1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include "udp_impl.h"
111 
112 struct udp_table udp_table __read_mostly;
113 EXPORT_SYMBOL(udp_table);
114 
115 long sysctl_udp_mem[3] __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_mem);
117 
118 int sysctl_udp_rmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_rmem_min);
120 
121 int sysctl_udp_wmem_min __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_wmem_min);
123 
124 atomic_long_t udp_memory_allocated;
125 EXPORT_SYMBOL(udp_memory_allocated);
126 
127 #define MAX_UDP_PORTS 65536
128 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
129 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int log)130 static int udp_lib_lport_inuse(struct net *net, __u16 num,
131 			       const struct udp_hslot *hslot,
132 			       unsigned long *bitmap,
133 			       struct sock *sk,
134 			       int (*saddr_comp)(const struct sock *sk1,
135 						 const struct sock *sk2),
136 			       unsigned int log)
137 {
138 	struct sock *sk2;
139 	struct hlist_nulls_node *node;
140 
141 	sk_nulls_for_each(sk2, node, &hslot->head)
142 		if (net_eq(sock_net(sk2), net) &&
143 		    sk2 != sk &&
144 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
145 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
146 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
147 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
148 		    (*saddr_comp)(sk, sk2)) {
149 			if (bitmap)
150 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
151 					  bitmap);
152 			else
153 				return 1;
154 		}
155 	return 0;
156 }
157 
158 /*
159  * Note: we still hold spinlock of primary hash chain, so no other writer
160  * can insert/delete a socket with local_port == num
161  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2))162 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
163 			       struct udp_hslot *hslot2,
164 			       struct sock *sk,
165 			       int (*saddr_comp)(const struct sock *sk1,
166 						 const struct sock *sk2))
167 {
168 	struct sock *sk2;
169 	struct hlist_nulls_node *node;
170 	int res = 0;
171 
172 	spin_lock(&hslot2->lock);
173 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
174 		if (net_eq(sock_net(sk2), net) &&
175 		    sk2 != sk &&
176 		    (udp_sk(sk2)->udp_port_hash == num) &&
177 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
178 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
179 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
180 		    (*saddr_comp)(sk, sk2)) {
181 			res = 1;
182 			break;
183 		}
184 	spin_unlock(&hslot2->lock);
185 	return res;
186 }
187 
188 /**
189  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
190  *
191  *  @sk:          socket struct in question
192  *  @snum:        port number to look up
193  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
194  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
195  *                   with NULL address
196  */
udp_lib_get_port(struct sock * sk,unsigned short snum,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int hash2_nulladdr)197 int udp_lib_get_port(struct sock *sk, unsigned short snum,
198 		       int (*saddr_comp)(const struct sock *sk1,
199 					 const struct sock *sk2),
200 		     unsigned int hash2_nulladdr)
201 {
202 	struct udp_hslot *hslot, *hslot2;
203 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
204 	int    error = 1;
205 	struct net *net = sock_net(sk);
206 
207 	if (!snum) {
208 		int low, high, remaining;
209 		unsigned rand;
210 		unsigned short first, last;
211 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
212 
213 		inet_get_local_port_range(&low, &high);
214 		remaining = (high - low) + 1;
215 
216 		rand = net_random();
217 		first = (((u64)rand * remaining) >> 32) + low;
218 		/*
219 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
220 		 */
221 		rand = (rand | 1) * (udptable->mask + 1);
222 		last = first + udptable->mask + 1;
223 		do {
224 			hslot = udp_hashslot(udptable, net, first);
225 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
226 			spin_lock_bh(&hslot->lock);
227 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
228 					    saddr_comp, udptable->log);
229 
230 			snum = first;
231 			/*
232 			 * Iterate on all possible values of snum for this hash.
233 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
234 			 * give us randomization and full range coverage.
235 			 */
236 			do {
237 				if (low <= snum && snum <= high &&
238 				    !test_bit(snum >> udptable->log, bitmap) &&
239 				    !inet_is_reserved_local_port(snum))
240 					goto found;
241 				snum += rand;
242 			} while (snum != first);
243 			spin_unlock_bh(&hslot->lock);
244 		} while (++first != last);
245 		goto fail;
246 	} else {
247 		hslot = udp_hashslot(udptable, net, snum);
248 		spin_lock_bh(&hslot->lock);
249 		if (hslot->count > 10) {
250 			int exist;
251 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
252 
253 			slot2          &= udptable->mask;
254 			hash2_nulladdr &= udptable->mask;
255 
256 			hslot2 = udp_hashslot2(udptable, slot2);
257 			if (hslot->count < hslot2->count)
258 				goto scan_primary_hash;
259 
260 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
261 						     sk, saddr_comp);
262 			if (!exist && (hash2_nulladdr != slot2)) {
263 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
264 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
265 							     sk, saddr_comp);
266 			}
267 			if (exist)
268 				goto fail_unlock;
269 			else
270 				goto found;
271 		}
272 scan_primary_hash:
273 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
274 					saddr_comp, 0))
275 			goto fail_unlock;
276 	}
277 found:
278 	inet_sk(sk)->inet_num = snum;
279 	udp_sk(sk)->udp_port_hash = snum;
280 	udp_sk(sk)->udp_portaddr_hash ^= snum;
281 	if (sk_unhashed(sk)) {
282 		sk_nulls_add_node_rcu(sk, &hslot->head);
283 		hslot->count++;
284 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
285 
286 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
287 		spin_lock(&hslot2->lock);
288 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
289 					 &hslot2->head);
290 		hslot2->count++;
291 		spin_unlock(&hslot2->lock);
292 	}
293 	error = 0;
294 fail_unlock:
295 	spin_unlock_bh(&hslot->lock);
296 fail:
297 	return error;
298 }
299 EXPORT_SYMBOL(udp_lib_get_port);
300 
ipv4_rcv_saddr_equal(const struct sock * sk1,const struct sock * sk2)301 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
302 {
303 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
304 
305 	return 	(!ipv6_only_sock(sk2)  &&
306 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
307 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
308 }
309 
udp4_portaddr_hash(struct net * net,__be32 saddr,unsigned int port)310 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
311 				       unsigned int port)
312 {
313 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
314 }
315 
udp_v4_get_port(struct sock * sk,unsigned short snum)316 int udp_v4_get_port(struct sock *sk, unsigned short snum)
317 {
318 	unsigned int hash2_nulladdr =
319 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
320 	unsigned int hash2_partial =
321 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
322 
323 	/* precompute partial secondary hash */
324 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
325 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
326 }
327 
compute_score(struct sock * sk,struct net * net,__be32 saddr,unsigned short hnum,__be16 sport,__be32 daddr,__be16 dport,int dif)328 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
329 			 unsigned short hnum,
330 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
331 {
332 	int score = -1;
333 
334 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
335 			!ipv6_only_sock(sk)) {
336 		struct inet_sock *inet = inet_sk(sk);
337 
338 		score = (sk->sk_family == PF_INET ? 1 : 0);
339 		if (inet->inet_rcv_saddr) {
340 			if (inet->inet_rcv_saddr != daddr)
341 				return -1;
342 			score += 2;
343 		}
344 		if (inet->inet_daddr) {
345 			if (inet->inet_daddr != saddr)
346 				return -1;
347 			score += 2;
348 		}
349 		if (inet->inet_dport) {
350 			if (inet->inet_dport != sport)
351 				return -1;
352 			score += 2;
353 		}
354 		if (sk->sk_bound_dev_if) {
355 			if (sk->sk_bound_dev_if != dif)
356 				return -1;
357 			score += 2;
358 		}
359 	}
360 	return score;
361 }
362 
363 /*
364  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
365  */
366 #define SCORE2_MAX (1 + 2 + 2 + 2)
compute_score2(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif)367 static inline int compute_score2(struct sock *sk, struct net *net,
368 				 __be32 saddr, __be16 sport,
369 				 __be32 daddr, unsigned int hnum, int dif)
370 {
371 	int score = -1;
372 
373 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
374 		struct inet_sock *inet = inet_sk(sk);
375 
376 		if (inet->inet_rcv_saddr != daddr)
377 			return -1;
378 		if (inet->inet_num != hnum)
379 			return -1;
380 
381 		score = (sk->sk_family == PF_INET ? 1 : 0);
382 		if (inet->inet_daddr) {
383 			if (inet->inet_daddr != saddr)
384 				return -1;
385 			score += 2;
386 		}
387 		if (inet->inet_dport) {
388 			if (inet->inet_dport != sport)
389 				return -1;
390 			score += 2;
391 		}
392 		if (sk->sk_bound_dev_if) {
393 			if (sk->sk_bound_dev_if != dif)
394 				return -1;
395 			score += 2;
396 		}
397 	}
398 	return score;
399 }
400 
401 
402 /* called with read_rcu_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,struct udp_hslot * hslot2,unsigned int slot2)403 static struct sock *udp4_lib_lookup2(struct net *net,
404 		__be32 saddr, __be16 sport,
405 		__be32 daddr, unsigned int hnum, int dif,
406 		struct udp_hslot *hslot2, unsigned int slot2)
407 {
408 	struct sock *sk, *result;
409 	struct hlist_nulls_node *node;
410 	int score, badness;
411 
412 begin:
413 	result = NULL;
414 	badness = -1;
415 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
416 		score = compute_score2(sk, net, saddr, sport,
417 				      daddr, hnum, dif);
418 		if (score > badness) {
419 			result = sk;
420 			badness = score;
421 			if (score == SCORE2_MAX)
422 				goto exact_match;
423 		}
424 	}
425 	/*
426 	 * if the nulls value we got at the end of this lookup is
427 	 * not the expected one, we must restart lookup.
428 	 * We probably met an item that was moved to another chain.
429 	 */
430 	if (get_nulls_value(node) != slot2)
431 		goto begin;
432 
433 	if (result) {
434 exact_match:
435 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
436 			result = NULL;
437 		else if (unlikely(compute_score2(result, net, saddr, sport,
438 				  daddr, hnum, dif) < badness)) {
439 			sock_put(result);
440 			goto begin;
441 		}
442 	}
443 	return result;
444 }
445 
446 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
447  * harder than this. -DaveM
448  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,struct udp_table * udptable)449 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
450 		__be16 sport, __be32 daddr, __be16 dport,
451 		int dif, struct udp_table *udptable)
452 {
453 	struct sock *sk, *result;
454 	struct hlist_nulls_node *node;
455 	unsigned short hnum = ntohs(dport);
456 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
457 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
458 	int score, badness;
459 
460 	rcu_read_lock();
461 	if (hslot->count > 10) {
462 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
463 		slot2 = hash2 & udptable->mask;
464 		hslot2 = &udptable->hash2[slot2];
465 		if (hslot->count < hslot2->count)
466 			goto begin;
467 
468 		result = udp4_lib_lookup2(net, saddr, sport,
469 					  daddr, hnum, dif,
470 					  hslot2, slot2);
471 		if (!result) {
472 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
473 			slot2 = hash2 & udptable->mask;
474 			hslot2 = &udptable->hash2[slot2];
475 			if (hslot->count < hslot2->count)
476 				goto begin;
477 
478 			result = udp4_lib_lookup2(net, saddr, sport,
479 						  htonl(INADDR_ANY), hnum, dif,
480 						  hslot2, slot2);
481 		}
482 		rcu_read_unlock();
483 		return result;
484 	}
485 begin:
486 	result = NULL;
487 	badness = -1;
488 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
489 		score = compute_score(sk, net, saddr, hnum, sport,
490 				      daddr, dport, dif);
491 		if (score > badness) {
492 			result = sk;
493 			badness = score;
494 		}
495 	}
496 	/*
497 	 * if the nulls value we got at the end of this lookup is
498 	 * not the expected one, we must restart lookup.
499 	 * We probably met an item that was moved to another chain.
500 	 */
501 	if (get_nulls_value(node) != slot)
502 		goto begin;
503 
504 	if (result) {
505 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
506 			result = NULL;
507 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
508 				  daddr, dport, dif) < badness)) {
509 			sock_put(result);
510 			goto begin;
511 		}
512 	}
513 	rcu_read_unlock();
514 	return result;
515 }
516 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
517 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)518 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
519 						 __be16 sport, __be16 dport,
520 						 struct udp_table *udptable)
521 {
522 	struct sock *sk;
523 	const struct iphdr *iph = ip_hdr(skb);
524 
525 	if (unlikely(sk = skb_steal_sock(skb)))
526 		return sk;
527 	else
528 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
529 					 iph->daddr, dport, inet_iif(skb),
530 					 udptable);
531 }
532 
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)533 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
534 			     __be32 daddr, __be16 dport, int dif)
535 {
536 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
537 }
538 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
539 
udp_v4_mcast_next(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)540 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
541 					     __be16 loc_port, __be32 loc_addr,
542 					     __be16 rmt_port, __be32 rmt_addr,
543 					     int dif)
544 {
545 	struct hlist_nulls_node *node;
546 	struct sock *s = sk;
547 	unsigned short hnum = ntohs(loc_port);
548 
549 	sk_nulls_for_each_from(s, node) {
550 		struct inet_sock *inet = inet_sk(s);
551 
552 		if (!net_eq(sock_net(s), net) ||
553 		    udp_sk(s)->udp_port_hash != hnum ||
554 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
555 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
556 		    (inet->inet_rcv_saddr &&
557 		     inet->inet_rcv_saddr != loc_addr) ||
558 		    ipv6_only_sock(s) ||
559 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
560 			continue;
561 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
562 			continue;
563 		goto found;
564 	}
565 	s = NULL;
566 found:
567 	return s;
568 }
569 
570 /*
571  * This routine is called by the ICMP module when it gets some
572  * sort of error condition.  If err < 0 then the socket should
573  * be closed and the error returned to the user.  If err > 0
574  * it's just the icmp type << 8 | icmp code.
575  * Header points to the ip header of the error packet. We move
576  * on past this. Then (as it used to claim before adjustment)
577  * header points to the first 8 bytes of the udp header.  We need
578  * to find the appropriate port.
579  */
580 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)581 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
582 {
583 	struct inet_sock *inet;
584 	const struct iphdr *iph = (const struct iphdr *)skb->data;
585 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
586 	const int type = icmp_hdr(skb)->type;
587 	const int code = icmp_hdr(skb)->code;
588 	struct sock *sk;
589 	int harderr;
590 	int err;
591 	struct net *net = dev_net(skb->dev);
592 
593 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
594 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
595 	if (sk == NULL) {
596 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
597 		return;	/* No socket for error */
598 	}
599 
600 	err = 0;
601 	harderr = 0;
602 	inet = inet_sk(sk);
603 
604 	switch (type) {
605 	default:
606 	case ICMP_TIME_EXCEEDED:
607 		err = EHOSTUNREACH;
608 		break;
609 	case ICMP_SOURCE_QUENCH:
610 		goto out;
611 	case ICMP_PARAMETERPROB:
612 		err = EPROTO;
613 		harderr = 1;
614 		break;
615 	case ICMP_DEST_UNREACH:
616 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
617 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
618 				err = EMSGSIZE;
619 				harderr = 1;
620 				break;
621 			}
622 			goto out;
623 		}
624 		err = EHOSTUNREACH;
625 		if (code <= NR_ICMP_UNREACH) {
626 			harderr = icmp_err_convert[code].fatal;
627 			err = icmp_err_convert[code].errno;
628 		}
629 		break;
630 	}
631 
632 	/*
633 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
634 	 *	4.1.3.3.
635 	 */
636 	if (!inet->recverr) {
637 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
638 			goto out;
639 	} else
640 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
641 
642 	sk->sk_err = err;
643 	sk->sk_error_report(sk);
644 out:
645 	sock_put(sk);
646 }
647 
udp_err(struct sk_buff * skb,u32 info)648 void udp_err(struct sk_buff *skb, u32 info)
649 {
650 	__udp4_lib_err(skb, info, &udp_table);
651 }
652 
653 /*
654  * Throw away all pending data and cancel the corking. Socket is locked.
655  */
udp_flush_pending_frames(struct sock * sk)656 void udp_flush_pending_frames(struct sock *sk)
657 {
658 	struct udp_sock *up = udp_sk(sk);
659 
660 	if (up->pending) {
661 		up->len = 0;
662 		up->pending = 0;
663 		ip_flush_pending_frames(sk);
664 	}
665 }
666 EXPORT_SYMBOL(udp_flush_pending_frames);
667 
668 /**
669  * 	udp4_hwcsum  -  handle outgoing HW checksumming
670  * 	@skb: 	sk_buff containing the filled-in UDP header
671  * 	        (checksum field must be zeroed out)
672  *	@src:	source IP address
673  *	@dst:	destination IP address
674  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)675 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
676 {
677 	struct udphdr *uh = udp_hdr(skb);
678 	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
679 	int offset = skb_transport_offset(skb);
680 	int len = skb->len - offset;
681 	int hlen = len;
682 	__wsum csum = 0;
683 
684 	if (!frags) {
685 		/*
686 		 * Only one fragment on the socket.
687 		 */
688 		skb->csum_start = skb_transport_header(skb) - skb->head;
689 		skb->csum_offset = offsetof(struct udphdr, check);
690 		uh->check = ~csum_tcpudp_magic(src, dst, len,
691 					       IPPROTO_UDP, 0);
692 	} else {
693 		/*
694 		 * HW-checksum won't work as there are two or more
695 		 * fragments on the socket so that all csums of sk_buffs
696 		 * should be together
697 		 */
698 		do {
699 			csum = csum_add(csum, frags->csum);
700 			hlen -= frags->len;
701 		} while ((frags = frags->next));
702 
703 		csum = skb_checksum(skb, offset, hlen, csum);
704 		skb->ip_summed = CHECKSUM_NONE;
705 
706 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
707 		if (uh->check == 0)
708 			uh->check = CSUM_MANGLED_0;
709 	}
710 }
711 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4)712 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
713 {
714 	struct sock *sk = skb->sk;
715 	struct inet_sock *inet = inet_sk(sk);
716 	struct udphdr *uh;
717 	int err = 0;
718 	int is_udplite = IS_UDPLITE(sk);
719 	int offset = skb_transport_offset(skb);
720 	int len = skb->len - offset;
721 	__wsum csum = 0;
722 
723 	/*
724 	 * Create a UDP header
725 	 */
726 	uh = udp_hdr(skb);
727 	uh->source = inet->inet_sport;
728 	uh->dest = fl4->fl4_dport;
729 	uh->len = htons(len);
730 	uh->check = 0;
731 
732 	if (is_udplite)  				 /*     UDP-Lite      */
733 		csum = udplite_csum(skb);
734 
735 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
736 
737 		skb->ip_summed = CHECKSUM_NONE;
738 		goto send;
739 
740 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
741 
742 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
743 		goto send;
744 
745 	} else
746 		csum = udp_csum(skb);
747 
748 	/* add protocol-dependent pseudo-header */
749 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
750 				      sk->sk_protocol, csum);
751 	if (uh->check == 0)
752 		uh->check = CSUM_MANGLED_0;
753 
754 send:
755 	err = ip_send_skb(skb);
756 	if (err) {
757 		if (err == -ENOBUFS && !inet->recverr) {
758 			UDP_INC_STATS_USER(sock_net(sk),
759 					   UDP_MIB_SNDBUFERRORS, is_udplite);
760 			err = 0;
761 		}
762 	} else
763 		UDP_INC_STATS_USER(sock_net(sk),
764 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
765 	return err;
766 }
767 
768 /*
769  * Push out all pending data as one UDP datagram. Socket is locked.
770  */
udp_push_pending_frames(struct sock * sk)771 int udp_push_pending_frames(struct sock *sk)
772 {
773 	struct udp_sock  *up = udp_sk(sk);
774 	struct inet_sock *inet = inet_sk(sk);
775 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
776 	struct sk_buff *skb;
777 	int err = 0;
778 
779 	skb = ip_finish_skb(sk, fl4);
780 	if (!skb)
781 		goto out;
782 
783 	err = udp_send_skb(skb, fl4);
784 
785 out:
786 	up->len = 0;
787 	up->pending = 0;
788 	return err;
789 }
790 EXPORT_SYMBOL(udp_push_pending_frames);
791 
udp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len)792 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
793 		size_t len)
794 {
795 	struct inet_sock *inet = inet_sk(sk);
796 	struct udp_sock *up = udp_sk(sk);
797 	struct flowi4 fl4_stack;
798 	struct flowi4 *fl4;
799 	int ulen = len;
800 	struct ipcm_cookie ipc;
801 	struct rtable *rt = NULL;
802 	int free = 0;
803 	int connected = 0;
804 	__be32 daddr, faddr, saddr;
805 	__be16 dport;
806 	u8  tos;
807 	int err, is_udplite = IS_UDPLITE(sk);
808 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
809 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
810 	struct sk_buff *skb;
811 	struct ip_options_data opt_copy;
812 
813 	if (len > 0xFFFF)
814 		return -EMSGSIZE;
815 
816 	/*
817 	 *	Check the flags.
818 	 */
819 
820 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
821 		return -EOPNOTSUPP;
822 
823 	ipc.opt = NULL;
824 	ipc.tx_flags = 0;
825 
826 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
827 
828 	fl4 = &inet->cork.fl.u.ip4;
829 	if (up->pending) {
830 		/*
831 		 * There are pending frames.
832 		 * The socket lock must be held while it's corked.
833 		 */
834 		lock_sock(sk);
835 		if (likely(up->pending)) {
836 			if (unlikely(up->pending != AF_INET)) {
837 				release_sock(sk);
838 				return -EINVAL;
839 			}
840 			goto do_append_data;
841 		}
842 		release_sock(sk);
843 	}
844 	ulen += sizeof(struct udphdr);
845 
846 	/*
847 	 *	Get and verify the address.
848 	 */
849 	if (msg->msg_name) {
850 		struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
851 		if (msg->msg_namelen < sizeof(*usin))
852 			return -EINVAL;
853 		if (usin->sin_family != AF_INET) {
854 			if (usin->sin_family != AF_UNSPEC)
855 				return -EAFNOSUPPORT;
856 		}
857 
858 		daddr = usin->sin_addr.s_addr;
859 		dport = usin->sin_port;
860 		if (dport == 0)
861 			return -EINVAL;
862 	} else {
863 		if (sk->sk_state != TCP_ESTABLISHED)
864 			return -EDESTADDRREQ;
865 		daddr = inet->inet_daddr;
866 		dport = inet->inet_dport;
867 		/* Open fast path for connected socket.
868 		   Route will not be used, if at least one option is set.
869 		 */
870 		connected = 1;
871 	}
872 	ipc.addr = inet->inet_saddr;
873 
874 	ipc.oif = sk->sk_bound_dev_if;
875 	err = sock_tx_timestamp(sk, &ipc.tx_flags);
876 	if (err)
877 		return err;
878 	if (msg->msg_controllen) {
879 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
880 		if (err)
881 			return err;
882 		if (ipc.opt)
883 			free = 1;
884 		connected = 0;
885 	}
886 	if (!ipc.opt) {
887 		struct ip_options_rcu *inet_opt;
888 
889 		rcu_read_lock();
890 		inet_opt = rcu_dereference(inet->inet_opt);
891 		if (inet_opt) {
892 			memcpy(&opt_copy, inet_opt,
893 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
894 			ipc.opt = &opt_copy.opt;
895 		}
896 		rcu_read_unlock();
897 	}
898 
899 	saddr = ipc.addr;
900 	ipc.addr = faddr = daddr;
901 
902 	if (ipc.opt && ipc.opt->opt.srr) {
903 		if (!daddr)
904 			return -EINVAL;
905 		faddr = ipc.opt->opt.faddr;
906 		connected = 0;
907 	}
908 	tos = RT_TOS(inet->tos);
909 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
910 	    (msg->msg_flags & MSG_DONTROUTE) ||
911 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
912 		tos |= RTO_ONLINK;
913 		connected = 0;
914 	}
915 
916 	if (ipv4_is_multicast(daddr)) {
917 		if (!ipc.oif)
918 			ipc.oif = inet->mc_index;
919 		if (!saddr)
920 			saddr = inet->mc_addr;
921 		connected = 0;
922 	} else if (!ipc.oif)
923 		ipc.oif = inet->uc_index;
924 
925 	if (connected)
926 		rt = (struct rtable *)sk_dst_check(sk, 0);
927 
928 	if (rt == NULL) {
929 		struct net *net = sock_net(sk);
930 
931 		fl4 = &fl4_stack;
932 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
933 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
934 				   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
935 				   faddr, saddr, dport, inet->inet_sport);
936 
937 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
938 		rt = ip_route_output_flow(net, fl4, sk);
939 		if (IS_ERR(rt)) {
940 			err = PTR_ERR(rt);
941 			rt = NULL;
942 			if (err == -ENETUNREACH)
943 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
944 			goto out;
945 		}
946 
947 		err = -EACCES;
948 		if ((rt->rt_flags & RTCF_BROADCAST) &&
949 		    !sock_flag(sk, SOCK_BROADCAST))
950 			goto out;
951 		if (connected)
952 			sk_dst_set(sk, dst_clone(&rt->dst));
953 	}
954 
955 	if (msg->msg_flags&MSG_CONFIRM)
956 		goto do_confirm;
957 back_from_confirm:
958 
959 	saddr = fl4->saddr;
960 	if (!ipc.addr)
961 		daddr = ipc.addr = fl4->daddr;
962 
963 	/* Lockless fast path for the non-corking case. */
964 	if (!corkreq) {
965 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
966 				  sizeof(struct udphdr), &ipc, &rt,
967 				  msg->msg_flags);
968 		err = PTR_ERR(skb);
969 		if (skb && !IS_ERR(skb))
970 			err = udp_send_skb(skb, fl4);
971 		goto out;
972 	}
973 
974 	lock_sock(sk);
975 	if (unlikely(up->pending)) {
976 		/* The socket is already corked while preparing it. */
977 		/* ... which is an evident application bug. --ANK */
978 		release_sock(sk);
979 
980 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
981 		err = -EINVAL;
982 		goto out;
983 	}
984 	/*
985 	 *	Now cork the socket to pend data.
986 	 */
987 	fl4 = &inet->cork.fl.u.ip4;
988 	fl4->daddr = daddr;
989 	fl4->saddr = saddr;
990 	fl4->fl4_dport = dport;
991 	fl4->fl4_sport = inet->inet_sport;
992 	up->pending = AF_INET;
993 
994 do_append_data:
995 	up->len += ulen;
996 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
997 			     sizeof(struct udphdr), &ipc, &rt,
998 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
999 	if (err)
1000 		udp_flush_pending_frames(sk);
1001 	else if (!corkreq)
1002 		err = udp_push_pending_frames(sk);
1003 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1004 		up->pending = 0;
1005 	release_sock(sk);
1006 
1007 out:
1008 	ip_rt_put(rt);
1009 	if (free)
1010 		kfree(ipc.opt);
1011 	if (!err)
1012 		return len;
1013 	/*
1014 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1015 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1016 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1017 	 * things).  We could add another new stat but at least for now that
1018 	 * seems like overkill.
1019 	 */
1020 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1021 		UDP_INC_STATS_USER(sock_net(sk),
1022 				UDP_MIB_SNDBUFERRORS, is_udplite);
1023 	}
1024 	return err;
1025 
1026 do_confirm:
1027 	dst_confirm(&rt->dst);
1028 	if (!(msg->msg_flags&MSG_PROBE) || len)
1029 		goto back_from_confirm;
1030 	err = 0;
1031 	goto out;
1032 }
1033 EXPORT_SYMBOL(udp_sendmsg);
1034 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1035 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1036 		 size_t size, int flags)
1037 {
1038 	struct inet_sock *inet = inet_sk(sk);
1039 	struct udp_sock *up = udp_sk(sk);
1040 	int ret;
1041 
1042 	if (flags & MSG_SENDPAGE_NOTLAST)
1043 		flags |= MSG_MORE;
1044 
1045 	if (!up->pending) {
1046 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1047 
1048 		/* Call udp_sendmsg to specify destination address which
1049 		 * sendpage interface can't pass.
1050 		 * This will succeed only when the socket is connected.
1051 		 */
1052 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1053 		if (ret < 0)
1054 			return ret;
1055 	}
1056 
1057 	lock_sock(sk);
1058 
1059 	if (unlikely(!up->pending)) {
1060 		release_sock(sk);
1061 
1062 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1063 		return -EINVAL;
1064 	}
1065 
1066 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1067 			     page, offset, size, flags);
1068 	if (ret == -EOPNOTSUPP) {
1069 		release_sock(sk);
1070 		return sock_no_sendpage(sk->sk_socket, page, offset,
1071 					size, flags);
1072 	}
1073 	if (ret < 0) {
1074 		udp_flush_pending_frames(sk);
1075 		goto out;
1076 	}
1077 
1078 	up->len += size;
1079 	if (!(up->corkflag || (flags&MSG_MORE)))
1080 		ret = udp_push_pending_frames(sk);
1081 	if (!ret)
1082 		ret = size;
1083 out:
1084 	release_sock(sk);
1085 	return ret;
1086 }
1087 
1088 
1089 /**
1090  *	first_packet_length	- return length of first packet in receive queue
1091  *	@sk: socket
1092  *
1093  *	Drops all bad checksum frames, until a valid one is found.
1094  *	Returns the length of found skb, or 0 if none is found.
1095  */
first_packet_length(struct sock * sk)1096 static unsigned int first_packet_length(struct sock *sk)
1097 {
1098 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1099 	struct sk_buff *skb;
1100 	unsigned int res;
1101 
1102 	__skb_queue_head_init(&list_kill);
1103 
1104 	spin_lock_bh(&rcvq->lock);
1105 	while ((skb = skb_peek(rcvq)) != NULL &&
1106 		udp_lib_checksum_complete(skb)) {
1107 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1108 				 IS_UDPLITE(sk));
1109 		atomic_inc(&sk->sk_drops);
1110 		__skb_unlink(skb, rcvq);
1111 		__skb_queue_tail(&list_kill, skb);
1112 	}
1113 	res = skb ? skb->len : 0;
1114 	spin_unlock_bh(&rcvq->lock);
1115 
1116 	if (!skb_queue_empty(&list_kill)) {
1117 		bool slow = lock_sock_fast(sk);
1118 
1119 		__skb_queue_purge(&list_kill);
1120 		sk_mem_reclaim_partial(sk);
1121 		unlock_sock_fast(sk, slow);
1122 	}
1123 	return res;
1124 }
1125 
1126 /*
1127  *	IOCTL requests applicable to the UDP protocol
1128  */
1129 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1130 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1131 {
1132 	switch (cmd) {
1133 	case SIOCOUTQ:
1134 	{
1135 		int amount = sk_wmem_alloc_get(sk);
1136 
1137 		return put_user(amount, (int __user *)arg);
1138 	}
1139 
1140 	case SIOCINQ:
1141 	{
1142 		unsigned int amount = first_packet_length(sk);
1143 
1144 		if (amount)
1145 			/*
1146 			 * We will only return the amount
1147 			 * of this packet since that is all
1148 			 * that will be read.
1149 			 */
1150 			amount -= sizeof(struct udphdr);
1151 
1152 		return put_user(amount, (int __user *)arg);
1153 	}
1154 
1155 	default:
1156 		return -ENOIOCTLCMD;
1157 	}
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(udp_ioctl);
1162 
1163 /*
1164  * 	This should be easy, if there is something there we
1165  * 	return it, otherwise we block.
1166  */
1167 
udp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1168 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1169 		size_t len, int noblock, int flags, int *addr_len)
1170 {
1171 	struct inet_sock *inet = inet_sk(sk);
1172 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1173 	struct sk_buff *skb;
1174 	unsigned int ulen, copied;
1175 	int peeked, off = 0;
1176 	int err;
1177 	int is_udplite = IS_UDPLITE(sk);
1178 	bool slow;
1179 
1180 	if (flags & MSG_ERRQUEUE)
1181 		return ip_recv_error(sk, msg, len, addr_len);
1182 
1183 try_again:
1184 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1185 				  &peeked, &off, &err);
1186 	if (!skb)
1187 		goto out;
1188 
1189 	ulen = skb->len - sizeof(struct udphdr);
1190 	copied = len;
1191 	if (copied > ulen)
1192 		copied = ulen;
1193 	else if (copied < ulen)
1194 		msg->msg_flags |= MSG_TRUNC;
1195 
1196 	/*
1197 	 * If checksum is needed at all, try to do it while copying the
1198 	 * data.  If the data is truncated, or if we only want a partial
1199 	 * coverage checksum (UDP-Lite), do it before the copy.
1200 	 */
1201 
1202 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1203 		if (udp_lib_checksum_complete(skb))
1204 			goto csum_copy_err;
1205 	}
1206 
1207 	if (skb_csum_unnecessary(skb))
1208 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1209 					      msg->msg_iov, copied);
1210 	else {
1211 		err = skb_copy_and_csum_datagram_iovec(skb,
1212 						       sizeof(struct udphdr),
1213 						       msg->msg_iov);
1214 
1215 		if (err == -EINVAL)
1216 			goto csum_copy_err;
1217 	}
1218 
1219 	if (err)
1220 		goto out_free;
1221 
1222 	if (!peeked)
1223 		UDP_INC_STATS_USER(sock_net(sk),
1224 				UDP_MIB_INDATAGRAMS, is_udplite);
1225 
1226 	sock_recv_ts_and_drops(msg, sk, skb);
1227 
1228 	/* Copy the address. */
1229 	if (sin) {
1230 		sin->sin_family = AF_INET;
1231 		sin->sin_port = udp_hdr(skb)->source;
1232 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1233 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1234 		*addr_len = sizeof(*sin);
1235 	}
1236 	if (inet->cmsg_flags)
1237 		ip_cmsg_recv(msg, skb);
1238 
1239 	err = copied;
1240 	if (flags & MSG_TRUNC)
1241 		err = ulen;
1242 
1243 out_free:
1244 	skb_free_datagram_locked(sk, skb);
1245 out:
1246 	return err;
1247 
1248 csum_copy_err:
1249 	slow = lock_sock_fast(sk);
1250 	if (!skb_kill_datagram(sk, skb, flags))
1251 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1252 	unlock_sock_fast(sk, slow);
1253 
1254 	if (noblock)
1255 		return -EAGAIN;
1256 
1257 	/* starting over for a new packet */
1258 	msg->msg_flags &= ~MSG_TRUNC;
1259 	goto try_again;
1260 }
1261 
1262 
udp_disconnect(struct sock * sk,int flags)1263 int udp_disconnect(struct sock *sk, int flags)
1264 {
1265 	struct inet_sock *inet = inet_sk(sk);
1266 	/*
1267 	 *	1003.1g - break association.
1268 	 */
1269 
1270 	sk->sk_state = TCP_CLOSE;
1271 	inet->inet_daddr = 0;
1272 	inet->inet_dport = 0;
1273 	sock_rps_reset_rxhash(sk);
1274 	sk->sk_bound_dev_if = 0;
1275 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1276 		inet_reset_saddr(sk);
1277 
1278 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1279 		sk->sk_prot->unhash(sk);
1280 		inet->inet_sport = 0;
1281 	}
1282 	sk_dst_reset(sk);
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL(udp_disconnect);
1286 
udp_lib_unhash(struct sock * sk)1287 void udp_lib_unhash(struct sock *sk)
1288 {
1289 	if (sk_hashed(sk)) {
1290 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1291 		struct udp_hslot *hslot, *hslot2;
1292 
1293 		hslot  = udp_hashslot(udptable, sock_net(sk),
1294 				      udp_sk(sk)->udp_port_hash);
1295 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1296 
1297 		spin_lock_bh(&hslot->lock);
1298 		if (sk_nulls_del_node_init_rcu(sk)) {
1299 			hslot->count--;
1300 			inet_sk(sk)->inet_num = 0;
1301 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1302 
1303 			spin_lock(&hslot2->lock);
1304 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1305 			hslot2->count--;
1306 			spin_unlock(&hslot2->lock);
1307 		}
1308 		spin_unlock_bh(&hslot->lock);
1309 	}
1310 }
1311 EXPORT_SYMBOL(udp_lib_unhash);
1312 
1313 /*
1314  * inet_rcv_saddr was changed, we must rehash secondary hash
1315  */
udp_lib_rehash(struct sock * sk,u16 newhash)1316 void udp_lib_rehash(struct sock *sk, u16 newhash)
1317 {
1318 	if (sk_hashed(sk)) {
1319 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1320 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1321 
1322 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1323 		nhslot2 = udp_hashslot2(udptable, newhash);
1324 		udp_sk(sk)->udp_portaddr_hash = newhash;
1325 		if (hslot2 != nhslot2) {
1326 			hslot = udp_hashslot(udptable, sock_net(sk),
1327 					     udp_sk(sk)->udp_port_hash);
1328 			/* we must lock primary chain too */
1329 			spin_lock_bh(&hslot->lock);
1330 
1331 			spin_lock(&hslot2->lock);
1332 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1333 			hslot2->count--;
1334 			spin_unlock(&hslot2->lock);
1335 
1336 			spin_lock(&nhslot2->lock);
1337 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1338 						 &nhslot2->head);
1339 			nhslot2->count++;
1340 			spin_unlock(&nhslot2->lock);
1341 
1342 			spin_unlock_bh(&hslot->lock);
1343 		}
1344 	}
1345 }
1346 EXPORT_SYMBOL(udp_lib_rehash);
1347 
udp_v4_rehash(struct sock * sk)1348 static void udp_v4_rehash(struct sock *sk)
1349 {
1350 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1351 					  inet_sk(sk)->inet_rcv_saddr,
1352 					  inet_sk(sk)->inet_num);
1353 	udp_lib_rehash(sk, new_hash);
1354 }
1355 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1356 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1357 {
1358 	int rc;
1359 
1360 	if (inet_sk(sk)->inet_daddr)
1361 		sock_rps_save_rxhash(sk, skb);
1362 
1363 	rc = sock_queue_rcv_skb(sk, skb);
1364 	if (rc < 0) {
1365 		int is_udplite = IS_UDPLITE(sk);
1366 
1367 		/* Note that an ENOMEM error is charged twice */
1368 		if (rc == -ENOMEM)
1369 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1370 					 is_udplite);
1371 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1372 		kfree_skb(skb);
1373 		trace_udp_fail_queue_rcv_skb(rc, sk);
1374 		return -1;
1375 	}
1376 
1377 	return 0;
1378 
1379 }
1380 
1381 /* returns:
1382  *  -1: error
1383  *   0: success
1384  *  >0: "udp encap" protocol resubmission
1385  *
1386  * Note that in the success and error cases, the skb is assumed to
1387  * have either been requeued or freed.
1388  */
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1389 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1390 {
1391 	struct udp_sock *up = udp_sk(sk);
1392 	int rc;
1393 	int is_udplite = IS_UDPLITE(sk);
1394 
1395 	/*
1396 	 *	Charge it to the socket, dropping if the queue is full.
1397 	 */
1398 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1399 		goto drop;
1400 	nf_reset(skb);
1401 
1402 	if (up->encap_type) {
1403 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1404 
1405 		/*
1406 		 * This is an encapsulation socket so pass the skb to
1407 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1408 		 * fall through and pass this up the UDP socket.
1409 		 * up->encap_rcv() returns the following value:
1410 		 * =0 if skb was successfully passed to the encap
1411 		 *    handler or was discarded by it.
1412 		 * >0 if skb should be passed on to UDP.
1413 		 * <0 if skb should be resubmitted as proto -N
1414 		 */
1415 
1416 		/* if we're overly short, let UDP handle it */
1417 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1418 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1419 			int ret;
1420 
1421 			ret = encap_rcv(sk, skb);
1422 			if (ret <= 0) {
1423 				UDP_INC_STATS_BH(sock_net(sk),
1424 						 UDP_MIB_INDATAGRAMS,
1425 						 is_udplite);
1426 				return -ret;
1427 			}
1428 		}
1429 
1430 		/* FALLTHROUGH -- it's a UDP Packet */
1431 	}
1432 
1433 	/*
1434 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1435 	 */
1436 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1437 
1438 		/*
1439 		 * MIB statistics other than incrementing the error count are
1440 		 * disabled for the following two types of errors: these depend
1441 		 * on the application settings, not on the functioning of the
1442 		 * protocol stack as such.
1443 		 *
1444 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1445 		 * way ... to ... at least let the receiving application block
1446 		 * delivery of packets with coverage values less than a value
1447 		 * provided by the application."
1448 		 */
1449 		if (up->pcrlen == 0) {          /* full coverage was set  */
1450 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1451 				       UDP_SKB_CB(skb)->cscov, skb->len);
1452 			goto drop;
1453 		}
1454 		/* The next case involves violating the min. coverage requested
1455 		 * by the receiver. This is subtle: if receiver wants x and x is
1456 		 * greater than the buffersize/MTU then receiver will complain
1457 		 * that it wants x while sender emits packets of smaller size y.
1458 		 * Therefore the above ...()->partial_cov statement is essential.
1459 		 */
1460 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1461 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1462 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1463 			goto drop;
1464 		}
1465 	}
1466 
1467 	if (rcu_access_pointer(sk->sk_filter) &&
1468 	    udp_lib_checksum_complete(skb))
1469 		goto drop;
1470 
1471 
1472 	if (sk_rcvqueues_full(sk, skb))
1473 		goto drop;
1474 
1475 	rc = 0;
1476 
1477 	ipv4_pktinfo_prepare(skb);
1478 	bh_lock_sock(sk);
1479 	if (!sock_owned_by_user(sk))
1480 		rc = __udp_queue_rcv_skb(sk, skb);
1481 	else if (sk_add_backlog(sk, skb)) {
1482 		bh_unlock_sock(sk);
1483 		goto drop;
1484 	}
1485 	bh_unlock_sock(sk);
1486 
1487 	return rc;
1488 
1489 drop:
1490 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1491 	atomic_inc(&sk->sk_drops);
1492 	kfree_skb(skb);
1493 	return -1;
1494 }
1495 
1496 
flush_stack(struct sock ** stack,unsigned int count,struct sk_buff * skb,unsigned int final)1497 static void flush_stack(struct sock **stack, unsigned int count,
1498 			struct sk_buff *skb, unsigned int final)
1499 {
1500 	unsigned int i;
1501 	struct sk_buff *skb1 = NULL;
1502 	struct sock *sk;
1503 
1504 	for (i = 0; i < count; i++) {
1505 		sk = stack[i];
1506 		if (likely(skb1 == NULL))
1507 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1508 
1509 		if (!skb1) {
1510 			atomic_inc(&sk->sk_drops);
1511 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1512 					 IS_UDPLITE(sk));
1513 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1514 					 IS_UDPLITE(sk));
1515 		}
1516 
1517 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1518 			skb1 = NULL;
1519 	}
1520 	if (unlikely(skb1))
1521 		kfree_skb(skb1);
1522 }
1523 
1524 /*
1525  *	Multicasts and broadcasts go to each listener.
1526  *
1527  *	Note: called only from the BH handler context.
1528  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable)1529 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1530 				    struct udphdr  *uh,
1531 				    __be32 saddr, __be32 daddr,
1532 				    struct udp_table *udptable)
1533 {
1534 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1535 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1536 	int dif;
1537 	unsigned int i, count = 0;
1538 
1539 	spin_lock(&hslot->lock);
1540 	sk = sk_nulls_head(&hslot->head);
1541 	dif = skb->dev->ifindex;
1542 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1543 	while (sk) {
1544 		stack[count++] = sk;
1545 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1546 				       daddr, uh->source, saddr, dif);
1547 		if (unlikely(count == ARRAY_SIZE(stack))) {
1548 			if (!sk)
1549 				break;
1550 			flush_stack(stack, count, skb, ~0);
1551 			count = 0;
1552 		}
1553 	}
1554 	/*
1555 	 * before releasing chain lock, we must take a reference on sockets
1556 	 */
1557 	for (i = 0; i < count; i++)
1558 		sock_hold(stack[i]);
1559 
1560 	spin_unlock(&hslot->lock);
1561 
1562 	/*
1563 	 * do the slow work with no lock held
1564 	 */
1565 	if (count) {
1566 		flush_stack(stack, count, skb, count - 1);
1567 
1568 		for (i = 0; i < count; i++)
1569 			sock_put(stack[i]);
1570 	} else {
1571 		kfree_skb(skb);
1572 	}
1573 	return 0;
1574 }
1575 
1576 /* Initialize UDP checksum. If exited with zero value (success),
1577  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1578  * Otherwise, csum completion requires chacksumming packet body,
1579  * including udp header and folding it to skb->csum.
1580  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)1581 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1582 				 int proto)
1583 {
1584 	const struct iphdr *iph;
1585 	int err;
1586 
1587 	UDP_SKB_CB(skb)->partial_cov = 0;
1588 	UDP_SKB_CB(skb)->cscov = skb->len;
1589 
1590 	if (proto == IPPROTO_UDPLITE) {
1591 		err = udplite_checksum_init(skb, uh);
1592 		if (err)
1593 			return err;
1594 	}
1595 
1596 	iph = ip_hdr(skb);
1597 	if (uh->check == 0) {
1598 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1599 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1600 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1601 				      proto, skb->csum))
1602 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 	}
1604 	if (!skb_csum_unnecessary(skb))
1605 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1606 					       skb->len, proto, 0);
1607 	/* Probably, we should checksum udp header (it should be in cache
1608 	 * in any case) and data in tiny packets (< rx copybreak).
1609 	 */
1610 
1611 	return 0;
1612 }
1613 
1614 /*
1615  *	All we need to do is get the socket, and then do a checksum.
1616  */
1617 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)1618 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1619 		   int proto)
1620 {
1621 	struct sock *sk;
1622 	struct udphdr *uh;
1623 	unsigned short ulen;
1624 	struct rtable *rt = skb_rtable(skb);
1625 	__be32 saddr, daddr;
1626 	struct net *net = dev_net(skb->dev);
1627 
1628 	/*
1629 	 *  Validate the packet.
1630 	 */
1631 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1632 		goto drop;		/* No space for header. */
1633 
1634 	uh   = udp_hdr(skb);
1635 	ulen = ntohs(uh->len);
1636 	saddr = ip_hdr(skb)->saddr;
1637 	daddr = ip_hdr(skb)->daddr;
1638 
1639 	if (ulen > skb->len)
1640 		goto short_packet;
1641 
1642 	if (proto == IPPROTO_UDP) {
1643 		/* UDP validates ulen. */
1644 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1645 			goto short_packet;
1646 		uh = udp_hdr(skb);
1647 	}
1648 
1649 	if (udp4_csum_init(skb, uh, proto))
1650 		goto csum_error;
1651 
1652 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1653 		return __udp4_lib_mcast_deliver(net, skb, uh,
1654 				saddr, daddr, udptable);
1655 
1656 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1657 
1658 	if (sk != NULL) {
1659 		int ret = udp_queue_rcv_skb(sk, skb);
1660 		sock_put(sk);
1661 
1662 		/* a return value > 0 means to resubmit the input, but
1663 		 * it wants the return to be -protocol, or 0
1664 		 */
1665 		if (ret > 0)
1666 			return -ret;
1667 		return 0;
1668 	}
1669 
1670 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1671 		goto drop;
1672 	nf_reset(skb);
1673 
1674 	/* No socket. Drop packet silently, if checksum is wrong */
1675 	if (udp_lib_checksum_complete(skb))
1676 		goto csum_error;
1677 
1678 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1679 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1680 
1681 	/*
1682 	 * Hmm.  We got an UDP packet to a port to which we
1683 	 * don't wanna listen.  Ignore it.
1684 	 */
1685 	kfree_skb(skb);
1686 	return 0;
1687 
1688 short_packet:
1689 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1690 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1691 		       &saddr, ntohs(uh->source),
1692 		       ulen, skb->len,
1693 		       &daddr, ntohs(uh->dest));
1694 	goto drop;
1695 
1696 csum_error:
1697 	/*
1698 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1699 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1700 	 */
1701 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1702 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1703 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1704 		       ulen);
1705 drop:
1706 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1707 	kfree_skb(skb);
1708 	return 0;
1709 }
1710 
udp_rcv(struct sk_buff * skb)1711 int udp_rcv(struct sk_buff *skb)
1712 {
1713 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1714 }
1715 
udp_destroy_sock(struct sock * sk)1716 void udp_destroy_sock(struct sock *sk)
1717 {
1718 	bool slow = lock_sock_fast(sk);
1719 	udp_flush_pending_frames(sk);
1720 	unlock_sock_fast(sk, slow);
1721 }
1722 
1723 /*
1724  *	Socket option code for UDP
1725  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))1726 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1727 		       char __user *optval, unsigned int optlen,
1728 		       int (*push_pending_frames)(struct sock *))
1729 {
1730 	struct udp_sock *up = udp_sk(sk);
1731 	int val;
1732 	int err = 0;
1733 	int is_udplite = IS_UDPLITE(sk);
1734 
1735 	if (optlen < sizeof(int))
1736 		return -EINVAL;
1737 
1738 	if (get_user(val, (int __user *)optval))
1739 		return -EFAULT;
1740 
1741 	switch (optname) {
1742 	case UDP_CORK:
1743 		if (val != 0) {
1744 			up->corkflag = 1;
1745 		} else {
1746 			up->corkflag = 0;
1747 			lock_sock(sk);
1748 			(*push_pending_frames)(sk);
1749 			release_sock(sk);
1750 		}
1751 		break;
1752 
1753 	case UDP_ENCAP:
1754 		switch (val) {
1755 		case 0:
1756 		case UDP_ENCAP_ESPINUDP:
1757 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1758 			up->encap_rcv = xfrm4_udp_encap_rcv;
1759 			/* FALLTHROUGH */
1760 		case UDP_ENCAP_L2TPINUDP:
1761 			up->encap_type = val;
1762 			break;
1763 		default:
1764 			err = -ENOPROTOOPT;
1765 			break;
1766 		}
1767 		break;
1768 
1769 	/*
1770 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1771 	 */
1772 	/* The sender sets actual checksum coverage length via this option.
1773 	 * The case coverage > packet length is handled by send module. */
1774 	case UDPLITE_SEND_CSCOV:
1775 		if (!is_udplite)         /* Disable the option on UDP sockets */
1776 			return -ENOPROTOOPT;
1777 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1778 			val = 8;
1779 		else if (val > USHRT_MAX)
1780 			val = USHRT_MAX;
1781 		up->pcslen = val;
1782 		up->pcflag |= UDPLITE_SEND_CC;
1783 		break;
1784 
1785 	/* The receiver specifies a minimum checksum coverage value. To make
1786 	 * sense, this should be set to at least 8 (as done below). If zero is
1787 	 * used, this again means full checksum coverage.                     */
1788 	case UDPLITE_RECV_CSCOV:
1789 		if (!is_udplite)         /* Disable the option on UDP sockets */
1790 			return -ENOPROTOOPT;
1791 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1792 			val = 8;
1793 		else if (val > USHRT_MAX)
1794 			val = USHRT_MAX;
1795 		up->pcrlen = val;
1796 		up->pcflag |= UDPLITE_RECV_CC;
1797 		break;
1798 
1799 	default:
1800 		err = -ENOPROTOOPT;
1801 		break;
1802 	}
1803 
1804 	return err;
1805 }
1806 EXPORT_SYMBOL(udp_lib_setsockopt);
1807 
udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1808 int udp_setsockopt(struct sock *sk, int level, int optname,
1809 		   char __user *optval, unsigned int optlen)
1810 {
1811 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1812 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1813 					  udp_push_pending_frames);
1814 	return ip_setsockopt(sk, level, optname, optval, optlen);
1815 }
1816 
1817 #ifdef CONFIG_COMPAT
compat_udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1818 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1819 			  char __user *optval, unsigned int optlen)
1820 {
1821 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1822 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1823 					  udp_push_pending_frames);
1824 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1825 }
1826 #endif
1827 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1828 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1829 		       char __user *optval, int __user *optlen)
1830 {
1831 	struct udp_sock *up = udp_sk(sk);
1832 	int val, len;
1833 
1834 	if (get_user(len, optlen))
1835 		return -EFAULT;
1836 
1837 	len = min_t(unsigned int, len, sizeof(int));
1838 
1839 	if (len < 0)
1840 		return -EINVAL;
1841 
1842 	switch (optname) {
1843 	case UDP_CORK:
1844 		val = up->corkflag;
1845 		break;
1846 
1847 	case UDP_ENCAP:
1848 		val = up->encap_type;
1849 		break;
1850 
1851 	/* The following two cannot be changed on UDP sockets, the return is
1852 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1853 	case UDPLITE_SEND_CSCOV:
1854 		val = up->pcslen;
1855 		break;
1856 
1857 	case UDPLITE_RECV_CSCOV:
1858 		val = up->pcrlen;
1859 		break;
1860 
1861 	default:
1862 		return -ENOPROTOOPT;
1863 	}
1864 
1865 	if (put_user(len, optlen))
1866 		return -EFAULT;
1867 	if (copy_to_user(optval, &val, len))
1868 		return -EFAULT;
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL(udp_lib_getsockopt);
1872 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1873 int udp_getsockopt(struct sock *sk, int level, int optname,
1874 		   char __user *optval, int __user *optlen)
1875 {
1876 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1877 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1878 	return ip_getsockopt(sk, level, optname, optval, optlen);
1879 }
1880 
1881 #ifdef CONFIG_COMPAT
compat_udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1882 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1883 				 char __user *optval, int __user *optlen)
1884 {
1885 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1886 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1887 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1888 }
1889 #endif
1890 /**
1891  * 	udp_poll - wait for a UDP event.
1892  *	@file - file struct
1893  *	@sock - socket
1894  *	@wait - poll table
1895  *
1896  *	This is same as datagram poll, except for the special case of
1897  *	blocking sockets. If application is using a blocking fd
1898  *	and a packet with checksum error is in the queue;
1899  *	then it could get return from select indicating data available
1900  *	but then block when reading it. Add special case code
1901  *	to work around these arguably broken applications.
1902  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)1903 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1904 {
1905 	unsigned int mask = datagram_poll(file, sock, wait);
1906 	struct sock *sk = sock->sk;
1907 
1908 	/* Check for false positives due to checksum errors */
1909 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1910 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1911 		mask &= ~(POLLIN | POLLRDNORM);
1912 
1913 	return mask;
1914 
1915 }
1916 EXPORT_SYMBOL(udp_poll);
1917 
1918 struct proto udp_prot = {
1919 	.name		   = "UDP",
1920 	.owner		   = THIS_MODULE,
1921 	.close		   = udp_lib_close,
1922 	.connect	   = ip4_datagram_connect,
1923 	.disconnect	   = udp_disconnect,
1924 	.ioctl		   = udp_ioctl,
1925 	.destroy	   = udp_destroy_sock,
1926 	.setsockopt	   = udp_setsockopt,
1927 	.getsockopt	   = udp_getsockopt,
1928 	.sendmsg	   = udp_sendmsg,
1929 	.recvmsg	   = udp_recvmsg,
1930 	.sendpage	   = udp_sendpage,
1931 	.backlog_rcv	   = __udp_queue_rcv_skb,
1932 	.hash		   = udp_lib_hash,
1933 	.unhash		   = udp_lib_unhash,
1934 	.rehash		   = udp_v4_rehash,
1935 	.get_port	   = udp_v4_get_port,
1936 	.memory_allocated  = &udp_memory_allocated,
1937 	.sysctl_mem	   = sysctl_udp_mem,
1938 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1939 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1940 	.obj_size	   = sizeof(struct udp_sock),
1941 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1942 	.h.udp_table	   = &udp_table,
1943 #ifdef CONFIG_COMPAT
1944 	.compat_setsockopt = compat_udp_setsockopt,
1945 	.compat_getsockopt = compat_udp_getsockopt,
1946 #endif
1947 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
1948 };
1949 EXPORT_SYMBOL(udp_prot);
1950 
1951 /* ------------------------------------------------------------------------ */
1952 #ifdef CONFIG_PROC_FS
1953 
udp_get_first(struct seq_file * seq,int start)1954 static struct sock *udp_get_first(struct seq_file *seq, int start)
1955 {
1956 	struct sock *sk;
1957 	struct udp_iter_state *state = seq->private;
1958 	struct net *net = seq_file_net(seq);
1959 
1960 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
1961 	     ++state->bucket) {
1962 		struct hlist_nulls_node *node;
1963 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1964 
1965 		if (hlist_nulls_empty(&hslot->head))
1966 			continue;
1967 
1968 		spin_lock_bh(&hslot->lock);
1969 		sk_nulls_for_each(sk, node, &hslot->head) {
1970 			if (!net_eq(sock_net(sk), net))
1971 				continue;
1972 			if (sk->sk_family == state->family)
1973 				goto found;
1974 		}
1975 		spin_unlock_bh(&hslot->lock);
1976 	}
1977 	sk = NULL;
1978 found:
1979 	return sk;
1980 }
1981 
udp_get_next(struct seq_file * seq,struct sock * sk)1982 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1983 {
1984 	struct udp_iter_state *state = seq->private;
1985 	struct net *net = seq_file_net(seq);
1986 
1987 	do {
1988 		sk = sk_nulls_next(sk);
1989 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1990 
1991 	if (!sk) {
1992 		if (state->bucket <= state->udp_table->mask)
1993 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1994 		return udp_get_first(seq, state->bucket + 1);
1995 	}
1996 	return sk;
1997 }
1998 
udp_get_idx(struct seq_file * seq,loff_t pos)1999 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2000 {
2001 	struct sock *sk = udp_get_first(seq, 0);
2002 
2003 	if (sk)
2004 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2005 			--pos;
2006 	return pos ? NULL : sk;
2007 }
2008 
udp_seq_start(struct seq_file * seq,loff_t * pos)2009 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2010 {
2011 	struct udp_iter_state *state = seq->private;
2012 	state->bucket = MAX_UDP_PORTS;
2013 
2014 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2015 }
2016 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2017 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2018 {
2019 	struct sock *sk;
2020 
2021 	if (v == SEQ_START_TOKEN)
2022 		sk = udp_get_idx(seq, 0);
2023 	else
2024 		sk = udp_get_next(seq, v);
2025 
2026 	++*pos;
2027 	return sk;
2028 }
2029 
udp_seq_stop(struct seq_file * seq,void * v)2030 static void udp_seq_stop(struct seq_file *seq, void *v)
2031 {
2032 	struct udp_iter_state *state = seq->private;
2033 
2034 	if (state->bucket <= state->udp_table->mask)
2035 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2036 }
2037 
udp_seq_open(struct inode * inode,struct file * file)2038 int udp_seq_open(struct inode *inode, struct file *file)
2039 {
2040 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2041 	struct udp_iter_state *s;
2042 	int err;
2043 
2044 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2045 			   sizeof(struct udp_iter_state));
2046 	if (err < 0)
2047 		return err;
2048 
2049 	s = ((struct seq_file *)file->private_data)->private;
2050 	s->family		= afinfo->family;
2051 	s->udp_table		= afinfo->udp_table;
2052 	return err;
2053 }
2054 EXPORT_SYMBOL(udp_seq_open);
2055 
2056 /* ------------------------------------------------------------------------ */
udp_proc_register(struct net * net,struct udp_seq_afinfo * afinfo)2057 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2058 {
2059 	struct proc_dir_entry *p;
2060 	int rc = 0;
2061 
2062 	afinfo->seq_ops.start		= udp_seq_start;
2063 	afinfo->seq_ops.next		= udp_seq_next;
2064 	afinfo->seq_ops.stop		= udp_seq_stop;
2065 
2066 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2067 			     afinfo->seq_fops, afinfo);
2068 	if (!p)
2069 		rc = -ENOMEM;
2070 	return rc;
2071 }
2072 EXPORT_SYMBOL(udp_proc_register);
2073 
udp_proc_unregister(struct net * net,struct udp_seq_afinfo * afinfo)2074 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2075 {
2076 	proc_net_remove(net, afinfo->name);
2077 }
2078 EXPORT_SYMBOL(udp_proc_unregister);
2079 
2080 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket,int * len)2081 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2082 		int bucket, int *len)
2083 {
2084 	struct inet_sock *inet = inet_sk(sp);
2085 	__be32 dest = inet->inet_daddr;
2086 	__be32 src  = inet->inet_rcv_saddr;
2087 	__u16 destp	  = ntohs(inet->inet_dport);
2088 	__u16 srcp	  = ntohs(inet->inet_sport);
2089 
2090 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2091 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2092 		bucket, src, srcp, dest, destp, sp->sk_state,
2093 		sk_wmem_alloc_get(sp),
2094 		sk_rmem_alloc_get(sp),
2095 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2096 		atomic_read(&sp->sk_refcnt), sp,
2097 		atomic_read(&sp->sk_drops), len);
2098 }
2099 
udp4_seq_show(struct seq_file * seq,void * v)2100 int udp4_seq_show(struct seq_file *seq, void *v)
2101 {
2102 	if (v == SEQ_START_TOKEN)
2103 		seq_printf(seq, "%-127s\n",
2104 			   "  sl  local_address rem_address   st tx_queue "
2105 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2106 			   "inode ref pointer drops");
2107 	else {
2108 		struct udp_iter_state *state = seq->private;
2109 		int len;
2110 
2111 		udp4_format_sock(v, seq, state->bucket, &len);
2112 		seq_printf(seq, "%*s\n", 127 - len, "");
2113 	}
2114 	return 0;
2115 }
2116 
2117 static const struct file_operations udp_afinfo_seq_fops = {
2118 	.owner    = THIS_MODULE,
2119 	.open     = udp_seq_open,
2120 	.read     = seq_read,
2121 	.llseek   = seq_lseek,
2122 	.release  = seq_release_net
2123 };
2124 
2125 /* ------------------------------------------------------------------------ */
2126 static struct udp_seq_afinfo udp4_seq_afinfo = {
2127 	.name		= "udp",
2128 	.family		= AF_INET,
2129 	.udp_table	= &udp_table,
2130 	.seq_fops	= &udp_afinfo_seq_fops,
2131 	.seq_ops	= {
2132 		.show		= udp4_seq_show,
2133 	},
2134 };
2135 
udp4_proc_init_net(struct net * net)2136 static int __net_init udp4_proc_init_net(struct net *net)
2137 {
2138 	return udp_proc_register(net, &udp4_seq_afinfo);
2139 }
2140 
udp4_proc_exit_net(struct net * net)2141 static void __net_exit udp4_proc_exit_net(struct net *net)
2142 {
2143 	udp_proc_unregister(net, &udp4_seq_afinfo);
2144 }
2145 
2146 static struct pernet_operations udp4_net_ops = {
2147 	.init = udp4_proc_init_net,
2148 	.exit = udp4_proc_exit_net,
2149 };
2150 
udp4_proc_init(void)2151 int __init udp4_proc_init(void)
2152 {
2153 	return register_pernet_subsys(&udp4_net_ops);
2154 }
2155 
udp4_proc_exit(void)2156 void udp4_proc_exit(void)
2157 {
2158 	unregister_pernet_subsys(&udp4_net_ops);
2159 }
2160 #endif /* CONFIG_PROC_FS */
2161 
2162 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)2163 static int __init set_uhash_entries(char *str)
2164 {
2165 	if (!str)
2166 		return 0;
2167 	uhash_entries = simple_strtoul(str, &str, 0);
2168 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2169 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2170 	return 1;
2171 }
2172 __setup("uhash_entries=", set_uhash_entries);
2173 
udp_table_init(struct udp_table * table,const char * name)2174 void __init udp_table_init(struct udp_table *table, const char *name)
2175 {
2176 	unsigned int i;
2177 
2178 	if (!CONFIG_BASE_SMALL)
2179 		table->hash = alloc_large_system_hash(name,
2180 			2 * sizeof(struct udp_hslot),
2181 			uhash_entries,
2182 			21, /* one slot per 2 MB */
2183 			0,
2184 			&table->log,
2185 			&table->mask,
2186 			64 * 1024);
2187 	/*
2188 	 * Make sure hash table has the minimum size
2189 	 */
2190 	if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2191 		table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2192 				      2 * sizeof(struct udp_hslot), GFP_KERNEL);
2193 		if (!table->hash)
2194 			panic(name);
2195 		table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2196 		table->mask = UDP_HTABLE_SIZE_MIN - 1;
2197 	}
2198 	table->hash2 = table->hash + (table->mask + 1);
2199 	for (i = 0; i <= table->mask; i++) {
2200 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2201 		table->hash[i].count = 0;
2202 		spin_lock_init(&table->hash[i].lock);
2203 	}
2204 	for (i = 0; i <= table->mask; i++) {
2205 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2206 		table->hash2[i].count = 0;
2207 		spin_lock_init(&table->hash2[i].lock);
2208 	}
2209 }
2210 
udp_init(void)2211 void __init udp_init(void)
2212 {
2213 	unsigned long limit;
2214 
2215 	udp_table_init(&udp_table, "UDP");
2216 	limit = nr_free_buffer_pages() / 8;
2217 	limit = max(limit, 128UL);
2218 	sysctl_udp_mem[0] = limit / 4 * 3;
2219 	sysctl_udp_mem[1] = limit;
2220 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2221 
2222 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2223 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2224 }
2225 
udp4_ufo_send_check(struct sk_buff * skb)2226 int udp4_ufo_send_check(struct sk_buff *skb)
2227 {
2228 	const struct iphdr *iph;
2229 	struct udphdr *uh;
2230 
2231 	if (!pskb_may_pull(skb, sizeof(*uh)))
2232 		return -EINVAL;
2233 
2234 	iph = ip_hdr(skb);
2235 	uh = udp_hdr(skb);
2236 
2237 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2238 				       IPPROTO_UDP, 0);
2239 	skb->csum_start = skb_transport_header(skb) - skb->head;
2240 	skb->csum_offset = offsetof(struct udphdr, check);
2241 	skb->ip_summed = CHECKSUM_PARTIAL;
2242 	return 0;
2243 }
2244 
udp4_ufo_fragment(struct sk_buff * skb,netdev_features_t features)2245 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
2246 	netdev_features_t features)
2247 {
2248 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2249 	unsigned int mss;
2250 	int offset;
2251 	__wsum csum;
2252 
2253 	mss = skb_shinfo(skb)->gso_size;
2254 	if (unlikely(skb->len <= mss))
2255 		goto out;
2256 
2257 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2258 		/* Packet is from an untrusted source, reset gso_segs. */
2259 		int type = skb_shinfo(skb)->gso_type;
2260 
2261 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2262 			     !(type & (SKB_GSO_UDP))))
2263 			goto out;
2264 
2265 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2266 
2267 		segs = NULL;
2268 		goto out;
2269 	}
2270 
2271 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2272 	 * do checksum of UDP packets sent as multiple IP fragments.
2273 	 */
2274 	offset = skb_checksum_start_offset(skb);
2275 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2276 	offset += skb->csum_offset;
2277 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2278 	skb->ip_summed = CHECKSUM_NONE;
2279 
2280 	/* Fragment the skb. IP headers of the fragments are updated in
2281 	 * inet_gso_segment()
2282 	 */
2283 	segs = skb_segment(skb, features);
2284 out:
2285 	return segs;
2286 }
2287 
2288