1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41
42 #include "udf_i.h"
43 #include "udf_sb.h"
44
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48
49 #define EXTENT_MERGE_SIZE 5
50
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70
udf_evict_inode(struct inode * inode)71 void udf_evict_inode(struct inode *inode)
72 {
73 struct udf_inode_info *iinfo = UDF_I(inode);
74 int want_delete = 0;
75
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 udf_setsize(inode, 0);
79 udf_update_inode(inode, IS_SYNC(inode));
80 } else
81 truncate_inode_pages(&inode->i_data, 0);
82 invalidate_inode_buffers(inode);
83 end_writeback(inode);
84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 inode->i_size != iinfo->i_lenExtents) {
86 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
87 inode->i_ino, inode->i_mode,
88 (unsigned long long)inode->i_size,
89 (unsigned long long)iinfo->i_lenExtents);
90 }
91 kfree(iinfo->i_ext.i_data);
92 iinfo->i_ext.i_data = NULL;
93 if (want_delete) {
94 udf_free_inode(inode);
95 }
96 }
97
udf_writepage(struct page * page,struct writeback_control * wbc)98 static int udf_writepage(struct page *page, struct writeback_control *wbc)
99 {
100 return block_write_full_page(page, udf_get_block, wbc);
101 }
102
udf_readpage(struct file * file,struct page * page)103 static int udf_readpage(struct file *file, struct page *page)
104 {
105 return mpage_readpage(page, udf_get_block);
106 }
107
udf_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)108 static int udf_readpages(struct file *file, struct address_space *mapping,
109 struct list_head *pages, unsigned nr_pages)
110 {
111 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
112 }
113
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)114 static int udf_write_begin(struct file *file, struct address_space *mapping,
115 loff_t pos, unsigned len, unsigned flags,
116 struct page **pagep, void **fsdata)
117 {
118 int ret;
119
120 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
121 if (unlikely(ret)) {
122 struct inode *inode = mapping->host;
123 struct udf_inode_info *iinfo = UDF_I(inode);
124 loff_t isize = inode->i_size;
125
126 if (pos + len > isize) {
127 truncate_pagecache(inode, pos + len, isize);
128 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
129 down_write(&iinfo->i_data_sem);
130 udf_truncate_extents(inode);
131 up_write(&iinfo->i_data_sem);
132 }
133 }
134 }
135
136 return ret;
137 }
138
udf_bmap(struct address_space * mapping,sector_t block)139 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
140 {
141 return generic_block_bmap(mapping, block, udf_get_block);
142 }
143
144 const struct address_space_operations udf_aops = {
145 .readpage = udf_readpage,
146 .readpages = udf_readpages,
147 .writepage = udf_writepage,
148 .write_begin = udf_write_begin,
149 .write_end = generic_write_end,
150 .bmap = udf_bmap,
151 };
152
153 /*
154 * Expand file stored in ICB to a normal one-block-file
155 *
156 * This function requires i_data_sem for writing and releases it.
157 * This function requires i_mutex held
158 */
udf_expand_file_adinicb(struct inode * inode)159 int udf_expand_file_adinicb(struct inode *inode)
160 {
161 struct page *page;
162 char *kaddr;
163 struct udf_inode_info *iinfo = UDF_I(inode);
164 int err;
165 struct writeback_control udf_wbc = {
166 .sync_mode = WB_SYNC_NONE,
167 .nr_to_write = 1,
168 };
169
170 if (!iinfo->i_lenAlloc) {
171 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
172 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
173 else
174 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
175 /* from now on we have normal address_space methods */
176 inode->i_data.a_ops = &udf_aops;
177 up_write(&iinfo->i_data_sem);
178 mark_inode_dirty(inode);
179 return 0;
180 }
181 /*
182 * Release i_data_sem so that we can lock a page - page lock ranks
183 * above i_data_sem. i_mutex still protects us against file changes.
184 */
185 up_write(&iinfo->i_data_sem);
186
187 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
188 if (!page)
189 return -ENOMEM;
190
191 if (!PageUptodate(page)) {
192 kaddr = kmap(page);
193 memset(kaddr + iinfo->i_lenAlloc, 0x00,
194 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
195 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
196 iinfo->i_lenAlloc);
197 flush_dcache_page(page);
198 SetPageUptodate(page);
199 kunmap(page);
200 }
201 down_write(&iinfo->i_data_sem);
202 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
203 iinfo->i_lenAlloc);
204 iinfo->i_lenAlloc = 0;
205 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
206 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
207 else
208 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
209 /* from now on we have normal address_space methods */
210 inode->i_data.a_ops = &udf_aops;
211 up_write(&iinfo->i_data_sem);
212 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
213 if (err) {
214 /* Restore everything back so that we don't lose data... */
215 lock_page(page);
216 kaddr = kmap(page);
217 down_write(&iinfo->i_data_sem);
218 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
219 inode->i_size);
220 kunmap(page);
221 unlock_page(page);
222 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
223 inode->i_data.a_ops = &udf_adinicb_aops;
224 up_write(&iinfo->i_data_sem);
225 }
226 page_cache_release(page);
227 mark_inode_dirty(inode);
228
229 return err;
230 }
231
udf_expand_dir_adinicb(struct inode * inode,int * block,int * err)232 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
233 int *err)
234 {
235 int newblock;
236 struct buffer_head *dbh = NULL;
237 struct kernel_lb_addr eloc;
238 uint8_t alloctype;
239 struct extent_position epos;
240
241 struct udf_fileident_bh sfibh, dfibh;
242 loff_t f_pos = udf_ext0_offset(inode);
243 int size = udf_ext0_offset(inode) + inode->i_size;
244 struct fileIdentDesc cfi, *sfi, *dfi;
245 struct udf_inode_info *iinfo = UDF_I(inode);
246
247 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
248 alloctype = ICBTAG_FLAG_AD_SHORT;
249 else
250 alloctype = ICBTAG_FLAG_AD_LONG;
251
252 if (!inode->i_size) {
253 iinfo->i_alloc_type = alloctype;
254 mark_inode_dirty(inode);
255 return NULL;
256 }
257
258 /* alloc block, and copy data to it */
259 *block = udf_new_block(inode->i_sb, inode,
260 iinfo->i_location.partitionReferenceNum,
261 iinfo->i_location.logicalBlockNum, err);
262 if (!(*block))
263 return NULL;
264 newblock = udf_get_pblock(inode->i_sb, *block,
265 iinfo->i_location.partitionReferenceNum,
266 0);
267 if (!newblock)
268 return NULL;
269 dbh = udf_tgetblk(inode->i_sb, newblock);
270 if (!dbh)
271 return NULL;
272 lock_buffer(dbh);
273 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
274 set_buffer_uptodate(dbh);
275 unlock_buffer(dbh);
276 mark_buffer_dirty_inode(dbh, inode);
277
278 sfibh.soffset = sfibh.eoffset =
279 f_pos & (inode->i_sb->s_blocksize - 1);
280 sfibh.sbh = sfibh.ebh = NULL;
281 dfibh.soffset = dfibh.eoffset = 0;
282 dfibh.sbh = dfibh.ebh = dbh;
283 while (f_pos < size) {
284 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
285 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
286 NULL, NULL, NULL);
287 if (!sfi) {
288 brelse(dbh);
289 return NULL;
290 }
291 iinfo->i_alloc_type = alloctype;
292 sfi->descTag.tagLocation = cpu_to_le32(*block);
293 dfibh.soffset = dfibh.eoffset;
294 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
295 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
296 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
297 sfi->fileIdent +
298 le16_to_cpu(sfi->lengthOfImpUse))) {
299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
300 brelse(dbh);
301 return NULL;
302 }
303 }
304 mark_buffer_dirty_inode(dbh, inode);
305
306 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
307 iinfo->i_lenAlloc);
308 iinfo->i_lenAlloc = 0;
309 eloc.logicalBlockNum = *block;
310 eloc.partitionReferenceNum =
311 iinfo->i_location.partitionReferenceNum;
312 iinfo->i_lenExtents = inode->i_size;
313 epos.bh = NULL;
314 epos.block = iinfo->i_location;
315 epos.offset = udf_file_entry_alloc_offset(inode);
316 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
317 /* UniqueID stuff */
318
319 brelse(epos.bh);
320 mark_inode_dirty(inode);
321 return dbh;
322 }
323
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)324 static int udf_get_block(struct inode *inode, sector_t block,
325 struct buffer_head *bh_result, int create)
326 {
327 int err, new;
328 sector_t phys = 0;
329 struct udf_inode_info *iinfo;
330
331 if (!create) {
332 phys = udf_block_map(inode, block);
333 if (phys)
334 map_bh(bh_result, inode->i_sb, phys);
335 return 0;
336 }
337
338 err = -EIO;
339 new = 0;
340 iinfo = UDF_I(inode);
341
342 down_write(&iinfo->i_data_sem);
343 if (block == iinfo->i_next_alloc_block + 1) {
344 iinfo->i_next_alloc_block++;
345 iinfo->i_next_alloc_goal++;
346 }
347
348
349 phys = inode_getblk(inode, block, &err, &new);
350 if (!phys)
351 goto abort;
352
353 if (new)
354 set_buffer_new(bh_result);
355 map_bh(bh_result, inode->i_sb, phys);
356
357 abort:
358 up_write(&iinfo->i_data_sem);
359 return err;
360 }
361
udf_getblk(struct inode * inode,long block,int create,int * err)362 static struct buffer_head *udf_getblk(struct inode *inode, long block,
363 int create, int *err)
364 {
365 struct buffer_head *bh;
366 struct buffer_head dummy;
367
368 dummy.b_state = 0;
369 dummy.b_blocknr = -1000;
370 *err = udf_get_block(inode, block, &dummy, create);
371 if (!*err && buffer_mapped(&dummy)) {
372 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
373 if (buffer_new(&dummy)) {
374 lock_buffer(bh);
375 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
376 set_buffer_uptodate(bh);
377 unlock_buffer(bh);
378 mark_buffer_dirty_inode(bh, inode);
379 }
380 return bh;
381 }
382
383 return NULL;
384 }
385
386 /* Extend the file by 'blocks' blocks, return the number of extents added */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,sector_t blocks)387 static int udf_do_extend_file(struct inode *inode,
388 struct extent_position *last_pos,
389 struct kernel_long_ad *last_ext,
390 sector_t blocks)
391 {
392 sector_t add;
393 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
394 struct super_block *sb = inode->i_sb;
395 struct kernel_lb_addr prealloc_loc = {};
396 int prealloc_len = 0;
397 struct udf_inode_info *iinfo;
398 int err;
399
400 /* The previous extent is fake and we should not extend by anything
401 * - there's nothing to do... */
402 if (!blocks && fake)
403 return 0;
404
405 iinfo = UDF_I(inode);
406 /* Round the last extent up to a multiple of block size */
407 if (last_ext->extLength & (sb->s_blocksize - 1)) {
408 last_ext->extLength =
409 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
410 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
411 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
412 iinfo->i_lenExtents =
413 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
414 ~(sb->s_blocksize - 1);
415 }
416
417 /* Last extent are just preallocated blocks? */
418 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
419 EXT_NOT_RECORDED_ALLOCATED) {
420 /* Save the extent so that we can reattach it to the end */
421 prealloc_loc = last_ext->extLocation;
422 prealloc_len = last_ext->extLength;
423 /* Mark the extent as a hole */
424 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
425 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
426 last_ext->extLocation.logicalBlockNum = 0;
427 last_ext->extLocation.partitionReferenceNum = 0;
428 }
429
430 /* Can we merge with the previous extent? */
431 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
432 EXT_NOT_RECORDED_NOT_ALLOCATED) {
433 add = ((1 << 30) - sb->s_blocksize -
434 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
435 sb->s_blocksize_bits;
436 if (add > blocks)
437 add = blocks;
438 blocks -= add;
439 last_ext->extLength += add << sb->s_blocksize_bits;
440 }
441
442 if (fake) {
443 udf_add_aext(inode, last_pos, &last_ext->extLocation,
444 last_ext->extLength, 1);
445 count++;
446 } else
447 udf_write_aext(inode, last_pos, &last_ext->extLocation,
448 last_ext->extLength, 1);
449
450 /* Managed to do everything necessary? */
451 if (!blocks)
452 goto out;
453
454 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
455 last_ext->extLocation.logicalBlockNum = 0;
456 last_ext->extLocation.partitionReferenceNum = 0;
457 add = (1 << (30-sb->s_blocksize_bits)) - 1;
458 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
459 (add << sb->s_blocksize_bits);
460
461 /* Create enough extents to cover the whole hole */
462 while (blocks > add) {
463 blocks -= add;
464 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
465 last_ext->extLength, 1);
466 if (err)
467 return err;
468 count++;
469 }
470 if (blocks) {
471 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
472 (blocks << sb->s_blocksize_bits);
473 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
474 last_ext->extLength, 1);
475 if (err)
476 return err;
477 count++;
478 }
479
480 out:
481 /* Do we have some preallocated blocks saved? */
482 if (prealloc_len) {
483 err = udf_add_aext(inode, last_pos, &prealloc_loc,
484 prealloc_len, 1);
485 if (err)
486 return err;
487 last_ext->extLocation = prealloc_loc;
488 last_ext->extLength = prealloc_len;
489 count++;
490 }
491
492 /* last_pos should point to the last written extent... */
493 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
494 last_pos->offset -= sizeof(struct short_ad);
495 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
496 last_pos->offset -= sizeof(struct long_ad);
497 else
498 return -EIO;
499
500 return count;
501 }
502
udf_extend_file(struct inode * inode,loff_t newsize)503 static int udf_extend_file(struct inode *inode, loff_t newsize)
504 {
505
506 struct extent_position epos;
507 struct kernel_lb_addr eloc;
508 uint32_t elen;
509 int8_t etype;
510 struct super_block *sb = inode->i_sb;
511 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
512 int adsize;
513 struct udf_inode_info *iinfo = UDF_I(inode);
514 struct kernel_long_ad extent;
515 int err;
516
517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
518 adsize = sizeof(struct short_ad);
519 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
520 adsize = sizeof(struct long_ad);
521 else
522 BUG();
523
524 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
525
526 /* File has extent covering the new size (could happen when extending
527 * inside a block)? */
528 if (etype != -1)
529 return 0;
530 if (newsize & (sb->s_blocksize - 1))
531 offset++;
532 /* Extended file just to the boundary of the last file block? */
533 if (offset == 0)
534 return 0;
535
536 /* Truncate is extending the file by 'offset' blocks */
537 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
538 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
539 /* File has no extents at all or has empty last
540 * indirect extent! Create a fake extent... */
541 extent.extLocation.logicalBlockNum = 0;
542 extent.extLocation.partitionReferenceNum = 0;
543 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
544 } else {
545 epos.offset -= adsize;
546 etype = udf_next_aext(inode, &epos, &extent.extLocation,
547 &extent.extLength, 0);
548 extent.extLength |= etype << 30;
549 }
550 err = udf_do_extend_file(inode, &epos, &extent, offset);
551 if (err < 0)
552 goto out;
553 err = 0;
554 iinfo->i_lenExtents = newsize;
555 out:
556 brelse(epos.bh);
557 return err;
558 }
559
inode_getblk(struct inode * inode,sector_t block,int * err,int * new)560 static sector_t inode_getblk(struct inode *inode, sector_t block,
561 int *err, int *new)
562 {
563 static sector_t last_block;
564 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
565 struct extent_position prev_epos, cur_epos, next_epos;
566 int count = 0, startnum = 0, endnum = 0;
567 uint32_t elen = 0, tmpelen;
568 struct kernel_lb_addr eloc, tmpeloc;
569 int c = 1;
570 loff_t lbcount = 0, b_off = 0;
571 uint32_t newblocknum, newblock;
572 sector_t offset = 0;
573 int8_t etype;
574 struct udf_inode_info *iinfo = UDF_I(inode);
575 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
576 int lastblock = 0;
577 bool isBeyondEOF;
578
579 *err = 0;
580 *new = 0;
581 prev_epos.offset = udf_file_entry_alloc_offset(inode);
582 prev_epos.block = iinfo->i_location;
583 prev_epos.bh = NULL;
584 cur_epos = next_epos = prev_epos;
585 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
586
587 /* find the extent which contains the block we are looking for.
588 alternate between laarr[0] and laarr[1] for locations of the
589 current extent, and the previous extent */
590 do {
591 if (prev_epos.bh != cur_epos.bh) {
592 brelse(prev_epos.bh);
593 get_bh(cur_epos.bh);
594 prev_epos.bh = cur_epos.bh;
595 }
596 if (cur_epos.bh != next_epos.bh) {
597 brelse(cur_epos.bh);
598 get_bh(next_epos.bh);
599 cur_epos.bh = next_epos.bh;
600 }
601
602 lbcount += elen;
603
604 prev_epos.block = cur_epos.block;
605 cur_epos.block = next_epos.block;
606
607 prev_epos.offset = cur_epos.offset;
608 cur_epos.offset = next_epos.offset;
609
610 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
611 if (etype == -1)
612 break;
613
614 c = !c;
615
616 laarr[c].extLength = (etype << 30) | elen;
617 laarr[c].extLocation = eloc;
618
619 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
620 pgoal = eloc.logicalBlockNum +
621 ((elen + inode->i_sb->s_blocksize - 1) >>
622 inode->i_sb->s_blocksize_bits);
623
624 count++;
625 } while (lbcount + elen <= b_off);
626
627 b_off -= lbcount;
628 offset = b_off >> inode->i_sb->s_blocksize_bits;
629 /*
630 * Move prev_epos and cur_epos into indirect extent if we are at
631 * the pointer to it
632 */
633 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
634 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
635
636 /* if the extent is allocated and recorded, return the block
637 if the extent is not a multiple of the blocksize, round up */
638
639 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
640 if (elen & (inode->i_sb->s_blocksize - 1)) {
641 elen = EXT_RECORDED_ALLOCATED |
642 ((elen + inode->i_sb->s_blocksize - 1) &
643 ~(inode->i_sb->s_blocksize - 1));
644 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
645 }
646 brelse(prev_epos.bh);
647 brelse(cur_epos.bh);
648 brelse(next_epos.bh);
649 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
650 return newblock;
651 }
652
653 last_block = block;
654 /* Are we beyond EOF? */
655 if (etype == -1) {
656 int ret;
657 isBeyondEOF = 1;
658 if (count) {
659 if (c)
660 laarr[0] = laarr[1];
661 startnum = 1;
662 } else {
663 /* Create a fake extent when there's not one */
664 memset(&laarr[0].extLocation, 0x00,
665 sizeof(struct kernel_lb_addr));
666 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
667 /* Will udf_do_extend_file() create real extent from
668 a fake one? */
669 startnum = (offset > 0);
670 }
671 /* Create extents for the hole between EOF and offset */
672 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
673 if (ret < 0) {
674 brelse(prev_epos.bh);
675 brelse(cur_epos.bh);
676 brelse(next_epos.bh);
677 *err = ret;
678 return 0;
679 }
680 c = 0;
681 offset = 0;
682 count += ret;
683 /* We are not covered by a preallocated extent? */
684 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
685 EXT_NOT_RECORDED_ALLOCATED) {
686 /* Is there any real extent? - otherwise we overwrite
687 * the fake one... */
688 if (count)
689 c = !c;
690 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
691 inode->i_sb->s_blocksize;
692 memset(&laarr[c].extLocation, 0x00,
693 sizeof(struct kernel_lb_addr));
694 count++;
695 endnum++;
696 }
697 endnum = c + 1;
698 lastblock = 1;
699 } else {
700 isBeyondEOF = 0;
701 endnum = startnum = ((count > 2) ? 2 : count);
702
703 /* if the current extent is in position 0,
704 swap it with the previous */
705 if (!c && count != 1) {
706 laarr[2] = laarr[0];
707 laarr[0] = laarr[1];
708 laarr[1] = laarr[2];
709 c = 1;
710 }
711
712 /* if the current block is located in an extent,
713 read the next extent */
714 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
715 if (etype != -1) {
716 laarr[c + 1].extLength = (etype << 30) | elen;
717 laarr[c + 1].extLocation = eloc;
718 count++;
719 startnum++;
720 endnum++;
721 } else
722 lastblock = 1;
723 }
724
725 /* if the current extent is not recorded but allocated, get the
726 * block in the extent corresponding to the requested block */
727 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
728 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
729 else { /* otherwise, allocate a new block */
730 if (iinfo->i_next_alloc_block == block)
731 goal = iinfo->i_next_alloc_goal;
732
733 if (!goal) {
734 if (!(goal = pgoal)) /* XXX: what was intended here? */
735 goal = iinfo->i_location.logicalBlockNum + 1;
736 }
737
738 newblocknum = udf_new_block(inode->i_sb, inode,
739 iinfo->i_location.partitionReferenceNum,
740 goal, err);
741 if (!newblocknum) {
742 brelse(prev_epos.bh);
743 brelse(cur_epos.bh);
744 brelse(next_epos.bh);
745 *err = -ENOSPC;
746 return 0;
747 }
748 if (isBeyondEOF)
749 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
750 }
751
752 /* if the extent the requsted block is located in contains multiple
753 * blocks, split the extent into at most three extents. blocks prior
754 * to requested block, requested block, and blocks after requested
755 * block */
756 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
757
758 #ifdef UDF_PREALLOCATE
759 /* We preallocate blocks only for regular files. It also makes sense
760 * for directories but there's a problem when to drop the
761 * preallocation. We might use some delayed work for that but I feel
762 * it's overengineering for a filesystem like UDF. */
763 if (S_ISREG(inode->i_mode))
764 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
765 #endif
766
767 /* merge any continuous blocks in laarr */
768 udf_merge_extents(inode, laarr, &endnum);
769
770 /* write back the new extents, inserting new extents if the new number
771 * of extents is greater than the old number, and deleting extents if
772 * the new number of extents is less than the old number */
773 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
774
775 brelse(prev_epos.bh);
776 brelse(cur_epos.bh);
777 brelse(next_epos.bh);
778
779 newblock = udf_get_pblock(inode->i_sb, newblocknum,
780 iinfo->i_location.partitionReferenceNum, 0);
781 if (!newblock) {
782 *err = -EIO;
783 return 0;
784 }
785 *new = 1;
786 iinfo->i_next_alloc_block = block;
787 iinfo->i_next_alloc_goal = newblocknum;
788 inode->i_ctime = current_fs_time(inode->i_sb);
789
790 if (IS_SYNC(inode))
791 udf_sync_inode(inode);
792 else
793 mark_inode_dirty(inode);
794
795 return newblock;
796 }
797
udf_split_extents(struct inode * inode,int * c,int offset,int newblocknum,struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],int * endnum)798 static void udf_split_extents(struct inode *inode, int *c, int offset,
799 int newblocknum,
800 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
801 int *endnum)
802 {
803 unsigned long blocksize = inode->i_sb->s_blocksize;
804 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
805
806 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
807 (laarr[*c].extLength >> 30) ==
808 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
809 int curr = *c;
810 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
811 blocksize - 1) >> blocksize_bits;
812 int8_t etype = (laarr[curr].extLength >> 30);
813
814 if (blen == 1)
815 ;
816 else if (!offset || blen == offset + 1) {
817 laarr[curr + 2] = laarr[curr + 1];
818 laarr[curr + 1] = laarr[curr];
819 } else {
820 laarr[curr + 3] = laarr[curr + 1];
821 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
822 }
823
824 if (offset) {
825 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
826 udf_free_blocks(inode->i_sb, inode,
827 &laarr[curr].extLocation,
828 0, offset);
829 laarr[curr].extLength =
830 EXT_NOT_RECORDED_NOT_ALLOCATED |
831 (offset << blocksize_bits);
832 laarr[curr].extLocation.logicalBlockNum = 0;
833 laarr[curr].extLocation.
834 partitionReferenceNum = 0;
835 } else
836 laarr[curr].extLength = (etype << 30) |
837 (offset << blocksize_bits);
838 curr++;
839 (*c)++;
840 (*endnum)++;
841 }
842
843 laarr[curr].extLocation.logicalBlockNum = newblocknum;
844 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
845 laarr[curr].extLocation.partitionReferenceNum =
846 UDF_I(inode)->i_location.partitionReferenceNum;
847 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
848 blocksize;
849 curr++;
850
851 if (blen != offset + 1) {
852 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
853 laarr[curr].extLocation.logicalBlockNum +=
854 offset + 1;
855 laarr[curr].extLength = (etype << 30) |
856 ((blen - (offset + 1)) << blocksize_bits);
857 curr++;
858 (*endnum)++;
859 }
860 }
861 }
862
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],int * endnum)863 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
864 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
865 int *endnum)
866 {
867 int start, length = 0, currlength = 0, i;
868
869 if (*endnum >= (c + 1)) {
870 if (!lastblock)
871 return;
872 else
873 start = c;
874 } else {
875 if ((laarr[c + 1].extLength >> 30) ==
876 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
877 start = c + 1;
878 length = currlength =
879 (((laarr[c + 1].extLength &
880 UDF_EXTENT_LENGTH_MASK) +
881 inode->i_sb->s_blocksize - 1) >>
882 inode->i_sb->s_blocksize_bits);
883 } else
884 start = c;
885 }
886
887 for (i = start + 1; i <= *endnum; i++) {
888 if (i == *endnum) {
889 if (lastblock)
890 length += UDF_DEFAULT_PREALLOC_BLOCKS;
891 } else if ((laarr[i].extLength >> 30) ==
892 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
893 length += (((laarr[i].extLength &
894 UDF_EXTENT_LENGTH_MASK) +
895 inode->i_sb->s_blocksize - 1) >>
896 inode->i_sb->s_blocksize_bits);
897 } else
898 break;
899 }
900
901 if (length) {
902 int next = laarr[start].extLocation.logicalBlockNum +
903 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
904 inode->i_sb->s_blocksize - 1) >>
905 inode->i_sb->s_blocksize_bits);
906 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
907 laarr[start].extLocation.partitionReferenceNum,
908 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
909 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
910 currlength);
911 if (numalloc) {
912 if (start == (c + 1))
913 laarr[start].extLength +=
914 (numalloc <<
915 inode->i_sb->s_blocksize_bits);
916 else {
917 memmove(&laarr[c + 2], &laarr[c + 1],
918 sizeof(struct long_ad) * (*endnum - (c + 1)));
919 (*endnum)++;
920 laarr[c + 1].extLocation.logicalBlockNum = next;
921 laarr[c + 1].extLocation.partitionReferenceNum =
922 laarr[c].extLocation.
923 partitionReferenceNum;
924 laarr[c + 1].extLength =
925 EXT_NOT_RECORDED_ALLOCATED |
926 (numalloc <<
927 inode->i_sb->s_blocksize_bits);
928 start = c + 1;
929 }
930
931 for (i = start + 1; numalloc && i < *endnum; i++) {
932 int elen = ((laarr[i].extLength &
933 UDF_EXTENT_LENGTH_MASK) +
934 inode->i_sb->s_blocksize - 1) >>
935 inode->i_sb->s_blocksize_bits;
936
937 if (elen > numalloc) {
938 laarr[i].extLength -=
939 (numalloc <<
940 inode->i_sb->s_blocksize_bits);
941 numalloc = 0;
942 } else {
943 numalloc -= elen;
944 if (*endnum > (i + 1))
945 memmove(&laarr[i],
946 &laarr[i + 1],
947 sizeof(struct long_ad) *
948 (*endnum - (i + 1)));
949 i--;
950 (*endnum)--;
951 }
952 }
953 UDF_I(inode)->i_lenExtents +=
954 numalloc << inode->i_sb->s_blocksize_bits;
955 }
956 }
957 }
958
udf_merge_extents(struct inode * inode,struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],int * endnum)959 static void udf_merge_extents(struct inode *inode,
960 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
961 int *endnum)
962 {
963 int i;
964 unsigned long blocksize = inode->i_sb->s_blocksize;
965 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
966
967 for (i = 0; i < (*endnum - 1); i++) {
968 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
969 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
970
971 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
972 (((li->extLength >> 30) ==
973 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
974 ((lip1->extLocation.logicalBlockNum -
975 li->extLocation.logicalBlockNum) ==
976 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
977 blocksize - 1) >> blocksize_bits)))) {
978
979 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
980 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
981 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
982 lip1->extLength = (lip1->extLength -
983 (li->extLength &
984 UDF_EXTENT_LENGTH_MASK) +
985 UDF_EXTENT_LENGTH_MASK) &
986 ~(blocksize - 1);
987 li->extLength = (li->extLength &
988 UDF_EXTENT_FLAG_MASK) +
989 (UDF_EXTENT_LENGTH_MASK + 1) -
990 blocksize;
991 lip1->extLocation.logicalBlockNum =
992 li->extLocation.logicalBlockNum +
993 ((li->extLength &
994 UDF_EXTENT_LENGTH_MASK) >>
995 blocksize_bits);
996 } else {
997 li->extLength = lip1->extLength +
998 (((li->extLength &
999 UDF_EXTENT_LENGTH_MASK) +
1000 blocksize - 1) & ~(blocksize - 1));
1001 if (*endnum > (i + 2))
1002 memmove(&laarr[i + 1], &laarr[i + 2],
1003 sizeof(struct long_ad) *
1004 (*endnum - (i + 2)));
1005 i--;
1006 (*endnum)--;
1007 }
1008 } else if (((li->extLength >> 30) ==
1009 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1010 ((lip1->extLength >> 30) ==
1011 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1012 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1013 ((li->extLength &
1014 UDF_EXTENT_LENGTH_MASK) +
1015 blocksize - 1) >> blocksize_bits);
1016 li->extLocation.logicalBlockNum = 0;
1017 li->extLocation.partitionReferenceNum = 0;
1018
1019 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1020 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1021 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1022 lip1->extLength = (lip1->extLength -
1023 (li->extLength &
1024 UDF_EXTENT_LENGTH_MASK) +
1025 UDF_EXTENT_LENGTH_MASK) &
1026 ~(blocksize - 1);
1027 li->extLength = (li->extLength &
1028 UDF_EXTENT_FLAG_MASK) +
1029 (UDF_EXTENT_LENGTH_MASK + 1) -
1030 blocksize;
1031 } else {
1032 li->extLength = lip1->extLength +
1033 (((li->extLength &
1034 UDF_EXTENT_LENGTH_MASK) +
1035 blocksize - 1) & ~(blocksize - 1));
1036 if (*endnum > (i + 2))
1037 memmove(&laarr[i + 1], &laarr[i + 2],
1038 sizeof(struct long_ad) *
1039 (*endnum - (i + 2)));
1040 i--;
1041 (*endnum)--;
1042 }
1043 } else if ((li->extLength >> 30) ==
1044 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1045 udf_free_blocks(inode->i_sb, inode,
1046 &li->extLocation, 0,
1047 ((li->extLength &
1048 UDF_EXTENT_LENGTH_MASK) +
1049 blocksize - 1) >> blocksize_bits);
1050 li->extLocation.logicalBlockNum = 0;
1051 li->extLocation.partitionReferenceNum = 0;
1052 li->extLength = (li->extLength &
1053 UDF_EXTENT_LENGTH_MASK) |
1054 EXT_NOT_RECORDED_NOT_ALLOCATED;
1055 }
1056 }
1057 }
1058
udf_update_extents(struct inode * inode,struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],int startnum,int endnum,struct extent_position * epos)1059 static void udf_update_extents(struct inode *inode,
1060 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1061 int startnum, int endnum,
1062 struct extent_position *epos)
1063 {
1064 int start = 0, i;
1065 struct kernel_lb_addr tmploc;
1066 uint32_t tmplen;
1067
1068 if (startnum > endnum) {
1069 for (i = 0; i < (startnum - endnum); i++)
1070 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1071 laarr[i].extLength);
1072 } else if (startnum < endnum) {
1073 for (i = 0; i < (endnum - startnum); i++) {
1074 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1075 laarr[i].extLength);
1076 udf_next_aext(inode, epos, &laarr[i].extLocation,
1077 &laarr[i].extLength, 1);
1078 start++;
1079 }
1080 }
1081
1082 for (i = start; i < endnum; i++) {
1083 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1084 udf_write_aext(inode, epos, &laarr[i].extLocation,
1085 laarr[i].extLength, 1);
1086 }
1087 }
1088
udf_bread(struct inode * inode,int block,int create,int * err)1089 struct buffer_head *udf_bread(struct inode *inode, int block,
1090 int create, int *err)
1091 {
1092 struct buffer_head *bh = NULL;
1093
1094 bh = udf_getblk(inode, block, create, err);
1095 if (!bh)
1096 return NULL;
1097
1098 if (buffer_uptodate(bh))
1099 return bh;
1100
1101 ll_rw_block(READ, 1, &bh);
1102
1103 wait_on_buffer(bh);
1104 if (buffer_uptodate(bh))
1105 return bh;
1106
1107 brelse(bh);
1108 *err = -EIO;
1109 return NULL;
1110 }
1111
udf_setsize(struct inode * inode,loff_t newsize)1112 int udf_setsize(struct inode *inode, loff_t newsize)
1113 {
1114 int err;
1115 struct udf_inode_info *iinfo;
1116 int bsize = 1 << inode->i_blkbits;
1117
1118 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1119 S_ISLNK(inode->i_mode)))
1120 return -EINVAL;
1121 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1122 return -EPERM;
1123
1124 iinfo = UDF_I(inode);
1125 if (newsize > inode->i_size) {
1126 down_write(&iinfo->i_data_sem);
1127 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1128 if (bsize <
1129 (udf_file_entry_alloc_offset(inode) + newsize)) {
1130 err = udf_expand_file_adinicb(inode);
1131 if (err)
1132 return err;
1133 down_write(&iinfo->i_data_sem);
1134 } else
1135 iinfo->i_lenAlloc = newsize;
1136 }
1137 err = udf_extend_file(inode, newsize);
1138 if (err) {
1139 up_write(&iinfo->i_data_sem);
1140 return err;
1141 }
1142 truncate_setsize(inode, newsize);
1143 up_write(&iinfo->i_data_sem);
1144 } else {
1145 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1146 down_write(&iinfo->i_data_sem);
1147 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1148 0x00, bsize - newsize -
1149 udf_file_entry_alloc_offset(inode));
1150 iinfo->i_lenAlloc = newsize;
1151 truncate_setsize(inode, newsize);
1152 up_write(&iinfo->i_data_sem);
1153 goto update_time;
1154 }
1155 err = block_truncate_page(inode->i_mapping, newsize,
1156 udf_get_block);
1157 if (err)
1158 return err;
1159 down_write(&iinfo->i_data_sem);
1160 truncate_setsize(inode, newsize);
1161 udf_truncate_extents(inode);
1162 up_write(&iinfo->i_data_sem);
1163 }
1164 update_time:
1165 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1166 if (IS_SYNC(inode))
1167 udf_sync_inode(inode);
1168 else
1169 mark_inode_dirty(inode);
1170 return 0;
1171 }
1172
__udf_read_inode(struct inode * inode)1173 static void __udf_read_inode(struct inode *inode)
1174 {
1175 struct buffer_head *bh = NULL;
1176 struct fileEntry *fe;
1177 uint16_t ident;
1178 struct udf_inode_info *iinfo = UDF_I(inode);
1179
1180 /*
1181 * Set defaults, but the inode is still incomplete!
1182 * Note: get_new_inode() sets the following on a new inode:
1183 * i_sb = sb
1184 * i_no = ino
1185 * i_flags = sb->s_flags
1186 * i_state = 0
1187 * clean_inode(): zero fills and sets
1188 * i_count = 1
1189 * i_nlink = 1
1190 * i_op = NULL;
1191 */
1192 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1193 if (!bh) {
1194 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1195 make_bad_inode(inode);
1196 return;
1197 }
1198
1199 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1200 ident != TAG_IDENT_USE) {
1201 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1202 inode->i_ino, ident);
1203 brelse(bh);
1204 make_bad_inode(inode);
1205 return;
1206 }
1207
1208 fe = (struct fileEntry *)bh->b_data;
1209
1210 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1211 struct buffer_head *ibh;
1212
1213 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1214 &ident);
1215 if (ident == TAG_IDENT_IE && ibh) {
1216 struct buffer_head *nbh = NULL;
1217 struct kernel_lb_addr loc;
1218 struct indirectEntry *ie;
1219
1220 ie = (struct indirectEntry *)ibh->b_data;
1221 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1222
1223 if (ie->indirectICB.extLength &&
1224 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1225 &ident))) {
1226 if (ident == TAG_IDENT_FE ||
1227 ident == TAG_IDENT_EFE) {
1228 memcpy(&iinfo->i_location,
1229 &loc,
1230 sizeof(struct kernel_lb_addr));
1231 brelse(bh);
1232 brelse(ibh);
1233 brelse(nbh);
1234 __udf_read_inode(inode);
1235 return;
1236 }
1237 brelse(nbh);
1238 }
1239 }
1240 brelse(ibh);
1241 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1242 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1243 le16_to_cpu(fe->icbTag.strategyType));
1244 brelse(bh);
1245 make_bad_inode(inode);
1246 return;
1247 }
1248 udf_fill_inode(inode, bh);
1249
1250 brelse(bh);
1251 }
1252
udf_fill_inode(struct inode * inode,struct buffer_head * bh)1253 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1254 {
1255 struct fileEntry *fe;
1256 struct extendedFileEntry *efe;
1257 int offset;
1258 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1259 struct udf_inode_info *iinfo = UDF_I(inode);
1260 unsigned int link_count;
1261
1262 fe = (struct fileEntry *)bh->b_data;
1263 efe = (struct extendedFileEntry *)bh->b_data;
1264
1265 if (fe->icbTag.strategyType == cpu_to_le16(4))
1266 iinfo->i_strat4096 = 0;
1267 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1268 iinfo->i_strat4096 = 1;
1269
1270 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1271 ICBTAG_FLAG_AD_MASK;
1272 iinfo->i_unique = 0;
1273 iinfo->i_lenEAttr = 0;
1274 iinfo->i_lenExtents = 0;
1275 iinfo->i_lenAlloc = 0;
1276 iinfo->i_next_alloc_block = 0;
1277 iinfo->i_next_alloc_goal = 0;
1278 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1279 iinfo->i_efe = 1;
1280 iinfo->i_use = 0;
1281 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1282 sizeof(struct extendedFileEntry))) {
1283 make_bad_inode(inode);
1284 return;
1285 }
1286 memcpy(iinfo->i_ext.i_data,
1287 bh->b_data + sizeof(struct extendedFileEntry),
1288 inode->i_sb->s_blocksize -
1289 sizeof(struct extendedFileEntry));
1290 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1291 iinfo->i_efe = 0;
1292 iinfo->i_use = 0;
1293 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1294 sizeof(struct fileEntry))) {
1295 make_bad_inode(inode);
1296 return;
1297 }
1298 memcpy(iinfo->i_ext.i_data,
1299 bh->b_data + sizeof(struct fileEntry),
1300 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1301 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1302 iinfo->i_efe = 0;
1303 iinfo->i_use = 1;
1304 iinfo->i_lenAlloc = le32_to_cpu(
1305 ((struct unallocSpaceEntry *)bh->b_data)->
1306 lengthAllocDescs);
1307 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1308 sizeof(struct unallocSpaceEntry))) {
1309 make_bad_inode(inode);
1310 return;
1311 }
1312 memcpy(iinfo->i_ext.i_data,
1313 bh->b_data + sizeof(struct unallocSpaceEntry),
1314 inode->i_sb->s_blocksize -
1315 sizeof(struct unallocSpaceEntry));
1316 return;
1317 }
1318
1319 read_lock(&sbi->s_cred_lock);
1320 inode->i_uid = le32_to_cpu(fe->uid);
1321 if (inode->i_uid == -1 ||
1322 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1323 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1324 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1325
1326 inode->i_gid = le32_to_cpu(fe->gid);
1327 if (inode->i_gid == -1 ||
1328 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1329 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1330 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1331
1332 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1333 sbi->s_fmode != UDF_INVALID_MODE)
1334 inode->i_mode = sbi->s_fmode;
1335 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1336 sbi->s_dmode != UDF_INVALID_MODE)
1337 inode->i_mode = sbi->s_dmode;
1338 else
1339 inode->i_mode = udf_convert_permissions(fe);
1340 inode->i_mode &= ~sbi->s_umask;
1341 read_unlock(&sbi->s_cred_lock);
1342
1343 link_count = le16_to_cpu(fe->fileLinkCount);
1344 if (!link_count)
1345 link_count = 1;
1346 set_nlink(inode, link_count);
1347
1348 inode->i_size = le64_to_cpu(fe->informationLength);
1349 iinfo->i_lenExtents = inode->i_size;
1350
1351 if (iinfo->i_efe == 0) {
1352 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1353 (inode->i_sb->s_blocksize_bits - 9);
1354
1355 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1356 inode->i_atime = sbi->s_record_time;
1357
1358 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1359 fe->modificationTime))
1360 inode->i_mtime = sbi->s_record_time;
1361
1362 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1363 inode->i_ctime = sbi->s_record_time;
1364
1365 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1366 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1367 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1368 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1369 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1370 } else {
1371 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1372 (inode->i_sb->s_blocksize_bits - 9);
1373
1374 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1375 inode->i_atime = sbi->s_record_time;
1376
1377 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1378 efe->modificationTime))
1379 inode->i_mtime = sbi->s_record_time;
1380
1381 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1382 iinfo->i_crtime = sbi->s_record_time;
1383
1384 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1385 inode->i_ctime = sbi->s_record_time;
1386
1387 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1388 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1389 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1390 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1391 offset = sizeof(struct extendedFileEntry) +
1392 iinfo->i_lenEAttr;
1393 }
1394
1395 switch (fe->icbTag.fileType) {
1396 case ICBTAG_FILE_TYPE_DIRECTORY:
1397 inode->i_op = &udf_dir_inode_operations;
1398 inode->i_fop = &udf_dir_operations;
1399 inode->i_mode |= S_IFDIR;
1400 inc_nlink(inode);
1401 break;
1402 case ICBTAG_FILE_TYPE_REALTIME:
1403 case ICBTAG_FILE_TYPE_REGULAR:
1404 case ICBTAG_FILE_TYPE_UNDEF:
1405 case ICBTAG_FILE_TYPE_VAT20:
1406 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1407 inode->i_data.a_ops = &udf_adinicb_aops;
1408 else
1409 inode->i_data.a_ops = &udf_aops;
1410 inode->i_op = &udf_file_inode_operations;
1411 inode->i_fop = &udf_file_operations;
1412 inode->i_mode |= S_IFREG;
1413 break;
1414 case ICBTAG_FILE_TYPE_BLOCK:
1415 inode->i_mode |= S_IFBLK;
1416 break;
1417 case ICBTAG_FILE_TYPE_CHAR:
1418 inode->i_mode |= S_IFCHR;
1419 break;
1420 case ICBTAG_FILE_TYPE_FIFO:
1421 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1422 break;
1423 case ICBTAG_FILE_TYPE_SOCKET:
1424 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1425 break;
1426 case ICBTAG_FILE_TYPE_SYMLINK:
1427 inode->i_data.a_ops = &udf_symlink_aops;
1428 inode->i_op = &udf_symlink_inode_operations;
1429 inode->i_mode = S_IFLNK | S_IRWXUGO;
1430 break;
1431 case ICBTAG_FILE_TYPE_MAIN:
1432 udf_debug("METADATA FILE-----\n");
1433 break;
1434 case ICBTAG_FILE_TYPE_MIRROR:
1435 udf_debug("METADATA MIRROR FILE-----\n");
1436 break;
1437 case ICBTAG_FILE_TYPE_BITMAP:
1438 udf_debug("METADATA BITMAP FILE-----\n");
1439 break;
1440 default:
1441 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1442 inode->i_ino, fe->icbTag.fileType);
1443 make_bad_inode(inode);
1444 return;
1445 }
1446 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1447 struct deviceSpec *dsea =
1448 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1449 if (dsea) {
1450 init_special_inode(inode, inode->i_mode,
1451 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1452 le32_to_cpu(dsea->minorDeviceIdent)));
1453 /* Developer ID ??? */
1454 } else
1455 make_bad_inode(inode);
1456 }
1457 }
1458
udf_alloc_i_data(struct inode * inode,size_t size)1459 static int udf_alloc_i_data(struct inode *inode, size_t size)
1460 {
1461 struct udf_inode_info *iinfo = UDF_I(inode);
1462 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1463
1464 if (!iinfo->i_ext.i_data) {
1465 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1466 inode->i_ino);
1467 return -ENOMEM;
1468 }
1469
1470 return 0;
1471 }
1472
udf_convert_permissions(struct fileEntry * fe)1473 static umode_t udf_convert_permissions(struct fileEntry *fe)
1474 {
1475 umode_t mode;
1476 uint32_t permissions;
1477 uint32_t flags;
1478
1479 permissions = le32_to_cpu(fe->permissions);
1480 flags = le16_to_cpu(fe->icbTag.flags);
1481
1482 mode = ((permissions) & S_IRWXO) |
1483 ((permissions >> 2) & S_IRWXG) |
1484 ((permissions >> 4) & S_IRWXU) |
1485 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1486 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1487 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1488
1489 return mode;
1490 }
1491
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1492 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1493 {
1494 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1495 }
1496
udf_sync_inode(struct inode * inode)1497 static int udf_sync_inode(struct inode *inode)
1498 {
1499 return udf_update_inode(inode, 1);
1500 }
1501
udf_update_inode(struct inode * inode,int do_sync)1502 static int udf_update_inode(struct inode *inode, int do_sync)
1503 {
1504 struct buffer_head *bh = NULL;
1505 struct fileEntry *fe;
1506 struct extendedFileEntry *efe;
1507 uint64_t lb_recorded;
1508 uint32_t udfperms;
1509 uint16_t icbflags;
1510 uint16_t crclen;
1511 int err = 0;
1512 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1513 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1514 struct udf_inode_info *iinfo = UDF_I(inode);
1515
1516 bh = udf_tgetblk(inode->i_sb,
1517 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1518 if (!bh) {
1519 udf_debug("getblk failure\n");
1520 return -ENOMEM;
1521 }
1522
1523 lock_buffer(bh);
1524 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1525 fe = (struct fileEntry *)bh->b_data;
1526 efe = (struct extendedFileEntry *)bh->b_data;
1527
1528 if (iinfo->i_use) {
1529 struct unallocSpaceEntry *use =
1530 (struct unallocSpaceEntry *)bh->b_data;
1531
1532 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1533 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1534 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1535 sizeof(struct unallocSpaceEntry));
1536 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1537 use->descTag.tagLocation =
1538 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1539 crclen = sizeof(struct unallocSpaceEntry) +
1540 iinfo->i_lenAlloc - sizeof(struct tag);
1541 use->descTag.descCRCLength = cpu_to_le16(crclen);
1542 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1543 sizeof(struct tag),
1544 crclen));
1545 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1546
1547 goto out;
1548 }
1549
1550 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1551 fe->uid = cpu_to_le32(-1);
1552 else
1553 fe->uid = cpu_to_le32(inode->i_uid);
1554
1555 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1556 fe->gid = cpu_to_le32(-1);
1557 else
1558 fe->gid = cpu_to_le32(inode->i_gid);
1559
1560 udfperms = ((inode->i_mode & S_IRWXO)) |
1561 ((inode->i_mode & S_IRWXG) << 2) |
1562 ((inode->i_mode & S_IRWXU) << 4);
1563
1564 udfperms |= (le32_to_cpu(fe->permissions) &
1565 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1566 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1567 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1568 fe->permissions = cpu_to_le32(udfperms);
1569
1570 if (S_ISDIR(inode->i_mode))
1571 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1572 else
1573 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1574
1575 fe->informationLength = cpu_to_le64(inode->i_size);
1576
1577 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1578 struct regid *eid;
1579 struct deviceSpec *dsea =
1580 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1581 if (!dsea) {
1582 dsea = (struct deviceSpec *)
1583 udf_add_extendedattr(inode,
1584 sizeof(struct deviceSpec) +
1585 sizeof(struct regid), 12, 0x3);
1586 dsea->attrType = cpu_to_le32(12);
1587 dsea->attrSubtype = 1;
1588 dsea->attrLength = cpu_to_le32(
1589 sizeof(struct deviceSpec) +
1590 sizeof(struct regid));
1591 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1592 }
1593 eid = (struct regid *)dsea->impUse;
1594 memset(eid, 0, sizeof(struct regid));
1595 strcpy(eid->ident, UDF_ID_DEVELOPER);
1596 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1597 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1598 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1599 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1600 }
1601
1602 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1603 lb_recorded = 0; /* No extents => no blocks! */
1604 else
1605 lb_recorded =
1606 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1607 (blocksize_bits - 9);
1608
1609 if (iinfo->i_efe == 0) {
1610 memcpy(bh->b_data + sizeof(struct fileEntry),
1611 iinfo->i_ext.i_data,
1612 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1613 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1614
1615 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1616 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1617 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1618 memset(&(fe->impIdent), 0, sizeof(struct regid));
1619 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1620 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1621 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1622 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1623 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1624 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1625 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1626 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1627 crclen = sizeof(struct fileEntry);
1628 } else {
1629 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1630 iinfo->i_ext.i_data,
1631 inode->i_sb->s_blocksize -
1632 sizeof(struct extendedFileEntry));
1633 efe->objectSize = cpu_to_le64(inode->i_size);
1634 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1635
1636 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1637 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1638 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1639 iinfo->i_crtime = inode->i_atime;
1640
1641 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1642 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1643 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1644 iinfo->i_crtime = inode->i_mtime;
1645
1646 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1647 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1648 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1649 iinfo->i_crtime = inode->i_ctime;
1650
1651 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1652 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1653 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1654 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1655
1656 memset(&(efe->impIdent), 0, sizeof(struct regid));
1657 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1658 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1659 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1660 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1661 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1662 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1663 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1664 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1665 crclen = sizeof(struct extendedFileEntry);
1666 }
1667 if (iinfo->i_strat4096) {
1668 fe->icbTag.strategyType = cpu_to_le16(4096);
1669 fe->icbTag.strategyParameter = cpu_to_le16(1);
1670 fe->icbTag.numEntries = cpu_to_le16(2);
1671 } else {
1672 fe->icbTag.strategyType = cpu_to_le16(4);
1673 fe->icbTag.numEntries = cpu_to_le16(1);
1674 }
1675
1676 if (S_ISDIR(inode->i_mode))
1677 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1678 else if (S_ISREG(inode->i_mode))
1679 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1680 else if (S_ISLNK(inode->i_mode))
1681 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1682 else if (S_ISBLK(inode->i_mode))
1683 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1684 else if (S_ISCHR(inode->i_mode))
1685 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1686 else if (S_ISFIFO(inode->i_mode))
1687 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1688 else if (S_ISSOCK(inode->i_mode))
1689 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1690
1691 icbflags = iinfo->i_alloc_type |
1692 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1693 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1694 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1695 (le16_to_cpu(fe->icbTag.flags) &
1696 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1697 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1698
1699 fe->icbTag.flags = cpu_to_le16(icbflags);
1700 if (sbi->s_udfrev >= 0x0200)
1701 fe->descTag.descVersion = cpu_to_le16(3);
1702 else
1703 fe->descTag.descVersion = cpu_to_le16(2);
1704 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1705 fe->descTag.tagLocation = cpu_to_le32(
1706 iinfo->i_location.logicalBlockNum);
1707 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1708 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1709 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1710 crclen));
1711 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1712
1713 out:
1714 set_buffer_uptodate(bh);
1715 unlock_buffer(bh);
1716
1717 /* write the data blocks */
1718 mark_buffer_dirty(bh);
1719 if (do_sync) {
1720 sync_dirty_buffer(bh);
1721 if (buffer_write_io_error(bh)) {
1722 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1723 inode->i_ino);
1724 err = -EIO;
1725 }
1726 }
1727 brelse(bh);
1728
1729 return err;
1730 }
1731
udf_iget(struct super_block * sb,struct kernel_lb_addr * ino)1732 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1733 {
1734 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1735 struct inode *inode = iget_locked(sb, block);
1736
1737 if (!inode)
1738 return NULL;
1739
1740 if (inode->i_state & I_NEW) {
1741 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1742 __udf_read_inode(inode);
1743 unlock_new_inode(inode);
1744 }
1745
1746 if (is_bad_inode(inode))
1747 goto out_iput;
1748
1749 if (ino->logicalBlockNum >= UDF_SB(sb)->
1750 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1751 udf_debug("block=%d, partition=%d out of range\n",
1752 ino->logicalBlockNum, ino->partitionReferenceNum);
1753 make_bad_inode(inode);
1754 goto out_iput;
1755 }
1756
1757 return inode;
1758
1759 out_iput:
1760 iput(inode);
1761 return NULL;
1762 }
1763
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)1764 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1765 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1766 {
1767 int adsize;
1768 struct short_ad *sad = NULL;
1769 struct long_ad *lad = NULL;
1770 struct allocExtDesc *aed;
1771 uint8_t *ptr;
1772 struct udf_inode_info *iinfo = UDF_I(inode);
1773
1774 if (!epos->bh)
1775 ptr = iinfo->i_ext.i_data + epos->offset -
1776 udf_file_entry_alloc_offset(inode) +
1777 iinfo->i_lenEAttr;
1778 else
1779 ptr = epos->bh->b_data + epos->offset;
1780
1781 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1782 adsize = sizeof(struct short_ad);
1783 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1784 adsize = sizeof(struct long_ad);
1785 else
1786 return -EIO;
1787
1788 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1789 unsigned char *sptr, *dptr;
1790 struct buffer_head *nbh;
1791 int err, loffset;
1792 struct kernel_lb_addr obloc = epos->block;
1793
1794 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1795 obloc.partitionReferenceNum,
1796 obloc.logicalBlockNum, &err);
1797 if (!epos->block.logicalBlockNum)
1798 return -ENOSPC;
1799 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1800 &epos->block,
1801 0));
1802 if (!nbh)
1803 return -EIO;
1804 lock_buffer(nbh);
1805 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1806 set_buffer_uptodate(nbh);
1807 unlock_buffer(nbh);
1808 mark_buffer_dirty_inode(nbh, inode);
1809
1810 aed = (struct allocExtDesc *)(nbh->b_data);
1811 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1812 aed->previousAllocExtLocation =
1813 cpu_to_le32(obloc.logicalBlockNum);
1814 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1815 loffset = epos->offset;
1816 aed->lengthAllocDescs = cpu_to_le32(adsize);
1817 sptr = ptr - adsize;
1818 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1819 memcpy(dptr, sptr, adsize);
1820 epos->offset = sizeof(struct allocExtDesc) + adsize;
1821 } else {
1822 loffset = epos->offset + adsize;
1823 aed->lengthAllocDescs = cpu_to_le32(0);
1824 sptr = ptr;
1825 epos->offset = sizeof(struct allocExtDesc);
1826
1827 if (epos->bh) {
1828 aed = (struct allocExtDesc *)epos->bh->b_data;
1829 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1830 } else {
1831 iinfo->i_lenAlloc += adsize;
1832 mark_inode_dirty(inode);
1833 }
1834 }
1835 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1836 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1837 epos->block.logicalBlockNum, sizeof(struct tag));
1838 else
1839 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1840 epos->block.logicalBlockNum, sizeof(struct tag));
1841 switch (iinfo->i_alloc_type) {
1842 case ICBTAG_FLAG_AD_SHORT:
1843 sad = (struct short_ad *)sptr;
1844 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1845 inode->i_sb->s_blocksize);
1846 sad->extPosition =
1847 cpu_to_le32(epos->block.logicalBlockNum);
1848 break;
1849 case ICBTAG_FLAG_AD_LONG:
1850 lad = (struct long_ad *)sptr;
1851 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1852 inode->i_sb->s_blocksize);
1853 lad->extLocation = cpu_to_lelb(epos->block);
1854 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1855 break;
1856 }
1857 if (epos->bh) {
1858 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1859 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1860 udf_update_tag(epos->bh->b_data, loffset);
1861 else
1862 udf_update_tag(epos->bh->b_data,
1863 sizeof(struct allocExtDesc));
1864 mark_buffer_dirty_inode(epos->bh, inode);
1865 brelse(epos->bh);
1866 } else {
1867 mark_inode_dirty(inode);
1868 }
1869 epos->bh = nbh;
1870 }
1871
1872 udf_write_aext(inode, epos, eloc, elen, inc);
1873
1874 if (!epos->bh) {
1875 iinfo->i_lenAlloc += adsize;
1876 mark_inode_dirty(inode);
1877 } else {
1878 aed = (struct allocExtDesc *)epos->bh->b_data;
1879 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1880 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1881 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1882 udf_update_tag(epos->bh->b_data,
1883 epos->offset + (inc ? 0 : adsize));
1884 else
1885 udf_update_tag(epos->bh->b_data,
1886 sizeof(struct allocExtDesc));
1887 mark_buffer_dirty_inode(epos->bh, inode);
1888 }
1889
1890 return 0;
1891 }
1892
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)1893 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1894 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1895 {
1896 int adsize;
1897 uint8_t *ptr;
1898 struct short_ad *sad;
1899 struct long_ad *lad;
1900 struct udf_inode_info *iinfo = UDF_I(inode);
1901
1902 if (!epos->bh)
1903 ptr = iinfo->i_ext.i_data + epos->offset -
1904 udf_file_entry_alloc_offset(inode) +
1905 iinfo->i_lenEAttr;
1906 else
1907 ptr = epos->bh->b_data + epos->offset;
1908
1909 switch (iinfo->i_alloc_type) {
1910 case ICBTAG_FLAG_AD_SHORT:
1911 sad = (struct short_ad *)ptr;
1912 sad->extLength = cpu_to_le32(elen);
1913 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1914 adsize = sizeof(struct short_ad);
1915 break;
1916 case ICBTAG_FLAG_AD_LONG:
1917 lad = (struct long_ad *)ptr;
1918 lad->extLength = cpu_to_le32(elen);
1919 lad->extLocation = cpu_to_lelb(*eloc);
1920 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1921 adsize = sizeof(struct long_ad);
1922 break;
1923 default:
1924 return;
1925 }
1926
1927 if (epos->bh) {
1928 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1929 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1930 struct allocExtDesc *aed =
1931 (struct allocExtDesc *)epos->bh->b_data;
1932 udf_update_tag(epos->bh->b_data,
1933 le32_to_cpu(aed->lengthAllocDescs) +
1934 sizeof(struct allocExtDesc));
1935 }
1936 mark_buffer_dirty_inode(epos->bh, inode);
1937 } else {
1938 mark_inode_dirty(inode);
1939 }
1940
1941 if (inc)
1942 epos->offset += adsize;
1943 }
1944
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)1945 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1946 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1947 {
1948 int8_t etype;
1949
1950 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1951 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1952 int block;
1953 epos->block = *eloc;
1954 epos->offset = sizeof(struct allocExtDesc);
1955 brelse(epos->bh);
1956 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1957 epos->bh = udf_tread(inode->i_sb, block);
1958 if (!epos->bh) {
1959 udf_debug("reading block %d failed!\n", block);
1960 return -1;
1961 }
1962 }
1963
1964 return etype;
1965 }
1966
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)1967 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1968 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1969 {
1970 int alen;
1971 int8_t etype;
1972 uint8_t *ptr;
1973 struct short_ad *sad;
1974 struct long_ad *lad;
1975 struct udf_inode_info *iinfo = UDF_I(inode);
1976
1977 if (!epos->bh) {
1978 if (!epos->offset)
1979 epos->offset = udf_file_entry_alloc_offset(inode);
1980 ptr = iinfo->i_ext.i_data + epos->offset -
1981 udf_file_entry_alloc_offset(inode) +
1982 iinfo->i_lenEAttr;
1983 alen = udf_file_entry_alloc_offset(inode) +
1984 iinfo->i_lenAlloc;
1985 } else {
1986 if (!epos->offset)
1987 epos->offset = sizeof(struct allocExtDesc);
1988 ptr = epos->bh->b_data + epos->offset;
1989 alen = sizeof(struct allocExtDesc) +
1990 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1991 lengthAllocDescs);
1992 }
1993
1994 switch (iinfo->i_alloc_type) {
1995 case ICBTAG_FLAG_AD_SHORT:
1996 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1997 if (!sad)
1998 return -1;
1999 etype = le32_to_cpu(sad->extLength) >> 30;
2000 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2001 eloc->partitionReferenceNum =
2002 iinfo->i_location.partitionReferenceNum;
2003 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2004 break;
2005 case ICBTAG_FLAG_AD_LONG:
2006 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2007 if (!lad)
2008 return -1;
2009 etype = le32_to_cpu(lad->extLength) >> 30;
2010 *eloc = lelb_to_cpu(lad->extLocation);
2011 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2012 break;
2013 default:
2014 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2015 return -1;
2016 }
2017
2018 return etype;
2019 }
2020
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2021 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2022 struct kernel_lb_addr neloc, uint32_t nelen)
2023 {
2024 struct kernel_lb_addr oeloc;
2025 uint32_t oelen;
2026 int8_t etype;
2027
2028 if (epos.bh)
2029 get_bh(epos.bh);
2030
2031 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2032 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2033 neloc = oeloc;
2034 nelen = (etype << 30) | oelen;
2035 }
2036 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2037 brelse(epos.bh);
2038
2039 return (nelen >> 30);
2040 }
2041
udf_delete_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr eloc,uint32_t elen)2042 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2043 struct kernel_lb_addr eloc, uint32_t elen)
2044 {
2045 struct extent_position oepos;
2046 int adsize;
2047 int8_t etype;
2048 struct allocExtDesc *aed;
2049 struct udf_inode_info *iinfo;
2050
2051 if (epos.bh) {
2052 get_bh(epos.bh);
2053 get_bh(epos.bh);
2054 }
2055
2056 iinfo = UDF_I(inode);
2057 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2058 adsize = sizeof(struct short_ad);
2059 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2060 adsize = sizeof(struct long_ad);
2061 else
2062 adsize = 0;
2063
2064 oepos = epos;
2065 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2066 return -1;
2067
2068 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2069 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2070 if (oepos.bh != epos.bh) {
2071 oepos.block = epos.block;
2072 brelse(oepos.bh);
2073 get_bh(epos.bh);
2074 oepos.bh = epos.bh;
2075 oepos.offset = epos.offset - adsize;
2076 }
2077 }
2078 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2079 elen = 0;
2080
2081 if (epos.bh != oepos.bh) {
2082 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2083 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2084 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2085 if (!oepos.bh) {
2086 iinfo->i_lenAlloc -= (adsize * 2);
2087 mark_inode_dirty(inode);
2088 } else {
2089 aed = (struct allocExtDesc *)oepos.bh->b_data;
2090 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2091 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2092 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2093 udf_update_tag(oepos.bh->b_data,
2094 oepos.offset - (2 * adsize));
2095 else
2096 udf_update_tag(oepos.bh->b_data,
2097 sizeof(struct allocExtDesc));
2098 mark_buffer_dirty_inode(oepos.bh, inode);
2099 }
2100 } else {
2101 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2102 if (!oepos.bh) {
2103 iinfo->i_lenAlloc -= adsize;
2104 mark_inode_dirty(inode);
2105 } else {
2106 aed = (struct allocExtDesc *)oepos.bh->b_data;
2107 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2108 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2109 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2110 udf_update_tag(oepos.bh->b_data,
2111 epos.offset - adsize);
2112 else
2113 udf_update_tag(oepos.bh->b_data,
2114 sizeof(struct allocExtDesc));
2115 mark_buffer_dirty_inode(oepos.bh, inode);
2116 }
2117 }
2118
2119 brelse(epos.bh);
2120 brelse(oepos.bh);
2121
2122 return (elen >> 30);
2123 }
2124
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset)2125 int8_t inode_bmap(struct inode *inode, sector_t block,
2126 struct extent_position *pos, struct kernel_lb_addr *eloc,
2127 uint32_t *elen, sector_t *offset)
2128 {
2129 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2130 loff_t lbcount = 0, bcount =
2131 (loff_t) block << blocksize_bits;
2132 int8_t etype;
2133 struct udf_inode_info *iinfo;
2134
2135 iinfo = UDF_I(inode);
2136 pos->offset = 0;
2137 pos->block = iinfo->i_location;
2138 pos->bh = NULL;
2139 *elen = 0;
2140
2141 do {
2142 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2143 if (etype == -1) {
2144 *offset = (bcount - lbcount) >> blocksize_bits;
2145 iinfo->i_lenExtents = lbcount;
2146 return -1;
2147 }
2148 lbcount += *elen;
2149 } while (lbcount <= bcount);
2150
2151 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2152
2153 return etype;
2154 }
2155
udf_block_map(struct inode * inode,sector_t block)2156 long udf_block_map(struct inode *inode, sector_t block)
2157 {
2158 struct kernel_lb_addr eloc;
2159 uint32_t elen;
2160 sector_t offset;
2161 struct extent_position epos = {};
2162 int ret;
2163
2164 down_read(&UDF_I(inode)->i_data_sem);
2165
2166 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2167 (EXT_RECORDED_ALLOCATED >> 30))
2168 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2169 else
2170 ret = 0;
2171
2172 up_read(&UDF_I(inode)->i_data_sem);
2173 brelse(epos.bh);
2174
2175 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2176 return udf_fixed_to_variable(ret);
2177 else
2178 return ret;
2179 }
2180