dport;
806 u8 tos;
807 int err, is_udplite = IS_UDPLITE(sk);
808 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
809 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
810 struct sk_buff *skb;
811 struct ip_options_data opt_copy;
812
813 if (len > 0xFFFF)
814 return -EMSGSIZE;
815
816 /*
817 * Check the flags.
818 */
819
820 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
821 return -EOPNOTSUPP;
822
823 ipc.opt = NULL;
824 ipc.tx_flags = 0;
825
826 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
827
828 fl4 = &inet->cork.fl.u.ip4;
829 if (up->pending) {
830 /*
831 * There are pending frames.
832 * The socket lock must be held while it's corked.
833 */
834 lock_sock(sk);
835 if (likely(up->pending)) {
836 if (unlikely(up->pending != AF_INET)) {
837 release_sock(sk);
838 return -EINVAL;
839 }
840 goto do_append_data;
841 }
842 release_sock(sk);
843 }
844 ulen += sizeof(struct udphdr);
845
846 /*
847 * Get and verify the address.
848 */
849 if (msg->msg_name) {
850 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
851 if (msg->msg_namelen < sizeof(*usin))
852 return -EINVAL;
853 if (usin->sin_family != AF_INET) {
854 if (usin->sin_family != AF_UNSPEC)
855 return -EAFNOSUPPORT;
856 }
857
858 daddr = usin->sin_addr.s_addr;
859 dport = usin->sin_port;
860 if (dport == 0)
861 return -EINVAL;
862 } else {
863 if (sk->sk_state != TCP_ESTABLISHED)
864 return -EDESTADDRREQ;
865 daddr = inet->inet_daddr;
866 dport = inet->inet_dport;
867 /* Open fast path for connected socket.
868 Route will not be used, if at least one option is set.
869 */
870 connected = 1;
871 }
872 ipc.addr = inet->inet_saddr;
873
874 ipc.oif = sk->sk_bound_dev_if;
875 err = sock_tx_timestamp(sk, &ipc.tx_flags);
876 if (err)
877 return err;
878 if (msg->msg_controllen) {
879 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
880 if (err)
881 return err;
882 if (ipc.opt)
883 free = 1;
884 connected = 0;
885 }
886 if (!ipc.opt) {
887 struct ip_options_rcu *inet_opt;
888
889 rcu_read_lock();
890 inet_opt = rcu_dereference(inet->inet_opt);
891 if (inet_opt) {
892 memcpy(&opt_copy, inet_opt,
893 sizeof(*inet_opt) + inet_opt->opt.optlen);
894 ipc.opt = &opt_copy.opt;
895 }
896 rcu_read_unlock();
897 }
898
899 saddr = ipc.addr;
900 ipc.addr = faddr = daddr;
901
902 if (ipc.opt && ipc.opt->opt.srr) {
903 if (!daddr)
904 return -EINVAL;
905 faddr = ipc.opt->opt.faddr;
906 connected = 0;
907 }
908 tos = RT_TOS(inet->tos);
909 if (sock_flag(sk, SOCK_LOCALROUTE) ||
910 (msg->msg_flags & MSG_DONTROUTE) ||
911 (ipc.opt && ipc.opt->opt.is_strictroute)) {
912 tos |= RTO_ONLINK;
913 connected = 0;
914 }
915
916 if (ipv4_is_multicast(daddr)) {
917 if (!ipc.oif)
918 ipc.oif = inet->mc_index;
919 if (!saddr)
920 saddr = inet->mc_addr;
921 connected = 0;
922 } else if (!ipc.oif)
923 ipc.oif = inet->uc_index;
924
925 if (connected)
926 rt = (struct rtable *)sk_dst_check(sk, 0);
927
928 if (rt == NULL) {
929 struct net *net = sock_net(sk);
930
931 fl4 = &fl4_stack;
932 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
933 RT_SCOPE_UNIVERSE, sk->sk_protocol,
934 inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
935 faddr, saddr, dport, inet->inet_sport);
936
937 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
938 rt = ip_route_output_flow(net, fl4, sk);
939 if (IS_ERR(rt)) {
940 err = PTR_ERR(rt);
941 rt = NULL;
942 if (err == -ENETUNREACH)
943 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
944 goto out;
945 }
946
947 err = -EACCES;
948 if ((rt->rt_flags & RTCF_BROADCAST) &&
949 !sock_flag(sk, SOCK_BROADCAST))
950 goto out;
951 if (connected)
952 sk_dst_set(sk, dst_clone(&rt->dst));
953 }
954
955 if (msg->msg_flags&MSG_CONFIRM)
956 goto do_confirm;
957 back_from_confirm:
958
959 saddr = fl4->saddr;
960 if (!ipc.addr)
961 daddr = ipc.addr = fl4->daddr;
962
963 /* Lockless fast path for the non-corking case. */
964 if (!corkreq) {
965 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
966 sizeof(struct udphdr), &ipc, &rt,
967 msg->msg_flags);
968 err = PTR_ERR(skb);
969 if (skb && !IS_ERR(skb))
970 err = udp_send_skb(skb, fl4);
971 goto out;
972 }
973
974 lock_sock(sk);
975 if (unlikely(up->pending)) {
976 /* The socket is already corked while preparing it. */
977 /* ... which is an evident application bug. --ANK */
978 release_sock(sk);
979
980 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
981 err = -EINVAL;
982 goto out;
983 }
984 /*
985 * Now cork the socket to pend data.
986 */
987 fl4 = &inet->cork.fl.u.ip4;
988 fl4->daddr = daddr;
989 fl4->saddr = saddr;
990 fl4->fl4_dport = dport;
991 fl4->fl4_sport = inet->inet_sport;
992 up->pending = AF_INET;
993
994 do_append_data:
995 up->len += ulen;
996 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
997 sizeof(struct udphdr), &ipc, &rt,
998 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
999 if (err)
1000 udp_flush_pending_frames(sk);
1001 else if (!corkreq)
1002 err = udp_push_pending_frames(sk);
1003 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1004 up->pending = 0;
1005 release_sock(sk);
1006
1007 out:
1008 ip_rt_put(rt);
1009 if (free)
1010 kfree(ipc.opt);
1011 if (!err)
1012 return len;
1013 /*
1014 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1015 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1016 * we don't have a good statistic (IpOutDiscards but it can be too many
1017 * things). We could add another new stat but at least for now that
1018 * seems like overkill.
1019 */
1020 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1021 UDP_INC_STATS_USER(sock_net(sk),
1022 UDP_MIB_SNDBUFERRORS, is_udplite);
1023 }
1024 return err;
1025
1026 do_confirm:
1027 dst_confirm(&rt->dst);
1028 if (!(msg->msg_flags&MSG_PROBE) || len)
1029 goto back_from_confirm;
1030 err = 0;
1031 goto out;
1032 }
1033 EXPORT_SYMBOL(udp_sendmsg);
1034
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1035 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1036 size_t size, int flags)
1037 {
1038 struct inet_sock *inet = inet_sk(sk);
1039 struct udp_sock *up = udp_sk(sk);
1040 int ret;
1041
1042 if (flags & MSG_SENDPAGE_NOTLAST)
1043 flags |= MSG_MORE;
1044
1045 if (!up->pending) {
1046 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1047
1048 /* Call udp_sendmsg to specify destination address which
1049 * sendpage interface can't pass.
1050 * This will succeed only when the socket is connected.
1051 */
1052 ret = udp_sendmsg(NULL, sk, &msg, 0);
1053 if (ret < 0)
1054 return ret;
1055 }
1056
1057 lock_sock(sk);
1058
1059 if (unlikely(!up->pending)) {
1060 release_sock(sk);
1061
1062 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1063 return -EINVAL;
1064 }
1065
1066 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1067 page, offset, size, flags);
1068 if (ret == -EOPNOTSUPP) {
1069 release_sock(sk);
1070 return sock_no_sendpage(sk->sk_socket, page, offset,
1071 size, flags);
1072 }
1073 if (ret < 0) {
1074 udp_flush_pending_frames(sk);
1075 goto out;
1076 }
1077
1078 up->len += size;
1079 if (!(up->corkflag || (flags&MSG_MORE)))
1080 ret = udp_push_pending_frames(sk);
1081 if (!ret)
1082 ret = size;
1083 out:
1084 release_sock(sk);
1085 return ret;
1086 }
1087
1088
1089 /**
1090 * first_packet_length - return length of first packet in receive queue
1091 * @sk: socket
1092 *
1093 * Drops all bad checksum frames, until a valid one is found.
1094 * Returns the length of found skb, or 0 if none is found.
1095 */
first_packet_length(struct sock * sk)1096 static unsigned int first_packet_length(struct sock *sk)
1097 {
1098 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1099 struct sk_buff *skb;
1100 unsigned int res;
1101
1102 __skb_queue_head_init(&list_kill);
1103
1104 spin_lock_bh(&rcvq->lock);
1105 while ((skb = skb_peek(rcvq)) != NULL &&
1106 udp_lib_checksum_complete(skb)) {
1107 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1108 IS_UDPLITE(sk));
1109 atomic_inc(&sk->sk_drops);
1110 __skb_unlink(skb, rcvq);
1111 __skb_queue_tail(&list_kill, skb);
1112 }
1113 res = skb ? skb->len : 0;
1114 spin_unlock_bh(&rcvq->lock);
1115
1116 if (!skb_queue_empty(&list_kill)) {
1117 bool slow = lock_sock_fast(sk);
1118
1119 __skb_queue_purge(&list_kill);
1120 sk_mem_reclaim_partial(sk);
1121 unlock_sock_fast(sk, slow);
1122 }
1123 return res;
1124 }
1125
1126 /*
1127 * IOCTL requests applicable to the UDP protocol
1128 */
1129
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1130 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1131 {
1132 switch (cmd) {
1133 case SIOCOUTQ:
1134 {
1135 int amount = sk_wmem_alloc_get(sk);
1136
1137 return put_user(amount, (int __user *)arg);
1138 }
1139
1140 case SIOCINQ:
1141 {
1142 unsigned int amount = first_packet_length(sk);
1143
1144 if (amount)
1145 /*
1146 * We will only return the amount
1147 * of this packet since that is all
1148 * that will be read.
1149 */
1150 amount -= sizeof(struct udphdr);
1151
1152 return put_user(amount, (int __user *)arg);
1153 }
1154
1155 default:
1156 return -ENOIOCTLCMD;
1157 }
1158
1159 return 0;
1160 }
1161 EXPORT_SYMBOL(udp_ioctl);
1162
1163 /*
1164 * This should be easy, if there is something there we
1165 * return it, otherwise we block.
1166 */
1167
udp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1168 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1169 size_t len, int noblock, int flags, int *addr_len)
1170 {
1171 struct inet_sock *inet = inet_sk(sk);
1172 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1173 struct sk_buff *skb;
1174 unsigned int ulen, copied;
1175 int peeked, off = 0;
1176 int err;
1177 int is_udplite = IS_UDPLITE(sk);
1178 bool slow;
1179
1180 if (flags & MSG_ERRQUEUE)
1181 return ip_recv_error(sk, msg, len, addr_len);
1182
1183 try_again:
1184 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1185 &peeked, &off, &err);
1186 if (!skb)
1187 goto out;
1188
1189 ulen = skb->len - sizeof(struct udphdr);
1190 copied = len;
1191 if (copied > ulen)
1192 copied = ulen;
1193 else if (copied < ulen)
1194 msg->msg_flags |= MSG_TRUNC;
1195
1196 /*
1197 * If checksum is needed at all, try to do it while copying the
1198 * data. If the data is truncated, or if we only want a partial
1199 * coverage checksum (UDP-Lite), do it before the copy.
1200 */
1201
1202 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1203 if (udp_lib_checksum_complete(skb))
1204 goto csum_copy_err;
1205 }
1206
1207 if (skb_csum_unnecessary(skb))
1208 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1209 msg->msg_iov, copied);
1210 else {
1211 err = skb_copy_and_csum_datagram_iovec(skb,
1212 sizeof(struct udphdr),
1213 msg->msg_iov);
1214
1215 if (err == -EINVAL)
1216 goto csum_copy_err;
1217 }
1218
1219 if (err)
1220 goto out_free;
1221
1222 if (!peeked)
1223 UDP_INC_STATS_USER(sock_net(sk),
1224 UDP_MIB_INDATAGRAMS, is_udplite);
1225
1226 sock_recv_ts_and_drops(msg, sk, skb);
1227
1228 /* Copy the address. */
1229 if (sin) {
1230 sin->sin_family = AF_INET;
1231 sin->sin_port = udp_hdr(skb)->source;
1232 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1233 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1234 *addr_len = sizeof(*sin);
1235 }
1236 if (inet->cmsg_flags)
1237 ip_cmsg_recv(msg, skb);
1238
1239 err = copied;
1240 if (flags & MSG_TRUNC)
1241 err = ulen;
1242
1243 out_free:
1244 skb_free_datagram_locked(sk, skb);
1245 out:
1246 return err;
1247
1248 csum_copy_err:
1249 slow = lock_sock_fast(sk);
1250 if (!skb_kill_datagram(sk, skb, flags))
1251 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1252 unlock_sock_fast(sk, slow);
1253
1254 if (noblock)
1255 return -EAGAIN;
1256
1257 /* starting over for a new packet */
1258 msg->msg_flags &= ~MSG_TRUNC;
1259 goto try_again;
1260 }
1261
1262
udp_disconnect(struct sock * sk,int flags)1263 int udp_disconnect(struct sock *sk, int flags)
1264 {
1265 struct inet_sock *inet = inet_sk(sk);
1266 /*
1267 * 1003.1g - break association.
1268 */
1269
1270 sk->sk_state = TCP_CLOSE;
1271 inet->inet_daddr = 0;
1272 inet->inet_dport = 0;
1273 sock_rps_reset_rxhash(sk);
1274 sk->sk_bound_dev_if = 0;
1275 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1276 inet_reset_saddr(sk);
1277
1278 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1279 sk->sk_prot->unhash(sk);
1280 inet->inet_sport = 0;
1281 }
1282 sk_dst_reset(sk);
1283 return 0;
1284 }
1285 EXPORT_SYMBOL(udp_disconnect);
1286
udp_lib_unhash(struct sock * sk)1287 void udp_lib_unhash(struct sock *sk)
1288 {
1289 if (sk_hashed(sk)) {
1290 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1291 struct udp_hslot *hslot, *hslot2;
1292
1293 hslot = udp_hashslot(udptable, sock_net(sk),
1294 udp_sk(sk)->udp_port_hash);
1295 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1296
1297 spin_lock_bh(&hslot->lock);
1298 if (sk_nulls_del_node_init_rcu(sk)) {
1299 hslot->count--;
1300 inet_sk(sk)->inet_num = 0;
1301 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1302
1303 spin_lock(&hslot2->lock);
1304 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1305 hslot2->count--;
1306 spin_unlock(&hslot2->lock);
1307 }
1308 spin_unlock_bh(&hslot->lock);
1309 }
1310 }
1311 EXPORT_SYMBOL(udp_lib_unhash);
1312
1313 /*
1314 * inet_rcv_saddr was changed, we must rehash secondary hash
1315 */
udp_lib_rehash(struct sock * sk,u16 newhash)1316 void udp_lib_rehash(struct sock *sk, u16 newhash)
1317 {
1318 if (sk_hashed(sk)) {
1319 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1320 struct udp_hslot *hslot, *hslot2, *nhslot2;
1321
1322 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1323 nhslot2 = udp_hashslot2(udptable, newhash);
1324 udp_sk(sk)->udp_portaddr_hash = newhash;
1325 if (hslot2 != nhslot2) {
1326 hslot = udp_hashslot(udptable, sock_net(sk),
1327 udp_sk(sk)->udp_port_hash);
1328 /* we must lock primary chain too */
1329 spin_lock_bh(&hslot->lock);
1330
1331 spin_lock(&hslot2->lock);
1332 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1333 hslot2->count--;
1334 spin_unlock(&hslot2->lock);
1335
1336 spin_lock(&nhslot2->lock);
1337 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1338 &nhslot2->head);
1339 nhslot2->count++;
1340 spin_unlock(&nhslot2->lock);
1341
1342 spin_unlock_bh(&hslot->lock);
1343 }
1344 }
1345 }
1346 EXPORT_SYMBOL(udp_lib_rehash);
1347
udp_v4_rehash(struct sock * sk)1348 static void udp_v4_rehash(struct sock *sk)
1349 {
1350 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1351 inet_sk(sk)->inet_rcv_saddr,
1352 inet_sk(sk)->inet_num);
1353 udp_lib_rehash(sk, new_hash);
1354 }
1355
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1356 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1357 {
1358 int rc;
1359
1360 if (inet_sk(sk)->inet_daddr)
1361 sock_rps_save_rxhash(sk, skb);
1362
1363 rc = sock_queue_rcv_skb(sk, skb);
1364 if (rc < 0) {
1365 int is_udplite = IS_UDPLITE(sk);
1366
1367 /* Note that an ENOMEM error is charged twice */
1368 if (rc == -ENOMEM)
1369 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1370 is_udplite);
1371 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1372 kfree_skb(skb);
1373 trace_udp_fail_queue_rcv_skb(rc, sk);
1374 return -1;
1375 }
1376
1377 return 0;
1378
1379 }
1380
1381 /* returns:
1382 * -1: error
1383 * 0: success
1384 * >0: "udp encap" protocol resubmission
1385 *
1386 * Note that in the success and error cases, the skb is assumed to
1387 * have either been requeued or freed.
1388 */
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1389 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1390 {
1391 struct udp_sock *up = udp_sk(sk);
1392 int rc;
1393 int is_udplite = IS_UDPLITE(sk);
1394
1395 /*
1396 * Charge it to the socket, dropping if the queue is full.
1397 */
1398 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1399 goto drop;
1400 nf_reset(skb);
1401
1402 if (up->encap_type) {
1403 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1404
1405 /*
1406 * This is an encapsulation socket so pass the skb to
1407 * the socket's udp_encap_rcv() hook. Otherwise, just
1408 * fall through and pass this up the UDP socket.
1409 * up->encap_rcv() returns the following value:
1410 * =0 if skb was successfully passed to the encap
1411 * handler or was discarded by it.
1412 * >0 if skb should be passed on to UDP.
1413 * <0 if skb should be resubmitted as proto -N
1414 */
1415
1416 /* if we're overly short, let UDP handle it */
1417 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1418 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1419 int ret;
1420
1421 ret = encap_rcv(sk, skb);
1422 if (ret <= 0) {
1423 UDP_INC_STATS_BH(sock_net(sk),
1424 UDP_MIB_INDATAGRAMS,
1425 is_udplite);
1426 return -ret;
1427 }
1428 }
1429
1430 /* FALLTHROUGH -- it's a UDP Packet */
1431 }
1432
1433 /*
1434 * UDP-Lite specific tests, ignored on UDP sockets
1435 */
1436 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1437
1438 /*
1439 * MIB statistics other than incrementing the error count are
1440 * disabled for the following two types of errors: these depend
1441 * on the application settings, not on the functioning of the
1442 * protocol stack as such.
1443 *
1444 * RFC 3828 here recommends (sec 3.3): "There should also be a
1445 * way ... to ... at least let the receiving application block
1446 * delivery of packets with coverage values less than a value
1447 * provided by the application."
1448 */
1449 if (up->pcrlen == 0) { /* full coverage was set */
1450 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1451 UDP_SKB_CB(skb)->cscov, skb->len);
1452 goto drop;
1453 }
1454 /* The next case involves violating the min. coverage requested
1455 * by the receiver. This is subtle: if receiver wants x and x is
1456 * greater than the buffersize/MTU then receiver will complain
1457 * that it wants x while sender emits packets of smaller size y.
1458 * Therefore the above ...()->partial_cov statement is essential.
1459 */
1460 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1461 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1462 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1463 goto drop;
1464 }
1465 }
1466
1467 if (rcu_access_pointer(sk->sk_filter) &&
1468 udp_lib_checksum_complete(skb))
1469 goto drop;
1470
1471
1472 if (sk_rcvqueues_full(sk, skb))
1473 goto drop;
1474
1475 rc = 0;
1476
1477 ipv4_pktinfo_prepare(skb);
1478 bh_lock_sock(sk);
1479 if (!sock_owned_by_user(sk))
1480 rc = __udp_queue_rcv_skb(sk, skb);
1481 else if (sk_add_backlog(sk, skb)) {
1482 bh_unlock_sock(sk);
1483 goto drop;
1484 }
1485 bh_unlock_sock(sk);
1486
1487 return rc;
1488
1489 drop:
1490 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1491 atomic_inc(&sk->sk_drops);
1492 kfree_skb(skb);
1493 return -1;
1494 }
1495
1496
flush_stack(struct sock ** stack,unsigned int count,struct sk_buff * skb,unsigned int final)1497 static void flush_stack(struct sock **stack, unsigned int count,
1498 struct sk_buff *skb, unsigned int final)
1499 {
1500 unsigned int i;
1501 struct sk_buff *skb1 = NULL;
1502 struct sock *sk;
1503
1504 for (i = 0; i < count; i++) {
1505 sk = stack[i];
1506 if (likely(skb1 == NULL))
1507 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1508
1509 if (!skb1) {
1510 atomic_inc(&sk->sk_drops);
1511 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1512 IS_UDPLITE(sk));
1513 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1514 IS_UDPLITE(sk));
1515 }
1516
1517 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1518 skb1 = NULL;
1519 }
1520 if (unlikely(skb1))
1521 kfree_skb(skb1);
1522 }
1523
1524 /*
1525 * Multicasts and broadcasts go to each listener.
1526 *
1527 * Note: called only from the BH handler context.
1528 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable)1529 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1530 struct udphdr *uh,
1531 __be32 saddr, __be32 daddr,
1532 struct udp_table *udptable)
1533 {
1534 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1535 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1536 int dif;
1537 unsigned int i, count = 0;
1538
1539 spin_lock(&hslot->lock);
1540 sk = sk_nulls_head(&hslot->head);
1541 dif = skb->dev->ifindex;
1542 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1543 while (sk) {
1544 stack[count++] = sk;
1545 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1546 daddr, uh->source, saddr, dif);
1547 if (unlikely(count == ARRAY_SIZE(stack))) {
1548 if (!sk)
1549 break;
1550 flush_stack(stack, count, skb, ~0);
1551 count = 0;
1552 }
1553 }
1554 /*
1555 * before releasing chain lock, we must take a reference on sockets
1556 */
1557 for (i = 0; i < count; i++)
1558 sock_hold(stack[i]);
1559
1560 spin_unlock(&hslot->lock);
1561
1562 /*
1563 * do the slow work with no lock held
1564 */
1565 if (count) {
1566 flush_stack(stack, count, skb, count - 1);
1567
1568 for (i = 0; i < count; i++)
1569 sock_put(stack[i]);
1570 } else {
1571 kfree_skb(skb);
1572 }
1573 return 0;
1574 }
1575
1576 /* Initialize UDP checksum. If exited with zero value (success),
1577 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1578 * Otherwise, csum completion requires chacksumming packet body,
1579 * including udp header and folding it to skb->csum.
1580 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)1581 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1582 int proto)
1583 {
1584 const struct iphdr *iph;
1585 int err;
1586
1587 UDP_SKB_CB(skb)->partial_cov = 0;
1588 UDP_SKB_CB(skb)->cscov = skb->len;
1589
1590 if (proto == IPPROTO_UDPLITE) {
1591 err = udplite_checksum_init(skb, uh);
1592 if (err)
1593 return err;
1594 }
1595
1596 iph = ip_hdr(skb);
1597 if (uh->check == 0) {
1598 skb->ip_summed = CHECKSUM_UNNECESSARY;
1599 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1600 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1601 proto, skb->csum))
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 }
1604 if (!skb_csum_unnecessary(skb))
1605 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1606 skb->len, proto, 0);
1607 /* Probably, we should checksum udp header (it should be in cache
1608 * in any case) and data in tiny packets (< rx copybreak).
1609 */
1610
1611 return 0;
1612 }
1613
1614 /*
1615 * All we need to do is get the socket, and then do a checksum.
1616 */
1617
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)1618 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1619 int proto)
1620 {
1621 struct sock *sk;
1622 struct udphdr *uh;
1623 unsigned short ulen;
1624 struct rtable *rt = skb_rtable(skb);
1625 __be32 saddr, daddr;
1626 struct net *net = dev_net(skb->dev);
1627
1628 /*
1629 * Validate the packet.
1630 */
1631 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1632 goto drop; /* No space for header. */
1633
1634 uh = udp_hdr(skb);
1635 ulen = ntohs(uh->len);
1636 saddr = ip_hdr(skb)->saddr;
1637 daddr = ip_hdr(skb)->daddr;
1638
1639 if (ulen > skb->len)
1640 goto short_packet;
1641
1642 if (proto == IPPROTO_UDP) {
1643 /* UDP validates ulen. */
1644 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1645 goto short_packet;
1646 uh = udp_hdr(skb);
1647 }
1648
1649 if (udp4_csum_init(skb, uh, proto))
1650 goto csum_error;
1651
1652 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1653 return __udp4_lib_mcast_deliver(net, skb, uh,
1654 saddr, daddr, udptable);
1655
1656 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1657
1658 if (sk != NULL) {
1659 int ret = udp_queue_rcv_skb(sk, skb);
1660 sock_put(sk);
1661
1662 /* a return value > 0 means to resubmit the input, but
1663 * it wants the return to be -protocol, or 0
1664 */
1665 if (ret > 0)
1666 return -ret;
1667 return 0;
1668 }
1669
1670 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1671 goto drop;
1672 nf_reset(skb);
1673
1674 /* No socket. Drop packet silently, if checksum is wrong */
1675 if (udp_lib_checksum_complete(skb))
1676 goto csum_error;
1677
1678 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1679 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1680
1681 /*
1682 * Hmm. We got an UDP packet to a port to which we
1683 * don't wanna listen. Ignore it.
1684 */
1685 kfree_skb(skb);
1686 return 0;
1687
1688 short_packet:
1689 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1690 proto == IPPROTO_UDPLITE ? "Lite" : "",
1691 &saddr, ntohs(uh->source),
1692 ulen, skb->len,
1693 &daddr, ntohs(uh->dest));
1694 goto drop;
1695
1696 csum_error:
1697 /*
1698 * RFC1122: OK. Discards the bad packet silently (as far as
1699 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1700 */
1701 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1702 proto == IPPROTO_UDPLITE ? "Lite" : "",
1703 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1704 ulen);
1705 drop:
1706 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1707 kfree_skb(skb);
1708 return 0;
1709 }
1710
udp_rcv(struct sk_buff * skb)1711 int udp_rcv(struct sk_buff *skb)
1712 {
1713 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1714 }
1715
udp_destroy_sock(struct sock * sk)1716 void udp_destroy_sock(struct sock *sk)
1717 {
1718 bool slow = lock_sock_fast(sk);
1719 udp_flush_pending_frames(sk);
1720 unlock_sock_fast(sk, slow);
1721 }
1722
1723 /*
1724 * Socket option code for UDP
1725 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))1726 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1727 char __user *optval, unsigned int optlen,
1728 int (*push_pending_frames)(struct sock *))
1729 {
1730 struct udp_sock *up = udp_sk(sk);
1731 int val;
1732 int err = 0;
1733 int is_udplite = IS_UDPLITE(sk);
1734
1735 if (optlen < sizeof(int))
1736 return -EINVAL;
1737
1738 if (get_user(val, (int __user *)optval))
1739 return -EFAULT;
1740
1741 switch (optname) {
1742 case UDP_CORK:
1743 if (val != 0) {
1744 up->corkflag = 1;
1745 } else {
1746 up->corkflag = 0;
1747 lock_sock(sk);
1748 (*push_pending_frames)(sk);
1749 release_sock(sk);
1750 }
1751 break;
1752
1753 case UDP_ENCAP:
1754 switch (val) {
1755 case 0:
1756 case UDP_ENCAP_ESPINUDP:
1757 case UDP_ENCAP_ESPINUDP_NON_IKE:
1758 up->encap_rcv = xfrm4_udp_encap_rcv;
1759 /* FALLTHROUGH */
1760 case UDP_ENCAP_L2TPINUDP:
1761 up->encap_type = val;
1762 break;
1763 default:
1764 err = -ENOPROTOOPT;
1765 break;
1766 }
1767 break;
1768
1769 /*
1770 * UDP-Lite's partial checksum coverage (RFC 3828).
1771 */
1772 /* The sender sets actual checksum coverage length via this option.
1773 * The case coverage > packet length is handled by send module. */
1774 case UDPLITE_SEND_CSCOV:
1775 if (!is_udplite) /* Disable the option on UDP sockets */
1776 return -ENOPROTOOPT;
1777 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1778 val = 8;
1779 else if (val > USHRT_MAX)
1780 val = USHRT_MAX;
1781 up->pcslen = val;
1782 up->pcflag |= UDPLITE_SEND_CC;
1783 break;
1784
1785 /* The receiver specifies a minimum checksum coverage value. To make
1786 * sense, this should be set to at least 8 (as done below). If zero is
1787 * used, this again means full checksum coverage. */
1788 case UDPLITE_RECV_CSCOV:
1789 if (!is_udplite) /* Disable the option on UDP sockets */
1790 return -ENOPROTOOPT;
1791 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1792 val = 8;
1793 else if (val > USHRT_MAX)
1794 val = USHRT_MAX;
1795 up->pcrlen = val;
1796 up->pcflag |= UDPLITE_RECV_CC;
1797 break;
1798
1799 default:
1800 err = -ENOPROTOOPT;
1801 break;
1802 }
1803
1804 return err;
1805 }
1806 EXPORT_SYMBOL(udp_lib_setsockopt);
1807
udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1808 int udp_setsockopt(struct sock *sk, int level, int optname,
1809 char __user *optval, unsigned int optlen)
1810 {
1811 if (level == SOL_UDP || level == SOL_UDPLITE)
1812 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1813 udp_push_pending_frames);
1814 return ip_setsockopt(sk, level, optname, optval, optlen);
1815 }
1816
1817 #ifdef CONFIG_COMPAT
compat_udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1818 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1819 char __user *optval, unsigned int optlen)
1820 {
1821 if (level == SOL_UDP || level == SOL_UDPLITE)
1822 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1823 udp_push_pending_frames);
1824 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1825 }
1826 #endif
1827
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1828 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1829 char __user *optval, int __user *optlen)
1830 {
1831 struct udp_sock *up = udp_sk(sk);
1832 int val, len;
1833
1834 if (get_user(len, optlen))
1835 return -EFAULT;
1836
1837 len = min_t(unsigned int, len, sizeof(int));
1838
1839 if (len < 0)
1840 return -EINVAL;
1841
1842 switch (optname) {
1843 case UDP_CORK:
1844 val = up->corkflag;
1845 break;
1846
1847 case UDP_ENCAP:
1848 val = up->encap_type;
1849 break;
1850
1851 /* The following two cannot be changed on UDP sockets, the return is
1852 * always 0 (which corresponds to the full checksum coverage of UDP). */
1853 case UDPLITE_SEND_CSCOV:
1854 val = up->pcslen;
1855 break;
1856
1857 case UDPLITE_RECV_CSCOV:
1858 val = up->pcrlen;
1859 break;
1860
1861 default:
1862 return -ENOPROTOOPT;
1863 }
1864
1865 if (put_user(len, optlen))
1866 return -EFAULT;
1867 if (copy_to_user(optval, &val, len))
1868 return -EFAULT;
1869 return 0;
1870 }
1871 EXPORT_SYMBOL(udp_lib_getsockopt);
1872
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1873 int udp_getsockopt(struct sock *sk, int level, int optname,
1874 char __user *optval, int __user *optlen)
1875 {
1876 if (level == SOL_UDP || level == SOL_UDPLITE)
1877 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1878 return ip_getsockopt(sk, level, optname, optval, optlen);
1879 }
1880
1881 #ifdef CONFIG_COMPAT
compat_udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1882 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1883 char __user *optval, int __user *optlen)
1884 {
1885 if (level == SOL_UDP || level == SOL_UDPLITE)
1886 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1887 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1888 }
1889 #endif
1890 /**
1891 * udp_poll - wait for a UDP event.
1892 * @file - file struct
1893 * @sock - socket
1894 * @wait - poll table
1895 *
1896 * This is same as datagram poll, except for the special case of
1897 * blocking sockets. If application is using a blocking fd
1898 * and a packet with checksum error is in the queue;
1899 * then it could get return from select indicating data available
1900 * but then block when reading it. Add special case code
1901 * to work around these arguably broken applications.
1902 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)1903 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1904 {
1905 unsigned int mask = datagram_poll(file, sock, wait);
1906 struct sock *sk = sock->sk;
1907
1908 /* Check for false positives due to checksum errors */
1909 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1910 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1911 mask &= ~(POLLIN | POLLRDNORM);
1912
1913 return mask;
1914
1915 }
1916 EXPORT_SYMBOL(udp_poll);
1917
1918 struct proto udp_prot = {
1919 .name = "UDP",
1920 .owner = THIS_MODULE,
1921 .close = udp_lib_close,
1922 .connect = ip4_datagram_connect,
1923 .disconnect = udp_disconnect,
1924 .ioctl = udp_ioctl,
1925 .destroy = udp_destroy_sock,
1926 .setsockopt = udp_setsockopt,
1927 .getsockopt = udp_getsockopt,
1928 .sendmsg = udp_sendmsg,
1929 .recvmsg = udp_recvmsg,
1930 .sendpage = udp_sendpage,
1931 .backlog_rcv = __udp_queue_rcv_skb,
1932 .hash = udp_lib_hash,
1933 .unhash = udp_lib_unhash,
1934 .rehash = udp_v4_rehash,
1935 .get_port = udp_v4_get_port,
1936 .memory_allocated = &udp_memory_allocated,
1937 .sysctl_mem = sysctl_udp_mem,
1938 .sysctl_wmem = &sysctl_udp_wmem_min,
1939 .sysctl_rmem = &sysctl_udp_rmem_min,
1940 .obj_size = sizeof(struct udp_sock),
1941 .slab_flags = SLAB_DESTROY_BY_RCU,
1942 .h.udp_table = &udp_table,
1943 #ifdef CONFIG_COMPAT
1944 .compat_setsockopt = compat_udp_setsockopt,
1945 .compat_getsockopt = compat_udp_getsockopt,
1946 #endif
1947 .clear_sk = sk_prot_clear_portaddr_nulls,
1948 };
1949 EXPORT_SYMBOL(udp_prot);
1950
1951 /* ------------------------------------------------------------------------ */
1952 #ifdef CONFIG_PROC_FS
1953
udp_get_first(struct seq_file * seq,int start)1954 static struct sock *udp_get_first(struct seq_file *seq, int start)
1955 {
1956 struct sock *sk;
1957 struct udp_iter_state *state = seq->private;
1958 struct net *net = seq_file_net(seq);
1959
1960 for (state->bucket = start; state->bucket <= state->udp_table->mask;
1961 ++state->bucket) {
1962 struct hlist_nulls_node *node;
1963 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1964
1965 if (hlist_nulls_empty(&hslot->head))
1966 continue;
1967
1968 spin_lock_bh(&hslot->lock);
1969 sk_nulls_for_each(sk, node, &hslot->head) {
1970 if (!net_eq(sock_net(sk), net))
1971 continue;
1972 if (sk->sk_family == state->family)
1973 goto found;
1974 }
1975 spin_unlock_bh(&hslot->lock);
1976 }
1977 sk = NULL;
1978 found:
1979 return sk;
1980 }
1981
udp_get_next(struct seq_file * seq,struct sock * sk)1982 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1983 {
1984 struct udp_iter_state *state = seq->private;
1985 struct net *net = seq_file_net(seq);
1986
1987 do {
1988 sk = sk_nulls_next(sk);
1989 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1990
1991 if (!sk) {
1992 if (state->bucket <= state->udp_table->mask)
1993 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1994 return udp_get_first(seq, state->bucket + 1);
1995 }
1996 return sk;
1997 }
1998
udp_get_idx(struct seq_file * seq,loff_t pos)1999 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2000 {
2001 struct sock *sk = udp_get_first(seq, 0);
2002
2003 if (sk)
2004 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2005 --pos;
2006 return pos ? NULL : sk;
2007 }
2008
udp_seq_start(struct seq_file * seq,loff_t * pos)2009 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2010 {
2011 struct udp_iter_state *state = seq->private;
2012 state->bucket = MAX_UDP_PORTS;
2013
2014 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2015 }
2016
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2017 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2018 {
2019 struct sock *sk;
2020
2021 if (v == SEQ_START_TOKEN)
2022 sk = udp_get_idx(seq, 0);
2023 else
2024 sk = udp_get_next(seq, v);
2025
2026 ++*pos;
2027 return sk;
2028 }
2029
udp_seq_stop(struct seq_file * seq,void * v)2030 static void udp_seq_stop(struct seq_file *seq, void *v)
2031 {
2032 struct udp_iter_state *state = seq->private;
2033
2034 if (state->bucket <= state->udp_table->mask)
2035 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2036 }
2037
udp_seq_open(struct inode * inode,struct file * file)2038 int udp_seq_open(struct inode *inode, struct file *file)
2039 {
2040 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2041 struct udp_iter_state *s;
2042 int err;
2043
2044 err = seq_open_net(inode, file, &afinfo->seq_ops,
2045 sizeof(struct udp_iter_state));
2046 if (err < 0)
2047 return err;
2048
2049 s = ((struct seq_file *)file->private_data)->private;
2050 s->family = afinfo->family;
2051 s->udp_table = afinfo->udp_table;
2052 return err;
2053 }
2054 EXPORT_SYMBOL(udp_seq_open);
2055
2056 /* ------------------------------------------------------------------------ */
udp_proc_register(struct net * net,struct udp_seq_afinfo * afinfo)2057 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2058 {
2059 struct proc_dir_entry *p;
2060 int rc = 0;
2061
2062 afinfo->seq_ops.start = udp_seq_start;
2063 afinfo->seq_ops.next = udp_seq_next;
2064 afinfo->seq_ops.stop = udp_seq_stop;
2065
2066 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2067 afinfo->seq_fops, afinfo);
2068 if (!p)
2069 rc = -ENOMEM;
2070 return rc;
2071 }
2072 EXPORT_SYMBOL(udp_proc_register);
2073
udp_proc_unregister(struct net * net,struct udp_seq_afinfo * afinfo)2074 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2075 {
2076 proc_net_remove(net, afinfo->name);
2077 }
2078 EXPORT_SYMBOL(udp_proc_unregister);
2079
2080 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket,int * len)2081 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2082 int bucket, int *len)
2083 {
2084 struct inet_sock *inet = inet_sk(sp);
2085 __be32 dest = inet->inet_daddr;
2086 __be32 src = inet->inet_rcv_saddr;
2087 __u16 destp = ntohs(inet->inet_dport);
2088 __u16 srcp = ntohs(inet->inet_sport);
2089
2090 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2091 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2092 bucket, src, srcp, dest, destp, sp->sk_state,
2093 sk_wmem_alloc_get(sp),
2094 sk_rmem_alloc_get(sp),
2095 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2096 atomic_read(&sp->sk_refcnt), sp,
2097 atomic_read(&sp->sk_drops), len);
2098 }
2099
udp4_seq_show(struct seq_file * seq,void * v)2100 int udp4_seq_show(struct seq_file *seq, void *v)
2101 {
2102 if (v == SEQ_START_TOKEN)
2103 seq_printf(seq, "%-127s\n",
2104 " sl local_address rem_address st tx_queue "
2105 "rx_queue tr tm->when retrnsmt uid timeout "
2106 "inode ref pointer drops");
2107 else {
2108 struct udp_iter_state *state = seq->private;
2109 int len;
2110
2111 udp4_format_sock(v, seq, state->bucket, &len);
2112 seq_printf(seq, "%*s\n", 127 - len, "");
2113 }
2114 return 0;
2115 }
2116
2117 static const struct file_operations udp_afinfo_seq_fops = {
2118 .owner = THIS_MODULE,
2119 .open = udp_seq_open,
2120 .read = seq_read,
2121 .llseek = seq_lseek,
2122 .release = seq_release_net
2123 };
2124
2125 /* ------------------------------------------------------------------------ */
2126 static struct udp_seq_afinfo udp4_seq_afinfo = {
2127 .name = "udp",
2128 .family = AF_INET,
2129 .udp_table = &udp_table,
2130 .seq_fops = &udp_afinfo_seq_fops,
2131 .seq_ops = {
2132 .show = udp4_seq_show,
2133 },
2134 };
2135
udp4_proc_init_net(struct net * net)2136 static int __net_init udp4_proc_init_net(struct net *net)
2137 {
2138 return udp_proc_register(net, &udp4_seq_afinfo);
2139 }
2140
udp4_proc_exit_net(struct net * net)2141 static void __net_exit udp4_proc_exit_net(struct net *net)
2142 {
2143 udp_proc_unregister(net, &udp4_seq_afinfo);
2144 }
2145
2146 static struct pernet_operations udp4_net_ops = {
2147 .init = udp4_proc_init_net,
2148 .exit = udp4_proc_exit_net,
2149 };
2150
udp4_proc_init(void)2151 int __init udp4_proc_init(void)
2152 {
2153 return register_pernet_subsys(&udp4_net_ops);
2154 }
2155
udp4_proc_exit(void)2156 void udp4_proc_exit(void)
2157 {
2158 unregister_pernet_subsys(&udp4_net_ops);
2159 }
2160 #endif /* CONFIG_PROC_FS */
2161
2162 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)2163 static int __init set_uhash_entries(char *str)
2164 {
2165 if (!str)
2166 return 0;
2167 uhash_entries = simple_strtoul(str, &str, 0);
2168 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2169 uhash_entries = UDP_HTABLE_SIZE_MIN;
2170 return 1;
2171 }
2172 __setup("uhash_entries=", set_uhash_entries);
2173
udp_table_init(struct udp_table * table,const char * name)2174 void __init udp_table_init(struct udp_table *table, const char *name)
2175 {
2176 unsigned int i;
2177
2178 if (!CONFIG_BASE_SMALL)
2179 table->hash = alloc_large_system_hash(name,
2180 2 * sizeof(struct udp_hslot),
2181 uhash_entries,
2182 21, /* one slot per 2 MB */
2183 0,
2184 &table->log,
2185 &table->mask,
2186 64 * 1024);
2187 /*
2188 * Make sure hash table has the minimum size
2189 */
2190 if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2191 table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2192 2 * sizeof(struct udp_hslot), GFP_KERNEL);
2193 if (!table->hash)
2194 panic(name);
2195 table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2196 table->mask = UDP_HTABLE_SIZE_MIN - 1;
2197 }
2198 table->hash2 = table->hash + (table->mask + 1);
2199 for (i = 0; i <= table->mask; i++) {
2200 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2201 table->hash[i].count = 0;
2202 spin_lock_init(&table->hash[i].lock);
2203 }
2204 for (i = 0; i <= table->mask; i++) {
2205 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2206 table->hash2[i].count = 0;
2207 spin_lock_init(&table->hash2[i].lock);
2208 }
2209 }
2210
udp_init(void)2211 void __init udp_init(void)
2212 {
2213 unsigned long limit;
2214
2215 udp_table_init(&udp_table, "UDP");
2216 limit = nr_free_buffer_pages() / 8;
2217 limit = max(limit, 128UL);
2218 sysctl_udp_mem[0] = limit / 4 * 3;
2219 sysctl_udp_mem[1] = limit;
2220 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2221
2222 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2223 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2224 }
2225
udp4_ufo_send_check(struct sk_buff * skb)2226 int udp4_ufo_send_check(struct sk_buff *skb)
2227 {
2228 const struct iphdr *iph;
2229 struct udphdr *uh;
2230
2231 if (!pskb_may_pull(skb, sizeof(*uh)))
2232 return -EINVAL;
2233
2234 iph = ip_hdr(skb);
2235 uh = udp_hdr(skb);
2236
2237 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2238 IPPROTO_UDP, 0);
2239 skb->csum_start = skb_transport_header(skb) - skb->head;
2240 skb->csum_offset = offsetof(struct udphdr, check);
2241 skb->ip_summed = CHECKSUM_PARTIAL;
2242 return 0;
2243 }
2244
udp4_ufo_fragment(struct sk_buff * skb,netdev_features_t features)2245 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
2246 netdev_features_t features)
2247 {
2248 struct sk_buff *segs = ERR_PTR(-EINVAL);
2249 unsigned int mss;
2250 int offset;
2251 __wsum csum;
2252
2253 mss = skb_shinfo(skb)->gso_size;
2254 if (unlikely(skb->len <= mss))
2255 goto out;
2256
2257 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2258 /* Packet is from an untrusted source, reset gso_segs. */
2259 int type = skb_shinfo(skb)->gso_type;
2260
2261 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2262 !(type & (SKB_GSO_UDP))))
2263 goto out;
2264
2265 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2266
2267 segs = NULL;
2268 goto out;
2269 }
2270
2271 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2272 * do checksum of UDP packets sent as multiple IP fragments.
2273 */
2274 offset = skb_checksum_start_offset(skb);
2275 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2276 offset += skb->csum_offset;
2277 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2278 skb->ip_summed = CHECKSUM_NONE;
2279
2280 /* Fragment the skb. IP headers of the fragments are updated in
2281 * inet_gso_segment()
2282 */
2283 segs = skb_segment(skb, features);
2284 out:
2285 return segs;
2286 }
2287
2288