1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <linux/slab.h>
99 #include <net/tcp_states.h>
100 #include <linux/skbuff.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <net/net_namespace.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include "udp_impl.h"
109
110 struct udp_table udp_table __read_mostly;
111 EXPORT_SYMBOL(udp_table);
112
113 long sysctl_udp_mem[3] __read_mostly;
114 EXPORT_SYMBOL(sysctl_udp_mem);
115
116 int sysctl_udp_rmem_min __read_mostly;
117 EXPORT_SYMBOL(sysctl_udp_rmem_min);
118
119 int sysctl_udp_wmem_min __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int log)128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 const struct udp_hslot *hslot,
130 unsigned long *bitmap,
131 struct sock *sk,
132 int (*saddr_comp)(const struct sock *sk1,
133 const struct sock *sk2),
134 unsigned int log)
135 {
136 struct sock *sk2;
137 struct hlist_nulls_node *node;
138
139 sk_nulls_for_each(sk2, node, &hslot->head)
140 if (net_eq(sock_net(sk2), net) &&
141 sk2 != sk &&
142 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
143 (!sk2->sk_reuse || !sk->sk_reuse) &&
144 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
145 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
146 (*saddr_comp)(sk, sk2)) {
147 if (bitmap)
148 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
149 bitmap);
150 else
151 return 1;
152 }
153 return 0;
154 }
155
156 /*
157 * Note: we still hold spinlock of primary hash chain, so no other writer
158 * can insert/delete a socket with local_port == num
159 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2))160 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
161 struct udp_hslot *hslot2,
162 struct sock *sk,
163 int (*saddr_comp)(const struct sock *sk1,
164 const struct sock *sk2))
165 {
166 struct sock *sk2;
167 struct hlist_nulls_node *node;
168 int res = 0;
169
170 spin_lock(&hslot2->lock);
171 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
172 if (net_eq(sock_net(sk2), net) &&
173 sk2 != sk &&
174 (udp_sk(sk2)->udp_port_hash == num) &&
175 (!sk2->sk_reuse || !sk->sk_reuse) &&
176 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
177 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
178 (*saddr_comp)(sk, sk2)) {
179 res = 1;
180 break;
181 }
182 spin_unlock(&hslot2->lock);
183 return res;
184 }
185
186 /**
187 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
188 *
189 * @sk: socket struct in question
190 * @snum: port number to look up
191 * @saddr_comp: AF-dependent comparison of bound local IP addresses
192 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
193 * with NULL address
194 */
udp_lib_get_port(struct sock * sk,unsigned short snum,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int hash2_nulladdr)195 int udp_lib_get_port(struct sock *sk, unsigned short snum,
196 int (*saddr_comp)(const struct sock *sk1,
197 const struct sock *sk2),
198 unsigned int hash2_nulladdr)
199 {
200 struct udp_hslot *hslot, *hslot2;
201 struct udp_table *udptable = sk->sk_prot->h.udp_table;
202 int error = 1;
203 struct net *net = sock_net(sk);
204
205 if (!snum) {
206 int low, high, remaining;
207 unsigned rand;
208 unsigned short first, last;
209 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
210
211 inet_get_local_port_range(&low, &high);
212 remaining = (high - low) + 1;
213
214 rand = net_random();
215 first = (((u64)rand * remaining) >> 32) + low;
216 /*
217 * force rand to be an odd multiple of UDP_HTABLE_SIZE
218 */
219 rand = (rand | 1) * (udptable->mask + 1);
220 last = first + udptable->mask + 1;
221 do {
222 hslot = udp_hashslot(udptable, net, first);
223 bitmap_zero(bitmap, PORTS_PER_CHAIN);
224 spin_lock_bh(&hslot->lock);
225 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
226 saddr_comp, udptable->log);
227
228 snum = first;
229 /*
230 * Iterate on all possible values of snum for this hash.
231 * Using steps of an odd multiple of UDP_HTABLE_SIZE
232 * give us randomization and full range coverage.
233 */
234 do {
235 if (low <= snum && snum <= high &&
236 !test_bit(snum >> udptable->log, bitmap) &&
237 !inet_is_reserved_local_port(snum))
238 goto found;
239 snum += rand;
240 } while (snum != first);
241 spin_unlock_bh(&hslot->lock);
242 } while (++first != last);
243 goto fail;
244 } else {
245 hslot = udp_hashslot(udptable, net, snum);
246 spin_lock_bh(&hslot->lock);
247 if (hslot->count > 10) {
248 int exist;
249 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
250
251 slot2 &= udptable->mask;
252 hash2_nulladdr &= udptable->mask;
253
254 hslot2 = udp_hashslot2(udptable, slot2);
255 if (hslot->count < hslot2->count)
256 goto scan_primary_hash;
257
258 exist = udp_lib_lport_inuse2(net, snum, hslot2,
259 sk, saddr_comp);
260 if (!exist && (hash2_nulladdr != slot2)) {
261 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
262 exist = udp_lib_lport_inuse2(net, snum, hslot2,
263 sk, saddr_comp);
264 }
265 if (exist)
266 goto fail_unlock;
267 else
268 goto found;
269 }
270 scan_primary_hash:
271 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
272 saddr_comp, 0))
273 goto fail_unlock;
274 }
275 found:
276 inet_sk(sk)->inet_num = snum;
277 udp_sk(sk)->udp_port_hash = snum;
278 udp_sk(sk)->udp_portaddr_hash ^= snum;
279 if (sk_unhashed(sk)) {
280 sk_nulls_add_node_rcu(sk, &hslot->head);
281 hslot->count++;
282 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
283
284 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
285 spin_lock(&hslot2->lock);
286 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
287 &hslot2->head);
288 hslot2->count++;
289 spin_unlock(&hslot2->lock);
290 }
291 error = 0;
292 fail_unlock:
293 spin_unlock_bh(&hslot->lock);
294 fail:
295 return error;
296 }
297 EXPORT_SYMBOL(udp_lib_get_port);
298
ipv4_rcv_saddr_equal(const struct sock * sk1,const struct sock * sk2)299 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
300 {
301 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
302
303 return (!ipv6_only_sock(sk2) &&
304 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
305 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
306 }
307
udp4_portaddr_hash(struct net * net,__be32 saddr,unsigned int port)308 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
309 unsigned int port)
310 {
311 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
312 }
313
udp_v4_get_port(struct sock * sk,unsigned short snum)314 int udp_v4_get_port(struct sock *sk, unsigned short snum)
315 {
316 unsigned int hash2_nulladdr =
317 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
318 unsigned int hash2_partial =
319 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
320
321 /* precompute partial secondary hash */
322 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
323 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
324 }
325
compute_score(struct sock * sk,struct net * net,__be32 saddr,unsigned short hnum,__be16 sport,__be32 daddr,__be16 dport,int dif)326 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
327 unsigned short hnum,
328 __be16 sport, __be32 daddr, __be16 dport, int dif)
329 {
330 int score = -1;
331
332 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
333 !ipv6_only_sock(sk)) {
334 struct inet_sock *inet = inet_sk(sk);
335
336 score = (sk->sk_family == PF_INET ? 1 : 0);
337 if (inet->inet_rcv_saddr) {
338 if (inet->inet_rcv_saddr != daddr)
339 return -1;
340 score += 2;
341 }
342 if (inet->inet_daddr) {
343 if (inet->inet_daddr != saddr)
344 return -1;
345 score += 2;
346 }
347 if (inet->inet_dport) {
348 if (inet->inet_dport != sport)
349 return -1;
350 score += 2;
351 }
352 if (sk->sk_bound_dev_if) {
353 if (sk->sk_bound_dev_if != dif)
354 return -1;
355 score += 2;
356 }
357 }
358 return score;
359 }
360
361 /*
362 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
363 */
364 #define SCORE2_MAX (1 + 2 + 2 + 2)
compute_score2(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif)365 static inline int compute_score2(struct sock *sk, struct net *net,
366 __be32 saddr, __be16 sport,
367 __be32 daddr, unsigned int hnum, int dif)
368 {
369 int score = -1;
370
371 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
372 struct inet_sock *inet = inet_sk(sk);
373
374 if (inet->inet_rcv_saddr != daddr)
375 return -1;
376 if (inet->inet_num != hnum)
377 return -1;
378
379 score = (sk->sk_family == PF_INET ? 1 : 0);
380 if (inet->inet_daddr) {
381 if (inet->inet_daddr != saddr)
382 return -1;
383 score += 2;
384 }
385 if (inet->inet_dport) {
386 if (inet->inet_dport != sport)
387 return -1;
388 score += 2;
389 }
390 if (sk->sk_bound_dev_if) {
391 if (sk->sk_bound_dev_if != dif)
392 return -1;
393 score += 2;
394 }
395 }
396 return score;
397 }
398
399
400 /* called with read_rcu_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,struct udp_hslot * hslot2,unsigned int slot2)401 static struct sock *udp4_lib_lookup2(struct net *net,
402 __be32 saddr, __be16 sport,
403 __be32 daddr, unsigned int hnum, int dif,
404 struct udp_hslot *hslot2, unsigned int slot2)
405 {
406 struct sock *sk, *result;
407 struct hlist_nulls_node *node;
408 int score, badness;
409
410 begin:
411 result = NULL;
412 badness = -1;
413 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
414 score = compute_score2(sk, net, saddr, sport,
415 daddr, hnum, dif);
416 if (score > badness) {
417 result = sk;
418 badness = score;
419 if (score == SCORE2_MAX)
420 goto exact_match;
421 }
422 }
423 /*
424 * if the nulls value we got at the end of this lookup is
425 * not the expected one, we must restart lookup.
426 * We probably met an item that was moved to another chain.
427 */
428 if (get_nulls_value(node) != slot2)
429 goto begin;
430
431 if (result) {
432 exact_match:
433 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
434 result = NULL;
435 else if (unlikely(compute_score2(result, net, saddr, sport,
436 daddr, hnum, dif) < badness)) {
437 sock_put(result);
438 goto begin;
439 }
440 }
441 return result;
442 }
443
444 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
445 * harder than this. -DaveM
446 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,struct udp_table * udptable)447 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
448 __be16 sport, __be32 daddr, __be16 dport,
449 int dif, struct udp_table *udptable)
450 {
451 struct sock *sk, *result;
452 struct hlist_nulls_node *node;
453 unsigned short hnum = ntohs(dport);
454 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
455 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
456 int score, badness;
457
458 rcu_read_lock();
459 if (hslot->count > 10) {
460 hash2 = udp4_portaddr_hash(net, daddr, hnum);
461 slot2 = hash2 & udptable->mask;
462 hslot2 = &udptable->hash2[slot2];
463 if (hslot->count < hslot2->count)
464 goto begin;
465
466 result = udp4_lib_lookup2(net, saddr, sport,
467 daddr, hnum, dif,
468 hslot2, slot2);
469 if (!result) {
470 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
471 slot2 = hash2 & udptable->mask;
472 hslot2 = &udptable->hash2[slot2];
473 if (hslot->count < hslot2->count)
474 goto begin;
475
476 result = udp4_lib_lookup2(net, saddr, sport,
477 htonl(INADDR_ANY), hnum, dif,
478 hslot2, slot2);
479 }
480 rcu_read_unlock();
481 return result;
482 }
483 begin:
484 result = NULL;
485 badness = -1;
486 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
487 score = compute_score(sk, net, saddr, hnum, sport,
488 daddr, dport, dif);
489 if (score > badness) {
490 result = sk;
491 badness = score;
492 }
493 }
494 /*
495 * if the nulls value we got at the end of this lookup is
496 * not the expected one, we must restart lookup.
497 * We probably met an item that was moved to another chain.
498 */
499 if (get_nulls_value(node) != slot)
500 goto begin;
501
502 if (result) {
503 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
504 result = NULL;
505 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
506 daddr, dport, dif) < badness)) {
507 sock_put(result);
508 goto begin;
509 }
510 }
511 rcu_read_unlock();
512 return result;
513 }
514
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)515 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
516 __be16 sport, __be16 dport,
517 struct udp_table *udptable)
518 {
519 struct sock *sk;
520 const struct iphdr *iph = ip_hdr(skb);
521
522 if (unlikely(sk = skb_steal_sock(skb)))
523 return sk;
524 else
525 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
526 iph->daddr, dport, inet_iif(skb),
527 udptable);
528 }
529
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)530 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
531 __be32 daddr, __be16 dport, int dif)
532 {
533 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
534 }
535 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
536
udp_v4_mcast_next(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)537 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
538 __be16 loc_port, __be32 loc_addr,
539 __be16 rmt_port, __be32 rmt_addr,
540 int dif)
541 {
542 struct hlist_nulls_node *node;
543 struct sock *s = sk;
544 unsigned short hnum = ntohs(loc_port);
545
546 sk_nulls_for_each_from(s, node) {
547 struct inet_sock *inet = inet_sk(s);
548
549 if (!net_eq(sock_net(s), net) ||
550 udp_sk(s)->udp_port_hash != hnum ||
551 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
552 (inet->inet_dport != rmt_port && inet->inet_dport) ||
553 (inet->inet_rcv_saddr &&
554 inet->inet_rcv_saddr != loc_addr) ||
555 ipv6_only_sock(s) ||
556 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
557 continue;
558 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
559 continue;
560 goto found;
561 }
562 s = NULL;
563 found:
564 return s;
565 }
566
567 /*
568 * This routine is called by the ICMP module when it gets some
569 * sort of error condition. If err < 0 then the socket should
570 * be closed and the error returned to the user. If err > 0
571 * it's just the icmp type << 8 | icmp code.
572 * Header points to the ip header of the error packet. We move
573 * on past this. Then (as it used to claim before adjustment)
574 * header points to the first 8 bytes of the udp header. We need
575 * to find the appropriate port.
576 */
577
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)578 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
579 {
580 struct inet_sock *inet;
581 struct iphdr *iph = (struct iphdr *)skb->data;
582 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
583 const int type = icmp_hdr(skb)->type;
584 const int code = icmp_hdr(skb)->code;
585 struct sock *sk;
586 int harderr;
587 int err;
588 struct net *net = dev_net(skb->dev);
589
590 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
591 iph->saddr, uh->source, skb->dev->ifindex, udptable);
592 if (sk == NULL) {
593 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
594 return; /* No socket for error */
595 }
596
597 err = 0;
598 harderr = 0;
599 inet = inet_sk(sk);
600
601 switch (type) {
602 default:
603 case ICMP_TIME_EXCEEDED:
604 err = EHOSTUNREACH;
605 break;
606 case ICMP_SOURCE_QUENCH:
607 goto out;
608 case ICMP_PARAMETERPROB:
609 err = EPROTO;
610 harderr = 1;
611 break;
612 case ICMP_DEST_UNREACH:
613 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
614 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
615 err = EMSGSIZE;
616 harderr = 1;
617 break;
618 }
619 goto out;
620 }
621 err = EHOSTUNREACH;
622 if (code <= NR_ICMP_UNREACH) {
623 harderr = icmp_err_convert[code].fatal;
624 err = icmp_err_convert[code].errno;
625 }
626 break;
627 }
628
629 /*
630 * RFC1122: OK. Passes ICMP errors back to application, as per
631 * 4.1.3.3.
632 */
633 if (!inet->recverr) {
634 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
635 goto out;
636 } else
637 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
638
639 sk->sk_err = err;
640 sk->sk_error_report(sk);
641 out:
642 sock_put(sk);
643 }
644
udp_err(struct sk_buff * skb,u32 info)645 void udp_err(struct sk_buff *skb, u32 info)
646 {
647 __udp4_lib_err(skb, info, &udp_table);
648 }
649
650 /*
651 * Throw away all pending data and cancel the corking. Socket is locked.
652 */
udp_flush_pending_frames(struct sock * sk)653 void udp_flush_pending_frames(struct sock *sk)
654 {
655 struct udp_sock *up = udp_sk(sk);
656
657 if (up->pending) {
658 up->len = 0;
659 up->pending = 0;
660 ip_flush_pending_frames(sk);
661 }
662 }
663 EXPORT_SYMBOL(udp_flush_pending_frames);
664
665 /**
666 * udp4_hwcsum - handle outgoing HW checksumming
667 * @skb: sk_buff containing the filled-in UDP header
668 * (checksum field must be zeroed out)
669 * @src: source IP address
670 * @dst: destination IP address
671 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)672 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
673 {
674 struct udphdr *uh = udp_hdr(skb);
675 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
676 int offset = skb_transport_offset(skb);
677 int len = skb->len - offset;
678 int hlen = len;
679 __wsum csum = 0;
680
681 if (!frags) {
682 /*
683 * Only one fragment on the socket.
684 */
685 skb->csum_start = skb_transport_header(skb) - skb->head;
686 skb->csum_offset = offsetof(struct udphdr, check);
687 uh->check = ~csum_tcpudp_magic(src, dst, len,
688 IPPROTO_UDP, 0);
689 } else {
690 /*
691 * HW-checksum won't work as there are two or more
692 * fragments on the socket so that all csums of sk_buffs
693 * should be together
694 */
695 do {
696 csum = csum_add(csum, frags->csum);
697 hlen -= frags->len;
698 } while ((frags = frags->next));
699
700 csum = skb_checksum(skb, offset, hlen, csum);
701 skb->ip_summed = CHECKSUM_NONE;
702
703 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
704 if (uh->check == 0)
705 uh->check = CSUM_MANGLED_0;
706 }
707 }
708
udp_send_skb(struct sk_buff * skb,__be32 daddr,__be32 dport)709 static int udp_send_skb(struct sk_buff *skb, __be32 daddr, __be32 dport)
710 {
711 struct sock *sk = skb->sk;
712 struct inet_sock *inet = inet_sk(sk);
713 struct udphdr *uh;
714 struct rtable *rt = (struct rtable *)skb_dst(skb);
715 int err = 0;
716 int is_udplite = IS_UDPLITE(sk);
717 int offset = skb_transport_offset(skb);
718 int len = skb->len - offset;
719 __wsum csum = 0;
720
721 /*
722 * Create a UDP header
723 */
724 uh = udp_hdr(skb);
725 uh->source = inet->inet_sport;
726 uh->dest = dport;
727 uh->len = htons(len);
728 uh->check = 0;
729
730 if (is_udplite) /* UDP-Lite */
731 csum = udplite_csum(skb);
732
733 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
734
735 skb->ip_summed = CHECKSUM_NONE;
736 goto send;
737
738 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
739
740 udp4_hwcsum(skb, rt->rt_src, daddr);
741 goto send;
742
743 } else
744 csum = udp_csum(skb);
745
746 /* add protocol-dependent pseudo-header */
747 uh->check = csum_tcpudp_magic(rt->rt_src, daddr, len,
748 sk->sk_protocol, csum);
749 if (uh->check == 0)
750 uh->check = CSUM_MANGLED_0;
751
752 send:
753 err = ip_send_skb(skb);
754 if (err) {
755 if (err == -ENOBUFS && !inet->recverr) {
756 UDP_INC_STATS_USER(sock_net(sk),
757 UDP_MIB_SNDBUFERRORS, is_udplite);
758 err = 0;
759 }
760 } else
761 UDP_INC_STATS_USER(sock_net(sk),
762 UDP_MIB_OUTDATAGRAMS, is_udplite);
763 return err;
764 }
765
766 /*
767 * Push out all pending data as one UDP datagram. Socket is locked.
768 */
udp_push_pending_frames(struct sock * sk)769 static int udp_push_pending_frames(struct sock *sk)
770 {
771 struct udp_sock *up = udp_sk(sk);
772 struct inet_sock *inet = inet_sk(sk);
773 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
774 struct sk_buff *skb;
775 int err = 0;
776
777 skb = ip_finish_skb(sk);
778 if (!skb)
779 goto out;
780
781 err = udp_send_skb(skb, fl4->daddr, fl4->fl4_dport);
782
783 out:
784 up->len = 0;
785 up->pending = 0;
786 return err;
787 }
788
udp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len)789 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
790 size_t len)
791 {
792 struct inet_sock *inet = inet_sk(sk);
793 struct udp_sock *up = udp_sk(sk);
794 struct flowi4 *fl4;
795 int ulen = len;
796 struct ipcm_cookie ipc;
797 struct rtable *rt = NULL;
798 int free = 0;
799 int connected = 0;
800 __be32 daddr, faddr, saddr;
801 __be16 dport;
802 u8 tos;
803 int err, is_udplite = IS_UDPLITE(sk);
804 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
805 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
806 struct sk_buff *skb;
807
808 if (len > 0xFFFF)
809 return -EMSGSIZE;
810
811 /*
812 * Check the flags.
813 */
814
815 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
816 return -EOPNOTSUPP;
817
818 ipc.opt = NULL;
819 ipc.tx_flags = 0;
820
821 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
822
823 if (up->pending) {
824 /*
825 * There are pending frames.
826 * The socket lock must be held while it's corked.
827 */
828 lock_sock(sk);
829 if (likely(up->pending)) {
830 if (unlikely(up->pending != AF_INET)) {
831 release_sock(sk);
832 return -EINVAL;
833 }
834 goto do_append_data;
835 }
836 release_sock(sk);
837 }
838 ulen += sizeof(struct udphdr);
839
840 /*
841 * Get and verify the address.
842 */
843 if (msg->msg_name) {
844 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
845 if (msg->msg_namelen < sizeof(*usin))
846 return -EINVAL;
847 if (usin->sin_family != AF_INET) {
848 if (usin->sin_family != AF_UNSPEC)
849 return -EAFNOSUPPORT;
850 }
851
852 daddr = usin->sin_addr.s_addr;
853 dport = usin->sin_port;
854 if (dport == 0)
855 return -EINVAL;
856 } else {
857 if (sk->sk_state != TCP_ESTABLISHED)
858 return -EDESTADDRREQ;
859 daddr = inet->inet_daddr;
860 dport = inet->inet_dport;
861 /* Open fast path for connected socket.
862 Route will not be used, if at least one option is set.
863 */
864 connected = 1;
865 }
866 ipc.addr = inet->inet_saddr;
867
868 ipc.oif = sk->sk_bound_dev_if;
869 err = sock_tx_timestamp(sk, &ipc.tx_flags);
870 if (err)
871 return err;
872 if (msg->msg_controllen) {
873 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
874 if (err)
875 return err;
876 if (ipc.opt)
877 free = 1;
878 connected = 0;
879 }
880 if (!ipc.opt)
881 ipc.opt = inet->opt;
882
883 saddr = ipc.addr;
884 ipc.addr = faddr = daddr;
885
886 if (ipc.opt && ipc.opt->srr) {
887 if (!daddr)
888 return -EINVAL;
889 faddr = ipc.opt->faddr;
890 connected = 0;
891 }
892 tos = RT_TOS(inet->tos);
893 if (sock_flag(sk, SOCK_LOCALROUTE) ||
894 (msg->msg_flags & MSG_DONTROUTE) ||
895 (ipc.opt && ipc.opt->is_strictroute)) {
896 tos |= RTO_ONLINK;
897 connected = 0;
898 }
899
900 if (ipv4_is_multicast(daddr)) {
901 if (!ipc.oif)
902 ipc.oif = inet->mc_index;
903 if (!saddr)
904 saddr = inet->mc_addr;
905 connected = 0;
906 }
907
908 if (connected)
909 rt = (struct rtable *)sk_dst_check(sk, 0);
910
911 if (rt == NULL) {
912 struct flowi4 fl4 = {
913 .flowi4_oif = ipc.oif,
914 .flowi4_mark = sk->sk_mark,
915 .daddr = faddr,
916 .saddr = saddr,
917 .flowi4_tos = tos,
918 .flowi4_proto = sk->sk_protocol,
919 .flowi4_flags = (inet_sk_flowi_flags(sk) |
920 FLOWI_FLAG_CAN_SLEEP),
921 .fl4_sport = inet->inet_sport,
922 .fl4_dport = dport,
923 };
924 struct net *net = sock_net(sk);
925
926 security_sk_classify_flow(sk, flowi4_to_flowi(&fl4));
927 rt = ip_route_output_flow(net, &fl4, sk);
928 if (IS_ERR(rt)) {
929 err = PTR_ERR(rt);
930 rt = NULL;
931 if (err == -ENETUNREACH)
932 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
933 goto out;
934 }
935
936 err = -EACCES;
937 if ((rt->rt_flags & RTCF_BROADCAST) &&
938 !sock_flag(sk, SOCK_BROADCAST))
939 goto out;
940 if (connected)
941 sk_dst_set(sk, dst_clone(&rt->dst));
942 }
943
944 if (msg->msg_flags&MSG_CONFIRM)
945 goto do_confirm;
946 back_from_confirm:
947
948 saddr = rt->rt_src;
949 if (!ipc.addr)
950 daddr = ipc.addr = rt->rt_dst;
951
952 /* Lockless fast path for the non-corking case. */
953 if (!corkreq) {
954 skb = ip_make_skb(sk, getfrag, msg->msg_iov, ulen,
955 sizeof(struct udphdr), &ipc, &rt,
956 msg->msg_flags);
957 err = PTR_ERR(skb);
958 if (skb && !IS_ERR(skb))
959 err = udp_send_skb(skb, daddr, dport);
960 goto out;
961 }
962
963 lock_sock(sk);
964 if (unlikely(up->pending)) {
965 /* The socket is already corked while preparing it. */
966 /* ... which is an evident application bug. --ANK */
967 release_sock(sk);
968
969 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
970 err = -EINVAL;
971 goto out;
972 }
973 /*
974 * Now cork the socket to pend data.
975 */
976 fl4 = &inet->cork.fl.u.ip4;
977 fl4->daddr = daddr;
978 fl4->saddr = saddr;
979 fl4->fl4_dport = dport;
980 fl4->fl4_sport = inet->inet_sport;
981 up->pending = AF_INET;
982
983 do_append_data:
984 up->len += ulen;
985 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
986 sizeof(struct udphdr), &ipc, &rt,
987 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
988 if (err)
989 udp_flush_pending_frames(sk);
990 else if (!corkreq)
991 err = udp_push_pending_frames(sk);
992 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
993 up->pending = 0;
994 release_sock(sk);
995
996 out:
997 ip_rt_put(rt);
998 if (free)
999 kfree(ipc.opt);
1000 if (!err)
1001 return len;
1002 /*
1003 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1004 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1005 * we don't have a good statistic (IpOutDiscards but it can be too many
1006 * things). We could add another new stat but at least for now that
1007 * seems like overkill.
1008 */
1009 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1010 UDP_INC_STATS_USER(sock_net(sk),
1011 UDP_MIB_SNDBUFERRORS, is_udplite);
1012 }
1013 return err;
1014
1015 do_confirm:
1016 dst_confirm(&rt->dst);
1017 if (!(msg->msg_flags&MSG_PROBE) || len)
1018 goto back_from_confirm;
1019 err = 0;
1020 goto out;
1021 }
1022 EXPORT_SYMBOL(udp_sendmsg);
1023
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1024 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1025 size_t size, int flags)
1026 {
1027 struct udp_sock *up = udp_sk(sk);
1028 int ret;
1029
1030 if (!up->pending) {
1031 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1032
1033 /* Call udp_sendmsg to specify destination address which
1034 * sendpage interface can't pass.
1035 * This will succeed only when the socket is connected.
1036 */
1037 ret = udp_sendmsg(NULL, sk, &msg, 0);
1038 if (ret < 0)
1039 return ret;
1040 }
1041
1042 lock_sock(sk);
1043
1044 if (unlikely(!up->pending)) {
1045 release_sock(sk);
1046
1047 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1048 return -EINVAL;
1049 }
1050
1051 ret = ip_append_page(sk, page, offset, size, flags);
1052 if (ret == -EOPNOTSUPP) {
1053 release_sock(sk);
1054 return sock_no_sendpage(sk->sk_socket, page, offset,
1055 size, flags);
1056 }
1057 if (ret < 0) {
1058 udp_flush_pending_frames(sk);
1059 goto out;
1060 }
1061
1062 up->len += size;
1063 if (!(up->corkflag || (flags&MSG_MORE)))
1064 ret = udp_push_pending_frames(sk);
1065 if (!ret)
1066 ret = size;
1067 out:
1068 release_sock(sk);
1069 return ret;
1070 }
1071
1072
1073 /**
1074 * first_packet_length - return length of first packet in receive queue
1075 * @sk: socket
1076 *
1077 * Drops all bad checksum frames, until a valid one is found.
1078 * Returns the length of found skb, or 0 if none is found.
1079 */
first_packet_length(struct sock * sk)1080 static unsigned int first_packet_length(struct sock *sk)
1081 {
1082 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1083 struct sk_buff *skb;
1084 unsigned int res;
1085
1086 __skb_queue_head_init(&list_kill);
1087
1088 spin_lock_bh(&rcvq->lock);
1089 while ((skb = skb_peek(rcvq)) != NULL &&
1090 udp_lib_checksum_complete(skb)) {
1091 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1092 IS_UDPLITE(sk));
1093 atomic_inc(&sk->sk_drops);
1094 __skb_unlink(skb, rcvq);
1095 __skb_queue_tail(&list_kill, skb);
1096 }
1097 res = skb ? skb->len : 0;
1098 spin_unlock_bh(&rcvq->lock);
1099
1100 if (!skb_queue_empty(&list_kill)) {
1101 bool slow = lock_sock_fast(sk);
1102
1103 __skb_queue_purge(&list_kill);
1104 sk_mem_reclaim_partial(sk);
1105 unlock_sock_fast(sk, slow);
1106 }
1107 return res;
1108 }
1109
1110 /*
1111 * IOCTL requests applicable to the UDP protocol
1112 */
1113
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1114 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1115 {
1116 switch (cmd) {
1117 case SIOCOUTQ:
1118 {
1119 int amount = sk_wmem_alloc_get(sk);
1120
1121 return put_user(amount, (int __user *)arg);
1122 }
1123
1124 case SIOCINQ:
1125 {
1126 unsigned int amount = first_packet_length(sk);
1127
1128 if (amount)
1129 /*
1130 * We will only return the amount
1131 * of this packet since that is all
1132 * that will be read.
1133 */
1134 amount -= sizeof(struct udphdr);
1135
1136 return put_user(amount, (int __user *)arg);
1137 }
1138
1139 default:
1140 return -ENOIOCTLCMD;
1141 }
1142
1143 return 0;
1144 }
1145 EXPORT_SYMBOL(udp_ioctl);
1146
1147 /*
1148 * This should be easy, if there is something there we
1149 * return it, otherwise we block.
1150 */
1151
udp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1152 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1153 size_t len, int noblock, int flags, int *addr_len)
1154 {
1155 struct inet_sock *inet = inet_sk(sk);
1156 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1157 struct sk_buff *skb;
1158 unsigned int ulen;
1159 int peeked;
1160 int err;
1161 int is_udplite = IS_UDPLITE(sk);
1162 bool slow;
1163
1164 /*
1165 * Check any passed addresses
1166 */
1167 if (addr_len)
1168 *addr_len = sizeof(*sin);
1169
1170 if (flags & MSG_ERRQUEUE)
1171 return ip_recv_error(sk, msg, len);
1172
1173 try_again:
1174 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1175 &peeked, &err);
1176 if (!skb)
1177 goto out;
1178
1179 ulen = skb->len - sizeof(struct udphdr);
1180 if (len > ulen)
1181 len = ulen;
1182 else if (len < ulen)
1183 msg->msg_flags |= MSG_TRUNC;
1184
1185 /*
1186 * If checksum is needed at all, try to do it while copying the
1187 * data. If the data is truncated, or if we only want a partial
1188 * coverage checksum (UDP-Lite), do it before the copy.
1189 */
1190
1191 if (len < ulen || UDP_SKB_CB(skb)->partial_cov) {
1192 if (udp_lib_checksum_complete(skb))
1193 goto csum_copy_err;
1194 }
1195
1196 if (skb_csum_unnecessary(skb))
1197 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1198 msg->msg_iov, len);
1199 else {
1200 err = skb_copy_and_csum_datagram_iovec(skb,
1201 sizeof(struct udphdr),
1202 msg->msg_iov);
1203
1204 if (err == -EINVAL)
1205 goto csum_copy_err;
1206 }
1207
1208 if (err)
1209 goto out_free;
1210
1211 if (!peeked)
1212 UDP_INC_STATS_USER(sock_net(sk),
1213 UDP_MIB_INDATAGRAMS, is_udplite);
1214
1215 sock_recv_ts_and_drops(msg, sk, skb);
1216
1217 /* Copy the address. */
1218 if (sin) {
1219 sin->sin_family = AF_INET;
1220 sin->sin_port = udp_hdr(skb)->source;
1221 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1222 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1223 }
1224 if (inet->cmsg_flags)
1225 ip_cmsg_recv(msg, skb);
1226
1227 err = len;
1228 if (flags & MSG_TRUNC)
1229 err = ulen;
1230
1231 out_free:
1232 skb_free_datagram_locked(sk, skb);
1233 out:
1234 return err;
1235
1236 csum_copy_err:
1237 slow = lock_sock_fast(sk);
1238 if (!skb_kill_datagram(sk, skb, flags))
1239 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1240 unlock_sock_fast(sk, slow);
1241
1242 if (noblock)
1243 return -EAGAIN;
1244 goto try_again;
1245 }
1246
1247
udp_disconnect(struct sock * sk,int flags)1248 int udp_disconnect(struct sock *sk, int flags)
1249 {
1250 struct inet_sock *inet = inet_sk(sk);
1251 /*
1252 * 1003.1g - break association.
1253 */
1254
1255 sk->sk_state = TCP_CLOSE;
1256 inet->inet_daddr = 0;
1257 inet->inet_dport = 0;
1258 sock_rps_save_rxhash(sk, 0);
1259 sk->sk_bound_dev_if = 0;
1260 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1261 inet_reset_saddr(sk);
1262
1263 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1264 sk->sk_prot->unhash(sk);
1265 inet->inet_sport = 0;
1266 }
1267 sk_dst_reset(sk);
1268 return 0;
1269 }
1270 EXPORT_SYMBOL(udp_disconnect);
1271
udp_lib_unhash(struct sock * sk)1272 void udp_lib_unhash(struct sock *sk)
1273 {
1274 if (sk_hashed(sk)) {
1275 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1276 struct udp_hslot *hslot, *hslot2;
1277
1278 hslot = udp_hashslot(udptable, sock_net(sk),
1279 udp_sk(sk)->udp_port_hash);
1280 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1281
1282 spin_lock_bh(&hslot->lock);
1283 if (sk_nulls_del_node_init_rcu(sk)) {
1284 hslot->count--;
1285 inet_sk(sk)->inet_num = 0;
1286 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1287
1288 spin_lock(&hslot2->lock);
1289 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1290 hslot2->count--;
1291 spin_unlock(&hslot2->lock);
1292 }
1293 spin_unlock_bh(&hslot->lock);
1294 }
1295 }
1296 EXPORT_SYMBOL(udp_lib_unhash);
1297
1298 /*
1299 * inet_rcv_saddr was changed, we must rehash secondary hash
1300 */
udp_lib_rehash(struct sock * sk,u16 newhash)1301 void udp_lib_rehash(struct sock *sk, u16 newhash)
1302 {
1303 if (sk_hashed(sk)) {
1304 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1305 struct udp_hslot *hslot, *hslot2, *nhslot2;
1306
1307 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1308 nhslot2 = udp_hashslot2(udptable, newhash);
1309 udp_sk(sk)->udp_portaddr_hash = newhash;
1310 if (hslot2 != nhslot2) {
1311 hslot = udp_hashslot(udptable, sock_net(sk),
1312 udp_sk(sk)->udp_port_hash);
1313 /* we must lock primary chain too */
1314 spin_lock_bh(&hslot->lock);
1315
1316 spin_lock(&hslot2->lock);
1317 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1318 hslot2->count--;
1319 spin_unlock(&hslot2->lock);
1320
1321 spin_lock(&nhslot2->lock);
1322 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1323 &nhslot2->head);
1324 nhslot2->count++;
1325 spin_unlock(&nhslot2->lock);
1326
1327 spin_unlock_bh(&hslot->lock);
1328 }
1329 }
1330 }
1331 EXPORT_SYMBOL(udp_lib_rehash);
1332
udp_v4_rehash(struct sock * sk)1333 static void udp_v4_rehash(struct sock *sk)
1334 {
1335 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1336 inet_sk(sk)->inet_rcv_saddr,
1337 inet_sk(sk)->inet_num);
1338 udp_lib_rehash(sk, new_hash);
1339 }
1340
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1341 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1342 {
1343 int rc;
1344
1345 if (inet_sk(sk)->inet_daddr)
1346 sock_rps_save_rxhash(sk, skb->rxhash);
1347
1348 rc = ip_queue_rcv_skb(sk, skb);
1349 if (rc < 0) {
1350 int is_udplite = IS_UDPLITE(sk);
1351
1352 /* Note that an ENOMEM error is charged twice */
1353 if (rc == -ENOMEM)
1354 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1355 is_udplite);
1356 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1357 kfree_skb(skb);
1358 return -1;
1359 }
1360
1361 return 0;
1362
1363 }
1364
1365 /* returns:
1366 * -1: error
1367 * 0: success
1368 * >0: "udp encap" protocol resubmission
1369 *
1370 * Note that in the success and error cases, the skb is assumed to
1371 * have either been requeued or freed.
1372 */
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1373 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1374 {
1375 struct udp_sock *up = udp_sk(sk);
1376 int rc;
1377 int is_udplite = IS_UDPLITE(sk);
1378
1379 /*
1380 * Charge it to the socket, dropping if the queue is full.
1381 */
1382 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1383 goto drop;
1384 nf_reset(skb);
1385
1386 if (up->encap_type) {
1387 /*
1388 * This is an encapsulation socket so pass the skb to
1389 * the socket's udp_encap_rcv() hook. Otherwise, just
1390 * fall through and pass this up the UDP socket.
1391 * up->encap_rcv() returns the following value:
1392 * =0 if skb was successfully passed to the encap
1393 * handler or was discarded by it.
1394 * >0 if skb should be passed on to UDP.
1395 * <0 if skb should be resubmitted as proto -N
1396 */
1397
1398 /* if we're overly short, let UDP handle it */
1399 if (skb->len > sizeof(struct udphdr) &&
1400 up->encap_rcv != NULL) {
1401 int ret;
1402
1403 ret = (*up->encap_rcv)(sk, skb);
1404 if (ret <= 0) {
1405 UDP_INC_STATS_BH(sock_net(sk),
1406 UDP_MIB_INDATAGRAMS,
1407 is_udplite);
1408 return -ret;
1409 }
1410 }
1411
1412 /* FALLTHROUGH -- it's a UDP Packet */
1413 }
1414
1415 /*
1416 * UDP-Lite specific tests, ignored on UDP sockets
1417 */
1418 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1419
1420 /*
1421 * MIB statistics other than incrementing the error count are
1422 * disabled for the following two types of errors: these depend
1423 * on the application settings, not on the functioning of the
1424 * protocol stack as such.
1425 *
1426 * RFC 3828 here recommends (sec 3.3): "There should also be a
1427 * way ... to ... at least let the receiving application block
1428 * delivery of packets with coverage values less than a value
1429 * provided by the application."
1430 */
1431 if (up->pcrlen == 0) { /* full coverage was set */
1432 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1433 "%d while full coverage %d requested\n",
1434 UDP_SKB_CB(skb)->cscov, skb->len);
1435 goto drop;
1436 }
1437 /* The next case involves violating the min. coverage requested
1438 * by the receiver. This is subtle: if receiver wants x and x is
1439 * greater than the buffersize/MTU then receiver will complain
1440 * that it wants x while sender emits packets of smaller size y.
1441 * Therefore the above ...()->partial_cov statement is essential.
1442 */
1443 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1444 LIMIT_NETDEBUG(KERN_WARNING
1445 "UDPLITE: coverage %d too small, need min %d\n",
1446 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1447 goto drop;
1448 }
1449 }
1450
1451 if (rcu_dereference_raw(sk->sk_filter)) {
1452 if (udp_lib_checksum_complete(skb))
1453 goto drop;
1454 }
1455
1456
1457 if (sk_rcvqueues_full(sk, skb))
1458 goto drop;
1459
1460 rc = 0;
1461
1462 bh_lock_sock(sk);
1463 if (!sock_owned_by_user(sk))
1464 rc = __udp_queue_rcv_skb(sk, skb);
1465 else if (sk_add_backlog(sk, skb)) {
1466 bh_unlock_sock(sk);
1467 goto drop;
1468 }
1469 bh_unlock_sock(sk);
1470
1471 return rc;
1472
1473 drop:
1474 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1475 atomic_inc(&sk->sk_drops);
1476 kfree_skb(skb);
1477 return -1;
1478 }
1479
1480
flush_stack(struct sock ** stack,unsigned int count,struct sk_buff * skb,unsigned int final)1481 static void flush_stack(struct sock **stack, unsigned int count,
1482 struct sk_buff *skb, unsigned int final)
1483 {
1484 unsigned int i;
1485 struct sk_buff *skb1 = NULL;
1486 struct sock *sk;
1487
1488 for (i = 0; i < count; i++) {
1489 sk = stack[i];
1490 if (likely(skb1 == NULL))
1491 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1492
1493 if (!skb1) {
1494 atomic_inc(&sk->sk_drops);
1495 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1496 IS_UDPLITE(sk));
1497 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1498 IS_UDPLITE(sk));
1499 }
1500
1501 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1502 skb1 = NULL;
1503 }
1504 if (unlikely(skb1))
1505 kfree_skb(skb1);
1506 }
1507
1508 /*
1509 * Multicasts and broadcasts go to each listener.
1510 *
1511 * Note: called only from the BH handler context.
1512 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable)1513 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1514 struct udphdr *uh,
1515 __be32 saddr, __be32 daddr,
1516 struct udp_table *udptable)
1517 {
1518 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1519 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1520 int dif;
1521 unsigned int i, count = 0;
1522
1523 spin_lock(&hslot->lock);
1524 sk = sk_nulls_head(&hslot->head);
1525 dif = skb->dev->ifindex;
1526 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1527 while (sk) {
1528 stack[count++] = sk;
1529 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1530 daddr, uh->source, saddr, dif);
1531 if (unlikely(count == ARRAY_SIZE(stack))) {
1532 if (!sk)
1533 break;
1534 flush_stack(stack, count, skb, ~0);
1535 count = 0;
1536 }
1537 }
1538 /*
1539 * before releasing chain lock, we must take a reference on sockets
1540 */
1541 for (i = 0; i < count; i++)
1542 sock_hold(stack[i]);
1543
1544 spin_unlock(&hslot->lock);
1545
1546 /*
1547 * do the slow work with no lock held
1548 */
1549 if (count) {
1550 flush_stack(stack, count, skb, count - 1);
1551
1552 for (i = 0; i < count; i++)
1553 sock_put(stack[i]);
1554 } else {
1555 kfree_skb(skb);
1556 }
1557 return 0;
1558 }
1559
1560 /* Initialize UDP checksum. If exited with zero value (success),
1561 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1562 * Otherwise, csum completion requires chacksumming packet body,
1563 * including udp header and folding it to skb->csum.
1564 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)1565 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1566 int proto)
1567 {
1568 const struct iphdr *iph;
1569 int err;
1570
1571 UDP_SKB_CB(skb)->partial_cov = 0;
1572 UDP_SKB_CB(skb)->cscov = skb->len;
1573
1574 if (proto == IPPROTO_UDPLITE) {
1575 err = udplite_checksum_init(skb, uh);
1576 if (err)
1577 return err;
1578 }
1579
1580 iph = ip_hdr(skb);
1581 if (uh->check == 0) {
1582 skb->ip_summed = CHECKSUM_UNNECESSARY;
1583 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1584 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1585 proto, skb->csum))
1586 skb->ip_summed = CHECKSUM_UNNECESSARY;
1587 }
1588 if (!skb_csum_unnecessary(skb))
1589 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1590 skb->len, proto, 0);
1591 /* Probably, we should checksum udp header (it should be in cache
1592 * in any case) and data in tiny packets (< rx copybreak).
1593 */
1594
1595 return 0;
1596 }
1597
1598 /*
1599 * All we need to do is get the socket, and then do a checksum.
1600 */
1601
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)1602 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1603 int proto)
1604 {
1605 struct sock *sk;
1606 struct udphdr *uh;
1607 unsigned short ulen;
1608 struct rtable *rt = skb_rtable(skb);
1609 __be32 saddr, daddr;
1610 struct net *net = dev_net(skb->dev);
1611
1612 /*
1613 * Validate the packet.
1614 */
1615 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1616 goto drop; /* No space for header. */
1617
1618 uh = udp_hdr(skb);
1619 ulen = ntohs(uh->len);
1620 saddr = ip_hdr(skb)->saddr;
1621 daddr = ip_hdr(skb)->daddr;
1622
1623 if (ulen > skb->len)
1624 goto short_packet;
1625
1626 if (proto == IPPROTO_UDP) {
1627 /* UDP validates ulen. */
1628 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1629 goto short_packet;
1630 uh = udp_hdr(skb);
1631 }
1632
1633 if (udp4_csum_init(skb, uh, proto))
1634 goto csum_error;
1635
1636 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1637 return __udp4_lib_mcast_deliver(net, skb, uh,
1638 saddr, daddr, udptable);
1639
1640 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1641
1642 if (sk != NULL) {
1643 int ret = udp_queue_rcv_skb(sk, skb);
1644 sock_put(sk);
1645
1646 /* a return value > 0 means to resubmit the input, but
1647 * it wants the return to be -protocol, or 0
1648 */
1649 if (ret > 0)
1650 return -ret;
1651 return 0;
1652 }
1653
1654 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1655 goto drop;
1656 nf_reset(skb);
1657
1658 /* No socket. Drop packet silently, if checksum is wrong */
1659 if (udp_lib_checksum_complete(skb))
1660 goto csum_error;
1661
1662 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1663 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1664
1665 /*
1666 * Hmm. We got an UDP packet to a port to which we
1667 * don't wanna listen. Ignore it.
1668 */
1669 kfree_skb(skb);
1670 return 0;
1671
1672 short_packet:
1673 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1674 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1675 &saddr,
1676 ntohs(uh->source),
1677 ulen,
1678 skb->len,
1679 &daddr,
1680 ntohs(uh->dest));
1681 goto drop;
1682
1683 csum_error:
1684 /*
1685 * RFC1122: OK. Discards the bad packet silently (as far as
1686 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1687 */
1688 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1689 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1690 &saddr,
1691 ntohs(uh->source),
1692 &daddr,
1693 ntohs(uh->dest),
1694 ulen);
1695 drop:
1696 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1697 kfree_skb(skb);
1698 return 0;
1699 }
1700
udp_rcv(struct sk_buff * skb)1701 int udp_rcv(struct sk_buff *skb)
1702 {
1703 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1704 }
1705
udp_destroy_sock(struct sock * sk)1706 void udp_destroy_sock(struct sock *sk)
1707 {
1708 bool slow = lock_sock_fast(sk);
1709 udp_flush_pending_frames(sk);
1710 unlock_sock_fast(sk, slow);
1711 }
1712
1713 /*
1714 * Socket option code for UDP
1715 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))1716 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1717 char __user *optval, unsigned int optlen,
1718 int (*push_pending_frames)(struct sock *))
1719 {
1720 struct udp_sock *up = udp_sk(sk);
1721 int val;
1722 int err = 0;
1723 int is_udplite = IS_UDPLITE(sk);
1724
1725 if (optlen < sizeof(int))
1726 return -EINVAL;
1727
1728 if (get_user(val, (int __user *)optval))
1729 return -EFAULT;
1730
1731 switch (optname) {
1732 case UDP_CORK:
1733 if (val != 0) {
1734 up->corkflag = 1;
1735 } else {
1736 up->corkflag = 0;
1737 lock_sock(sk);
1738 (*push_pending_frames)(sk);
1739 release_sock(sk);
1740 }
1741 break;
1742
1743 case UDP_ENCAP:
1744 switch (val) {
1745 case 0:
1746 case UDP_ENCAP_ESPINUDP:
1747 case UDP_ENCAP_ESPINUDP_NON_IKE:
1748 up->encap_rcv = xfrm4_udp_encap_rcv;
1749 /* FALLTHROUGH */
1750 case UDP_ENCAP_L2TPINUDP:
1751 up->encap_type = val;
1752 break;
1753 default:
1754 err = -ENOPROTOOPT;
1755 break;
1756 }
1757 break;
1758
1759 /*
1760 * UDP-Lite's partial checksum coverage (RFC 3828).
1761 */
1762 /* The sender sets actual checksum coverage length via this option.
1763 * The case coverage > packet length is handled by send module. */
1764 case UDPLITE_SEND_CSCOV:
1765 if (!is_udplite) /* Disable the option on UDP sockets */
1766 return -ENOPROTOOPT;
1767 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1768 val = 8;
1769 else if (val > USHRT_MAX)
1770 val = USHRT_MAX;
1771 up->pcslen = val;
1772 up->pcflag |= UDPLITE_SEND_CC;
1773 break;
1774
1775 /* The receiver specifies a minimum checksum coverage value. To make
1776 * sense, this should be set to at least 8 (as done below). If zero is
1777 * used, this again means full checksum coverage. */
1778 case UDPLITE_RECV_CSCOV:
1779 if (!is_udplite) /* Disable the option on UDP sockets */
1780 return -ENOPROTOOPT;
1781 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1782 val = 8;
1783 else if (val > USHRT_MAX)
1784 val = USHRT_MAX;
1785 up->pcrlen = val;
1786 up->pcflag |= UDPLITE_RECV_CC;
1787 break;
1788
1789 default:
1790 err = -ENOPROTOOPT;
1791 break;
1792 }
1793
1794 return err;
1795 }
1796 EXPORT_SYMBOL(udp_lib_setsockopt);
1797
udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1798 int udp_setsockopt(struct sock *sk, int level, int optname,
1799 char __user *optval, unsigned int optlen)
1800 {
1801 if (level == SOL_UDP || level == SOL_UDPLITE)
1802 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1803 udp_push_pending_frames);
1804 return ip_setsockopt(sk, level, optname, optval, optlen);
1805 }
1806
1807 #ifdef CONFIG_COMPAT
compat_udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1808 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1809 char __user *optval, unsigned int optlen)
1810 {
1811 if (level == SOL_UDP || level == SOL_UDPLITE)
1812 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1813 udp_push_pending_frames);
1814 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1815 }
1816 #endif
1817
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1818 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1819 char __user *optval, int __user *optlen)
1820 {
1821 struct udp_sock *up = udp_sk(sk);
1822 int val, len;
1823
1824 if (get_user(len, optlen))
1825 return -EFAULT;
1826
1827 len = min_t(unsigned int, len, sizeof(int));
1828
1829 if (len < 0)
1830 return -EINVAL;
1831
1832 switch (optname) {
1833 case UDP_CORK:
1834 val = up->corkflag;
1835 break;
1836
1837 case UDP_ENCAP:
1838 val = up->encap_type;
1839 break;
1840
1841 /* The following two cannot be changed on UDP sockets, the return is
1842 * always 0 (which corresponds to the full checksum coverage of UDP). */
1843 case UDPLITE_SEND_CSCOV:
1844 val = up->pcslen;
1845 break;
1846
1847 case UDPLITE_RECV_CSCOV:
1848 val = up->pcrlen;
1849 break;
1850
1851 default:
1852 return -ENOPROTOOPT;
1853 }
1854
1855 if (put_user(len, optlen))
1856 return -EFAULT;
1857 if (copy_to_user(optval, &val, len))
1858 return -EFAULT;
1859 return 0;
1860 }
1861 EXPORT_SYMBOL(udp_lib_getsockopt);
1862
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1863 int udp_getsockopt(struct sock *sk, int level, int optname,
1864 char __user *optval, int __user *optlen)
1865 {
1866 if (level == SOL_UDP || level == SOL_UDPLITE)
1867 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1868 return ip_getsockopt(sk, level, optname, optval, optlen);
1869 }
1870
1871 #ifdef CONFIG_COMPAT
compat_udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1872 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1873 char __user *optval, int __user *optlen)
1874 {
1875 if (level == SOL_UDP || level == SOL_UDPLITE)
1876 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1877 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1878 }
1879 #endif
1880 /**
1881 * udp_poll - wait for a UDP event.
1882 * @file - file struct
1883 * @sock - socket
1884 * @wait - poll table
1885 *
1886 * This is same as datagram poll, except for the special case of
1887 * blocking sockets. If application is using a blocking fd
1888 * and a packet with checksum error is in the queue;
1889 * then it could get return from select indicating data available
1890 * but then block when reading it. Add special case code
1891 * to work around these arguably broken applications.
1892 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)1893 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1894 {
1895 unsigned int mask = datagram_poll(file, sock, wait);
1896 struct sock *sk = sock->sk;
1897
1898 /* Check for false positives due to checksum errors */
1899 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1900 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1901 mask &= ~(POLLIN | POLLRDNORM);
1902
1903 return mask;
1904
1905 }
1906 EXPORT_SYMBOL(udp_poll);
1907
1908 struct proto udp_prot = {
1909 .name = "UDP",
1910 .owner = THIS_MODULE,
1911 .close = udp_lib_close,
1912 .connect = ip4_datagram_connect,
1913 .disconnect = udp_disconnect,
1914 .ioctl = udp_ioctl,
1915 .destroy = udp_destroy_sock,
1916 .setsockopt = udp_setsockopt,
1917 .getsockopt = udp_getsockopt,
1918 .sendmsg = udp_sendmsg,
1919 .recvmsg = udp_recvmsg,
1920 .sendpage = udp_sendpage,
1921 .backlog_rcv = __udp_queue_rcv_skb,
1922 .hash = udp_lib_hash,
1923 .unhash = udp_lib_unhash,
1924 .rehash = udp_v4_rehash,
1925 .get_port = udp_v4_get_port,
1926 .memory_allocated = &udp_memory_allocated,
1927 .sysctl_mem = sysctl_udp_mem,
1928 .sysctl_wmem = &sysctl_udp_wmem_min,
1929 .sysctl_rmem = &sysctl_udp_rmem_min,
1930 .obj_size = sizeof(struct udp_sock),
1931 .slab_flags = SLAB_DESTROY_BY_RCU,
1932 .h.udp_table = &udp_table,
1933 #ifdef CONFIG_COMPAT
1934 .compat_setsockopt = compat_udp_setsockopt,
1935 .compat_getsockopt = compat_udp_getsockopt,
1936 #endif
1937 .clear_sk = sk_prot_clear_portaddr_nulls,
1938 };
1939 EXPORT_SYMBOL(udp_prot);
1940
1941 /* ------------------------------------------------------------------------ */
1942 #ifdef CONFIG_PROC_FS
1943
udp_get_first(struct seq_file * seq,int start)1944 static struct sock *udp_get_first(struct seq_file *seq, int start)
1945 {
1946 struct sock *sk;
1947 struct udp_iter_state *state = seq->private;
1948 struct net *net = seq_file_net(seq);
1949
1950 for (state->bucket = start; state->bucket <= state->udp_table->mask;
1951 ++state->bucket) {
1952 struct hlist_nulls_node *node;
1953 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1954
1955 if (hlist_nulls_empty(&hslot->head))
1956 continue;
1957
1958 spin_lock_bh(&hslot->lock);
1959 sk_nulls_for_each(sk, node, &hslot->head) {
1960 if (!net_eq(sock_net(sk), net))
1961 continue;
1962 if (sk->sk_family == state->family)
1963 goto found;
1964 }
1965 spin_unlock_bh(&hslot->lock);
1966 }
1967 sk = NULL;
1968 found:
1969 return sk;
1970 }
1971
udp_get_next(struct seq_file * seq,struct sock * sk)1972 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1973 {
1974 struct udp_iter_state *state = seq->private;
1975 struct net *net = seq_file_net(seq);
1976
1977 do {
1978 sk = sk_nulls_next(sk);
1979 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1980
1981 if (!sk) {
1982 if (state->bucket <= state->udp_table->mask)
1983 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1984 return udp_get_first(seq, state->bucket + 1);
1985 }
1986 return sk;
1987 }
1988
udp_get_idx(struct seq_file * seq,loff_t pos)1989 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1990 {
1991 struct sock *sk = udp_get_first(seq, 0);
1992
1993 if (sk)
1994 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1995 --pos;
1996 return pos ? NULL : sk;
1997 }
1998
udp_seq_start(struct seq_file * seq,loff_t * pos)1999 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2000 {
2001 struct udp_iter_state *state = seq->private;
2002 state->bucket = MAX_UDP_PORTS;
2003
2004 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2005 }
2006
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2007 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2008 {
2009 struct sock *sk;
2010
2011 if (v == SEQ_START_TOKEN)
2012 sk = udp_get_idx(seq, 0);
2013 else
2014 sk = udp_get_next(seq, v);
2015
2016 ++*pos;
2017 return sk;
2018 }
2019
udp_seq_stop(struct seq_file * seq,void * v)2020 static void udp_seq_stop(struct seq_file *seq, void *v)
2021 {
2022 struct udp_iter_state *state = seq->private;
2023
2024 if (state->bucket <= state->udp_table->mask)
2025 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2026 }
2027
udp_seq_open(struct inode * inode,struct file * file)2028 static int udp_seq_open(struct inode *inode, struct file *file)
2029 {
2030 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2031 struct udp_iter_state *s;
2032 int err;
2033
2034 err = seq_open_net(inode, file, &afinfo->seq_ops,
2035 sizeof(struct udp_iter_state));
2036 if (err < 0)
2037 return err;
2038
2039 s = ((struct seq_file *)file->private_data)->private;
2040 s->family = afinfo->family;
2041 s->udp_table = afinfo->udp_table;
2042 return err;
2043 }
2044
2045 /* ------------------------------------------------------------------------ */
udp_proc_register(struct net * net,struct udp_seq_afinfo * afinfo)2046 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2047 {
2048 struct proc_dir_entry *p;
2049 int rc = 0;
2050
2051 afinfo->seq_fops.open = udp_seq_open;
2052 afinfo->seq_fops.read = seq_read;
2053 afinfo->seq_fops.llseek = seq_lseek;
2054 afinfo->seq_fops.release = seq_release_net;
2055
2056 afinfo->seq_ops.start = udp_seq_start;
2057 afinfo->seq_ops.next = udp_seq_next;
2058 afinfo->seq_ops.stop = udp_seq_stop;
2059
2060 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2061 &afinfo->seq_fops, afinfo);
2062 if (!p)
2063 rc = -ENOMEM;
2064 return rc;
2065 }
2066 EXPORT_SYMBOL(udp_proc_register);
2067
udp_proc_unregister(struct net * net,struct udp_seq_afinfo * afinfo)2068 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2069 {
2070 proc_net_remove(net, afinfo->name);
2071 }
2072 EXPORT_SYMBOL(udp_proc_unregister);
2073
2074 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket,int * len)2075 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2076 int bucket, int *len)
2077 {
2078 struct inet_sock *inet = inet_sk(sp);
2079 __be32 dest = inet->inet_daddr;
2080 __be32 src = inet->inet_rcv_saddr;
2081 __u16 destp = ntohs(inet->inet_dport);
2082 __u16 srcp = ntohs(inet->inet_sport);
2083
2084 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2085 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
2086 bucket, src, srcp, dest, destp, sp->sk_state,
2087 sk_wmem_alloc_get(sp),
2088 sk_rmem_alloc_get(sp),
2089 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2090 atomic_read(&sp->sk_refcnt), sp,
2091 atomic_read(&sp->sk_drops), len);
2092 }
2093
udp4_seq_show(struct seq_file * seq,void * v)2094 int udp4_seq_show(struct seq_file *seq, void *v)
2095 {
2096 if (v == SEQ_START_TOKEN)
2097 seq_printf(seq, "%-127s\n",
2098 " sl local_address rem_address st tx_queue "
2099 "rx_queue tr tm->when retrnsmt uid timeout "
2100 "inode ref pointer drops");
2101 else {
2102 struct udp_iter_state *state = seq->private;
2103 int len;
2104
2105 udp4_format_sock(v, seq, state->bucket, &len);
2106 seq_printf(seq, "%*s\n", 127 - len, "");
2107 }
2108 return 0;
2109 }
2110
2111 /* ------------------------------------------------------------------------ */
2112 static struct udp_seq_afinfo udp4_seq_afinfo = {
2113 .name = "udp",
2114 .family = AF_INET,
2115 .udp_table = &udp_table,
2116 .seq_fops = {
2117 .owner = THIS_MODULE,
2118 },
2119 .seq_ops = {
2120 .show = udp4_seq_show,
2121 },
2122 };
2123
udp4_proc_init_net(struct net * net)2124 static int __net_init udp4_proc_init_net(struct net *net)
2125 {
2126 return udp_proc_register(net, &udp4_seq_afinfo);
2127 }
2128
udp4_proc_exit_net(struct net * net)2129 static void __net_exit udp4_proc_exit_net(struct net *net)
2130 {
2131 udp_proc_unregister(net, &udp4_seq_afinfo);
2132 }
2133
2134 static struct pernet_operations udp4_net_ops = {
2135 .init = udp4_proc_init_net,
2136 .exit = udp4_proc_exit_net,
2137 };
2138
udp4_proc_init(void)2139 int __init udp4_proc_init(void)
2140 {
2141 return register_pernet_subsys(&udp4_net_ops);
2142 }
2143
udp4_proc_exit(void)2144 void udp4_proc_exit(void)
2145 {
2146 unregister_pernet_subsys(&udp4_net_ops);
2147 }
2148 #endif /* CONFIG_PROC_FS */
2149
2150 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)2151 static int __init set_uhash_entries(char *str)
2152 {
2153 if (!str)
2154 return 0;
2155 uhash_entries = simple_strtoul(str, &str, 0);
2156 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2157 uhash_entries = UDP_HTABLE_SIZE_MIN;
2158 return 1;
2159 }
2160 __setup("uhash_entries=", set_uhash_entries);
2161
udp_table_init(struct udp_table * table,const char * name)2162 void __init udp_table_init(struct udp_table *table, const char *name)
2163 {
2164 unsigned int i;
2165
2166 if (!CONFIG_BASE_SMALL)
2167 table->hash = alloc_large_system_hash(name,
2168 2 * sizeof(struct udp_hslot),
2169 uhash_entries,
2170 21, /* one slot per 2 MB */
2171 0,
2172 &table->log,
2173 &table->mask,
2174 64 * 1024);
2175 /*
2176 * Make sure hash table has the minimum size
2177 */
2178 if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2179 table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2180 2 * sizeof(struct udp_hslot), GFP_KERNEL);
2181 if (!table->hash)
2182 panic(name);
2183 table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2184 table->mask = UDP_HTABLE_SIZE_MIN - 1;
2185 }
2186 table->hash2 = table->hash + (table->mask + 1);
2187 for (i = 0; i <= table->mask; i++) {
2188 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2189 table->hash[i].count = 0;
2190 spin_lock_init(&table->hash[i].lock);
2191 }
2192 for (i = 0; i <= table->mask; i++) {
2193 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2194 table->hash2[i].count = 0;
2195 spin_lock_init(&table->hash2[i].lock);
2196 }
2197 }
2198
udp_init(void)2199 void __init udp_init(void)
2200 {
2201 unsigned long nr_pages, limit;
2202
2203 udp_table_init(&udp_table, "UDP");
2204 /* Set the pressure threshold up by the same strategy of TCP. It is a
2205 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
2206 * toward zero with the amount of memory, with a floor of 128 pages.
2207 */
2208 nr_pages = totalram_pages - totalhigh_pages;
2209 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2210 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2211 limit = max(limit, 128UL);
2212 sysctl_udp_mem[0] = limit / 4 * 3;
2213 sysctl_udp_mem[1] = limit;
2214 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2215
2216 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2217 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2218 }
2219
udp4_ufo_send_check(struct sk_buff * skb)2220 int udp4_ufo_send_check(struct sk_buff *skb)
2221 {
2222 const struct iphdr *iph;
2223 struct udphdr *uh;
2224
2225 if (!pskb_may_pull(skb, sizeof(*uh)))
2226 return -EINVAL;
2227
2228 iph = ip_hdr(skb);
2229 uh = udp_hdr(skb);
2230
2231 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2232 IPPROTO_UDP, 0);
2233 skb->csum_start = skb_transport_header(skb) - skb->head;
2234 skb->csum_offset = offsetof(struct udphdr, check);
2235 skb->ip_summed = CHECKSUM_PARTIAL;
2236 return 0;
2237 }
2238
udp4_ufo_fragment(struct sk_buff * skb,u32 features)2239 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, u32 features)
2240 {
2241 struct sk_buff *segs = ERR_PTR(-EINVAL);
2242 unsigned int mss;
2243 int offset;
2244 __wsum csum;
2245
2246 mss = skb_shinfo(skb)->gso_size;
2247 if (unlikely(skb->len <= mss))
2248 goto out;
2249
2250 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2251 /* Packet is from an untrusted source, reset gso_segs. */
2252 int type = skb_shinfo(skb)->gso_type;
2253
2254 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2255 !(type & (SKB_GSO_UDP))))
2256 goto out;
2257
2258 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2259
2260 segs = NULL;
2261 goto out;
2262 }
2263
2264 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2265 * do checksum of UDP packets sent as multiple IP fragments.
2266 */
2267 offset = skb_checksum_start_offset(skb);
2268 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2269 offset += skb->csum_offset;
2270 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2271 skb->ip_summed = CHECKSUM_NONE;
2272
2273 /* Fragment the skb. IP headers of the fragments are updated in
2274 * inet_gso_segment()
2275 */
2276 segs = skb_segment(skb, features);
2277 out:
2278 return segs;
2279 }
2280
2281