1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74
75 #include "../workqueue_internal.h"
76
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
98 #endif
99
100 struct rq;
101 struct cpuidle_state;
102
103 /* task_struct::on_rq states: */
104 #define TASK_ON_RQ_QUEUED 1
105 #define TASK_ON_RQ_MIGRATING 2
106
107 extern __read_mostly int scheduler_running;
108
109 extern unsigned long calc_load_update;
110 extern atomic_long_t calc_load_tasks;
111
112 extern unsigned int sysctl_sched_child_runs_first;
113
114 extern void calc_global_load_tick(struct rq *this_rq);
115 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
116
117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
118
119 extern unsigned int sysctl_sched_rt_period;
120 extern int sysctl_sched_rt_runtime;
121 extern int sched_rr_timeslice;
122
123 /*
124 * Helpers for converting nanosecond timing to jiffy resolution
125 */
126 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
127
128 /*
129 * Increase resolution of nice-level calculations for 64-bit architectures.
130 * The extra resolution improves shares distribution and load balancing of
131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
132 * hierarchies, especially on larger systems. This is not a user-visible change
133 * and does not change the user-interface for setting shares/weights.
134 *
135 * We increase resolution only if we have enough bits to allow this increased
136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
137 * are pretty high and the returns do not justify the increased costs.
138 *
139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
140 * increase coverage and consistency always enable it on 64-bit platforms.
141 */
142 #ifdef CONFIG_64BIT
143 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
144 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
145 # define scale_load_down(w) \
146 ({ \
147 unsigned long __w = (w); \
148 if (__w) \
149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
150 __w; \
151 })
152 #else
153 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load(w) (w)
155 # define scale_load_down(w) (w)
156 #endif
157
158 /*
159 * Task weight (visible to users) and its load (invisible to users) have
160 * independent resolution, but they should be well calibrated. We use
161 * scale_load() and scale_load_down(w) to convert between them. The
162 * following must be true:
163 *
164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
165 *
166 */
167 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
168
169 /*
170 * Single value that decides SCHED_DEADLINE internal math precision.
171 * 10 -> just above 1us
172 * 9 -> just above 0.5us
173 */
174 #define DL_SCALE 10
175
176 /*
177 * Single value that denotes runtime == period, ie unlimited time.
178 */
179 #define RUNTIME_INF ((u64)~0ULL)
180
idle_policy(int policy)181 static inline int idle_policy(int policy)
182 {
183 return policy == SCHED_IDLE;
184 }
fair_policy(int policy)185 static inline int fair_policy(int policy)
186 {
187 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
188 }
189
rt_policy(int policy)190 static inline int rt_policy(int policy)
191 {
192 return policy == SCHED_FIFO || policy == SCHED_RR;
193 }
194
dl_policy(int policy)195 static inline int dl_policy(int policy)
196 {
197 return policy == SCHED_DEADLINE;
198 }
valid_policy(int policy)199 static inline bool valid_policy(int policy)
200 {
201 return idle_policy(policy) || fair_policy(policy) ||
202 rt_policy(policy) || dl_policy(policy);
203 }
204
task_has_idle_policy(struct task_struct * p)205 static inline int task_has_idle_policy(struct task_struct *p)
206 {
207 return idle_policy(p->policy);
208 }
209
task_has_rt_policy(struct task_struct * p)210 static inline int task_has_rt_policy(struct task_struct *p)
211 {
212 return rt_policy(p->policy);
213 }
214
task_has_dl_policy(struct task_struct * p)215 static inline int task_has_dl_policy(struct task_struct *p)
216 {
217 return dl_policy(p->policy);
218 }
219
220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
221
update_avg(u64 * avg,u64 sample)222 static inline void update_avg(u64 *avg, u64 sample)
223 {
224 s64 diff = sample - *avg;
225 *avg += diff / 8;
226 }
227
228 /*
229 * Shifting a value by an exponent greater *or equal* to the size of said value
230 * is UB; cap at size-1.
231 */
232 #define shr_bound(val, shift) \
233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
234
235 /*
236 * !! For sched_setattr_nocheck() (kernel) only !!
237 *
238 * This is actually gross. :(
239 *
240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
241 * tasks, but still be able to sleep. We need this on platforms that cannot
242 * atomically change clock frequency. Remove once fast switching will be
243 * available on such platforms.
244 *
245 * SUGOV stands for SchedUtil GOVernor.
246 */
247 #define SCHED_FLAG_SUGOV 0x10000000
248
249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
250
dl_entity_is_special(const struct sched_dl_entity * dl_se)251 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
252 {
253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
255 #else
256 return false;
257 #endif
258 }
259
260 /*
261 * Tells if entity @a should preempt entity @b.
262 */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)263 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
264 const struct sched_dl_entity *b)
265 {
266 return dl_entity_is_special(a) ||
267 dl_time_before(a->deadline, b->deadline);
268 }
269
270 /*
271 * This is the priority-queue data structure of the RT scheduling class:
272 */
273 struct rt_prio_array {
274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
275 struct list_head queue[MAX_RT_PRIO];
276 };
277
278 struct rt_bandwidth {
279 /* nests inside the rq lock: */
280 raw_spinlock_t rt_runtime_lock;
281 ktime_t rt_period;
282 u64 rt_runtime;
283 struct hrtimer rt_period_timer;
284 unsigned int rt_period_active;
285 };
286
287 void __dl_clear_params(struct task_struct *p);
288
dl_bandwidth_enabled(void)289 static inline int dl_bandwidth_enabled(void)
290 {
291 return sysctl_sched_rt_runtime >= 0;
292 }
293
294 /*
295 * To keep the bandwidth of -deadline tasks under control
296 * we need some place where:
297 * - store the maximum -deadline bandwidth of each cpu;
298 * - cache the fraction of bandwidth that is currently allocated in
299 * each root domain;
300 *
301 * This is all done in the data structure below. It is similar to the
302 * one used for RT-throttling (rt_bandwidth), with the main difference
303 * that, since here we are only interested in admission control, we
304 * do not decrease any runtime while the group "executes", neither we
305 * need a timer to replenish it.
306 *
307 * With respect to SMP, bandwidth is given on a per root domain basis,
308 * meaning that:
309 * - bw (< 100%) is the deadline bandwidth of each CPU;
310 * - total_bw is the currently allocated bandwidth in each root domain;
311 */
312 struct dl_bw {
313 raw_spinlock_t lock;
314 u64 bw;
315 u64 total_bw;
316 };
317
318 extern void init_dl_bw(struct dl_bw *dl_b);
319 extern int sched_dl_global_validate(void);
320 extern void sched_dl_do_global(void);
321 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
322 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
323 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
324 extern bool __checkparam_dl(const struct sched_attr *attr);
325 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
326 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
327 extern int dl_bw_check_overflow(int cpu);
328
329 #ifdef CONFIG_CGROUP_SCHED
330
331 struct cfs_rq;
332 struct rt_rq;
333
334 extern struct list_head task_groups;
335
336 struct cfs_bandwidth {
337 #ifdef CONFIG_CFS_BANDWIDTH
338 raw_spinlock_t lock;
339 ktime_t period;
340 u64 quota;
341 u64 runtime;
342 u64 burst;
343 u64 runtime_snap;
344 s64 hierarchical_quota;
345
346 u8 idle;
347 u8 period_active;
348 u8 slack_started;
349 struct hrtimer period_timer;
350 struct hrtimer slack_timer;
351 struct list_head throttled_cfs_rq;
352
353 /* Statistics: */
354 int nr_periods;
355 int nr_throttled;
356 int nr_burst;
357 u64 throttled_time;
358 u64 burst_time;
359 #endif
360 };
361
362 /* Task group related information */
363 struct task_group {
364 struct cgroup_subsys_state css;
365
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 /* schedulable entities of this group on each CPU */
368 struct sched_entity **se;
369 /* runqueue "owned" by this group on each CPU */
370 struct cfs_rq **cfs_rq;
371 unsigned long shares;
372
373 /* A positive value indicates that this is a SCHED_IDLE group. */
374 int idle;
375
376 #ifdef CONFIG_SMP
377 /*
378 * load_avg can be heavily contended at clock tick time, so put
379 * it in its own cacheline separated from the fields above which
380 * will also be accessed at each tick.
381 */
382 atomic_long_t load_avg ____cacheline_aligned;
383 #endif
384 #endif
385
386 #ifdef CONFIG_RT_GROUP_SCHED
387 struct sched_rt_entity **rt_se;
388 struct rt_rq **rt_rq;
389
390 struct rt_bandwidth rt_bandwidth;
391 #endif
392
393 struct rcu_head rcu;
394 struct list_head list;
395
396 struct task_group *parent;
397 struct list_head siblings;
398 struct list_head children;
399
400 #ifdef CONFIG_SCHED_AUTOGROUP
401 struct autogroup *autogroup;
402 #endif
403
404 struct cfs_bandwidth cfs_bandwidth;
405
406 #ifdef CONFIG_UCLAMP_TASK_GROUP
407 /* The two decimal precision [%] value requested from user-space */
408 unsigned int uclamp_pct[UCLAMP_CNT];
409 /* Clamp values requested for a task group */
410 struct uclamp_se uclamp_req[UCLAMP_CNT];
411 /* Effective clamp values used for a task group */
412 struct uclamp_se uclamp[UCLAMP_CNT];
413 #endif
414
415 };
416
417 #ifdef CONFIG_FAIR_GROUP_SCHED
418 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
419
420 /*
421 * A weight of 0 or 1 can cause arithmetics problems.
422 * A weight of a cfs_rq is the sum of weights of which entities
423 * are queued on this cfs_rq, so a weight of a entity should not be
424 * too large, so as the shares value of a task group.
425 * (The default weight is 1024 - so there's no practical
426 * limitation from this.)
427 */
428 #define MIN_SHARES (1UL << 1)
429 #define MAX_SHARES (1UL << 18)
430 #endif
431
432 typedef int (*tg_visitor)(struct task_group *, void *);
433
434 extern int walk_tg_tree_from(struct task_group *from,
435 tg_visitor down, tg_visitor up, void *data);
436
437 /*
438 * Iterate the full tree, calling @down when first entering a node and @up when
439 * leaving it for the final time.
440 *
441 * Caller must hold rcu_lock or sufficient equivalent.
442 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)443 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
444 {
445 return walk_tg_tree_from(&root_task_group, down, up, data);
446 }
447
448 extern int tg_nop(struct task_group *tg, void *data);
449
450 extern void free_fair_sched_group(struct task_group *tg);
451 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
452 extern void online_fair_sched_group(struct task_group *tg);
453 extern void unregister_fair_sched_group(struct task_group *tg);
454 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
455 struct sched_entity *se, int cpu,
456 struct sched_entity *parent);
457 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
458
459 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
460 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
461 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
462 extern bool cfs_task_bw_constrained(struct task_struct *p);
463
464 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
465 struct sched_rt_entity *rt_se, int cpu,
466 struct sched_rt_entity *parent);
467 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
468 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
469 extern long sched_group_rt_runtime(struct task_group *tg);
470 extern long sched_group_rt_period(struct task_group *tg);
471 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
472
473 extern struct task_group *sched_create_group(struct task_group *parent);
474 extern void sched_online_group(struct task_group *tg,
475 struct task_group *parent);
476 extern void sched_destroy_group(struct task_group *tg);
477 extern void sched_release_group(struct task_group *tg);
478
479 extern void sched_move_task(struct task_struct *tsk);
480
481 #ifdef CONFIG_FAIR_GROUP_SCHED
482 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
483
484 extern int sched_group_set_idle(struct task_group *tg, long idle);
485
486 #ifdef CONFIG_SMP
487 extern void set_task_rq_fair(struct sched_entity *se,
488 struct cfs_rq *prev, struct cfs_rq *next);
489 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)490 static inline void set_task_rq_fair(struct sched_entity *se,
491 struct cfs_rq *prev, struct cfs_rq *next) { }
492 #endif /* CONFIG_SMP */
493 #endif /* CONFIG_FAIR_GROUP_SCHED */
494
495 #else /* CONFIG_CGROUP_SCHED */
496
497 struct cfs_bandwidth { };
cfs_task_bw_constrained(struct task_struct * p)498 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
499
500 #endif /* CONFIG_CGROUP_SCHED */
501
502 extern void unregister_rt_sched_group(struct task_group *tg);
503 extern void free_rt_sched_group(struct task_group *tg);
504 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
505
506 /*
507 * u64_u32_load/u64_u32_store
508 *
509 * Use a copy of a u64 value to protect against data race. This is only
510 * applicable for 32-bits architectures.
511 */
512 #ifdef CONFIG_64BIT
513 # define u64_u32_load_copy(var, copy) var
514 # define u64_u32_store_copy(var, copy, val) (var = val)
515 #else
516 # define u64_u32_load_copy(var, copy) \
517 ({ \
518 u64 __val, __val_copy; \
519 do { \
520 __val_copy = copy; \
521 /* \
522 * paired with u64_u32_store_copy(), ordering access \
523 * to var and copy. \
524 */ \
525 smp_rmb(); \
526 __val = var; \
527 } while (__val != __val_copy); \
528 __val; \
529 })
530 # define u64_u32_store_copy(var, copy, val) \
531 do { \
532 typeof(val) __val = (val); \
533 var = __val; \
534 /* \
535 * paired with u64_u32_load_copy(), ordering access to var and \
536 * copy. \
537 */ \
538 smp_wmb(); \
539 copy = __val; \
540 } while (0)
541 #endif
542 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
543 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
544
545 /* CFS-related fields in a runqueue */
546 struct cfs_rq {
547 struct load_weight load;
548 unsigned int nr_running;
549 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
550 unsigned int idle_nr_running; /* SCHED_IDLE */
551 unsigned int idle_h_nr_running; /* SCHED_IDLE */
552
553 s64 avg_vruntime;
554 u64 avg_load;
555
556 u64 exec_clock;
557 u64 min_vruntime;
558 #ifdef CONFIG_SCHED_CORE
559 unsigned int forceidle_seq;
560 u64 min_vruntime_fi;
561 #endif
562
563 #ifndef CONFIG_64BIT
564 u64 min_vruntime_copy;
565 #endif
566
567 struct rb_root_cached tasks_timeline;
568
569 /*
570 * 'curr' points to currently running entity on this cfs_rq.
571 * It is set to NULL otherwise (i.e when none are currently running).
572 */
573 struct sched_entity *curr;
574 struct sched_entity *next;
575
576 #ifdef CONFIG_SCHED_DEBUG
577 unsigned int nr_spread_over;
578 #endif
579
580 #ifdef CONFIG_SMP
581 /*
582 * CFS load tracking
583 */
584 struct sched_avg avg;
585 #ifndef CONFIG_64BIT
586 u64 last_update_time_copy;
587 #endif
588 struct {
589 raw_spinlock_t lock ____cacheline_aligned;
590 int nr;
591 unsigned long load_avg;
592 unsigned long util_avg;
593 unsigned long runnable_avg;
594 } removed;
595
596 #ifdef CONFIG_FAIR_GROUP_SCHED
597 unsigned long tg_load_avg_contrib;
598 long propagate;
599 long prop_runnable_sum;
600
601 /*
602 * h_load = weight * f(tg)
603 *
604 * Where f(tg) is the recursive weight fraction assigned to
605 * this group.
606 */
607 unsigned long h_load;
608 u64 last_h_load_update;
609 struct sched_entity *h_load_next;
610 #endif /* CONFIG_FAIR_GROUP_SCHED */
611 #endif /* CONFIG_SMP */
612
613 #ifdef CONFIG_FAIR_GROUP_SCHED
614 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
615
616 /*
617 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
618 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
619 * (like users, containers etc.)
620 *
621 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
622 * This list is used during load balance.
623 */
624 int on_list;
625 struct list_head leaf_cfs_rq_list;
626 struct task_group *tg; /* group that "owns" this runqueue */
627
628 /* Locally cached copy of our task_group's idle value */
629 int idle;
630
631 #ifdef CONFIG_CFS_BANDWIDTH
632 int runtime_enabled;
633 s64 runtime_remaining;
634
635 u64 throttled_pelt_idle;
636 #ifndef CONFIG_64BIT
637 u64 throttled_pelt_idle_copy;
638 #endif
639 u64 throttled_clock;
640 u64 throttled_clock_pelt;
641 u64 throttled_clock_pelt_time;
642 u64 throttled_clock_self;
643 u64 throttled_clock_self_time;
644 int throttled;
645 int throttle_count;
646 struct list_head throttled_list;
647 #ifdef CONFIG_SMP
648 struct list_head throttled_csd_list;
649 #endif
650 #endif /* CONFIG_CFS_BANDWIDTH */
651 #endif /* CONFIG_FAIR_GROUP_SCHED */
652 };
653
rt_bandwidth_enabled(void)654 static inline int rt_bandwidth_enabled(void)
655 {
656 return sysctl_sched_rt_runtime >= 0;
657 }
658
659 /* RT IPI pull logic requires IRQ_WORK */
660 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
661 # define HAVE_RT_PUSH_IPI
662 #endif
663
664 /* Real-Time classes' related field in a runqueue: */
665 struct rt_rq {
666 struct rt_prio_array active;
667 unsigned int rt_nr_running;
668 unsigned int rr_nr_running;
669 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
670 struct {
671 int curr; /* highest queued rt task prio */
672 #ifdef CONFIG_SMP
673 int next; /* next highest */
674 #endif
675 } highest_prio;
676 #endif
677 #ifdef CONFIG_SMP
678 unsigned int rt_nr_migratory;
679 unsigned int rt_nr_total;
680 int overloaded;
681 struct plist_head pushable_tasks;
682
683 #endif /* CONFIG_SMP */
684 int rt_queued;
685
686 int rt_throttled;
687 u64 rt_time;
688 u64 rt_runtime;
689 /* Nests inside the rq lock: */
690 raw_spinlock_t rt_runtime_lock;
691
692 #ifdef CONFIG_RT_GROUP_SCHED
693 unsigned int rt_nr_boosted;
694
695 struct rq *rq;
696 struct task_group *tg;
697 #endif
698 };
699
rt_rq_is_runnable(struct rt_rq * rt_rq)700 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
701 {
702 return rt_rq->rt_queued && rt_rq->rt_nr_running;
703 }
704
705 /* Deadline class' related fields in a runqueue */
706 struct dl_rq {
707 /* runqueue is an rbtree, ordered by deadline */
708 struct rb_root_cached root;
709
710 unsigned int dl_nr_running;
711
712 #ifdef CONFIG_SMP
713 /*
714 * Deadline values of the currently executing and the
715 * earliest ready task on this rq. Caching these facilitates
716 * the decision whether or not a ready but not running task
717 * should migrate somewhere else.
718 */
719 struct {
720 u64 curr;
721 u64 next;
722 } earliest_dl;
723
724 unsigned int dl_nr_migratory;
725 int overloaded;
726
727 /*
728 * Tasks on this rq that can be pushed away. They are kept in
729 * an rb-tree, ordered by tasks' deadlines, with caching
730 * of the leftmost (earliest deadline) element.
731 */
732 struct rb_root_cached pushable_dl_tasks_root;
733 #else
734 struct dl_bw dl_bw;
735 #endif
736 /*
737 * "Active utilization" for this runqueue: increased when a
738 * task wakes up (becomes TASK_RUNNING) and decreased when a
739 * task blocks
740 */
741 u64 running_bw;
742
743 /*
744 * Utilization of the tasks "assigned" to this runqueue (including
745 * the tasks that are in runqueue and the tasks that executed on this
746 * CPU and blocked). Increased when a task moves to this runqueue, and
747 * decreased when the task moves away (migrates, changes scheduling
748 * policy, or terminates).
749 * This is needed to compute the "inactive utilization" for the
750 * runqueue (inactive utilization = this_bw - running_bw).
751 */
752 u64 this_bw;
753 u64 extra_bw;
754
755 /*
756 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
757 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
758 */
759 u64 max_bw;
760
761 /*
762 * Inverse of the fraction of CPU utilization that can be reclaimed
763 * by the GRUB algorithm.
764 */
765 u64 bw_ratio;
766 };
767
768 #ifdef CONFIG_FAIR_GROUP_SCHED
769 /* An entity is a task if it doesn't "own" a runqueue */
770 #define entity_is_task(se) (!se->my_q)
771
se_update_runnable(struct sched_entity * se)772 static inline void se_update_runnable(struct sched_entity *se)
773 {
774 if (!entity_is_task(se))
775 se->runnable_weight = se->my_q->h_nr_running;
776 }
777
se_runnable(struct sched_entity * se)778 static inline long se_runnable(struct sched_entity *se)
779 {
780 if (entity_is_task(se))
781 return !!se->on_rq;
782 else
783 return se->runnable_weight;
784 }
785
786 #else
787 #define entity_is_task(se) 1
788
se_update_runnable(struct sched_entity * se)789 static inline void se_update_runnable(struct sched_entity *se) {}
790
se_runnable(struct sched_entity * se)791 static inline long se_runnable(struct sched_entity *se)
792 {
793 return !!se->on_rq;
794 }
795 #endif
796
797 #ifdef CONFIG_SMP
798 /*
799 * XXX we want to get rid of these helpers and use the full load resolution.
800 */
se_weight(struct sched_entity * se)801 static inline long se_weight(struct sched_entity *se)
802 {
803 return scale_load_down(se->load.weight);
804 }
805
806
sched_asym_prefer(int a,int b)807 static inline bool sched_asym_prefer(int a, int b)
808 {
809 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
810 }
811
812 struct perf_domain {
813 struct em_perf_domain *em_pd;
814 struct perf_domain *next;
815 struct rcu_head rcu;
816 };
817
818 /* Scheduling group status flags */
819 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
820 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
821
822 /*
823 * We add the notion of a root-domain which will be used to define per-domain
824 * variables. Each exclusive cpuset essentially defines an island domain by
825 * fully partitioning the member CPUs from any other cpuset. Whenever a new
826 * exclusive cpuset is created, we also create and attach a new root-domain
827 * object.
828 *
829 */
830 struct root_domain {
831 atomic_t refcount;
832 atomic_t rto_count;
833 struct rcu_head rcu;
834 cpumask_var_t span;
835 cpumask_var_t online;
836
837 /*
838 * Indicate pullable load on at least one CPU, e.g:
839 * - More than one runnable task
840 * - Running task is misfit
841 */
842 int overload;
843
844 /* Indicate one or more cpus over-utilized (tipping point) */
845 int overutilized;
846
847 /*
848 * The bit corresponding to a CPU gets set here if such CPU has more
849 * than one runnable -deadline task (as it is below for RT tasks).
850 */
851 cpumask_var_t dlo_mask;
852 atomic_t dlo_count;
853 struct dl_bw dl_bw;
854 struct cpudl cpudl;
855
856 /*
857 * Indicate whether a root_domain's dl_bw has been checked or
858 * updated. It's monotonously increasing value.
859 *
860 * Also, some corner cases, like 'wrap around' is dangerous, but given
861 * that u64 is 'big enough'. So that shouldn't be a concern.
862 */
863 u64 visit_gen;
864
865 #ifdef HAVE_RT_PUSH_IPI
866 /*
867 * For IPI pull requests, loop across the rto_mask.
868 */
869 struct irq_work rto_push_work;
870 raw_spinlock_t rto_lock;
871 /* These are only updated and read within rto_lock */
872 int rto_loop;
873 int rto_cpu;
874 /* These atomics are updated outside of a lock */
875 atomic_t rto_loop_next;
876 atomic_t rto_loop_start;
877 #endif
878 /*
879 * The "RT overload" flag: it gets set if a CPU has more than
880 * one runnable RT task.
881 */
882 cpumask_var_t rto_mask;
883 struct cpupri cpupri;
884
885 unsigned long max_cpu_capacity;
886
887 /*
888 * NULL-terminated list of performance domains intersecting with the
889 * CPUs of the rd. Protected by RCU.
890 */
891 struct perf_domain __rcu *pd;
892 };
893
894 extern void init_defrootdomain(void);
895 extern int sched_init_domains(const struct cpumask *cpu_map);
896 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
897 extern void sched_get_rd(struct root_domain *rd);
898 extern void sched_put_rd(struct root_domain *rd);
899
900 #ifdef HAVE_RT_PUSH_IPI
901 extern void rto_push_irq_work_func(struct irq_work *work);
902 #endif
903 #endif /* CONFIG_SMP */
904
905 #ifdef CONFIG_UCLAMP_TASK
906 /*
907 * struct uclamp_bucket - Utilization clamp bucket
908 * @value: utilization clamp value for tasks on this clamp bucket
909 * @tasks: number of RUNNABLE tasks on this clamp bucket
910 *
911 * Keep track of how many tasks are RUNNABLE for a given utilization
912 * clamp value.
913 */
914 struct uclamp_bucket {
915 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
916 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
917 };
918
919 /*
920 * struct uclamp_rq - rq's utilization clamp
921 * @value: currently active clamp values for a rq
922 * @bucket: utilization clamp buckets affecting a rq
923 *
924 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
925 * A clamp value is affecting a rq when there is at least one task RUNNABLE
926 * (or actually running) with that value.
927 *
928 * There are up to UCLAMP_CNT possible different clamp values, currently there
929 * are only two: minimum utilization and maximum utilization.
930 *
931 * All utilization clamping values are MAX aggregated, since:
932 * - for util_min: we want to run the CPU at least at the max of the minimum
933 * utilization required by its currently RUNNABLE tasks.
934 * - for util_max: we want to allow the CPU to run up to the max of the
935 * maximum utilization allowed by its currently RUNNABLE tasks.
936 *
937 * Since on each system we expect only a limited number of different
938 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
939 * the metrics required to compute all the per-rq utilization clamp values.
940 */
941 struct uclamp_rq {
942 unsigned int value;
943 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
944 };
945
946 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
947 #endif /* CONFIG_UCLAMP_TASK */
948
949 struct rq;
950 struct balance_callback {
951 struct balance_callback *next;
952 void (*func)(struct rq *rq);
953 };
954
955 /*
956 * This is the main, per-CPU runqueue data structure.
957 *
958 * Locking rule: those places that want to lock multiple runqueues
959 * (such as the load balancing or the thread migration code), lock
960 * acquire operations must be ordered by ascending &runqueue.
961 */
962 struct rq {
963 /* runqueue lock: */
964 raw_spinlock_t __lock;
965
966 /*
967 * nr_running and cpu_load should be in the same cacheline because
968 * remote CPUs use both these fields when doing load calculation.
969 */
970 unsigned int nr_running;
971 #ifdef CONFIG_NUMA_BALANCING
972 unsigned int nr_numa_running;
973 unsigned int nr_preferred_running;
974 unsigned int numa_migrate_on;
975 #endif
976 #ifdef CONFIG_NO_HZ_COMMON
977 #ifdef CONFIG_SMP
978 unsigned long last_blocked_load_update_tick;
979 unsigned int has_blocked_load;
980 call_single_data_t nohz_csd;
981 #endif /* CONFIG_SMP */
982 unsigned int nohz_tick_stopped;
983 atomic_t nohz_flags;
984 #endif /* CONFIG_NO_HZ_COMMON */
985
986 #ifdef CONFIG_SMP
987 unsigned int ttwu_pending;
988 #endif
989 u64 nr_switches;
990
991 #ifdef CONFIG_UCLAMP_TASK
992 /* Utilization clamp values based on CPU's RUNNABLE tasks */
993 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
994 unsigned int uclamp_flags;
995 #define UCLAMP_FLAG_IDLE 0x01
996 #endif
997
998 struct cfs_rq cfs;
999 struct rt_rq rt;
1000 struct dl_rq dl;
1001
1002 #ifdef CONFIG_FAIR_GROUP_SCHED
1003 /* list of leaf cfs_rq on this CPU: */
1004 struct list_head leaf_cfs_rq_list;
1005 struct list_head *tmp_alone_branch;
1006 #endif /* CONFIG_FAIR_GROUP_SCHED */
1007
1008 /*
1009 * This is part of a global counter where only the total sum
1010 * over all CPUs matters. A task can increase this counter on
1011 * one CPU and if it got migrated afterwards it may decrease
1012 * it on another CPU. Always updated under the runqueue lock:
1013 */
1014 unsigned int nr_uninterruptible;
1015
1016 struct task_struct __rcu *curr;
1017 struct task_struct *idle;
1018 struct task_struct *stop;
1019 unsigned long next_balance;
1020 struct mm_struct *prev_mm;
1021
1022 unsigned int clock_update_flags;
1023 u64 clock;
1024 /* Ensure that all clocks are in the same cache line */
1025 u64 clock_task ____cacheline_aligned;
1026 u64 clock_pelt;
1027 unsigned long lost_idle_time;
1028 u64 clock_pelt_idle;
1029 u64 clock_idle;
1030 #ifndef CONFIG_64BIT
1031 u64 clock_pelt_idle_copy;
1032 u64 clock_idle_copy;
1033 #endif
1034
1035 atomic_t nr_iowait;
1036
1037 #ifdef CONFIG_SCHED_DEBUG
1038 u64 last_seen_need_resched_ns;
1039 int ticks_without_resched;
1040 #endif
1041
1042 #ifdef CONFIG_MEMBARRIER
1043 int membarrier_state;
1044 #endif
1045
1046 #ifdef CONFIG_SMP
1047 struct root_domain *rd;
1048 struct sched_domain __rcu *sd;
1049
1050 unsigned long cpu_capacity;
1051 unsigned long cpu_capacity_orig;
1052
1053 struct balance_callback *balance_callback;
1054
1055 unsigned char nohz_idle_balance;
1056 unsigned char idle_balance;
1057
1058 unsigned long misfit_task_load;
1059
1060 /* For active balancing */
1061 int active_balance;
1062 int push_cpu;
1063 struct cpu_stop_work active_balance_work;
1064
1065 /* CPU of this runqueue: */
1066 int cpu;
1067 int online;
1068
1069 struct list_head cfs_tasks;
1070
1071 struct sched_avg avg_rt;
1072 struct sched_avg avg_dl;
1073 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1074 struct sched_avg avg_irq;
1075 #endif
1076 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1077 struct sched_avg avg_thermal;
1078 #endif
1079 u64 idle_stamp;
1080 u64 avg_idle;
1081
1082 unsigned long wake_stamp;
1083 u64 wake_avg_idle;
1084
1085 /* This is used to determine avg_idle's max value */
1086 u64 max_idle_balance_cost;
1087
1088 #ifdef CONFIG_HOTPLUG_CPU
1089 struct rcuwait hotplug_wait;
1090 #endif
1091 #endif /* CONFIG_SMP */
1092
1093 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1094 u64 prev_irq_time;
1095 #endif
1096 #ifdef CONFIG_PARAVIRT
1097 u64 prev_steal_time;
1098 #endif
1099 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1100 u64 prev_steal_time_rq;
1101 #endif
1102
1103 /* calc_load related fields */
1104 unsigned long calc_load_update;
1105 long calc_load_active;
1106
1107 #ifdef CONFIG_SCHED_HRTICK
1108 #ifdef CONFIG_SMP
1109 call_single_data_t hrtick_csd;
1110 #endif
1111 struct hrtimer hrtick_timer;
1112 ktime_t hrtick_time;
1113 #endif
1114
1115 #ifdef CONFIG_SCHEDSTATS
1116 /* latency stats */
1117 struct sched_info rq_sched_info;
1118 unsigned long long rq_cpu_time;
1119 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1120
1121 /* sys_sched_yield() stats */
1122 unsigned int yld_count;
1123
1124 /* schedule() stats */
1125 unsigned int sched_count;
1126 unsigned int sched_goidle;
1127
1128 /* try_to_wake_up() stats */
1129 unsigned int ttwu_count;
1130 unsigned int ttwu_local;
1131 #endif
1132
1133 #ifdef CONFIG_CPU_IDLE
1134 /* Must be inspected within a rcu lock section */
1135 struct cpuidle_state *idle_state;
1136 #endif
1137
1138 #ifdef CONFIG_SMP
1139 unsigned int nr_pinned;
1140 #endif
1141 unsigned int push_busy;
1142 struct cpu_stop_work push_work;
1143
1144 #ifdef CONFIG_SCHED_CORE
1145 /* per rq */
1146 struct rq *core;
1147 struct task_struct *core_pick;
1148 unsigned int core_enabled;
1149 unsigned int core_sched_seq;
1150 struct rb_root core_tree;
1151
1152 /* shared state -- careful with sched_core_cpu_deactivate() */
1153 unsigned int core_task_seq;
1154 unsigned int core_pick_seq;
1155 unsigned long core_cookie;
1156 unsigned int core_forceidle_count;
1157 unsigned int core_forceidle_seq;
1158 unsigned int core_forceidle_occupation;
1159 u64 core_forceidle_start;
1160 #endif
1161
1162 /* Scratch cpumask to be temporarily used under rq_lock */
1163 cpumask_var_t scratch_mask;
1164
1165 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1166 call_single_data_t cfsb_csd;
1167 struct list_head cfsb_csd_list;
1168 #endif
1169 };
1170
1171 #ifdef CONFIG_FAIR_GROUP_SCHED
1172
1173 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1174 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1175 {
1176 return cfs_rq->rq;
1177 }
1178
1179 #else
1180
rq_of(struct cfs_rq * cfs_rq)1181 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1182 {
1183 return container_of(cfs_rq, struct rq, cfs);
1184 }
1185 #endif
1186
cpu_of(struct rq * rq)1187 static inline int cpu_of(struct rq *rq)
1188 {
1189 #ifdef CONFIG_SMP
1190 return rq->cpu;
1191 #else
1192 return 0;
1193 #endif
1194 }
1195
1196 #define MDF_PUSH 0x01
1197
is_migration_disabled(struct task_struct * p)1198 static inline bool is_migration_disabled(struct task_struct *p)
1199 {
1200 #ifdef CONFIG_SMP
1201 return p->migration_disabled;
1202 #else
1203 return false;
1204 #endif
1205 }
1206
1207 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1208
1209 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1210 #define this_rq() this_cpu_ptr(&runqueues)
1211 #define task_rq(p) cpu_rq(task_cpu(p))
1212 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1213 #define raw_rq() raw_cpu_ptr(&runqueues)
1214
1215 struct sched_group;
1216 #ifdef CONFIG_SCHED_CORE
1217 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1218
1219 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1220
sched_core_enabled(struct rq * rq)1221 static inline bool sched_core_enabled(struct rq *rq)
1222 {
1223 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1224 }
1225
sched_core_disabled(void)1226 static inline bool sched_core_disabled(void)
1227 {
1228 return !static_branch_unlikely(&__sched_core_enabled);
1229 }
1230
1231 /*
1232 * Be careful with this function; not for general use. The return value isn't
1233 * stable unless you actually hold a relevant rq->__lock.
1234 */
rq_lockp(struct rq * rq)1235 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1236 {
1237 if (sched_core_enabled(rq))
1238 return &rq->core->__lock;
1239
1240 return &rq->__lock;
1241 }
1242
__rq_lockp(struct rq * rq)1243 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1244 {
1245 if (rq->core_enabled)
1246 return &rq->core->__lock;
1247
1248 return &rq->__lock;
1249 }
1250
1251 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1252 bool fi);
1253 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1254
1255 /*
1256 * Helpers to check if the CPU's core cookie matches with the task's cookie
1257 * when core scheduling is enabled.
1258 * A special case is that the task's cookie always matches with CPU's core
1259 * cookie if the CPU is in an idle core.
1260 */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1261 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1262 {
1263 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1264 if (!sched_core_enabled(rq))
1265 return true;
1266
1267 return rq->core->core_cookie == p->core_cookie;
1268 }
1269
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1270 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1271 {
1272 bool idle_core = true;
1273 int cpu;
1274
1275 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1276 if (!sched_core_enabled(rq))
1277 return true;
1278
1279 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1280 if (!available_idle_cpu(cpu)) {
1281 idle_core = false;
1282 break;
1283 }
1284 }
1285
1286 /*
1287 * A CPU in an idle core is always the best choice for tasks with
1288 * cookies.
1289 */
1290 return idle_core || rq->core->core_cookie == p->core_cookie;
1291 }
1292
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1293 static inline bool sched_group_cookie_match(struct rq *rq,
1294 struct task_struct *p,
1295 struct sched_group *group)
1296 {
1297 int cpu;
1298
1299 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1300 if (!sched_core_enabled(rq))
1301 return true;
1302
1303 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1304 if (sched_core_cookie_match(cpu_rq(cpu), p))
1305 return true;
1306 }
1307 return false;
1308 }
1309
sched_core_enqueued(struct task_struct * p)1310 static inline bool sched_core_enqueued(struct task_struct *p)
1311 {
1312 return !RB_EMPTY_NODE(&p->core_node);
1313 }
1314
1315 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1316 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1317
1318 extern void sched_core_get(void);
1319 extern void sched_core_put(void);
1320
1321 #else /* !CONFIG_SCHED_CORE */
1322
sched_core_enabled(struct rq * rq)1323 static inline bool sched_core_enabled(struct rq *rq)
1324 {
1325 return false;
1326 }
1327
sched_core_disabled(void)1328 static inline bool sched_core_disabled(void)
1329 {
1330 return true;
1331 }
1332
rq_lockp(struct rq * rq)1333 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1334 {
1335 return &rq->__lock;
1336 }
1337
__rq_lockp(struct rq * rq)1338 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1339 {
1340 return &rq->__lock;
1341 }
1342
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1343 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1344 {
1345 return true;
1346 }
1347
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1348 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1349 {
1350 return true;
1351 }
1352
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1353 static inline bool sched_group_cookie_match(struct rq *rq,
1354 struct task_struct *p,
1355 struct sched_group *group)
1356 {
1357 return true;
1358 }
1359 #endif /* CONFIG_SCHED_CORE */
1360
lockdep_assert_rq_held(struct rq * rq)1361 static inline void lockdep_assert_rq_held(struct rq *rq)
1362 {
1363 lockdep_assert_held(__rq_lockp(rq));
1364 }
1365
1366 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1367 extern bool raw_spin_rq_trylock(struct rq *rq);
1368 extern void raw_spin_rq_unlock(struct rq *rq);
1369
raw_spin_rq_lock(struct rq * rq)1370 static inline void raw_spin_rq_lock(struct rq *rq)
1371 {
1372 raw_spin_rq_lock_nested(rq, 0);
1373 }
1374
raw_spin_rq_lock_irq(struct rq * rq)1375 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1376 {
1377 local_irq_disable();
1378 raw_spin_rq_lock(rq);
1379 }
1380
raw_spin_rq_unlock_irq(struct rq * rq)1381 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1382 {
1383 raw_spin_rq_unlock(rq);
1384 local_irq_enable();
1385 }
1386
_raw_spin_rq_lock_irqsave(struct rq * rq)1387 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1388 {
1389 unsigned long flags;
1390 local_irq_save(flags);
1391 raw_spin_rq_lock(rq);
1392 return flags;
1393 }
1394
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1395 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1396 {
1397 raw_spin_rq_unlock(rq);
1398 local_irq_restore(flags);
1399 }
1400
1401 #define raw_spin_rq_lock_irqsave(rq, flags) \
1402 do { \
1403 flags = _raw_spin_rq_lock_irqsave(rq); \
1404 } while (0)
1405
1406 #ifdef CONFIG_SCHED_SMT
1407 extern void __update_idle_core(struct rq *rq);
1408
update_idle_core(struct rq * rq)1409 static inline void update_idle_core(struct rq *rq)
1410 {
1411 if (static_branch_unlikely(&sched_smt_present))
1412 __update_idle_core(rq);
1413 }
1414
1415 #else
update_idle_core(struct rq * rq)1416 static inline void update_idle_core(struct rq *rq) { }
1417 #endif
1418
1419 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1420 static inline struct task_struct *task_of(struct sched_entity *se)
1421 {
1422 SCHED_WARN_ON(!entity_is_task(se));
1423 return container_of(se, struct task_struct, se);
1424 }
1425
task_cfs_rq(struct task_struct * p)1426 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1427 {
1428 return p->se.cfs_rq;
1429 }
1430
1431 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1432 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1433 {
1434 return se->cfs_rq;
1435 }
1436
1437 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1438 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1439 {
1440 return grp->my_q;
1441 }
1442
1443 #else
1444
1445 #define task_of(_se) container_of(_se, struct task_struct, se)
1446
task_cfs_rq(const struct task_struct * p)1447 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1448 {
1449 return &task_rq(p)->cfs;
1450 }
1451
cfs_rq_of(const struct sched_entity * se)1452 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1453 {
1454 const struct task_struct *p = task_of(se);
1455 struct rq *rq = task_rq(p);
1456
1457 return &rq->cfs;
1458 }
1459
1460 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1461 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1462 {
1463 return NULL;
1464 }
1465 #endif
1466
1467 extern void update_rq_clock(struct rq *rq);
1468
1469 /*
1470 * rq::clock_update_flags bits
1471 *
1472 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1473 * call to __schedule(). This is an optimisation to avoid
1474 * neighbouring rq clock updates.
1475 *
1476 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1477 * in effect and calls to update_rq_clock() are being ignored.
1478 *
1479 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1480 * made to update_rq_clock() since the last time rq::lock was pinned.
1481 *
1482 * If inside of __schedule(), clock_update_flags will have been
1483 * shifted left (a left shift is a cheap operation for the fast path
1484 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1485 *
1486 * if (rq-clock_update_flags >= RQCF_UPDATED)
1487 *
1488 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1489 * one position though, because the next rq_unpin_lock() will shift it
1490 * back.
1491 */
1492 #define RQCF_REQ_SKIP 0x01
1493 #define RQCF_ACT_SKIP 0x02
1494 #define RQCF_UPDATED 0x04
1495
assert_clock_updated(struct rq * rq)1496 static inline void assert_clock_updated(struct rq *rq)
1497 {
1498 /*
1499 * The only reason for not seeing a clock update since the
1500 * last rq_pin_lock() is if we're currently skipping updates.
1501 */
1502 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1503 }
1504
rq_clock(struct rq * rq)1505 static inline u64 rq_clock(struct rq *rq)
1506 {
1507 lockdep_assert_rq_held(rq);
1508 assert_clock_updated(rq);
1509
1510 return rq->clock;
1511 }
1512
rq_clock_task(struct rq * rq)1513 static inline u64 rq_clock_task(struct rq *rq)
1514 {
1515 lockdep_assert_rq_held(rq);
1516 assert_clock_updated(rq);
1517
1518 return rq->clock_task;
1519 }
1520
1521 /**
1522 * By default the decay is the default pelt decay period.
1523 * The decay shift can change the decay period in
1524 * multiples of 32.
1525 * Decay shift Decay period(ms)
1526 * 0 32
1527 * 1 64
1528 * 2 128
1529 * 3 256
1530 * 4 512
1531 */
1532 extern int sched_thermal_decay_shift;
1533
rq_clock_thermal(struct rq * rq)1534 static inline u64 rq_clock_thermal(struct rq *rq)
1535 {
1536 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1537 }
1538
rq_clock_skip_update(struct rq * rq)1539 static inline void rq_clock_skip_update(struct rq *rq)
1540 {
1541 lockdep_assert_rq_held(rq);
1542 rq->clock_update_flags |= RQCF_REQ_SKIP;
1543 }
1544
1545 /*
1546 * See rt task throttling, which is the only time a skip
1547 * request is canceled.
1548 */
rq_clock_cancel_skipupdate(struct rq * rq)1549 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1550 {
1551 lockdep_assert_rq_held(rq);
1552 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1553 }
1554
1555 /*
1556 * During cpu offlining and rq wide unthrottling, we can trigger
1557 * an update_rq_clock() for several cfs and rt runqueues (Typically
1558 * when using list_for_each_entry_*)
1559 * rq_clock_start_loop_update() can be called after updating the clock
1560 * once and before iterating over the list to prevent multiple update.
1561 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1562 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1563 */
rq_clock_start_loop_update(struct rq * rq)1564 static inline void rq_clock_start_loop_update(struct rq *rq)
1565 {
1566 lockdep_assert_rq_held(rq);
1567 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1568 rq->clock_update_flags |= RQCF_ACT_SKIP;
1569 }
1570
rq_clock_stop_loop_update(struct rq * rq)1571 static inline void rq_clock_stop_loop_update(struct rq *rq)
1572 {
1573 lockdep_assert_rq_held(rq);
1574 rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1575 }
1576
1577 struct rq_flags {
1578 unsigned long flags;
1579 struct pin_cookie cookie;
1580 #ifdef CONFIG_SCHED_DEBUG
1581 /*
1582 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1583 * current pin context is stashed here in case it needs to be
1584 * restored in rq_repin_lock().
1585 */
1586 unsigned int clock_update_flags;
1587 #endif
1588 };
1589
1590 extern struct balance_callback balance_push_callback;
1591
1592 /*
1593 * Lockdep annotation that avoids accidental unlocks; it's like a
1594 * sticky/continuous lockdep_assert_held().
1595 *
1596 * This avoids code that has access to 'struct rq *rq' (basically everything in
1597 * the scheduler) from accidentally unlocking the rq if they do not also have a
1598 * copy of the (on-stack) 'struct rq_flags rf'.
1599 *
1600 * Also see Documentation/locking/lockdep-design.rst.
1601 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1602 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1603 {
1604 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1605
1606 #ifdef CONFIG_SCHED_DEBUG
1607 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1608 rf->clock_update_flags = 0;
1609 #ifdef CONFIG_SMP
1610 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1611 #endif
1612 #endif
1613 }
1614
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1615 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1616 {
1617 #ifdef CONFIG_SCHED_DEBUG
1618 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1619 rf->clock_update_flags = RQCF_UPDATED;
1620 #endif
1621
1622 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1623 }
1624
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1625 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1626 {
1627 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1628
1629 #ifdef CONFIG_SCHED_DEBUG
1630 /*
1631 * Restore the value we stashed in @rf for this pin context.
1632 */
1633 rq->clock_update_flags |= rf->clock_update_flags;
1634 #endif
1635 }
1636
1637 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1638 __acquires(rq->lock);
1639
1640 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1641 __acquires(p->pi_lock)
1642 __acquires(rq->lock);
1643
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1644 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1645 __releases(rq->lock)
1646 {
1647 rq_unpin_lock(rq, rf);
1648 raw_spin_rq_unlock(rq);
1649 }
1650
1651 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1652 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1653 __releases(rq->lock)
1654 __releases(p->pi_lock)
1655 {
1656 rq_unpin_lock(rq, rf);
1657 raw_spin_rq_unlock(rq);
1658 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1659 }
1660
1661 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1662 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1663 __acquires(rq->lock)
1664 {
1665 raw_spin_rq_lock_irqsave(rq, rf->flags);
1666 rq_pin_lock(rq, rf);
1667 }
1668
1669 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1670 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1671 __acquires(rq->lock)
1672 {
1673 raw_spin_rq_lock_irq(rq);
1674 rq_pin_lock(rq, rf);
1675 }
1676
1677 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1678 rq_lock(struct rq *rq, struct rq_flags *rf)
1679 __acquires(rq->lock)
1680 {
1681 raw_spin_rq_lock(rq);
1682 rq_pin_lock(rq, rf);
1683 }
1684
1685 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1686 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1687 __releases(rq->lock)
1688 {
1689 rq_unpin_lock(rq, rf);
1690 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1691 }
1692
1693 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1694 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1695 __releases(rq->lock)
1696 {
1697 rq_unpin_lock(rq, rf);
1698 raw_spin_rq_unlock_irq(rq);
1699 }
1700
1701 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1702 rq_unlock(struct rq *rq, struct rq_flags *rf)
1703 __releases(rq->lock)
1704 {
1705 rq_unpin_lock(rq, rf);
1706 raw_spin_rq_unlock(rq);
1707 }
1708
1709 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1710 rq_lock(_T->lock, &_T->rf),
1711 rq_unlock(_T->lock, &_T->rf),
1712 struct rq_flags rf)
1713
1714 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1715 rq_lock_irq(_T->lock, &_T->rf),
1716 rq_unlock_irq(_T->lock, &_T->rf),
1717 struct rq_flags rf)
1718
1719 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1720 rq_lock_irqsave(_T->lock, &_T->rf),
1721 rq_unlock_irqrestore(_T->lock, &_T->rf),
1722 struct rq_flags rf)
1723
1724 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1725 this_rq_lock_irq(struct rq_flags *rf)
1726 __acquires(rq->lock)
1727 {
1728 struct rq *rq;
1729
1730 local_irq_disable();
1731 rq = this_rq();
1732 rq_lock(rq, rf);
1733 return rq;
1734 }
1735
1736 #ifdef CONFIG_NUMA
1737 enum numa_topology_type {
1738 NUMA_DIRECT,
1739 NUMA_GLUELESS_MESH,
1740 NUMA_BACKPLANE,
1741 };
1742 extern enum numa_topology_type sched_numa_topology_type;
1743 extern int sched_max_numa_distance;
1744 extern bool find_numa_distance(int distance);
1745 extern void sched_init_numa(int offline_node);
1746 extern void sched_update_numa(int cpu, bool online);
1747 extern void sched_domains_numa_masks_set(unsigned int cpu);
1748 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1749 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1750 #else
sched_init_numa(int offline_node)1751 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1752 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1753 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1754 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1755 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1756 {
1757 return nr_cpu_ids;
1758 }
1759 #endif
1760
1761 #ifdef CONFIG_NUMA_BALANCING
1762 /* The regions in numa_faults array from task_struct */
1763 enum numa_faults_stats {
1764 NUMA_MEM = 0,
1765 NUMA_CPU,
1766 NUMA_MEMBUF,
1767 NUMA_CPUBUF
1768 };
1769 extern void sched_setnuma(struct task_struct *p, int node);
1770 extern int migrate_task_to(struct task_struct *p, int cpu);
1771 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1772 int cpu, int scpu);
1773 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1774 #else
1775 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1776 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1777 {
1778 }
1779 #endif /* CONFIG_NUMA_BALANCING */
1780
1781 #ifdef CONFIG_SMP
1782
1783 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1784 queue_balance_callback(struct rq *rq,
1785 struct balance_callback *head,
1786 void (*func)(struct rq *rq))
1787 {
1788 lockdep_assert_rq_held(rq);
1789
1790 /*
1791 * Don't (re)queue an already queued item; nor queue anything when
1792 * balance_push() is active, see the comment with
1793 * balance_push_callback.
1794 */
1795 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1796 return;
1797
1798 head->func = func;
1799 head->next = rq->balance_callback;
1800 rq->balance_callback = head;
1801 }
1802
1803 #define rcu_dereference_check_sched_domain(p) \
1804 rcu_dereference_check((p), \
1805 lockdep_is_held(&sched_domains_mutex))
1806
1807 /*
1808 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1809 * See destroy_sched_domains: call_rcu for details.
1810 *
1811 * The domain tree of any CPU may only be accessed from within
1812 * preempt-disabled sections.
1813 */
1814 #define for_each_domain(cpu, __sd) \
1815 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1816 __sd; __sd = __sd->parent)
1817
1818 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1819 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1820 static const unsigned int SD_SHARED_CHILD_MASK =
1821 #include <linux/sched/sd_flags.h>
1822 0;
1823 #undef SD_FLAG
1824
1825 /**
1826 * highest_flag_domain - Return highest sched_domain containing flag.
1827 * @cpu: The CPU whose highest level of sched domain is to
1828 * be returned.
1829 * @flag: The flag to check for the highest sched_domain
1830 * for the given CPU.
1831 *
1832 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1833 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1834 */
highest_flag_domain(int cpu,int flag)1835 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1836 {
1837 struct sched_domain *sd, *hsd = NULL;
1838
1839 for_each_domain(cpu, sd) {
1840 if (sd->flags & flag) {
1841 hsd = sd;
1842 continue;
1843 }
1844
1845 /*
1846 * Stop the search if @flag is known to be shared at lower
1847 * levels. It will not be found further up.
1848 */
1849 if (flag & SD_SHARED_CHILD_MASK)
1850 break;
1851 }
1852
1853 return hsd;
1854 }
1855
lowest_flag_domain(int cpu,int flag)1856 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1857 {
1858 struct sched_domain *sd;
1859
1860 for_each_domain(cpu, sd) {
1861 if (sd->flags & flag)
1862 break;
1863 }
1864
1865 return sd;
1866 }
1867
1868 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1869 DECLARE_PER_CPU(int, sd_llc_size);
1870 DECLARE_PER_CPU(int, sd_llc_id);
1871 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1872 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1873 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1874 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1875 extern struct static_key_false sched_asym_cpucapacity;
1876
sched_asym_cpucap_active(void)1877 static __always_inline bool sched_asym_cpucap_active(void)
1878 {
1879 return static_branch_unlikely(&sched_asym_cpucapacity);
1880 }
1881
1882 struct sched_group_capacity {
1883 atomic_t ref;
1884 /*
1885 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1886 * for a single CPU.
1887 */
1888 unsigned long capacity;
1889 unsigned long min_capacity; /* Min per-CPU capacity in group */
1890 unsigned long max_capacity; /* Max per-CPU capacity in group */
1891 unsigned long next_update;
1892 int imbalance; /* XXX unrelated to capacity but shared group state */
1893
1894 #ifdef CONFIG_SCHED_DEBUG
1895 int id;
1896 #endif
1897
1898 unsigned long cpumask[]; /* Balance mask */
1899 };
1900
1901 struct sched_group {
1902 struct sched_group *next; /* Must be a circular list */
1903 atomic_t ref;
1904
1905 unsigned int group_weight;
1906 unsigned int cores;
1907 struct sched_group_capacity *sgc;
1908 int asym_prefer_cpu; /* CPU of highest priority in group */
1909 int flags;
1910
1911 /*
1912 * The CPUs this group covers.
1913 *
1914 * NOTE: this field is variable length. (Allocated dynamically
1915 * by attaching extra space to the end of the structure,
1916 * depending on how many CPUs the kernel has booted up with)
1917 */
1918 unsigned long cpumask[];
1919 };
1920
sched_group_span(struct sched_group * sg)1921 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1922 {
1923 return to_cpumask(sg->cpumask);
1924 }
1925
1926 /*
1927 * See build_balance_mask().
1928 */
group_balance_mask(struct sched_group * sg)1929 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1930 {
1931 return to_cpumask(sg->sgc->cpumask);
1932 }
1933
1934 extern int group_balance_cpu(struct sched_group *sg);
1935
1936 #ifdef CONFIG_SCHED_DEBUG
1937 void update_sched_domain_debugfs(void);
1938 void dirty_sched_domain_sysctl(int cpu);
1939 #else
update_sched_domain_debugfs(void)1940 static inline void update_sched_domain_debugfs(void)
1941 {
1942 }
dirty_sched_domain_sysctl(int cpu)1943 static inline void dirty_sched_domain_sysctl(int cpu)
1944 {
1945 }
1946 #endif
1947
1948 extern int sched_update_scaling(void);
1949
task_user_cpus(struct task_struct * p)1950 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1951 {
1952 if (!p->user_cpus_ptr)
1953 return cpu_possible_mask; /* &init_task.cpus_mask */
1954 return p->user_cpus_ptr;
1955 }
1956 #endif /* CONFIG_SMP */
1957
1958 #include "stats.h"
1959
1960 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1961
1962 extern void __sched_core_account_forceidle(struct rq *rq);
1963
sched_core_account_forceidle(struct rq * rq)1964 static inline void sched_core_account_forceidle(struct rq *rq)
1965 {
1966 if (schedstat_enabled())
1967 __sched_core_account_forceidle(rq);
1968 }
1969
1970 extern void __sched_core_tick(struct rq *rq);
1971
sched_core_tick(struct rq * rq)1972 static inline void sched_core_tick(struct rq *rq)
1973 {
1974 if (sched_core_enabled(rq) && schedstat_enabled())
1975 __sched_core_tick(rq);
1976 }
1977
1978 #else
1979
sched_core_account_forceidle(struct rq * rq)1980 static inline void sched_core_account_forceidle(struct rq *rq) {}
1981
sched_core_tick(struct rq * rq)1982 static inline void sched_core_tick(struct rq *rq) {}
1983
1984 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1985
1986 #ifdef CONFIG_CGROUP_SCHED
1987
1988 /*
1989 * Return the group to which this tasks belongs.
1990 *
1991 * We cannot use task_css() and friends because the cgroup subsystem
1992 * changes that value before the cgroup_subsys::attach() method is called,
1993 * therefore we cannot pin it and might observe the wrong value.
1994 *
1995 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1996 * core changes this before calling sched_move_task().
1997 *
1998 * Instead we use a 'copy' which is updated from sched_move_task() while
1999 * holding both task_struct::pi_lock and rq::lock.
2000 */
task_group(struct task_struct * p)2001 static inline struct task_group *task_group(struct task_struct *p)
2002 {
2003 return p->sched_task_group;
2004 }
2005
2006 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2007 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2008 {
2009 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2010 struct task_group *tg = task_group(p);
2011 #endif
2012
2013 #ifdef CONFIG_FAIR_GROUP_SCHED
2014 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2015 p->se.cfs_rq = tg->cfs_rq[cpu];
2016 p->se.parent = tg->se[cpu];
2017 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2018 #endif
2019
2020 #ifdef CONFIG_RT_GROUP_SCHED
2021 p->rt.rt_rq = tg->rt_rq[cpu];
2022 p->rt.parent = tg->rt_se[cpu];
2023 #endif
2024 }
2025
2026 #else /* CONFIG_CGROUP_SCHED */
2027
set_task_rq(struct task_struct * p,unsigned int cpu)2028 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)2029 static inline struct task_group *task_group(struct task_struct *p)
2030 {
2031 return NULL;
2032 }
2033
2034 #endif /* CONFIG_CGROUP_SCHED */
2035
__set_task_cpu(struct task_struct * p,unsigned int cpu)2036 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2037 {
2038 set_task_rq(p, cpu);
2039 #ifdef CONFIG_SMP
2040 /*
2041 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2042 * successfully executed on another CPU. We must ensure that updates of
2043 * per-task data have been completed by this moment.
2044 */
2045 smp_wmb();
2046 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2047 p->wake_cpu = cpu;
2048 #endif
2049 }
2050
2051 /*
2052 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2053 */
2054 #ifdef CONFIG_SCHED_DEBUG
2055 # define const_debug __read_mostly
2056 #else
2057 # define const_debug const
2058 #endif
2059
2060 #define SCHED_FEAT(name, enabled) \
2061 __SCHED_FEAT_##name ,
2062
2063 enum {
2064 #include "features.h"
2065 __SCHED_FEAT_NR,
2066 };
2067
2068 #undef SCHED_FEAT
2069
2070 #ifdef CONFIG_SCHED_DEBUG
2071
2072 /*
2073 * To support run-time toggling of sched features, all the translation units
2074 * (but core.c) reference the sysctl_sched_features defined in core.c.
2075 */
2076 extern const_debug unsigned int sysctl_sched_features;
2077
2078 #ifdef CONFIG_JUMP_LABEL
2079 #define SCHED_FEAT(name, enabled) \
2080 static __always_inline bool static_branch_##name(struct static_key *key) \
2081 { \
2082 return static_key_##enabled(key); \
2083 }
2084
2085 #include "features.h"
2086 #undef SCHED_FEAT
2087
2088 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2089 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2090
2091 #else /* !CONFIG_JUMP_LABEL */
2092
2093 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2094
2095 #endif /* CONFIG_JUMP_LABEL */
2096
2097 #else /* !SCHED_DEBUG */
2098
2099 /*
2100 * Each translation unit has its own copy of sysctl_sched_features to allow
2101 * constants propagation at compile time and compiler optimization based on
2102 * features default.
2103 */
2104 #define SCHED_FEAT(name, enabled) \
2105 (1UL << __SCHED_FEAT_##name) * enabled |
2106 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2107 #include "features.h"
2108 0;
2109 #undef SCHED_FEAT
2110
2111 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2112
2113 #endif /* SCHED_DEBUG */
2114
2115 extern struct static_key_false sched_numa_balancing;
2116 extern struct static_key_false sched_schedstats;
2117
global_rt_period(void)2118 static inline u64 global_rt_period(void)
2119 {
2120 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2121 }
2122
global_rt_runtime(void)2123 static inline u64 global_rt_runtime(void)
2124 {
2125 if (sysctl_sched_rt_runtime < 0)
2126 return RUNTIME_INF;
2127
2128 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2129 }
2130
task_current(struct rq * rq,struct task_struct * p)2131 static inline int task_current(struct rq *rq, struct task_struct *p)
2132 {
2133 return rq->curr == p;
2134 }
2135
task_on_cpu(struct rq * rq,struct task_struct * p)2136 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2137 {
2138 #ifdef CONFIG_SMP
2139 return p->on_cpu;
2140 #else
2141 return task_current(rq, p);
2142 #endif
2143 }
2144
task_on_rq_queued(struct task_struct * p)2145 static inline int task_on_rq_queued(struct task_struct *p)
2146 {
2147 return p->on_rq == TASK_ON_RQ_QUEUED;
2148 }
2149
task_on_rq_migrating(struct task_struct * p)2150 static inline int task_on_rq_migrating(struct task_struct *p)
2151 {
2152 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2153 }
2154
2155 /* Wake flags. The first three directly map to some SD flag value */
2156 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2157 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2158 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2159
2160 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2161 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2162 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
2163
2164 #ifdef CONFIG_SMP
2165 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2166 static_assert(WF_FORK == SD_BALANCE_FORK);
2167 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2168 #endif
2169
2170 /*
2171 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2172 * of tasks with abnormal "nice" values across CPUs the contribution that
2173 * each task makes to its run queue's load is weighted according to its
2174 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2175 * scaled version of the new time slice allocation that they receive on time
2176 * slice expiry etc.
2177 */
2178
2179 #define WEIGHT_IDLEPRIO 3
2180 #define WMULT_IDLEPRIO 1431655765
2181
2182 extern const int sched_prio_to_weight[40];
2183 extern const u32 sched_prio_to_wmult[40];
2184
2185 /*
2186 * {de,en}queue flags:
2187 *
2188 * DEQUEUE_SLEEP - task is no longer runnable
2189 * ENQUEUE_WAKEUP - task just became runnable
2190 *
2191 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2192 * are in a known state which allows modification. Such pairs
2193 * should preserve as much state as possible.
2194 *
2195 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2196 * in the runqueue.
2197 *
2198 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2199 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2200 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2201 *
2202 */
2203
2204 #define DEQUEUE_SLEEP 0x01
2205 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2206 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2207 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2208
2209 #define ENQUEUE_WAKEUP 0x01
2210 #define ENQUEUE_RESTORE 0x02
2211 #define ENQUEUE_MOVE 0x04
2212 #define ENQUEUE_NOCLOCK 0x08
2213
2214 #define ENQUEUE_HEAD 0x10
2215 #define ENQUEUE_REPLENISH 0x20
2216 #ifdef CONFIG_SMP
2217 #define ENQUEUE_MIGRATED 0x40
2218 #else
2219 #define ENQUEUE_MIGRATED 0x00
2220 #endif
2221 #define ENQUEUE_INITIAL 0x80
2222
2223 #define RETRY_TASK ((void *)-1UL)
2224
2225 struct affinity_context {
2226 const struct cpumask *new_mask;
2227 struct cpumask *user_mask;
2228 unsigned int flags;
2229 };
2230
2231 struct sched_class {
2232
2233 #ifdef CONFIG_UCLAMP_TASK
2234 int uclamp_enabled;
2235 #endif
2236
2237 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2238 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2239 void (*yield_task) (struct rq *rq);
2240 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2241
2242 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2243
2244 struct task_struct *(*pick_next_task)(struct rq *rq);
2245
2246 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2247 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2248
2249 #ifdef CONFIG_SMP
2250 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2251 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2252
2253 struct task_struct * (*pick_task)(struct rq *rq);
2254
2255 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2256
2257 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2258
2259 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2260
2261 void (*rq_online)(struct rq *rq);
2262 void (*rq_offline)(struct rq *rq);
2263
2264 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2265 #endif
2266
2267 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2268 void (*task_fork)(struct task_struct *p);
2269 void (*task_dead)(struct task_struct *p);
2270
2271 /*
2272 * The switched_from() call is allowed to drop rq->lock, therefore we
2273 * cannot assume the switched_from/switched_to pair is serialized by
2274 * rq->lock. They are however serialized by p->pi_lock.
2275 */
2276 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2277 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2278 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2279 int oldprio);
2280
2281 unsigned int (*get_rr_interval)(struct rq *rq,
2282 struct task_struct *task);
2283
2284 void (*update_curr)(struct rq *rq);
2285
2286 #ifdef CONFIG_FAIR_GROUP_SCHED
2287 void (*task_change_group)(struct task_struct *p);
2288 #endif
2289
2290 #ifdef CONFIG_SCHED_CORE
2291 int (*task_is_throttled)(struct task_struct *p, int cpu);
2292 #endif
2293 };
2294
put_prev_task(struct rq * rq,struct task_struct * prev)2295 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2296 {
2297 WARN_ON_ONCE(rq->curr != prev);
2298 prev->sched_class->put_prev_task(rq, prev);
2299 }
2300
set_next_task(struct rq * rq,struct task_struct * next)2301 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2302 {
2303 next->sched_class->set_next_task(rq, next, false);
2304 }
2305
2306
2307 /*
2308 * Helper to define a sched_class instance; each one is placed in a separate
2309 * section which is ordered by the linker script:
2310 *
2311 * include/asm-generic/vmlinux.lds.h
2312 *
2313 * *CAREFUL* they are laid out in *REVERSE* order!!!
2314 *
2315 * Also enforce alignment on the instance, not the type, to guarantee layout.
2316 */
2317 #define DEFINE_SCHED_CLASS(name) \
2318 const struct sched_class name##_sched_class \
2319 __aligned(__alignof__(struct sched_class)) \
2320 __section("__" #name "_sched_class")
2321
2322 /* Defined in include/asm-generic/vmlinux.lds.h */
2323 extern struct sched_class __sched_class_highest[];
2324 extern struct sched_class __sched_class_lowest[];
2325
2326 #define for_class_range(class, _from, _to) \
2327 for (class = (_from); class < (_to); class++)
2328
2329 #define for_each_class(class) \
2330 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2331
2332 #define sched_class_above(_a, _b) ((_a) < (_b))
2333
2334 extern const struct sched_class stop_sched_class;
2335 extern const struct sched_class dl_sched_class;
2336 extern const struct sched_class rt_sched_class;
2337 extern const struct sched_class fair_sched_class;
2338 extern const struct sched_class idle_sched_class;
2339
sched_stop_runnable(struct rq * rq)2340 static inline bool sched_stop_runnable(struct rq *rq)
2341 {
2342 return rq->stop && task_on_rq_queued(rq->stop);
2343 }
2344
sched_dl_runnable(struct rq * rq)2345 static inline bool sched_dl_runnable(struct rq *rq)
2346 {
2347 return rq->dl.dl_nr_running > 0;
2348 }
2349
sched_rt_runnable(struct rq * rq)2350 static inline bool sched_rt_runnable(struct rq *rq)
2351 {
2352 return rq->rt.rt_queued > 0;
2353 }
2354
sched_fair_runnable(struct rq * rq)2355 static inline bool sched_fair_runnable(struct rq *rq)
2356 {
2357 return rq->cfs.nr_running > 0;
2358 }
2359
2360 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2361 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2362
2363 #define SCA_CHECK 0x01
2364 #define SCA_MIGRATE_DISABLE 0x02
2365 #define SCA_MIGRATE_ENABLE 0x04
2366 #define SCA_USER 0x08
2367
2368 #ifdef CONFIG_SMP
2369
2370 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2371
2372 extern void trigger_load_balance(struct rq *rq);
2373
2374 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2375
get_push_task(struct rq * rq)2376 static inline struct task_struct *get_push_task(struct rq *rq)
2377 {
2378 struct task_struct *p = rq->curr;
2379
2380 lockdep_assert_rq_held(rq);
2381
2382 if (rq->push_busy)
2383 return NULL;
2384
2385 if (p->nr_cpus_allowed == 1)
2386 return NULL;
2387
2388 if (p->migration_disabled)
2389 return NULL;
2390
2391 rq->push_busy = true;
2392 return get_task_struct(p);
2393 }
2394
2395 extern int push_cpu_stop(void *arg);
2396
2397 #endif
2398
2399 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2400 static inline void idle_set_state(struct rq *rq,
2401 struct cpuidle_state *idle_state)
2402 {
2403 rq->idle_state = idle_state;
2404 }
2405
idle_get_state(struct rq * rq)2406 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2407 {
2408 SCHED_WARN_ON(!rcu_read_lock_held());
2409
2410 return rq->idle_state;
2411 }
2412 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2413 static inline void idle_set_state(struct rq *rq,
2414 struct cpuidle_state *idle_state)
2415 {
2416 }
2417
idle_get_state(struct rq * rq)2418 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2419 {
2420 return NULL;
2421 }
2422 #endif
2423
2424 extern void schedule_idle(void);
2425 asmlinkage void schedule_user(void);
2426
2427 extern void sysrq_sched_debug_show(void);
2428 extern void sched_init_granularity(void);
2429 extern void update_max_interval(void);
2430
2431 extern void init_sched_dl_class(void);
2432 extern void init_sched_rt_class(void);
2433 extern void init_sched_fair_class(void);
2434
2435 extern void reweight_task(struct task_struct *p, int prio);
2436
2437 extern void resched_curr(struct rq *rq);
2438 extern void resched_cpu(int cpu);
2439
2440 extern struct rt_bandwidth def_rt_bandwidth;
2441 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2442 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2443
2444 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2445 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2446
2447 #define BW_SHIFT 20
2448 #define BW_UNIT (1 << BW_SHIFT)
2449 #define RATIO_SHIFT 8
2450 #define MAX_BW_BITS (64 - BW_SHIFT)
2451 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2452 unsigned long to_ratio(u64 period, u64 runtime);
2453
2454 extern void init_entity_runnable_average(struct sched_entity *se);
2455 extern void post_init_entity_util_avg(struct task_struct *p);
2456
2457 #ifdef CONFIG_NO_HZ_FULL
2458 extern bool sched_can_stop_tick(struct rq *rq);
2459 extern int __init sched_tick_offload_init(void);
2460
2461 /*
2462 * Tick may be needed by tasks in the runqueue depending on their policy and
2463 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2464 * nohz mode if necessary.
2465 */
sched_update_tick_dependency(struct rq * rq)2466 static inline void sched_update_tick_dependency(struct rq *rq)
2467 {
2468 int cpu = cpu_of(rq);
2469
2470 if (!tick_nohz_full_cpu(cpu))
2471 return;
2472
2473 if (sched_can_stop_tick(rq))
2474 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2475 else
2476 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2477 }
2478 #else
sched_tick_offload_init(void)2479 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2480 static inline void sched_update_tick_dependency(struct rq *rq) { }
2481 #endif
2482
add_nr_running(struct rq * rq,unsigned count)2483 static inline void add_nr_running(struct rq *rq, unsigned count)
2484 {
2485 unsigned prev_nr = rq->nr_running;
2486
2487 rq->nr_running = prev_nr + count;
2488 if (trace_sched_update_nr_running_tp_enabled()) {
2489 call_trace_sched_update_nr_running(rq, count);
2490 }
2491
2492 #ifdef CONFIG_SMP
2493 if (prev_nr < 2 && rq->nr_running >= 2) {
2494 if (!READ_ONCE(rq->rd->overload))
2495 WRITE_ONCE(rq->rd->overload, 1);
2496 }
2497 #endif
2498
2499 sched_update_tick_dependency(rq);
2500 }
2501
sub_nr_running(struct rq * rq,unsigned count)2502 static inline void sub_nr_running(struct rq *rq, unsigned count)
2503 {
2504 rq->nr_running -= count;
2505 if (trace_sched_update_nr_running_tp_enabled()) {
2506 call_trace_sched_update_nr_running(rq, -count);
2507 }
2508
2509 /* Check if we still need preemption */
2510 sched_update_tick_dependency(rq);
2511 }
2512
2513 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2514 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2515
2516 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2517
2518 #ifdef CONFIG_PREEMPT_RT
2519 #define SCHED_NR_MIGRATE_BREAK 8
2520 #else
2521 #define SCHED_NR_MIGRATE_BREAK 32
2522 #endif
2523
2524 extern const_debug unsigned int sysctl_sched_nr_migrate;
2525 extern const_debug unsigned int sysctl_sched_migration_cost;
2526
2527 extern unsigned int sysctl_sched_base_slice;
2528
2529 #ifdef CONFIG_SCHED_DEBUG
2530 extern int sysctl_resched_latency_warn_ms;
2531 extern int sysctl_resched_latency_warn_once;
2532
2533 extern unsigned int sysctl_sched_tunable_scaling;
2534
2535 extern unsigned int sysctl_numa_balancing_scan_delay;
2536 extern unsigned int sysctl_numa_balancing_scan_period_min;
2537 extern unsigned int sysctl_numa_balancing_scan_period_max;
2538 extern unsigned int sysctl_numa_balancing_scan_size;
2539 extern unsigned int sysctl_numa_balancing_hot_threshold;
2540 #endif
2541
2542 #ifdef CONFIG_SCHED_HRTICK
2543
2544 /*
2545 * Use hrtick when:
2546 * - enabled by features
2547 * - hrtimer is actually high res
2548 */
hrtick_enabled(struct rq * rq)2549 static inline int hrtick_enabled(struct rq *rq)
2550 {
2551 if (!cpu_active(cpu_of(rq)))
2552 return 0;
2553 return hrtimer_is_hres_active(&rq->hrtick_timer);
2554 }
2555
hrtick_enabled_fair(struct rq * rq)2556 static inline int hrtick_enabled_fair(struct rq *rq)
2557 {
2558 if (!sched_feat(HRTICK))
2559 return 0;
2560 return hrtick_enabled(rq);
2561 }
2562
hrtick_enabled_dl(struct rq * rq)2563 static inline int hrtick_enabled_dl(struct rq *rq)
2564 {
2565 if (!sched_feat(HRTICK_DL))
2566 return 0;
2567 return hrtick_enabled(rq);
2568 }
2569
2570 void hrtick_start(struct rq *rq, u64 delay);
2571
2572 #else
2573
hrtick_enabled_fair(struct rq * rq)2574 static inline int hrtick_enabled_fair(struct rq *rq)
2575 {
2576 return 0;
2577 }
2578
hrtick_enabled_dl(struct rq * rq)2579 static inline int hrtick_enabled_dl(struct rq *rq)
2580 {
2581 return 0;
2582 }
2583
hrtick_enabled(struct rq * rq)2584 static inline int hrtick_enabled(struct rq *rq)
2585 {
2586 return 0;
2587 }
2588
2589 #endif /* CONFIG_SCHED_HRTICK */
2590
2591 #ifndef arch_scale_freq_tick
2592 static __always_inline
arch_scale_freq_tick(void)2593 void arch_scale_freq_tick(void)
2594 {
2595 }
2596 #endif
2597
2598 #ifndef arch_scale_freq_capacity
2599 /**
2600 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2601 * @cpu: the CPU in question.
2602 *
2603 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2604 *
2605 * f_curr
2606 * ------ * SCHED_CAPACITY_SCALE
2607 * f_max
2608 */
2609 static __always_inline
arch_scale_freq_capacity(int cpu)2610 unsigned long arch_scale_freq_capacity(int cpu)
2611 {
2612 return SCHED_CAPACITY_SCALE;
2613 }
2614 #endif
2615
2616 #ifdef CONFIG_SCHED_DEBUG
2617 /*
2618 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2619 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2620 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2621 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2622 */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2623 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2624 {
2625 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2626 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2627 #ifdef CONFIG_SMP
2628 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2629 #endif
2630 }
2631 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2632 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2633 #endif
2634
2635 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \
2636 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2637 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2638 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \
2639 _lock; return _t; }
2640
2641 #ifdef CONFIG_SMP
2642
rq_order_less(struct rq * rq1,struct rq * rq2)2643 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2644 {
2645 #ifdef CONFIG_SCHED_CORE
2646 /*
2647 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2648 * order by core-id first and cpu-id second.
2649 *
2650 * Notably:
2651 *
2652 * double_rq_lock(0,3); will take core-0, core-1 lock
2653 * double_rq_lock(1,2); will take core-1, core-0 lock
2654 *
2655 * when only cpu-id is considered.
2656 */
2657 if (rq1->core->cpu < rq2->core->cpu)
2658 return true;
2659 if (rq1->core->cpu > rq2->core->cpu)
2660 return false;
2661
2662 /*
2663 * __sched_core_flip() relies on SMT having cpu-id lock order.
2664 */
2665 #endif
2666 return rq1->cpu < rq2->cpu;
2667 }
2668
2669 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2670
2671 #ifdef CONFIG_PREEMPTION
2672
2673 /*
2674 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2675 * way at the expense of forcing extra atomic operations in all
2676 * invocations. This assures that the double_lock is acquired using the
2677 * same underlying policy as the spinlock_t on this architecture, which
2678 * reduces latency compared to the unfair variant below. However, it
2679 * also adds more overhead and therefore may reduce throughput.
2680 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2681 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2682 __releases(this_rq->lock)
2683 __acquires(busiest->lock)
2684 __acquires(this_rq->lock)
2685 {
2686 raw_spin_rq_unlock(this_rq);
2687 double_rq_lock(this_rq, busiest);
2688
2689 return 1;
2690 }
2691
2692 #else
2693 /*
2694 * Unfair double_lock_balance: Optimizes throughput at the expense of
2695 * latency by eliminating extra atomic operations when the locks are
2696 * already in proper order on entry. This favors lower CPU-ids and will
2697 * grant the double lock to lower CPUs over higher ids under contention,
2698 * regardless of entry order into the function.
2699 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2700 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2701 __releases(this_rq->lock)
2702 __acquires(busiest->lock)
2703 __acquires(this_rq->lock)
2704 {
2705 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2706 likely(raw_spin_rq_trylock(busiest))) {
2707 double_rq_clock_clear_update(this_rq, busiest);
2708 return 0;
2709 }
2710
2711 if (rq_order_less(this_rq, busiest)) {
2712 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2713 double_rq_clock_clear_update(this_rq, busiest);
2714 return 0;
2715 }
2716
2717 raw_spin_rq_unlock(this_rq);
2718 double_rq_lock(this_rq, busiest);
2719
2720 return 1;
2721 }
2722
2723 #endif /* CONFIG_PREEMPTION */
2724
2725 /*
2726 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2727 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2728 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2729 {
2730 lockdep_assert_irqs_disabled();
2731
2732 return _double_lock_balance(this_rq, busiest);
2733 }
2734
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2735 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2736 __releases(busiest->lock)
2737 {
2738 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2739 raw_spin_rq_unlock(busiest);
2740 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2741 }
2742
double_lock(spinlock_t * l1,spinlock_t * l2)2743 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2744 {
2745 if (l1 > l2)
2746 swap(l1, l2);
2747
2748 spin_lock(l1);
2749 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2750 }
2751
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2752 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2753 {
2754 if (l1 > l2)
2755 swap(l1, l2);
2756
2757 spin_lock_irq(l1);
2758 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2759 }
2760
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2761 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2762 {
2763 if (l1 > l2)
2764 swap(l1, l2);
2765
2766 raw_spin_lock(l1);
2767 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2768 }
2769
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)2770 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2771 {
2772 raw_spin_unlock(l1);
2773 raw_spin_unlock(l2);
2774 }
2775
2776 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2777 double_raw_lock(_T->lock, _T->lock2),
2778 double_raw_unlock(_T->lock, _T->lock2))
2779
2780 /*
2781 * double_rq_unlock - safely unlock two runqueues
2782 *
2783 * Note this does not restore interrupts like task_rq_unlock,
2784 * you need to do so manually after calling.
2785 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2786 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2787 __releases(rq1->lock)
2788 __releases(rq2->lock)
2789 {
2790 if (__rq_lockp(rq1) != __rq_lockp(rq2))
2791 raw_spin_rq_unlock(rq2);
2792 else
2793 __release(rq2->lock);
2794 raw_spin_rq_unlock(rq1);
2795 }
2796
2797 extern void set_rq_online (struct rq *rq);
2798 extern void set_rq_offline(struct rq *rq);
2799 extern bool sched_smp_initialized;
2800
2801 #else /* CONFIG_SMP */
2802
2803 /*
2804 * double_rq_lock - safely lock two runqueues
2805 *
2806 * Note this does not disable interrupts like task_rq_lock,
2807 * you need to do so manually before calling.
2808 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2809 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2810 __acquires(rq1->lock)
2811 __acquires(rq2->lock)
2812 {
2813 WARN_ON_ONCE(!irqs_disabled());
2814 WARN_ON_ONCE(rq1 != rq2);
2815 raw_spin_rq_lock(rq1);
2816 __acquire(rq2->lock); /* Fake it out ;) */
2817 double_rq_clock_clear_update(rq1, rq2);
2818 }
2819
2820 /*
2821 * double_rq_unlock - safely unlock two runqueues
2822 *
2823 * Note this does not restore interrupts like task_rq_unlock,
2824 * you need to do so manually after calling.
2825 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2826 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2827 __releases(rq1->lock)
2828 __releases(rq2->lock)
2829 {
2830 WARN_ON_ONCE(rq1 != rq2);
2831 raw_spin_rq_unlock(rq1);
2832 __release(rq2->lock);
2833 }
2834
2835 #endif
2836
2837 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2838 double_rq_lock(_T->lock, _T->lock2),
2839 double_rq_unlock(_T->lock, _T->lock2))
2840
2841 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2842 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2843
2844 #ifdef CONFIG_SCHED_DEBUG
2845 extern bool sched_debug_verbose;
2846
2847 extern void print_cfs_stats(struct seq_file *m, int cpu);
2848 extern void print_rt_stats(struct seq_file *m, int cpu);
2849 extern void print_dl_stats(struct seq_file *m, int cpu);
2850 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2851 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2852 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2853
2854 extern void resched_latency_warn(int cpu, u64 latency);
2855 #ifdef CONFIG_NUMA_BALANCING
2856 extern void
2857 show_numa_stats(struct task_struct *p, struct seq_file *m);
2858 extern void
2859 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2860 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2861 #endif /* CONFIG_NUMA_BALANCING */
2862 #else
resched_latency_warn(int cpu,u64 latency)2863 static inline void resched_latency_warn(int cpu, u64 latency) {}
2864 #endif /* CONFIG_SCHED_DEBUG */
2865
2866 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2867 extern void init_rt_rq(struct rt_rq *rt_rq);
2868 extern void init_dl_rq(struct dl_rq *dl_rq);
2869
2870 extern void cfs_bandwidth_usage_inc(void);
2871 extern void cfs_bandwidth_usage_dec(void);
2872
2873 #ifdef CONFIG_NO_HZ_COMMON
2874 #define NOHZ_BALANCE_KICK_BIT 0
2875 #define NOHZ_STATS_KICK_BIT 1
2876 #define NOHZ_NEWILB_KICK_BIT 2
2877 #define NOHZ_NEXT_KICK_BIT 3
2878
2879 /* Run rebalance_domains() */
2880 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2881 /* Update blocked load */
2882 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2883 /* Update blocked load when entering idle */
2884 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
2885 /* Update nohz.next_balance */
2886 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
2887
2888 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2889
2890 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2891
2892 extern void nohz_balance_exit_idle(struct rq *rq);
2893 #else
nohz_balance_exit_idle(struct rq * rq)2894 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2895 #endif
2896
2897 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2898 extern void nohz_run_idle_balance(int cpu);
2899 #else
nohz_run_idle_balance(int cpu)2900 static inline void nohz_run_idle_balance(int cpu) { }
2901 #endif
2902
2903 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2904 struct irqtime {
2905 u64 total;
2906 u64 tick_delta;
2907 u64 irq_start_time;
2908 struct u64_stats_sync sync;
2909 };
2910
2911 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2912
2913 /*
2914 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2915 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2916 * and never move forward.
2917 */
irq_time_read(int cpu)2918 static inline u64 irq_time_read(int cpu)
2919 {
2920 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2921 unsigned int seq;
2922 u64 total;
2923
2924 do {
2925 seq = __u64_stats_fetch_begin(&irqtime->sync);
2926 total = irqtime->total;
2927 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2928
2929 return total;
2930 }
2931 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2932
2933 #ifdef CONFIG_CPU_FREQ
2934 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2935
2936 /**
2937 * cpufreq_update_util - Take a note about CPU utilization changes.
2938 * @rq: Runqueue to carry out the update for.
2939 * @flags: Update reason flags.
2940 *
2941 * This function is called by the scheduler on the CPU whose utilization is
2942 * being updated.
2943 *
2944 * It can only be called from RCU-sched read-side critical sections.
2945 *
2946 * The way cpufreq is currently arranged requires it to evaluate the CPU
2947 * performance state (frequency/voltage) on a regular basis to prevent it from
2948 * being stuck in a completely inadequate performance level for too long.
2949 * That is not guaranteed to happen if the updates are only triggered from CFS
2950 * and DL, though, because they may not be coming in if only RT tasks are
2951 * active all the time (or there are RT tasks only).
2952 *
2953 * As a workaround for that issue, this function is called periodically by the
2954 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2955 * but that really is a band-aid. Going forward it should be replaced with
2956 * solutions targeted more specifically at RT tasks.
2957 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2958 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2959 {
2960 struct update_util_data *data;
2961
2962 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2963 cpu_of(rq)));
2964 if (data)
2965 data->func(data, rq_clock(rq), flags);
2966 }
2967 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2968 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2969 #endif /* CONFIG_CPU_FREQ */
2970
2971 #ifdef arch_scale_freq_capacity
2972 # ifndef arch_scale_freq_invariant
2973 # define arch_scale_freq_invariant() true
2974 # endif
2975 #else
2976 # define arch_scale_freq_invariant() false
2977 #endif
2978
2979 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2980 static inline unsigned long capacity_orig_of(int cpu)
2981 {
2982 return cpu_rq(cpu)->cpu_capacity_orig;
2983 }
2984
2985 /**
2986 * enum cpu_util_type - CPU utilization type
2987 * @FREQUENCY_UTIL: Utilization used to select frequency
2988 * @ENERGY_UTIL: Utilization used during energy calculation
2989 *
2990 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2991 * need to be aggregated differently depending on the usage made of them. This
2992 * enum is used within effective_cpu_util() to differentiate the types of
2993 * utilization expected by the callers, and adjust the aggregation accordingly.
2994 */
2995 enum cpu_util_type {
2996 FREQUENCY_UTIL,
2997 ENERGY_UTIL,
2998 };
2999
3000 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3001 enum cpu_util_type type,
3002 struct task_struct *p);
3003
3004 /*
3005 * Verify the fitness of task @p to run on @cpu taking into account the
3006 * CPU original capacity and the runtime/deadline ratio of the task.
3007 *
3008 * The function will return true if the original capacity of @cpu is
3009 * greater than or equal to task's deadline density right shifted by
3010 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3011 */
dl_task_fits_capacity(struct task_struct * p,int cpu)3012 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3013 {
3014 unsigned long cap = arch_scale_cpu_capacity(cpu);
3015
3016 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3017 }
3018
cpu_bw_dl(struct rq * rq)3019 static inline unsigned long cpu_bw_dl(struct rq *rq)
3020 {
3021 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3022 }
3023
cpu_util_dl(struct rq * rq)3024 static inline unsigned long cpu_util_dl(struct rq *rq)
3025 {
3026 return READ_ONCE(rq->avg_dl.util_avg);
3027 }
3028
3029
3030 extern unsigned long cpu_util_cfs(int cpu);
3031 extern unsigned long cpu_util_cfs_boost(int cpu);
3032
cpu_util_rt(struct rq * rq)3033 static inline unsigned long cpu_util_rt(struct rq *rq)
3034 {
3035 return READ_ONCE(rq->avg_rt.util_avg);
3036 }
3037 #endif
3038
3039 #ifdef CONFIG_UCLAMP_TASK
3040 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3041
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3042 static inline unsigned long uclamp_rq_get(struct rq *rq,
3043 enum uclamp_id clamp_id)
3044 {
3045 return READ_ONCE(rq->uclamp[clamp_id].value);
3046 }
3047
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3048 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3049 unsigned int value)
3050 {
3051 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3052 }
3053
uclamp_rq_is_idle(struct rq * rq)3054 static inline bool uclamp_rq_is_idle(struct rq *rq)
3055 {
3056 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3057 }
3058
3059 /**
3060 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3061 * @rq: The rq to clamp against. Must not be NULL.
3062 * @util: The util value to clamp.
3063 * @p: The task to clamp against. Can be NULL if you want to clamp
3064 * against @rq only.
3065 *
3066 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3067 *
3068 * If sched_uclamp_used static key is disabled, then just return the util
3069 * without any clamping since uclamp aggregation at the rq level in the fast
3070 * path is disabled, rendering this operation a NOP.
3071 *
3072 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3073 * will return the correct effective uclamp value of the task even if the
3074 * static key is disabled.
3075 */
3076 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3077 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3078 struct task_struct *p)
3079 {
3080 unsigned long min_util = 0;
3081 unsigned long max_util = 0;
3082
3083 if (!static_branch_likely(&sched_uclamp_used))
3084 return util;
3085
3086 if (p) {
3087 min_util = uclamp_eff_value(p, UCLAMP_MIN);
3088 max_util = uclamp_eff_value(p, UCLAMP_MAX);
3089
3090 /*
3091 * Ignore last runnable task's max clamp, as this task will
3092 * reset it. Similarly, no need to read the rq's min clamp.
3093 */
3094 if (uclamp_rq_is_idle(rq))
3095 goto out;
3096 }
3097
3098 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3099 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3100 out:
3101 /*
3102 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3103 * RUNNABLE tasks with _different_ clamps, we can end up with an
3104 * inversion. Fix it now when the clamps are applied.
3105 */
3106 if (unlikely(min_util >= max_util))
3107 return min_util;
3108
3109 return clamp(util, min_util, max_util);
3110 }
3111
3112 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3113 static inline bool uclamp_rq_is_capped(struct rq *rq)
3114 {
3115 unsigned long rq_util;
3116 unsigned long max_util;
3117
3118 if (!static_branch_likely(&sched_uclamp_used))
3119 return false;
3120
3121 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3122 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3123
3124 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3125 }
3126
3127 /*
3128 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3129 * by default in the fast path and only gets turned on once userspace performs
3130 * an operation that requires it.
3131 *
3132 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3133 * hence is active.
3134 */
uclamp_is_used(void)3135 static inline bool uclamp_is_used(void)
3136 {
3137 return static_branch_likely(&sched_uclamp_used);
3138 }
3139 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3140 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3141 enum uclamp_id clamp_id)
3142 {
3143 if (clamp_id == UCLAMP_MIN)
3144 return 0;
3145
3146 return SCHED_CAPACITY_SCALE;
3147 }
3148
3149 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3150 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3151 struct task_struct *p)
3152 {
3153 return util;
3154 }
3155
uclamp_rq_is_capped(struct rq * rq)3156 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3157
uclamp_is_used(void)3158 static inline bool uclamp_is_used(void)
3159 {
3160 return false;
3161 }
3162
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3163 static inline unsigned long uclamp_rq_get(struct rq *rq,
3164 enum uclamp_id clamp_id)
3165 {
3166 if (clamp_id == UCLAMP_MIN)
3167 return 0;
3168
3169 return SCHED_CAPACITY_SCALE;
3170 }
3171
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3172 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3173 unsigned int value)
3174 {
3175 }
3176
uclamp_rq_is_idle(struct rq * rq)3177 static inline bool uclamp_rq_is_idle(struct rq *rq)
3178 {
3179 return false;
3180 }
3181 #endif /* CONFIG_UCLAMP_TASK */
3182
3183 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3184 static inline unsigned long cpu_util_irq(struct rq *rq)
3185 {
3186 return rq->avg_irq.util_avg;
3187 }
3188
3189 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3190 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3191 {
3192 util *= (max - irq);
3193 util /= max;
3194
3195 return util;
3196
3197 }
3198 #else
cpu_util_irq(struct rq * rq)3199 static inline unsigned long cpu_util_irq(struct rq *rq)
3200 {
3201 return 0;
3202 }
3203
3204 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3205 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3206 {
3207 return util;
3208 }
3209 #endif
3210
3211 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3212
3213 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3214
3215 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3216
sched_energy_enabled(void)3217 static inline bool sched_energy_enabled(void)
3218 {
3219 return static_branch_unlikely(&sched_energy_present);
3220 }
3221
3222 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3223
3224 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3225 static inline bool sched_energy_enabled(void) { return false; }
3226
3227 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3228
3229 #ifdef CONFIG_MEMBARRIER
3230 /*
3231 * The scheduler provides memory barriers required by membarrier between:
3232 * - prior user-space memory accesses and store to rq->membarrier_state,
3233 * - store to rq->membarrier_state and following user-space memory accesses.
3234 * In the same way it provides those guarantees around store to rq->curr.
3235 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3236 static inline void membarrier_switch_mm(struct rq *rq,
3237 struct mm_struct *prev_mm,
3238 struct mm_struct *next_mm)
3239 {
3240 int membarrier_state;
3241
3242 if (prev_mm == next_mm)
3243 return;
3244
3245 membarrier_state = atomic_read(&next_mm->membarrier_state);
3246 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3247 return;
3248
3249 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3250 }
3251 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3252 static inline void membarrier_switch_mm(struct rq *rq,
3253 struct mm_struct *prev_mm,
3254 struct mm_struct *next_mm)
3255 {
3256 }
3257 #endif
3258
3259 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3260 static inline bool is_per_cpu_kthread(struct task_struct *p)
3261 {
3262 if (!(p->flags & PF_KTHREAD))
3263 return false;
3264
3265 if (p->nr_cpus_allowed != 1)
3266 return false;
3267
3268 return true;
3269 }
3270 #endif
3271
3272 extern void swake_up_all_locked(struct swait_queue_head *q);
3273 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3274
3275 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3276
3277 #ifdef CONFIG_PREEMPT_DYNAMIC
3278 extern int preempt_dynamic_mode;
3279 extern int sched_dynamic_mode(const char *str);
3280 extern void sched_dynamic_update(int mode);
3281 #endif
3282
update_current_exec_runtime(struct task_struct * curr,u64 now,u64 delta_exec)3283 static inline void update_current_exec_runtime(struct task_struct *curr,
3284 u64 now, u64 delta_exec)
3285 {
3286 curr->se.sum_exec_runtime += delta_exec;
3287 account_group_exec_runtime(curr, delta_exec);
3288
3289 curr->se.exec_start = now;
3290 cgroup_account_cputime(curr, delta_exec);
3291 }
3292
3293 #ifdef CONFIG_SCHED_MM_CID
3294
3295 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
3296 #define MM_CID_SCAN_DELAY 100 /* 100ms */
3297
3298 extern raw_spinlock_t cid_lock;
3299 extern int use_cid_lock;
3300
3301 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3302 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3303 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3304 extern void init_sched_mm_cid(struct task_struct *t);
3305
__mm_cid_put(struct mm_struct * mm,int cid)3306 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3307 {
3308 if (cid < 0)
3309 return;
3310 cpumask_clear_cpu(cid, mm_cidmask(mm));
3311 }
3312
3313 /*
3314 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3315 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3316 * be held to transition to other states.
3317 *
3318 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3319 * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3320 */
mm_cid_put_lazy(struct task_struct * t)3321 static inline void mm_cid_put_lazy(struct task_struct *t)
3322 {
3323 struct mm_struct *mm = t->mm;
3324 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3325 int cid;
3326
3327 lockdep_assert_irqs_disabled();
3328 cid = __this_cpu_read(pcpu_cid->cid);
3329 if (!mm_cid_is_lazy_put(cid) ||
3330 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3331 return;
3332 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3333 }
3334
mm_cid_pcpu_unset(struct mm_struct * mm)3335 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3336 {
3337 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3338 int cid, res;
3339
3340 lockdep_assert_irqs_disabled();
3341 cid = __this_cpu_read(pcpu_cid->cid);
3342 for (;;) {
3343 if (mm_cid_is_unset(cid))
3344 return MM_CID_UNSET;
3345 /*
3346 * Attempt transition from valid or lazy-put to unset.
3347 */
3348 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3349 if (res == cid)
3350 break;
3351 cid = res;
3352 }
3353 return cid;
3354 }
3355
mm_cid_put(struct mm_struct * mm)3356 static inline void mm_cid_put(struct mm_struct *mm)
3357 {
3358 int cid;
3359
3360 lockdep_assert_irqs_disabled();
3361 cid = mm_cid_pcpu_unset(mm);
3362 if (cid == MM_CID_UNSET)
3363 return;
3364 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3365 }
3366
__mm_cid_try_get(struct mm_struct * mm)3367 static inline int __mm_cid_try_get(struct mm_struct *mm)
3368 {
3369 struct cpumask *cpumask;
3370 int cid;
3371
3372 cpumask = mm_cidmask(mm);
3373 /*
3374 * Retry finding first zero bit if the mask is temporarily
3375 * filled. This only happens during concurrent remote-clear
3376 * which owns a cid without holding a rq lock.
3377 */
3378 for (;;) {
3379 cid = cpumask_first_zero(cpumask);
3380 if (cid < nr_cpu_ids)
3381 break;
3382 cpu_relax();
3383 }
3384 if (cpumask_test_and_set_cpu(cid, cpumask))
3385 return -1;
3386 return cid;
3387 }
3388
3389 /*
3390 * Save a snapshot of the current runqueue time of this cpu
3391 * with the per-cpu cid value, allowing to estimate how recently it was used.
3392 */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3393 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3394 {
3395 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3396
3397 lockdep_assert_rq_held(rq);
3398 WRITE_ONCE(pcpu_cid->time, rq->clock);
3399 }
3400
__mm_cid_get(struct rq * rq,struct mm_struct * mm)3401 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3402 {
3403 int cid;
3404
3405 /*
3406 * All allocations (even those using the cid_lock) are lock-free. If
3407 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3408 * guarantee forward progress.
3409 */
3410 if (!READ_ONCE(use_cid_lock)) {
3411 cid = __mm_cid_try_get(mm);
3412 if (cid >= 0)
3413 goto end;
3414 raw_spin_lock(&cid_lock);
3415 } else {
3416 raw_spin_lock(&cid_lock);
3417 cid = __mm_cid_try_get(mm);
3418 if (cid >= 0)
3419 goto unlock;
3420 }
3421
3422 /*
3423 * cid concurrently allocated. Retry while forcing following
3424 * allocations to use the cid_lock to ensure forward progress.
3425 */
3426 WRITE_ONCE(use_cid_lock, 1);
3427 /*
3428 * Set use_cid_lock before allocation. Only care about program order
3429 * because this is only required for forward progress.
3430 */
3431 barrier();
3432 /*
3433 * Retry until it succeeds. It is guaranteed to eventually succeed once
3434 * all newcoming allocations observe the use_cid_lock flag set.
3435 */
3436 do {
3437 cid = __mm_cid_try_get(mm);
3438 cpu_relax();
3439 } while (cid < 0);
3440 /*
3441 * Allocate before clearing use_cid_lock. Only care about
3442 * program order because this is for forward progress.
3443 */
3444 barrier();
3445 WRITE_ONCE(use_cid_lock, 0);
3446 unlock:
3447 raw_spin_unlock(&cid_lock);
3448 end:
3449 mm_cid_snapshot_time(rq, mm);
3450 return cid;
3451 }
3452
mm_cid_get(struct rq * rq,struct mm_struct * mm)3453 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3454 {
3455 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3456 struct cpumask *cpumask;
3457 int cid;
3458
3459 lockdep_assert_rq_held(rq);
3460 cpumask = mm_cidmask(mm);
3461 cid = __this_cpu_read(pcpu_cid->cid);
3462 if (mm_cid_is_valid(cid)) {
3463 mm_cid_snapshot_time(rq, mm);
3464 return cid;
3465 }
3466 if (mm_cid_is_lazy_put(cid)) {
3467 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3468 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3469 }
3470 cid = __mm_cid_get(rq, mm);
3471 __this_cpu_write(pcpu_cid->cid, cid);
3472 return cid;
3473 }
3474
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3475 static inline void switch_mm_cid(struct rq *rq,
3476 struct task_struct *prev,
3477 struct task_struct *next)
3478 {
3479 /*
3480 * Provide a memory barrier between rq->curr store and load of
3481 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3482 *
3483 * Should be adapted if context_switch() is modified.
3484 */
3485 if (!next->mm) { // to kernel
3486 /*
3487 * user -> kernel transition does not guarantee a barrier, but
3488 * we can use the fact that it performs an atomic operation in
3489 * mmgrab().
3490 */
3491 if (prev->mm) // from user
3492 smp_mb__after_mmgrab();
3493 /*
3494 * kernel -> kernel transition does not change rq->curr->mm
3495 * state. It stays NULL.
3496 */
3497 } else { // to user
3498 /*
3499 * kernel -> user transition does not provide a barrier
3500 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3501 * Provide it here.
3502 */
3503 if (!prev->mm) // from kernel
3504 smp_mb();
3505 /*
3506 * user -> user transition guarantees a memory barrier through
3507 * switch_mm() when current->mm changes. If current->mm is
3508 * unchanged, no barrier is needed.
3509 */
3510 }
3511 if (prev->mm_cid_active) {
3512 mm_cid_snapshot_time(rq, prev->mm);
3513 mm_cid_put_lazy(prev);
3514 prev->mm_cid = -1;
3515 }
3516 if (next->mm_cid_active)
3517 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3518 }
3519
3520 #else
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3521 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3522 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3523 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3524 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3525 static inline void init_sched_mm_cid(struct task_struct *t) { }
3526 #endif
3527
3528 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3529 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3530
3531 #endif /* _KERNEL_SCHED_SCHED_H */
3532