1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36
37 /*
38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
39 * @NAME_LESS: name corresponding to the first argument is less than second
40 * @NAME_MATCHES: names match
41 * @NAME_GREATER: name corresponding to the second argument is greater than
42 * first
43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
44 *
45 * These constants were introduce to improve readability.
46 */
47 enum {
48 NAME_LESS = 0,
49 NAME_MATCHES = 1,
50 NAME_GREATER = 2,
51 NOT_ON_MEDIA = 3,
52 };
53
54 /**
55 * insert_old_idx - record an index node obsoleted since the last commit start.
56 * @c: UBIFS file-system description object
57 * @lnum: LEB number of obsoleted index node
58 * @offs: offset of obsoleted index node
59 *
60 * Returns %0 on success, and a negative error code on failure.
61 *
62 * For recovery, there must always be a complete intact version of the index on
63 * flash at all times. That is called the "old index". It is the index as at the
64 * time of the last successful commit. Many of the index nodes in the old index
65 * may be dirty, but they must not be erased until the next successful commit
66 * (at which point that index becomes the old index).
67 *
68 * That means that the garbage collection and the in-the-gaps method of
69 * committing must be able to determine if an index node is in the old index.
70 * Most of the old index nodes can be found by looking up the TNC using the
71 * 'lookup_znode()' function. However, some of the old index nodes may have
72 * been deleted from the current index or may have been changed so much that
73 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
74 * That is what this function does. The RB-tree is ordered by LEB number and
75 * offset because they uniquely identify the old index node.
76 */
insert_old_idx(struct ubifs_info * c,int lnum,int offs)77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
78 {
79 struct ubifs_old_idx *old_idx, *o;
80 struct rb_node **p, *parent = NULL;
81
82 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
83 if (unlikely(!old_idx))
84 return -ENOMEM;
85 old_idx->lnum = lnum;
86 old_idx->offs = offs;
87
88 p = &c->old_idx.rb_node;
89 while (*p) {
90 parent = *p;
91 o = rb_entry(parent, struct ubifs_old_idx, rb);
92 if (lnum < o->lnum)
93 p = &(*p)->rb_left;
94 else if (lnum > o->lnum)
95 p = &(*p)->rb_right;
96 else if (offs < o->offs)
97 p = &(*p)->rb_left;
98 else if (offs > o->offs)
99 p = &(*p)->rb_right;
100 else {
101 ubifs_err("old idx added twice!");
102 kfree(old_idx);
103 return 0;
104 }
105 }
106 rb_link_node(&old_idx->rb, parent, p);
107 rb_insert_color(&old_idx->rb, &c->old_idx);
108 return 0;
109 }
110
111 /**
112 * insert_old_idx_znode - record a znode obsoleted since last commit start.
113 * @c: UBIFS file-system description object
114 * @znode: znode of obsoleted index node
115 *
116 * Returns %0 on success, and a negative error code on failure.
117 */
insert_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
119 {
120 if (znode->parent) {
121 struct ubifs_zbranch *zbr;
122
123 zbr = &znode->parent->zbranch[znode->iip];
124 if (zbr->len)
125 return insert_old_idx(c, zbr->lnum, zbr->offs);
126 } else
127 if (c->zroot.len)
128 return insert_old_idx(c, c->zroot.lnum,
129 c->zroot.offs);
130 return 0;
131 }
132
133 /**
134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135 * @c: UBIFS file-system description object
136 * @znode: znode of obsoleted index node
137 *
138 * Returns %0 on success, and a negative error code on failure.
139 */
ins_clr_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)140 static int ins_clr_old_idx_znode(struct ubifs_info *c,
141 struct ubifs_znode *znode)
142 {
143 int err;
144
145 if (znode->parent) {
146 struct ubifs_zbranch *zbr;
147
148 zbr = &znode->parent->zbranch[znode->iip];
149 if (zbr->len) {
150 err = insert_old_idx(c, zbr->lnum, zbr->offs);
151 if (err)
152 return err;
153 zbr->lnum = 0;
154 zbr->offs = 0;
155 zbr->len = 0;
156 }
157 } else
158 if (c->zroot.len) {
159 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
160 if (err)
161 return err;
162 c->zroot.lnum = 0;
163 c->zroot.offs = 0;
164 c->zroot.len = 0;
165 }
166 return 0;
167 }
168
169 /**
170 * destroy_old_idx - destroy the old_idx RB-tree.
171 * @c: UBIFS file-system description object
172 *
173 * During start commit, the old_idx RB-tree is used to avoid overwriting index
174 * nodes that were in the index last commit but have since been deleted. This
175 * is necessary for recovery i.e. the old index must be kept intact until the
176 * new index is successfully written. The old-idx RB-tree is used for the
177 * in-the-gaps method of writing index nodes and is destroyed every commit.
178 */
destroy_old_idx(struct ubifs_info * c)179 void destroy_old_idx(struct ubifs_info *c)
180 {
181 struct rb_node *this = c->old_idx.rb_node;
182 struct ubifs_old_idx *old_idx;
183
184 while (this) {
185 if (this->rb_left) {
186 this = this->rb_left;
187 continue;
188 } else if (this->rb_right) {
189 this = this->rb_right;
190 continue;
191 }
192 old_idx = rb_entry(this, struct ubifs_old_idx, rb);
193 this = rb_parent(this);
194 if (this) {
195 if (this->rb_left == &old_idx->rb)
196 this->rb_left = NULL;
197 else
198 this->rb_right = NULL;
199 }
200 kfree(old_idx);
201 }
202 c->old_idx = RB_ROOT;
203 }
204
205 /**
206 * copy_znode - copy a dirty znode.
207 * @c: UBIFS file-system description object
208 * @znode: znode to copy
209 *
210 * A dirty znode being committed may not be changed, so it is copied.
211 */
copy_znode(struct ubifs_info * c,struct ubifs_znode * znode)212 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
213 struct ubifs_znode *znode)
214 {
215 struct ubifs_znode *zn;
216
217 zn = kmalloc(c->max_znode_sz, GFP_NOFS);
218 if (unlikely(!zn))
219 return ERR_PTR(-ENOMEM);
220
221 memcpy(zn, znode, c->max_znode_sz);
222 zn->cnext = NULL;
223 __set_bit(DIRTY_ZNODE, &zn->flags);
224 __clear_bit(COW_ZNODE, &zn->flags);
225
226 ubifs_assert(!ubifs_zn_obsolete(znode));
227 __set_bit(OBSOLETE_ZNODE, &znode->flags);
228
229 if (znode->level != 0) {
230 int i;
231 const int n = zn->child_cnt;
232
233 /* The children now have new parent */
234 for (i = 0; i < n; i++) {
235 struct ubifs_zbranch *zbr = &zn->zbranch[i];
236
237 if (zbr->znode)
238 zbr->znode->parent = zn;
239 }
240 }
241
242 atomic_long_inc(&c->dirty_zn_cnt);
243 return zn;
244 }
245
246 /**
247 * add_idx_dirt - add dirt due to a dirty znode.
248 * @c: UBIFS file-system description object
249 * @lnum: LEB number of index node
250 * @dirt: size of index node
251 *
252 * This function updates lprops dirty space and the new size of the index.
253 */
add_idx_dirt(struct ubifs_info * c,int lnum,int dirt)254 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
255 {
256 c->calc_idx_sz -= ALIGN(dirt, 8);
257 return ubifs_add_dirt(c, lnum, dirt);
258 }
259
260 /**
261 * dirty_cow_znode - ensure a znode is not being committed.
262 * @c: UBIFS file-system description object
263 * @zbr: branch of znode to check
264 *
265 * Returns dirtied znode on success or negative error code on failure.
266 */
dirty_cow_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)267 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
268 struct ubifs_zbranch *zbr)
269 {
270 struct ubifs_znode *znode = zbr->znode;
271 struct ubifs_znode *zn;
272 int err;
273
274 if (!ubifs_zn_cow(znode)) {
275 /* znode is not being committed */
276 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
277 atomic_long_inc(&c->dirty_zn_cnt);
278 atomic_long_dec(&c->clean_zn_cnt);
279 atomic_long_dec(&ubifs_clean_zn_cnt);
280 err = add_idx_dirt(c, zbr->lnum, zbr->len);
281 if (unlikely(err))
282 return ERR_PTR(err);
283 }
284 return znode;
285 }
286
287 zn = copy_znode(c, znode);
288 if (IS_ERR(zn))
289 return zn;
290
291 if (zbr->len) {
292 err = insert_old_idx(c, zbr->lnum, zbr->offs);
293 if (unlikely(err))
294 return ERR_PTR(err);
295 err = add_idx_dirt(c, zbr->lnum, zbr->len);
296 } else
297 err = 0;
298
299 zbr->znode = zn;
300 zbr->lnum = 0;
301 zbr->offs = 0;
302 zbr->len = 0;
303
304 if (unlikely(err))
305 return ERR_PTR(err);
306 return zn;
307 }
308
309 /**
310 * lnc_add - add a leaf node to the leaf node cache.
311 * @c: UBIFS file-system description object
312 * @zbr: zbranch of leaf node
313 * @node: leaf node
314 *
315 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
316 * purpose of the leaf node cache is to save re-reading the same leaf node over
317 * and over again. Most things are cached by VFS, however the file system must
318 * cache directory entries for readdir and for resolving hash collisions. The
319 * present implementation of the leaf node cache is extremely simple, and
320 * allows for error returns that are not used but that may be needed if a more
321 * complex implementation is created.
322 *
323 * Note, this function does not add the @node object to LNC directly, but
324 * allocates a copy of the object and adds the copy to LNC. The reason for this
325 * is that @node has been allocated outside of the TNC subsystem and will be
326 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
327 * may be changed at any time, e.g. freed by the shrinker.
328 */
lnc_add(struct ubifs_info * c,struct ubifs_zbranch * zbr,const void * node)329 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
330 const void *node)
331 {
332 int err;
333 void *lnc_node;
334 const struct ubifs_dent_node *dent = node;
335
336 ubifs_assert(!zbr->leaf);
337 ubifs_assert(zbr->len != 0);
338 ubifs_assert(is_hash_key(c, &zbr->key));
339
340 err = ubifs_validate_entry(c, dent);
341 if (err) {
342 dbg_dump_stack();
343 dbg_dump_node(c, dent);
344 return err;
345 }
346
347 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
348 if (!lnc_node)
349 /* We don't have to have the cache, so no error */
350 return 0;
351
352 zbr->leaf = lnc_node;
353 return 0;
354 }
355
356 /**
357 * lnc_add_directly - add a leaf node to the leaf-node-cache.
358 * @c: UBIFS file-system description object
359 * @zbr: zbranch of leaf node
360 * @node: leaf node
361 *
362 * This function is similar to 'lnc_add()', but it does not create a copy of
363 * @node but inserts @node to TNC directly.
364 */
lnc_add_directly(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)365 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
366 void *node)
367 {
368 int err;
369
370 ubifs_assert(!zbr->leaf);
371 ubifs_assert(zbr->len != 0);
372
373 err = ubifs_validate_entry(c, node);
374 if (err) {
375 dbg_dump_stack();
376 dbg_dump_node(c, node);
377 return err;
378 }
379
380 zbr->leaf = node;
381 return 0;
382 }
383
384 /**
385 * lnc_free - remove a leaf node from the leaf node cache.
386 * @zbr: zbranch of leaf node
387 * @node: leaf node
388 */
lnc_free(struct ubifs_zbranch * zbr)389 static void lnc_free(struct ubifs_zbranch *zbr)
390 {
391 if (!zbr->leaf)
392 return;
393 kfree(zbr->leaf);
394 zbr->leaf = NULL;
395 }
396
397 /**
398 * tnc_read_node_nm - read a "hashed" leaf node.
399 * @c: UBIFS file-system description object
400 * @zbr: key and position of the node
401 * @node: node is returned here
402 *
403 * This function reads a "hashed" node defined by @zbr from the leaf node cache
404 * (in it is there) or from the hash media, in which case the node is also
405 * added to LNC. Returns zero in case of success or a negative negative error
406 * code in case of failure.
407 */
tnc_read_node_nm(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)408 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
409 void *node)
410 {
411 int err;
412
413 ubifs_assert(is_hash_key(c, &zbr->key));
414
415 if (zbr->leaf) {
416 /* Read from the leaf node cache */
417 ubifs_assert(zbr->len != 0);
418 memcpy(node, zbr->leaf, zbr->len);
419 return 0;
420 }
421
422 err = ubifs_tnc_read_node(c, zbr, node);
423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429 }
430
431 /**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
439 *
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
446 *
447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448 * is true (it is controlled by corresponding mount option). However, if
449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451 * because during mounting or re-mounting from R/O mode to R/W mode we may read
452 * journal nodes (when replying the journal or doing the recovery) and the
453 * journal nodes may potentially be corrupted, so checking is required.
454 */
try_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)455 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 int len, int lnum, int offs)
457 {
458 int err, node_len;
459 struct ubifs_ch *ch = buf;
460 uint32_t crc, node_crc;
461
462 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
463
464 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
465 if (err) {
466 ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
467 type, lnum, offs, err);
468 return err;
469 }
470
471 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 return 0;
473
474 if (ch->node_type != type)
475 return 0;
476
477 node_len = le32_to_cpu(ch->len);
478 if (node_len != len)
479 return 0;
480
481 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 !c->remounting_rw)
483 return 1;
484
485 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 node_crc = le32_to_cpu(ch->crc);
487 if (crc != node_crc)
488 return 0;
489
490 return 1;
491 }
492
493 /**
494 * fallible_read_node - try to read a leaf node.
495 * @c: UBIFS file-system description object
496 * @key: key of node to read
497 * @zbr: position of node
498 * @node: node returned
499 *
500 * This function tries to read a node and returns %1 if the node is read, %0
501 * if the node is not present, and a negative error code in the case of error.
502 */
fallible_read_node(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_zbranch * zbr,void * node)503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 struct ubifs_zbranch *zbr, void *node)
505 {
506 int ret;
507
508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
509
510 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 zbr->offs);
512 if (ret == 1) {
513 union ubifs_key node_key;
514 struct ubifs_dent_node *dent = node;
515
516 /* All nodes have key in the same place */
517 key_read(c, &dent->key, &node_key);
518 if (keys_cmp(c, key, &node_key) != 0)
519 ret = 0;
520 }
521 if (ret == 0 && c->replaying)
522 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 zbr->lnum, zbr->offs, zbr->len);
524 return ret;
525 }
526
527 /**
528 * matches_name - determine if a direntry or xattr entry matches a given name.
529 * @c: UBIFS file-system description object
530 * @zbr: zbranch of dent
531 * @nm: name to match
532 *
533 * This function checks if xentry/direntry referred by zbranch @zbr matches name
534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536 * of failure, a negative error code is returned.
537 */
matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct qstr * nm)538 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
539 const struct qstr *nm)
540 {
541 struct ubifs_dent_node *dent;
542 int nlen, err;
543
544 /* If possible, match against the dent in the leaf node cache */
545 if (!zbr->leaf) {
546 dent = kmalloc(zbr->len, GFP_NOFS);
547 if (!dent)
548 return -ENOMEM;
549
550 err = ubifs_tnc_read_node(c, zbr, dent);
551 if (err)
552 goto out_free;
553
554 /* Add the node to the leaf node cache */
555 err = lnc_add_directly(c, zbr, dent);
556 if (err)
557 goto out_free;
558 } else
559 dent = zbr->leaf;
560
561 nlen = le16_to_cpu(dent->nlen);
562 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
563 if (err == 0) {
564 if (nlen == nm->len)
565 return NAME_MATCHES;
566 else if (nlen < nm->len)
567 return NAME_LESS;
568 else
569 return NAME_GREATER;
570 } else if (err < 0)
571 return NAME_LESS;
572 else
573 return NAME_GREATER;
574
575 out_free:
576 kfree(dent);
577 return err;
578 }
579
580 /**
581 * get_znode - get a TNC znode that may not be loaded yet.
582 * @c: UBIFS file-system description object
583 * @znode: parent znode
584 * @n: znode branch slot number
585 *
586 * This function returns the znode or a negative error code.
587 */
get_znode(struct ubifs_info * c,struct ubifs_znode * znode,int n)588 static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 struct ubifs_znode *znode, int n)
590 {
591 struct ubifs_zbranch *zbr;
592
593 zbr = &znode->zbranch[n];
594 if (zbr->znode)
595 znode = zbr->znode;
596 else
597 znode = ubifs_load_znode(c, zbr, znode, n);
598 return znode;
599 }
600
601 /**
602 * tnc_next - find next TNC entry.
603 * @c: UBIFS file-system description object
604 * @zn: znode is passed and returned here
605 * @n: znode branch slot number is passed and returned here
606 *
607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608 * no next entry, or a negative error code otherwise.
609 */
tnc_next(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)610 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611 {
612 struct ubifs_znode *znode = *zn;
613 int nn = *n;
614
615 nn += 1;
616 if (nn < znode->child_cnt) {
617 *n = nn;
618 return 0;
619 }
620 while (1) {
621 struct ubifs_znode *zp;
622
623 zp = znode->parent;
624 if (!zp)
625 return -ENOENT;
626 nn = znode->iip + 1;
627 znode = zp;
628 if (nn < znode->child_cnt) {
629 znode = get_znode(c, znode, nn);
630 if (IS_ERR(znode))
631 return PTR_ERR(znode);
632 while (znode->level != 0) {
633 znode = get_znode(c, znode, 0);
634 if (IS_ERR(znode))
635 return PTR_ERR(znode);
636 }
637 nn = 0;
638 break;
639 }
640 }
641 *zn = znode;
642 *n = nn;
643 return 0;
644 }
645
646 /**
647 * tnc_prev - find previous TNC entry.
648 * @c: UBIFS file-system description object
649 * @zn: znode is returned here
650 * @n: znode branch slot number is passed and returned here
651 *
652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653 * there is no next entry, or a negative error code otherwise.
654 */
tnc_prev(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)655 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656 {
657 struct ubifs_znode *znode = *zn;
658 int nn = *n;
659
660 if (nn > 0) {
661 *n = nn - 1;
662 return 0;
663 }
664 while (1) {
665 struct ubifs_znode *zp;
666
667 zp = znode->parent;
668 if (!zp)
669 return -ENOENT;
670 nn = znode->iip - 1;
671 znode = zp;
672 if (nn >= 0) {
673 znode = get_znode(c, znode, nn);
674 if (IS_ERR(znode))
675 return PTR_ERR(znode);
676 while (znode->level != 0) {
677 nn = znode->child_cnt - 1;
678 znode = get_znode(c, znode, nn);
679 if (IS_ERR(znode))
680 return PTR_ERR(znode);
681 }
682 nn = znode->child_cnt - 1;
683 break;
684 }
685 }
686 *zn = znode;
687 *n = nn;
688 return 0;
689 }
690
691 /**
692 * resolve_collision - resolve a collision.
693 * @c: UBIFS file-system description object
694 * @key: key of a directory or extended attribute entry
695 * @zn: znode is returned here
696 * @n: zbranch number is passed and returned here
697 * @nm: name of the entry
698 *
699 * This function is called for "hashed" keys to make sure that the found key
700 * really corresponds to the looked up node (directory or extended attribute
701 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702 * %0 is returned if @nm is not found and @zn and @n are set to the previous
703 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704 * This means that @n may be set to %-1 if the leftmost key in @zn is the
705 * previous one. A negative error code is returned on failures.
706 */
resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct qstr * nm)707 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 struct ubifs_znode **zn, int *n,
709 const struct qstr *nm)
710 {
711 int err;
712
713 err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 if (unlikely(err < 0))
715 return err;
716 if (err == NAME_MATCHES)
717 return 1;
718
719 if (err == NAME_GREATER) {
720 /* Look left */
721 while (1) {
722 err = tnc_prev(c, zn, n);
723 if (err == -ENOENT) {
724 ubifs_assert(*n == 0);
725 *n = -1;
726 return 0;
727 }
728 if (err < 0)
729 return err;
730 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 /*
732 * We have found the branch after which we would
733 * like to insert, but inserting in this znode
734 * may still be wrong. Consider the following 3
735 * znodes, in the case where we are resolving a
736 * collision with Key2.
737 *
738 * znode zp
739 * ----------------------
740 * level 1 | Key0 | Key1 |
741 * -----------------------
742 * | |
743 * znode za | | znode zb
744 * ------------ ------------
745 * level 0 | Key0 | | Key2 |
746 * ------------ ------------
747 *
748 * The lookup finds Key2 in znode zb. Lets say
749 * there is no match and the name is greater so
750 * we look left. When we find Key0, we end up
751 * here. If we return now, we will insert into
752 * znode za at slot n = 1. But that is invalid
753 * according to the parent's keys. Key2 must
754 * be inserted into znode zb.
755 *
756 * Note, this problem is not relevant for the
757 * case when we go right, because
758 * 'tnc_insert()' would correct the parent key.
759 */
760 if (*n == (*zn)->child_cnt - 1) {
761 err = tnc_next(c, zn, n);
762 if (err) {
763 /* Should be impossible */
764 ubifs_assert(0);
765 if (err == -ENOENT)
766 err = -EINVAL;
767 return err;
768 }
769 ubifs_assert(*n == 0);
770 *n = -1;
771 }
772 return 0;
773 }
774 err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 if (err < 0)
776 return err;
777 if (err == NAME_LESS)
778 return 0;
779 if (err == NAME_MATCHES)
780 return 1;
781 ubifs_assert(err == NAME_GREATER);
782 }
783 } else {
784 int nn = *n;
785 struct ubifs_znode *znode = *zn;
786
787 /* Look right */
788 while (1) {
789 err = tnc_next(c, &znode, &nn);
790 if (err == -ENOENT)
791 return 0;
792 if (err < 0)
793 return err;
794 if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 return 0;
796 err = matches_name(c, &znode->zbranch[nn], nm);
797 if (err < 0)
798 return err;
799 if (err == NAME_GREATER)
800 return 0;
801 *zn = znode;
802 *n = nn;
803 if (err == NAME_MATCHES)
804 return 1;
805 ubifs_assert(err == NAME_LESS);
806 }
807 }
808 }
809
810 /**
811 * fallible_matches_name - determine if a dent matches a given name.
812 * @c: UBIFS file-system description object
813 * @zbr: zbranch of dent
814 * @nm: name to match
815 *
816 * This is a "fallible" version of 'matches_name()' function which does not
817 * panic if the direntry/xentry referred by @zbr does not exist on the media.
818 *
819 * This function checks if xentry/direntry referred by zbranch @zbr matches name
820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822 * if xentry/direntry referred by @zbr does not exist on the media. A negative
823 * error code is returned in case of failure.
824 */
fallible_matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct qstr * nm)825 static int fallible_matches_name(struct ubifs_info *c,
826 struct ubifs_zbranch *zbr,
827 const struct qstr *nm)
828 {
829 struct ubifs_dent_node *dent;
830 int nlen, err;
831
832 /* If possible, match against the dent in the leaf node cache */
833 if (!zbr->leaf) {
834 dent = kmalloc(zbr->len, GFP_NOFS);
835 if (!dent)
836 return -ENOMEM;
837
838 err = fallible_read_node(c, &zbr->key, zbr, dent);
839 if (err < 0)
840 goto out_free;
841 if (err == 0) {
842 /* The node was not present */
843 err = NOT_ON_MEDIA;
844 goto out_free;
845 }
846 ubifs_assert(err == 1);
847
848 err = lnc_add_directly(c, zbr, dent);
849 if (err)
850 goto out_free;
851 } else
852 dent = zbr->leaf;
853
854 nlen = le16_to_cpu(dent->nlen);
855 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
856 if (err == 0) {
857 if (nlen == nm->len)
858 return NAME_MATCHES;
859 else if (nlen < nm->len)
860 return NAME_LESS;
861 else
862 return NAME_GREATER;
863 } else if (err < 0)
864 return NAME_LESS;
865 else
866 return NAME_GREATER;
867
868 out_free:
869 kfree(dent);
870 return err;
871 }
872
873 /**
874 * fallible_resolve_collision - resolve a collision even if nodes are missing.
875 * @c: UBIFS file-system description object
876 * @key: key
877 * @zn: znode is returned here
878 * @n: branch number is passed and returned here
879 * @nm: name of directory entry
880 * @adding: indicates caller is adding a key to the TNC
881 *
882 * This is a "fallible" version of the 'resolve_collision()' function which
883 * does not panic if one of the nodes referred to by TNC does not exist on the
884 * media. This may happen when replaying the journal if a deleted node was
885 * Garbage-collected and the commit was not done. A branch that refers to a node
886 * that is not present is called a dangling branch. The following are the return
887 * codes for this function:
888 * o if @nm was found, %1 is returned and @zn and @n are set to the found
889 * branch;
890 * o if we are @adding and @nm was not found, %0 is returned;
891 * o if we are not @adding and @nm was not found, but a dangling branch was
892 * found, then %1 is returned and @zn and @n are set to the dangling branch;
893 * o a negative error code is returned in case of failure.
894 */
fallible_resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct qstr * nm,int adding)895 static int fallible_resolve_collision(struct ubifs_info *c,
896 const union ubifs_key *key,
897 struct ubifs_znode **zn, int *n,
898 const struct qstr *nm, int adding)
899 {
900 struct ubifs_znode *o_znode = NULL, *znode = *zn;
901 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
902
903 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
904 if (unlikely(cmp < 0))
905 return cmp;
906 if (cmp == NAME_MATCHES)
907 return 1;
908 if (cmp == NOT_ON_MEDIA) {
909 o_znode = znode;
910 o_n = nn;
911 /*
912 * We are unlucky and hit a dangling branch straight away.
913 * Now we do not really know where to go to find the needed
914 * branch - to the left or to the right. Well, let's try left.
915 */
916 unsure = 1;
917 } else if (!adding)
918 unsure = 1; /* Remove a dangling branch wherever it is */
919
920 if (cmp == NAME_GREATER || unsure) {
921 /* Look left */
922 while (1) {
923 err = tnc_prev(c, zn, n);
924 if (err == -ENOENT) {
925 ubifs_assert(*n == 0);
926 *n = -1;
927 break;
928 }
929 if (err < 0)
930 return err;
931 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
932 /* See comments in 'resolve_collision()' */
933 if (*n == (*zn)->child_cnt - 1) {
934 err = tnc_next(c, zn, n);
935 if (err) {
936 /* Should be impossible */
937 ubifs_assert(0);
938 if (err == -ENOENT)
939 err = -EINVAL;
940 return err;
941 }
942 ubifs_assert(*n == 0);
943 *n = -1;
944 }
945 break;
946 }
947 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
948 if (err < 0)
949 return err;
950 if (err == NAME_MATCHES)
951 return 1;
952 if (err == NOT_ON_MEDIA) {
953 o_znode = *zn;
954 o_n = *n;
955 continue;
956 }
957 if (!adding)
958 continue;
959 if (err == NAME_LESS)
960 break;
961 else
962 unsure = 0;
963 }
964 }
965
966 if (cmp == NAME_LESS || unsure) {
967 /* Look right */
968 *zn = znode;
969 *n = nn;
970 while (1) {
971 err = tnc_next(c, &znode, &nn);
972 if (err == -ENOENT)
973 break;
974 if (err < 0)
975 return err;
976 if (keys_cmp(c, &znode->zbranch[nn].key, key))
977 break;
978 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
979 if (err < 0)
980 return err;
981 if (err == NAME_GREATER)
982 break;
983 *zn = znode;
984 *n = nn;
985 if (err == NAME_MATCHES)
986 return 1;
987 if (err == NOT_ON_MEDIA) {
988 o_znode = znode;
989 o_n = nn;
990 }
991 }
992 }
993
994 /* Never match a dangling branch when adding */
995 if (adding || !o_znode)
996 return 0;
997
998 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
999 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1000 o_znode->zbranch[o_n].len);
1001 *zn = o_znode;
1002 *n = o_n;
1003 return 1;
1004 }
1005
1006 /**
1007 * matches_position - determine if a zbranch matches a given position.
1008 * @zbr: zbranch of dent
1009 * @lnum: LEB number of dent to match
1010 * @offs: offset of dent to match
1011 *
1012 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1013 */
matches_position(struct ubifs_zbranch * zbr,int lnum,int offs)1014 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1015 {
1016 if (zbr->lnum == lnum && zbr->offs == offs)
1017 return 1;
1018 else
1019 return 0;
1020 }
1021
1022 /**
1023 * resolve_collision_directly - resolve a collision directly.
1024 * @c: UBIFS file-system description object
1025 * @key: key of directory entry
1026 * @zn: znode is passed and returned here
1027 * @n: zbranch number is passed and returned here
1028 * @lnum: LEB number of dent node to match
1029 * @offs: offset of dent node to match
1030 *
1031 * This function is used for "hashed" keys to make sure the found directory or
1032 * extended attribute entry node is what was looked for. It is used when the
1033 * flash address of the right node is known (@lnum:@offs) which makes it much
1034 * easier to resolve collisions (no need to read entries and match full
1035 * names). This function returns %1 and sets @zn and @n if the collision is
1036 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1037 * previous directory entry. Otherwise a negative error code is returned.
1038 */
resolve_collision_directly(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,int lnum,int offs)1039 static int resolve_collision_directly(struct ubifs_info *c,
1040 const union ubifs_key *key,
1041 struct ubifs_znode **zn, int *n,
1042 int lnum, int offs)
1043 {
1044 struct ubifs_znode *znode;
1045 int nn, err;
1046
1047 znode = *zn;
1048 nn = *n;
1049 if (matches_position(&znode->zbranch[nn], lnum, offs))
1050 return 1;
1051
1052 /* Look left */
1053 while (1) {
1054 err = tnc_prev(c, &znode, &nn);
1055 if (err == -ENOENT)
1056 break;
1057 if (err < 0)
1058 return err;
1059 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1060 break;
1061 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1062 *zn = znode;
1063 *n = nn;
1064 return 1;
1065 }
1066 }
1067
1068 /* Look right */
1069 znode = *zn;
1070 nn = *n;
1071 while (1) {
1072 err = tnc_next(c, &znode, &nn);
1073 if (err == -ENOENT)
1074 return 0;
1075 if (err < 0)
1076 return err;
1077 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1078 return 0;
1079 *zn = znode;
1080 *n = nn;
1081 if (matches_position(&znode->zbranch[nn], lnum, offs))
1082 return 1;
1083 }
1084 }
1085
1086 /**
1087 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1088 * @c: UBIFS file-system description object
1089 * @znode: znode to dirty
1090 *
1091 * If we do not have a unique key that resides in a znode, then we cannot
1092 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1093 * This function records the path back to the last dirty ancestor, and then
1094 * dirties the znodes on that path.
1095 */
dirty_cow_bottom_up(struct ubifs_info * c,struct ubifs_znode * znode)1096 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1097 struct ubifs_znode *znode)
1098 {
1099 struct ubifs_znode *zp;
1100 int *path = c->bottom_up_buf, p = 0;
1101
1102 ubifs_assert(c->zroot.znode);
1103 ubifs_assert(znode);
1104 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1105 kfree(c->bottom_up_buf);
1106 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1107 GFP_NOFS);
1108 if (!c->bottom_up_buf)
1109 return ERR_PTR(-ENOMEM);
1110 path = c->bottom_up_buf;
1111 }
1112 if (c->zroot.znode->level) {
1113 /* Go up until parent is dirty */
1114 while (1) {
1115 int n;
1116
1117 zp = znode->parent;
1118 if (!zp)
1119 break;
1120 n = znode->iip;
1121 ubifs_assert(p < c->zroot.znode->level);
1122 path[p++] = n;
1123 if (!zp->cnext && ubifs_zn_dirty(znode))
1124 break;
1125 znode = zp;
1126 }
1127 }
1128
1129 /* Come back down, dirtying as we go */
1130 while (1) {
1131 struct ubifs_zbranch *zbr;
1132
1133 zp = znode->parent;
1134 if (zp) {
1135 ubifs_assert(path[p - 1] >= 0);
1136 ubifs_assert(path[p - 1] < zp->child_cnt);
1137 zbr = &zp->zbranch[path[--p]];
1138 znode = dirty_cow_znode(c, zbr);
1139 } else {
1140 ubifs_assert(znode == c->zroot.znode);
1141 znode = dirty_cow_znode(c, &c->zroot);
1142 }
1143 if (IS_ERR(znode) || !p)
1144 break;
1145 ubifs_assert(path[p - 1] >= 0);
1146 ubifs_assert(path[p - 1] < znode->child_cnt);
1147 znode = znode->zbranch[path[p - 1]].znode;
1148 }
1149
1150 return znode;
1151 }
1152
1153 /**
1154 * ubifs_lookup_level0 - search for zero-level znode.
1155 * @c: UBIFS file-system description object
1156 * @key: key to lookup
1157 * @zn: znode is returned here
1158 * @n: znode branch slot number is returned here
1159 *
1160 * This function looks up the TNC tree and search for zero-level znode which
1161 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1162 * cases:
1163 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1164 * is returned and slot number of the matched branch is stored in @n;
1165 * o not exact match, which means that zero-level znode does not contain
1166 * @key, then %0 is returned and slot number of the closest branch is stored
1167 * in @n;
1168 * o @key is so small that it is even less than the lowest key of the
1169 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1170 *
1171 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1172 * function reads corresponding indexing nodes and inserts them to TNC. In
1173 * case of failure, a negative error code is returned.
1174 */
ubifs_lookup_level0(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1175 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1176 struct ubifs_znode **zn, int *n)
1177 {
1178 int err, exact;
1179 struct ubifs_znode *znode;
1180 unsigned long time = get_seconds();
1181
1182 dbg_tnck(key, "search key ");
1183 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1184
1185 znode = c->zroot.znode;
1186 if (unlikely(!znode)) {
1187 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1188 if (IS_ERR(znode))
1189 return PTR_ERR(znode);
1190 }
1191
1192 znode->time = time;
1193
1194 while (1) {
1195 struct ubifs_zbranch *zbr;
1196
1197 exact = ubifs_search_zbranch(c, znode, key, n);
1198
1199 if (znode->level == 0)
1200 break;
1201
1202 if (*n < 0)
1203 *n = 0;
1204 zbr = &znode->zbranch[*n];
1205
1206 if (zbr->znode) {
1207 znode->time = time;
1208 znode = zbr->znode;
1209 continue;
1210 }
1211
1212 /* znode is not in TNC cache, load it from the media */
1213 znode = ubifs_load_znode(c, zbr, znode, *n);
1214 if (IS_ERR(znode))
1215 return PTR_ERR(znode);
1216 }
1217
1218 *zn = znode;
1219 if (exact || !is_hash_key(c, key) || *n != -1) {
1220 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1221 return exact;
1222 }
1223
1224 /*
1225 * Here is a tricky place. We have not found the key and this is a
1226 * "hashed" key, which may collide. The rest of the code deals with
1227 * situations like this:
1228 *
1229 * | 3 | 5 |
1230 * / \
1231 * | 3 | 5 | | 6 | 7 | (x)
1232 *
1233 * Or more a complex example:
1234 *
1235 * | 1 | 5 |
1236 * / \
1237 * | 1 | 3 | | 5 | 8 |
1238 * \ /
1239 * | 5 | 5 | | 6 | 7 | (x)
1240 *
1241 * In the examples, if we are looking for key "5", we may reach nodes
1242 * marked with "(x)". In this case what we have do is to look at the
1243 * left and see if there is "5" key there. If there is, we have to
1244 * return it.
1245 *
1246 * Note, this whole situation is possible because we allow to have
1247 * elements which are equivalent to the next key in the parent in the
1248 * children of current znode. For example, this happens if we split a
1249 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1250 * like this:
1251 * | 3 | 5 |
1252 * / \
1253 * | 3 | 5 | | 5 | 6 | 7 |
1254 * ^
1255 * And this becomes what is at the first "picture" after key "5" marked
1256 * with "^" is removed. What could be done is we could prohibit
1257 * splitting in the middle of the colliding sequence. Also, when
1258 * removing the leftmost key, we would have to correct the key of the
1259 * parent node, which would introduce additional complications. Namely,
1260 * if we changed the leftmost key of the parent znode, the garbage
1261 * collector would be unable to find it (GC is doing this when GC'ing
1262 * indexing LEBs). Although we already have an additional RB-tree where
1263 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1264 * after the commit. But anyway, this does not look easy to implement
1265 * so we did not try this.
1266 */
1267 err = tnc_prev(c, &znode, n);
1268 if (err == -ENOENT) {
1269 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1270 *n = -1;
1271 return 0;
1272 }
1273 if (unlikely(err < 0))
1274 return err;
1275 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1276 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1277 *n = -1;
1278 return 0;
1279 }
1280
1281 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1282 *zn = znode;
1283 return 1;
1284 }
1285
1286 /**
1287 * lookup_level0_dirty - search for zero-level znode dirtying.
1288 * @c: UBIFS file-system description object
1289 * @key: key to lookup
1290 * @zn: znode is returned here
1291 * @n: znode branch slot number is returned here
1292 *
1293 * This function looks up the TNC tree and search for zero-level znode which
1294 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1295 * cases:
1296 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1297 * is returned and slot number of the matched branch is stored in @n;
1298 * o not exact match, which means that zero-level znode does not contain @key
1299 * then %0 is returned and slot number of the closed branch is stored in
1300 * @n;
1301 * o @key is so small that it is even less than the lowest key of the
1302 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1303 *
1304 * Additionally all znodes in the path from the root to the located zero-level
1305 * znode are marked as dirty.
1306 *
1307 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1308 * function reads corresponding indexing nodes and inserts them to TNC. In
1309 * case of failure, a negative error code is returned.
1310 */
lookup_level0_dirty(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1311 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1312 struct ubifs_znode **zn, int *n)
1313 {
1314 int err, exact;
1315 struct ubifs_znode *znode;
1316 unsigned long time = get_seconds();
1317
1318 dbg_tnck(key, "search and dirty key ");
1319
1320 znode = c->zroot.znode;
1321 if (unlikely(!znode)) {
1322 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1323 if (IS_ERR(znode))
1324 return PTR_ERR(znode);
1325 }
1326
1327 znode = dirty_cow_znode(c, &c->zroot);
1328 if (IS_ERR(znode))
1329 return PTR_ERR(znode);
1330
1331 znode->time = time;
1332
1333 while (1) {
1334 struct ubifs_zbranch *zbr;
1335
1336 exact = ubifs_search_zbranch(c, znode, key, n);
1337
1338 if (znode->level == 0)
1339 break;
1340
1341 if (*n < 0)
1342 *n = 0;
1343 zbr = &znode->zbranch[*n];
1344
1345 if (zbr->znode) {
1346 znode->time = time;
1347 znode = dirty_cow_znode(c, zbr);
1348 if (IS_ERR(znode))
1349 return PTR_ERR(znode);
1350 continue;
1351 }
1352
1353 /* znode is not in TNC cache, load it from the media */
1354 znode = ubifs_load_znode(c, zbr, znode, *n);
1355 if (IS_ERR(znode))
1356 return PTR_ERR(znode);
1357 znode = dirty_cow_znode(c, zbr);
1358 if (IS_ERR(znode))
1359 return PTR_ERR(znode);
1360 }
1361
1362 *zn = znode;
1363 if (exact || !is_hash_key(c, key) || *n != -1) {
1364 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1365 return exact;
1366 }
1367
1368 /*
1369 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1370 * code.
1371 */
1372 err = tnc_prev(c, &znode, n);
1373 if (err == -ENOENT) {
1374 *n = -1;
1375 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1376 return 0;
1377 }
1378 if (unlikely(err < 0))
1379 return err;
1380 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1381 *n = -1;
1382 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1383 return 0;
1384 }
1385
1386 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1387 znode = dirty_cow_bottom_up(c, znode);
1388 if (IS_ERR(znode))
1389 return PTR_ERR(znode);
1390 }
1391
1392 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1393 *zn = znode;
1394 return 1;
1395 }
1396
1397 /**
1398 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1399 * @c: UBIFS file-system description object
1400 * @lnum: LEB number
1401 * @gc_seq1: garbage collection sequence number
1402 *
1403 * This function determines if @lnum may have been garbage collected since
1404 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1405 * %0 is returned.
1406 */
maybe_leb_gced(struct ubifs_info * c,int lnum,int gc_seq1)1407 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1408 {
1409 int gc_seq2, gced_lnum;
1410
1411 gced_lnum = c->gced_lnum;
1412 smp_rmb();
1413 gc_seq2 = c->gc_seq;
1414 /* Same seq means no GC */
1415 if (gc_seq1 == gc_seq2)
1416 return 0;
1417 /* Different by more than 1 means we don't know */
1418 if (gc_seq1 + 1 != gc_seq2)
1419 return 1;
1420 /*
1421 * We have seen the sequence number has increased by 1. Now we need to
1422 * be sure we read the right LEB number, so read it again.
1423 */
1424 smp_rmb();
1425 if (gced_lnum != c->gced_lnum)
1426 return 1;
1427 /* Finally we can check lnum */
1428 if (gced_lnum == lnum)
1429 return 1;
1430 return 0;
1431 }
1432
1433 /**
1434 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1435 * @c: UBIFS file-system description object
1436 * @key: node key to lookup
1437 * @node: the node is returned here
1438 * @lnum: LEB number is returned here
1439 * @offs: offset is returned here
1440 *
1441 * This function looks up and reads node with key @key. The caller has to make
1442 * sure the @node buffer is large enough to fit the node. Returns zero in case
1443 * of success, %-ENOENT if the node was not found, and a negative error code in
1444 * case of failure. The node location can be returned in @lnum and @offs.
1445 */
ubifs_tnc_locate(struct ubifs_info * c,const union ubifs_key * key,void * node,int * lnum,int * offs)1446 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1447 void *node, int *lnum, int *offs)
1448 {
1449 int found, n, err, safely = 0, gc_seq1;
1450 struct ubifs_znode *znode;
1451 struct ubifs_zbranch zbr, *zt;
1452
1453 again:
1454 mutex_lock(&c->tnc_mutex);
1455 found = ubifs_lookup_level0(c, key, &znode, &n);
1456 if (!found) {
1457 err = -ENOENT;
1458 goto out;
1459 } else if (found < 0) {
1460 err = found;
1461 goto out;
1462 }
1463 zt = &znode->zbranch[n];
1464 if (lnum) {
1465 *lnum = zt->lnum;
1466 *offs = zt->offs;
1467 }
1468 if (is_hash_key(c, key)) {
1469 /*
1470 * In this case the leaf node cache gets used, so we pass the
1471 * address of the zbranch and keep the mutex locked
1472 */
1473 err = tnc_read_node_nm(c, zt, node);
1474 goto out;
1475 }
1476 if (safely) {
1477 err = ubifs_tnc_read_node(c, zt, node);
1478 goto out;
1479 }
1480 /* Drop the TNC mutex prematurely and race with garbage collection */
1481 zbr = znode->zbranch[n];
1482 gc_seq1 = c->gc_seq;
1483 mutex_unlock(&c->tnc_mutex);
1484
1485 if (ubifs_get_wbuf(c, zbr.lnum)) {
1486 /* We do not GC journal heads */
1487 err = ubifs_tnc_read_node(c, &zbr, node);
1488 return err;
1489 }
1490
1491 err = fallible_read_node(c, key, &zbr, node);
1492 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1493 /*
1494 * The node may have been GC'ed out from under us so try again
1495 * while keeping the TNC mutex locked.
1496 */
1497 safely = 1;
1498 goto again;
1499 }
1500 return 0;
1501
1502 out:
1503 mutex_unlock(&c->tnc_mutex);
1504 return err;
1505 }
1506
1507 /**
1508 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1509 * @c: UBIFS file-system description object
1510 * @bu: bulk-read parameters and results
1511 *
1512 * Lookup consecutive data node keys for the same inode that reside
1513 * consecutively in the same LEB. This function returns zero in case of success
1514 * and a negative error code in case of failure.
1515 *
1516 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1517 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1518 * maximum possible amount of nodes for bulk-read.
1519 */
ubifs_tnc_get_bu_keys(struct ubifs_info * c,struct bu_info * bu)1520 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1521 {
1522 int n, err = 0, lnum = -1, uninitialized_var(offs);
1523 int uninitialized_var(len);
1524 unsigned int block = key_block(c, &bu->key);
1525 struct ubifs_znode *znode;
1526
1527 bu->cnt = 0;
1528 bu->blk_cnt = 0;
1529 bu->eof = 0;
1530
1531 mutex_lock(&c->tnc_mutex);
1532 /* Find first key */
1533 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1534 if (err < 0)
1535 goto out;
1536 if (err) {
1537 /* Key found */
1538 len = znode->zbranch[n].len;
1539 /* The buffer must be big enough for at least 1 node */
1540 if (len > bu->buf_len) {
1541 err = -EINVAL;
1542 goto out;
1543 }
1544 /* Add this key */
1545 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1546 bu->blk_cnt += 1;
1547 lnum = znode->zbranch[n].lnum;
1548 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1549 }
1550 while (1) {
1551 struct ubifs_zbranch *zbr;
1552 union ubifs_key *key;
1553 unsigned int next_block;
1554
1555 /* Find next key */
1556 err = tnc_next(c, &znode, &n);
1557 if (err)
1558 goto out;
1559 zbr = &znode->zbranch[n];
1560 key = &zbr->key;
1561 /* See if there is another data key for this file */
1562 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1563 key_type(c, key) != UBIFS_DATA_KEY) {
1564 err = -ENOENT;
1565 goto out;
1566 }
1567 if (lnum < 0) {
1568 /* First key found */
1569 lnum = zbr->lnum;
1570 offs = ALIGN(zbr->offs + zbr->len, 8);
1571 len = zbr->len;
1572 if (len > bu->buf_len) {
1573 err = -EINVAL;
1574 goto out;
1575 }
1576 } else {
1577 /*
1578 * The data nodes must be in consecutive positions in
1579 * the same LEB.
1580 */
1581 if (zbr->lnum != lnum || zbr->offs != offs)
1582 goto out;
1583 offs += ALIGN(zbr->len, 8);
1584 len = ALIGN(len, 8) + zbr->len;
1585 /* Must not exceed buffer length */
1586 if (len > bu->buf_len)
1587 goto out;
1588 }
1589 /* Allow for holes */
1590 next_block = key_block(c, key);
1591 bu->blk_cnt += (next_block - block - 1);
1592 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1593 goto out;
1594 block = next_block;
1595 /* Add this key */
1596 bu->zbranch[bu->cnt++] = *zbr;
1597 bu->blk_cnt += 1;
1598 /* See if we have room for more */
1599 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1600 goto out;
1601 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1602 goto out;
1603 }
1604 out:
1605 if (err == -ENOENT) {
1606 bu->eof = 1;
1607 err = 0;
1608 }
1609 bu->gc_seq = c->gc_seq;
1610 mutex_unlock(&c->tnc_mutex);
1611 if (err)
1612 return err;
1613 /*
1614 * An enormous hole could cause bulk-read to encompass too many
1615 * page cache pages, so limit the number here.
1616 */
1617 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1618 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1619 /*
1620 * Ensure that bulk-read covers a whole number of page cache
1621 * pages.
1622 */
1623 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1624 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1625 return 0;
1626 if (bu->eof) {
1627 /* At the end of file we can round up */
1628 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1629 return 0;
1630 }
1631 /* Exclude data nodes that do not make up a whole page cache page */
1632 block = key_block(c, &bu->key) + bu->blk_cnt;
1633 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1634 while (bu->cnt) {
1635 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1636 break;
1637 bu->cnt -= 1;
1638 }
1639 return 0;
1640 }
1641
1642 /**
1643 * read_wbuf - bulk-read from a LEB with a wbuf.
1644 * @wbuf: wbuf that may overlap the read
1645 * @buf: buffer into which to read
1646 * @len: read length
1647 * @lnum: LEB number from which to read
1648 * @offs: offset from which to read
1649 *
1650 * This functions returns %0 on success or a negative error code on failure.
1651 */
read_wbuf(struct ubifs_wbuf * wbuf,void * buf,int len,int lnum,int offs)1652 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1653 int offs)
1654 {
1655 const struct ubifs_info *c = wbuf->c;
1656 int rlen, overlap;
1657
1658 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1659 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1660 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1661 ubifs_assert(offs + len <= c->leb_size);
1662
1663 spin_lock(&wbuf->lock);
1664 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1665 if (!overlap) {
1666 /* We may safely unlock the write-buffer and read the data */
1667 spin_unlock(&wbuf->lock);
1668 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1669 }
1670
1671 /* Don't read under wbuf */
1672 rlen = wbuf->offs - offs;
1673 if (rlen < 0)
1674 rlen = 0;
1675
1676 /* Copy the rest from the write-buffer */
1677 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1678 spin_unlock(&wbuf->lock);
1679
1680 if (rlen > 0)
1681 /* Read everything that goes before write-buffer */
1682 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1683
1684 return 0;
1685 }
1686
1687 /**
1688 * validate_data_node - validate data nodes for bulk-read.
1689 * @c: UBIFS file-system description object
1690 * @buf: buffer containing data node to validate
1691 * @zbr: zbranch of data node to validate
1692 *
1693 * This functions returns %0 on success or a negative error code on failure.
1694 */
validate_data_node(struct ubifs_info * c,void * buf,struct ubifs_zbranch * zbr)1695 static int validate_data_node(struct ubifs_info *c, void *buf,
1696 struct ubifs_zbranch *zbr)
1697 {
1698 union ubifs_key key1;
1699 struct ubifs_ch *ch = buf;
1700 int err, len;
1701
1702 if (ch->node_type != UBIFS_DATA_NODE) {
1703 ubifs_err("bad node type (%d but expected %d)",
1704 ch->node_type, UBIFS_DATA_NODE);
1705 goto out_err;
1706 }
1707
1708 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1709 if (err) {
1710 ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1711 goto out;
1712 }
1713
1714 len = le32_to_cpu(ch->len);
1715 if (len != zbr->len) {
1716 ubifs_err("bad node length %d, expected %d", len, zbr->len);
1717 goto out_err;
1718 }
1719
1720 /* Make sure the key of the read node is correct */
1721 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1722 if (!keys_eq(c, &zbr->key, &key1)) {
1723 ubifs_err("bad key in node at LEB %d:%d",
1724 zbr->lnum, zbr->offs);
1725 dbg_tnck(&zbr->key, "looked for key ");
1726 dbg_tnck(&key1, "found node's key ");
1727 goto out_err;
1728 }
1729
1730 return 0;
1731
1732 out_err:
1733 err = -EINVAL;
1734 out:
1735 ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1736 dbg_dump_node(c, buf);
1737 dbg_dump_stack();
1738 return err;
1739 }
1740
1741 /**
1742 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1743 * @c: UBIFS file-system description object
1744 * @bu: bulk-read parameters and results
1745 *
1746 * This functions reads and validates the data nodes that were identified by the
1747 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1748 * -EAGAIN to indicate a race with GC, or another negative error code on
1749 * failure.
1750 */
ubifs_tnc_bulk_read(struct ubifs_info * c,struct bu_info * bu)1751 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1752 {
1753 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1754 struct ubifs_wbuf *wbuf;
1755 void *buf;
1756
1757 len = bu->zbranch[bu->cnt - 1].offs;
1758 len += bu->zbranch[bu->cnt - 1].len - offs;
1759 if (len > bu->buf_len) {
1760 ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1761 return -EINVAL;
1762 }
1763
1764 /* Do the read */
1765 wbuf = ubifs_get_wbuf(c, lnum);
1766 if (wbuf)
1767 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1768 else
1769 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1770
1771 /* Check for a race with GC */
1772 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1773 return -EAGAIN;
1774
1775 if (err && err != -EBADMSG) {
1776 ubifs_err("failed to read from LEB %d:%d, error %d",
1777 lnum, offs, err);
1778 dbg_dump_stack();
1779 dbg_tnck(&bu->key, "key ");
1780 return err;
1781 }
1782
1783 /* Validate the nodes read */
1784 buf = bu->buf;
1785 for (i = 0; i < bu->cnt; i++) {
1786 err = validate_data_node(c, buf, &bu->zbranch[i]);
1787 if (err)
1788 return err;
1789 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1790 }
1791
1792 return 0;
1793 }
1794
1795 /**
1796 * do_lookup_nm- look up a "hashed" node.
1797 * @c: UBIFS file-system description object
1798 * @key: node key to lookup
1799 * @node: the node is returned here
1800 * @nm: node name
1801 *
1802 * This function look up and reads a node which contains name hash in the key.
1803 * Since the hash may have collisions, there may be many nodes with the same
1804 * key, so we have to sequentially look to all of them until the needed one is
1805 * found. This function returns zero in case of success, %-ENOENT if the node
1806 * was not found, and a negative error code in case of failure.
1807 */
do_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct qstr * nm)1808 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1809 void *node, const struct qstr *nm)
1810 {
1811 int found, n, err;
1812 struct ubifs_znode *znode;
1813
1814 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1815 mutex_lock(&c->tnc_mutex);
1816 found = ubifs_lookup_level0(c, key, &znode, &n);
1817 if (!found) {
1818 err = -ENOENT;
1819 goto out_unlock;
1820 } else if (found < 0) {
1821 err = found;
1822 goto out_unlock;
1823 }
1824
1825 ubifs_assert(n >= 0);
1826
1827 err = resolve_collision(c, key, &znode, &n, nm);
1828 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1829 if (unlikely(err < 0))
1830 goto out_unlock;
1831 if (err == 0) {
1832 err = -ENOENT;
1833 goto out_unlock;
1834 }
1835
1836 err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1837
1838 out_unlock:
1839 mutex_unlock(&c->tnc_mutex);
1840 return err;
1841 }
1842
1843 /**
1844 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1845 * @c: UBIFS file-system description object
1846 * @key: node key to lookup
1847 * @node: the node is returned here
1848 * @nm: node name
1849 *
1850 * This function look up and reads a node which contains name hash in the key.
1851 * Since the hash may have collisions, there may be many nodes with the same
1852 * key, so we have to sequentially look to all of them until the needed one is
1853 * found. This function returns zero in case of success, %-ENOENT if the node
1854 * was not found, and a negative error code in case of failure.
1855 */
ubifs_tnc_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct qstr * nm)1856 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1857 void *node, const struct qstr *nm)
1858 {
1859 int err, len;
1860 const struct ubifs_dent_node *dent = node;
1861
1862 /*
1863 * We assume that in most of the cases there are no name collisions and
1864 * 'ubifs_tnc_lookup()' returns us the right direntry.
1865 */
1866 err = ubifs_tnc_lookup(c, key, node);
1867 if (err)
1868 return err;
1869
1870 len = le16_to_cpu(dent->nlen);
1871 if (nm->len == len && !memcmp(dent->name, nm->name, len))
1872 return 0;
1873
1874 /*
1875 * Unluckily, there are hash collisions and we have to iterate over
1876 * them look at each direntry with colliding name hash sequentially.
1877 */
1878 return do_lookup_nm(c, key, node, nm);
1879 }
1880
1881 /**
1882 * correct_parent_keys - correct parent znodes' keys.
1883 * @c: UBIFS file-system description object
1884 * @znode: znode to correct parent znodes for
1885 *
1886 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1887 * zbranch changes, keys of parent znodes have to be corrected. This helper
1888 * function is called in such situations and corrects the keys if needed.
1889 */
correct_parent_keys(const struct ubifs_info * c,struct ubifs_znode * znode)1890 static void correct_parent_keys(const struct ubifs_info *c,
1891 struct ubifs_znode *znode)
1892 {
1893 union ubifs_key *key, *key1;
1894
1895 ubifs_assert(znode->parent);
1896 ubifs_assert(znode->iip == 0);
1897
1898 key = &znode->zbranch[0].key;
1899 key1 = &znode->parent->zbranch[0].key;
1900
1901 while (keys_cmp(c, key, key1) < 0) {
1902 key_copy(c, key, key1);
1903 znode = znode->parent;
1904 znode->alt = 1;
1905 if (!znode->parent || znode->iip)
1906 break;
1907 key1 = &znode->parent->zbranch[0].key;
1908 }
1909 }
1910
1911 /**
1912 * insert_zbranch - insert a zbranch into a znode.
1913 * @znode: znode into which to insert
1914 * @zbr: zbranch to insert
1915 * @n: slot number to insert to
1916 *
1917 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1918 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1919 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1920 * slot, zbranches starting from @n have to be moved right.
1921 */
insert_zbranch(struct ubifs_znode * znode,const struct ubifs_zbranch * zbr,int n)1922 static void insert_zbranch(struct ubifs_znode *znode,
1923 const struct ubifs_zbranch *zbr, int n)
1924 {
1925 int i;
1926
1927 ubifs_assert(ubifs_zn_dirty(znode));
1928
1929 if (znode->level) {
1930 for (i = znode->child_cnt; i > n; i--) {
1931 znode->zbranch[i] = znode->zbranch[i - 1];
1932 if (znode->zbranch[i].znode)
1933 znode->zbranch[i].znode->iip = i;
1934 }
1935 if (zbr->znode)
1936 zbr->znode->iip = n;
1937 } else
1938 for (i = znode->child_cnt; i > n; i--)
1939 znode->zbranch[i] = znode->zbranch[i - 1];
1940
1941 znode->zbranch[n] = *zbr;
1942 znode->child_cnt += 1;
1943
1944 /*
1945 * After inserting at slot zero, the lower bound of the key range of
1946 * this znode may have changed. If this znode is subsequently split
1947 * then the upper bound of the key range may change, and furthermore
1948 * it could change to be lower than the original lower bound. If that
1949 * happens, then it will no longer be possible to find this znode in the
1950 * TNC using the key from the index node on flash. That is bad because
1951 * if it is not found, we will assume it is obsolete and may overwrite
1952 * it. Then if there is an unclean unmount, we will start using the
1953 * old index which will be broken.
1954 *
1955 * So we first mark znodes that have insertions at slot zero, and then
1956 * if they are split we add their lnum/offs to the old_idx tree.
1957 */
1958 if (n == 0)
1959 znode->alt = 1;
1960 }
1961
1962 /**
1963 * tnc_insert - insert a node into TNC.
1964 * @c: UBIFS file-system description object
1965 * @znode: znode to insert into
1966 * @zbr: branch to insert
1967 * @n: slot number to insert new zbranch to
1968 *
1969 * This function inserts a new node described by @zbr into znode @znode. If
1970 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1971 * are splat as well if needed. Returns zero in case of success or a negative
1972 * error code in case of failure.
1973 */
tnc_insert(struct ubifs_info * c,struct ubifs_znode * znode,struct ubifs_zbranch * zbr,int n)1974 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1975 struct ubifs_zbranch *zbr, int n)
1976 {
1977 struct ubifs_znode *zn, *zi, *zp;
1978 int i, keep, move, appending = 0;
1979 union ubifs_key *key = &zbr->key, *key1;
1980
1981 ubifs_assert(n >= 0 && n <= c->fanout);
1982
1983 /* Implement naive insert for now */
1984 again:
1985 zp = znode->parent;
1986 if (znode->child_cnt < c->fanout) {
1987 ubifs_assert(n != c->fanout);
1988 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1989
1990 insert_zbranch(znode, zbr, n);
1991
1992 /* Ensure parent's key is correct */
1993 if (n == 0 && zp && znode->iip == 0)
1994 correct_parent_keys(c, znode);
1995
1996 return 0;
1997 }
1998
1999 /*
2000 * Unfortunately, @znode does not have more empty slots and we have to
2001 * split it.
2002 */
2003 dbg_tnck(key, "splitting level %d, key ", znode->level);
2004
2005 if (znode->alt)
2006 /*
2007 * We can no longer be sure of finding this znode by key, so we
2008 * record it in the old_idx tree.
2009 */
2010 ins_clr_old_idx_znode(c, znode);
2011
2012 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2013 if (!zn)
2014 return -ENOMEM;
2015 zn->parent = zp;
2016 zn->level = znode->level;
2017
2018 /* Decide where to split */
2019 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2020 /* Try not to split consecutive data keys */
2021 if (n == c->fanout) {
2022 key1 = &znode->zbranch[n - 1].key;
2023 if (key_inum(c, key1) == key_inum(c, key) &&
2024 key_type(c, key1) == UBIFS_DATA_KEY)
2025 appending = 1;
2026 } else
2027 goto check_split;
2028 } else if (appending && n != c->fanout) {
2029 /* Try not to split consecutive data keys */
2030 appending = 0;
2031 check_split:
2032 if (n >= (c->fanout + 1) / 2) {
2033 key1 = &znode->zbranch[0].key;
2034 if (key_inum(c, key1) == key_inum(c, key) &&
2035 key_type(c, key1) == UBIFS_DATA_KEY) {
2036 key1 = &znode->zbranch[n].key;
2037 if (key_inum(c, key1) != key_inum(c, key) ||
2038 key_type(c, key1) != UBIFS_DATA_KEY) {
2039 keep = n;
2040 move = c->fanout - keep;
2041 zi = znode;
2042 goto do_split;
2043 }
2044 }
2045 }
2046 }
2047
2048 if (appending) {
2049 keep = c->fanout;
2050 move = 0;
2051 } else {
2052 keep = (c->fanout + 1) / 2;
2053 move = c->fanout - keep;
2054 }
2055
2056 /*
2057 * Although we don't at present, we could look at the neighbors and see
2058 * if we can move some zbranches there.
2059 */
2060
2061 if (n < keep) {
2062 /* Insert into existing znode */
2063 zi = znode;
2064 move += 1;
2065 keep -= 1;
2066 } else {
2067 /* Insert into new znode */
2068 zi = zn;
2069 n -= keep;
2070 /* Re-parent */
2071 if (zn->level != 0)
2072 zbr->znode->parent = zn;
2073 }
2074
2075 do_split:
2076
2077 __set_bit(DIRTY_ZNODE, &zn->flags);
2078 atomic_long_inc(&c->dirty_zn_cnt);
2079
2080 zn->child_cnt = move;
2081 znode->child_cnt = keep;
2082
2083 dbg_tnc("moving %d, keeping %d", move, keep);
2084
2085 /* Move zbranch */
2086 for (i = 0; i < move; i++) {
2087 zn->zbranch[i] = znode->zbranch[keep + i];
2088 /* Re-parent */
2089 if (zn->level != 0)
2090 if (zn->zbranch[i].znode) {
2091 zn->zbranch[i].znode->parent = zn;
2092 zn->zbranch[i].znode->iip = i;
2093 }
2094 }
2095
2096 /* Insert new key and branch */
2097 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2098
2099 insert_zbranch(zi, zbr, n);
2100
2101 /* Insert new znode (produced by spitting) into the parent */
2102 if (zp) {
2103 if (n == 0 && zi == znode && znode->iip == 0)
2104 correct_parent_keys(c, znode);
2105
2106 /* Locate insertion point */
2107 n = znode->iip + 1;
2108
2109 /* Tail recursion */
2110 zbr->key = zn->zbranch[0].key;
2111 zbr->znode = zn;
2112 zbr->lnum = 0;
2113 zbr->offs = 0;
2114 zbr->len = 0;
2115 znode = zp;
2116
2117 goto again;
2118 }
2119
2120 /* We have to split root znode */
2121 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2122
2123 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2124 if (!zi)
2125 return -ENOMEM;
2126
2127 zi->child_cnt = 2;
2128 zi->level = znode->level + 1;
2129
2130 __set_bit(DIRTY_ZNODE, &zi->flags);
2131 atomic_long_inc(&c->dirty_zn_cnt);
2132
2133 zi->zbranch[0].key = znode->zbranch[0].key;
2134 zi->zbranch[0].znode = znode;
2135 zi->zbranch[0].lnum = c->zroot.lnum;
2136 zi->zbranch[0].offs = c->zroot.offs;
2137 zi->zbranch[0].len = c->zroot.len;
2138 zi->zbranch[1].key = zn->zbranch[0].key;
2139 zi->zbranch[1].znode = zn;
2140
2141 c->zroot.lnum = 0;
2142 c->zroot.offs = 0;
2143 c->zroot.len = 0;
2144 c->zroot.znode = zi;
2145
2146 zn->parent = zi;
2147 zn->iip = 1;
2148 znode->parent = zi;
2149 znode->iip = 0;
2150
2151 return 0;
2152 }
2153
2154 /**
2155 * ubifs_tnc_add - add a node to TNC.
2156 * @c: UBIFS file-system description object
2157 * @key: key to add
2158 * @lnum: LEB number of node
2159 * @offs: node offset
2160 * @len: node length
2161 *
2162 * This function adds a node with key @key to TNC. The node may be new or it may
2163 * obsolete some existing one. Returns %0 on success or negative error code on
2164 * failure.
2165 */
ubifs_tnc_add(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len)2166 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2167 int offs, int len)
2168 {
2169 int found, n, err = 0;
2170 struct ubifs_znode *znode;
2171
2172 mutex_lock(&c->tnc_mutex);
2173 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2174 found = lookup_level0_dirty(c, key, &znode, &n);
2175 if (!found) {
2176 struct ubifs_zbranch zbr;
2177
2178 zbr.znode = NULL;
2179 zbr.lnum = lnum;
2180 zbr.offs = offs;
2181 zbr.len = len;
2182 key_copy(c, key, &zbr.key);
2183 err = tnc_insert(c, znode, &zbr, n + 1);
2184 } else if (found == 1) {
2185 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2186
2187 lnc_free(zbr);
2188 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2189 zbr->lnum = lnum;
2190 zbr->offs = offs;
2191 zbr->len = len;
2192 } else
2193 err = found;
2194 if (!err)
2195 err = dbg_check_tnc(c, 0);
2196 mutex_unlock(&c->tnc_mutex);
2197
2198 return err;
2199 }
2200
2201 /**
2202 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2203 * @c: UBIFS file-system description object
2204 * @key: key to add
2205 * @old_lnum: LEB number of old node
2206 * @old_offs: old node offset
2207 * @lnum: LEB number of node
2208 * @offs: node offset
2209 * @len: node length
2210 *
2211 * This function replaces a node with key @key in the TNC only if the old node
2212 * is found. This function is called by garbage collection when node are moved.
2213 * Returns %0 on success or negative error code on failure.
2214 */
ubifs_tnc_replace(struct ubifs_info * c,const union ubifs_key * key,int old_lnum,int old_offs,int lnum,int offs,int len)2215 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2216 int old_lnum, int old_offs, int lnum, int offs, int len)
2217 {
2218 int found, n, err = 0;
2219 struct ubifs_znode *znode;
2220
2221 mutex_lock(&c->tnc_mutex);
2222 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2223 old_offs, lnum, offs, len);
2224 found = lookup_level0_dirty(c, key, &znode, &n);
2225 if (found < 0) {
2226 err = found;
2227 goto out_unlock;
2228 }
2229
2230 if (found == 1) {
2231 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2232
2233 found = 0;
2234 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2235 lnc_free(zbr);
2236 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2237 if (err)
2238 goto out_unlock;
2239 zbr->lnum = lnum;
2240 zbr->offs = offs;
2241 zbr->len = len;
2242 found = 1;
2243 } else if (is_hash_key(c, key)) {
2244 found = resolve_collision_directly(c, key, &znode, &n,
2245 old_lnum, old_offs);
2246 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2247 found, znode, n, old_lnum, old_offs);
2248 if (found < 0) {
2249 err = found;
2250 goto out_unlock;
2251 }
2252
2253 if (found) {
2254 /* Ensure the znode is dirtied */
2255 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2256 znode = dirty_cow_bottom_up(c, znode);
2257 if (IS_ERR(znode)) {
2258 err = PTR_ERR(znode);
2259 goto out_unlock;
2260 }
2261 }
2262 zbr = &znode->zbranch[n];
2263 lnc_free(zbr);
2264 err = ubifs_add_dirt(c, zbr->lnum,
2265 zbr->len);
2266 if (err)
2267 goto out_unlock;
2268 zbr->lnum = lnum;
2269 zbr->offs = offs;
2270 zbr->len = len;
2271 }
2272 }
2273 }
2274
2275 if (!found)
2276 err = ubifs_add_dirt(c, lnum, len);
2277
2278 if (!err)
2279 err = dbg_check_tnc(c, 0);
2280
2281 out_unlock:
2282 mutex_unlock(&c->tnc_mutex);
2283 return err;
2284 }
2285
2286 /**
2287 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2288 * @c: UBIFS file-system description object
2289 * @key: key to add
2290 * @lnum: LEB number of node
2291 * @offs: node offset
2292 * @len: node length
2293 * @nm: node name
2294 *
2295 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2296 * may have collisions, like directory entry keys.
2297 */
ubifs_tnc_add_nm(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len,const struct qstr * nm)2298 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2299 int lnum, int offs, int len, const struct qstr *nm)
2300 {
2301 int found, n, err = 0;
2302 struct ubifs_znode *znode;
2303
2304 mutex_lock(&c->tnc_mutex);
2305 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2306 lnum, offs, nm->len, nm->name);
2307 found = lookup_level0_dirty(c, key, &znode, &n);
2308 if (found < 0) {
2309 err = found;
2310 goto out_unlock;
2311 }
2312
2313 if (found == 1) {
2314 if (c->replaying)
2315 found = fallible_resolve_collision(c, key, &znode, &n,
2316 nm, 1);
2317 else
2318 found = resolve_collision(c, key, &znode, &n, nm);
2319 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2320 if (found < 0) {
2321 err = found;
2322 goto out_unlock;
2323 }
2324
2325 /* Ensure the znode is dirtied */
2326 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2327 znode = dirty_cow_bottom_up(c, znode);
2328 if (IS_ERR(znode)) {
2329 err = PTR_ERR(znode);
2330 goto out_unlock;
2331 }
2332 }
2333
2334 if (found == 1) {
2335 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2336
2337 lnc_free(zbr);
2338 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2339 zbr->lnum = lnum;
2340 zbr->offs = offs;
2341 zbr->len = len;
2342 goto out_unlock;
2343 }
2344 }
2345
2346 if (!found) {
2347 struct ubifs_zbranch zbr;
2348
2349 zbr.znode = NULL;
2350 zbr.lnum = lnum;
2351 zbr.offs = offs;
2352 zbr.len = len;
2353 key_copy(c, key, &zbr.key);
2354 err = tnc_insert(c, znode, &zbr, n + 1);
2355 if (err)
2356 goto out_unlock;
2357 if (c->replaying) {
2358 /*
2359 * We did not find it in the index so there may be a
2360 * dangling branch still in the index. So we remove it
2361 * by passing 'ubifs_tnc_remove_nm()' the same key but
2362 * an unmatchable name.
2363 */
2364 struct qstr noname = { .len = 0, .name = "" };
2365
2366 err = dbg_check_tnc(c, 0);
2367 mutex_unlock(&c->tnc_mutex);
2368 if (err)
2369 return err;
2370 return ubifs_tnc_remove_nm(c, key, &noname);
2371 }
2372 }
2373
2374 out_unlock:
2375 if (!err)
2376 err = dbg_check_tnc(c, 0);
2377 mutex_unlock(&c->tnc_mutex);
2378 return err;
2379 }
2380
2381 /**
2382 * tnc_delete - delete a znode form TNC.
2383 * @c: UBIFS file-system description object
2384 * @znode: znode to delete from
2385 * @n: zbranch slot number to delete
2386 *
2387 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2388 * case of success and a negative error code in case of failure.
2389 */
tnc_delete(struct ubifs_info * c,struct ubifs_znode * znode,int n)2390 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2391 {
2392 struct ubifs_zbranch *zbr;
2393 struct ubifs_znode *zp;
2394 int i, err;
2395
2396 /* Delete without merge for now */
2397 ubifs_assert(znode->level == 0);
2398 ubifs_assert(n >= 0 && n < c->fanout);
2399 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2400
2401 zbr = &znode->zbranch[n];
2402 lnc_free(zbr);
2403
2404 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2405 if (err) {
2406 dbg_dump_znode(c, znode);
2407 return err;
2408 }
2409
2410 /* We do not "gap" zbranch slots */
2411 for (i = n; i < znode->child_cnt - 1; i++)
2412 znode->zbranch[i] = znode->zbranch[i + 1];
2413 znode->child_cnt -= 1;
2414
2415 if (znode->child_cnt > 0)
2416 return 0;
2417
2418 /*
2419 * This was the last zbranch, we have to delete this znode from the
2420 * parent.
2421 */
2422
2423 do {
2424 ubifs_assert(!ubifs_zn_obsolete(znode));
2425 ubifs_assert(ubifs_zn_dirty(znode));
2426
2427 zp = znode->parent;
2428 n = znode->iip;
2429
2430 atomic_long_dec(&c->dirty_zn_cnt);
2431
2432 err = insert_old_idx_znode(c, znode);
2433 if (err)
2434 return err;
2435
2436 if (znode->cnext) {
2437 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2438 atomic_long_inc(&c->clean_zn_cnt);
2439 atomic_long_inc(&ubifs_clean_zn_cnt);
2440 } else
2441 kfree(znode);
2442 znode = zp;
2443 } while (znode->child_cnt == 1); /* while removing last child */
2444
2445 /* Remove from znode, entry n - 1 */
2446 znode->child_cnt -= 1;
2447 ubifs_assert(znode->level != 0);
2448 for (i = n; i < znode->child_cnt; i++) {
2449 znode->zbranch[i] = znode->zbranch[i + 1];
2450 if (znode->zbranch[i].znode)
2451 znode->zbranch[i].znode->iip = i;
2452 }
2453
2454 /*
2455 * If this is the root and it has only 1 child then
2456 * collapse the tree.
2457 */
2458 if (!znode->parent) {
2459 while (znode->child_cnt == 1 && znode->level != 0) {
2460 zp = znode;
2461 zbr = &znode->zbranch[0];
2462 znode = get_znode(c, znode, 0);
2463 if (IS_ERR(znode))
2464 return PTR_ERR(znode);
2465 znode = dirty_cow_znode(c, zbr);
2466 if (IS_ERR(znode))
2467 return PTR_ERR(znode);
2468 znode->parent = NULL;
2469 znode->iip = 0;
2470 if (c->zroot.len) {
2471 err = insert_old_idx(c, c->zroot.lnum,
2472 c->zroot.offs);
2473 if (err)
2474 return err;
2475 }
2476 c->zroot.lnum = zbr->lnum;
2477 c->zroot.offs = zbr->offs;
2478 c->zroot.len = zbr->len;
2479 c->zroot.znode = znode;
2480 ubifs_assert(!ubifs_zn_obsolete(zp));
2481 ubifs_assert(ubifs_zn_dirty(zp));
2482 atomic_long_dec(&c->dirty_zn_cnt);
2483
2484 if (zp->cnext) {
2485 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2486 atomic_long_inc(&c->clean_zn_cnt);
2487 atomic_long_inc(&ubifs_clean_zn_cnt);
2488 } else
2489 kfree(zp);
2490 }
2491 }
2492
2493 return 0;
2494 }
2495
2496 /**
2497 * ubifs_tnc_remove - remove an index entry of a node.
2498 * @c: UBIFS file-system description object
2499 * @key: key of node
2500 *
2501 * Returns %0 on success or negative error code on failure.
2502 */
ubifs_tnc_remove(struct ubifs_info * c,const union ubifs_key * key)2503 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2504 {
2505 int found, n, err = 0;
2506 struct ubifs_znode *znode;
2507
2508 mutex_lock(&c->tnc_mutex);
2509 dbg_tnck(key, "key ");
2510 found = lookup_level0_dirty(c, key, &znode, &n);
2511 if (found < 0) {
2512 err = found;
2513 goto out_unlock;
2514 }
2515 if (found == 1)
2516 err = tnc_delete(c, znode, n);
2517 if (!err)
2518 err = dbg_check_tnc(c, 0);
2519
2520 out_unlock:
2521 mutex_unlock(&c->tnc_mutex);
2522 return err;
2523 }
2524
2525 /**
2526 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2527 * @c: UBIFS file-system description object
2528 * @key: key of node
2529 * @nm: directory entry name
2530 *
2531 * Returns %0 on success or negative error code on failure.
2532 */
ubifs_tnc_remove_nm(struct ubifs_info * c,const union ubifs_key * key,const struct qstr * nm)2533 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2534 const struct qstr *nm)
2535 {
2536 int n, err;
2537 struct ubifs_znode *znode;
2538
2539 mutex_lock(&c->tnc_mutex);
2540 dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2541 err = lookup_level0_dirty(c, key, &znode, &n);
2542 if (err < 0)
2543 goto out_unlock;
2544
2545 if (err) {
2546 if (c->replaying)
2547 err = fallible_resolve_collision(c, key, &znode, &n,
2548 nm, 0);
2549 else
2550 err = resolve_collision(c, key, &znode, &n, nm);
2551 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2552 if (err < 0)
2553 goto out_unlock;
2554 if (err) {
2555 /* Ensure the znode is dirtied */
2556 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2557 znode = dirty_cow_bottom_up(c, znode);
2558 if (IS_ERR(znode)) {
2559 err = PTR_ERR(znode);
2560 goto out_unlock;
2561 }
2562 }
2563 err = tnc_delete(c, znode, n);
2564 }
2565 }
2566
2567 out_unlock:
2568 if (!err)
2569 err = dbg_check_tnc(c, 0);
2570 mutex_unlock(&c->tnc_mutex);
2571 return err;
2572 }
2573
2574 /**
2575 * key_in_range - determine if a key falls within a range of keys.
2576 * @c: UBIFS file-system description object
2577 * @key: key to check
2578 * @from_key: lowest key in range
2579 * @to_key: highest key in range
2580 *
2581 * This function returns %1 if the key is in range and %0 otherwise.
2582 */
key_in_range(struct ubifs_info * c,union ubifs_key * key,union ubifs_key * from_key,union ubifs_key * to_key)2583 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2584 union ubifs_key *from_key, union ubifs_key *to_key)
2585 {
2586 if (keys_cmp(c, key, from_key) < 0)
2587 return 0;
2588 if (keys_cmp(c, key, to_key) > 0)
2589 return 0;
2590 return 1;
2591 }
2592
2593 /**
2594 * ubifs_tnc_remove_range - remove index entries in range.
2595 * @c: UBIFS file-system description object
2596 * @from_key: lowest key to remove
2597 * @to_key: highest key to remove
2598 *
2599 * This function removes index entries starting at @from_key and ending at
2600 * @to_key. This function returns zero in case of success and a negative error
2601 * code in case of failure.
2602 */
ubifs_tnc_remove_range(struct ubifs_info * c,union ubifs_key * from_key,union ubifs_key * to_key)2603 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2604 union ubifs_key *to_key)
2605 {
2606 int i, n, k, err = 0;
2607 struct ubifs_znode *znode;
2608 union ubifs_key *key;
2609
2610 mutex_lock(&c->tnc_mutex);
2611 while (1) {
2612 /* Find first level 0 znode that contains keys to remove */
2613 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2614 if (err < 0)
2615 goto out_unlock;
2616
2617 if (err)
2618 key = from_key;
2619 else {
2620 err = tnc_next(c, &znode, &n);
2621 if (err == -ENOENT) {
2622 err = 0;
2623 goto out_unlock;
2624 }
2625 if (err < 0)
2626 goto out_unlock;
2627 key = &znode->zbranch[n].key;
2628 if (!key_in_range(c, key, from_key, to_key)) {
2629 err = 0;
2630 goto out_unlock;
2631 }
2632 }
2633
2634 /* Ensure the znode is dirtied */
2635 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2636 znode = dirty_cow_bottom_up(c, znode);
2637 if (IS_ERR(znode)) {
2638 err = PTR_ERR(znode);
2639 goto out_unlock;
2640 }
2641 }
2642
2643 /* Remove all keys in range except the first */
2644 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2645 key = &znode->zbranch[i].key;
2646 if (!key_in_range(c, key, from_key, to_key))
2647 break;
2648 lnc_free(&znode->zbranch[i]);
2649 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2650 znode->zbranch[i].len);
2651 if (err) {
2652 dbg_dump_znode(c, znode);
2653 goto out_unlock;
2654 }
2655 dbg_tnck(key, "removing key ");
2656 }
2657 if (k) {
2658 for (i = n + 1 + k; i < znode->child_cnt; i++)
2659 znode->zbranch[i - k] = znode->zbranch[i];
2660 znode->child_cnt -= k;
2661 }
2662
2663 /* Now delete the first */
2664 err = tnc_delete(c, znode, n);
2665 if (err)
2666 goto out_unlock;
2667 }
2668
2669 out_unlock:
2670 if (!err)
2671 err = dbg_check_tnc(c, 0);
2672 mutex_unlock(&c->tnc_mutex);
2673 return err;
2674 }
2675
2676 /**
2677 * ubifs_tnc_remove_ino - remove an inode from TNC.
2678 * @c: UBIFS file-system description object
2679 * @inum: inode number to remove
2680 *
2681 * This function remove inode @inum and all the extended attributes associated
2682 * with the anode from TNC and returns zero in case of success or a negative
2683 * error code in case of failure.
2684 */
ubifs_tnc_remove_ino(struct ubifs_info * c,ino_t inum)2685 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2686 {
2687 union ubifs_key key1, key2;
2688 struct ubifs_dent_node *xent, *pxent = NULL;
2689 struct qstr nm = { .name = NULL };
2690
2691 dbg_tnc("ino %lu", (unsigned long)inum);
2692
2693 /*
2694 * Walk all extended attribute entries and remove them together with
2695 * corresponding extended attribute inodes.
2696 */
2697 lowest_xent_key(c, &key1, inum);
2698 while (1) {
2699 ino_t xattr_inum;
2700 int err;
2701
2702 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2703 if (IS_ERR(xent)) {
2704 err = PTR_ERR(xent);
2705 if (err == -ENOENT)
2706 break;
2707 return err;
2708 }
2709
2710 xattr_inum = le64_to_cpu(xent->inum);
2711 dbg_tnc("xent '%s', ino %lu", xent->name,
2712 (unsigned long)xattr_inum);
2713
2714 nm.name = xent->name;
2715 nm.len = le16_to_cpu(xent->nlen);
2716 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2717 if (err) {
2718 kfree(xent);
2719 return err;
2720 }
2721
2722 lowest_ino_key(c, &key1, xattr_inum);
2723 highest_ino_key(c, &key2, xattr_inum);
2724 err = ubifs_tnc_remove_range(c, &key1, &key2);
2725 if (err) {
2726 kfree(xent);
2727 return err;
2728 }
2729
2730 kfree(pxent);
2731 pxent = xent;
2732 key_read(c, &xent->key, &key1);
2733 }
2734
2735 kfree(pxent);
2736 lowest_ino_key(c, &key1, inum);
2737 highest_ino_key(c, &key2, inum);
2738
2739 return ubifs_tnc_remove_range(c, &key1, &key2);
2740 }
2741
2742 /**
2743 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2744 * @c: UBIFS file-system description object
2745 * @key: key of last entry
2746 * @nm: name of last entry found or %NULL
2747 *
2748 * This function finds and reads the next directory or extended attribute entry
2749 * after the given key (@key) if there is one. @nm is used to resolve
2750 * collisions.
2751 *
2752 * If the name of the current entry is not known and only the key is known,
2753 * @nm->name has to be %NULL. In this case the semantics of this function is a
2754 * little bit different and it returns the entry corresponding to this key, not
2755 * the next one. If the key was not found, the closest "right" entry is
2756 * returned.
2757 *
2758 * If the fist entry has to be found, @key has to contain the lowest possible
2759 * key value for this inode and @name has to be %NULL.
2760 *
2761 * This function returns the found directory or extended attribute entry node
2762 * in case of success, %-ENOENT is returned if no entry was found, and a
2763 * negative error code is returned in case of failure.
2764 */
ubifs_tnc_next_ent(struct ubifs_info * c,union ubifs_key * key,const struct qstr * nm)2765 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2766 union ubifs_key *key,
2767 const struct qstr *nm)
2768 {
2769 int n, err, type = key_type(c, key);
2770 struct ubifs_znode *znode;
2771 struct ubifs_dent_node *dent;
2772 struct ubifs_zbranch *zbr;
2773 union ubifs_key *dkey;
2774
2775 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2776 ubifs_assert(is_hash_key(c, key));
2777
2778 mutex_lock(&c->tnc_mutex);
2779 err = ubifs_lookup_level0(c, key, &znode, &n);
2780 if (unlikely(err < 0))
2781 goto out_unlock;
2782
2783 if (nm->name) {
2784 if (err) {
2785 /* Handle collisions */
2786 err = resolve_collision(c, key, &znode, &n, nm);
2787 dbg_tnc("rc returned %d, znode %p, n %d",
2788 err, znode, n);
2789 if (unlikely(err < 0))
2790 goto out_unlock;
2791 }
2792
2793 /* Now find next entry */
2794 err = tnc_next(c, &znode, &n);
2795 if (unlikely(err))
2796 goto out_unlock;
2797 } else {
2798 /*
2799 * The full name of the entry was not given, in which case the
2800 * behavior of this function is a little different and it
2801 * returns current entry, not the next one.
2802 */
2803 if (!err) {
2804 /*
2805 * However, the given key does not exist in the TNC
2806 * tree and @znode/@n variables contain the closest
2807 * "preceding" element. Switch to the next one.
2808 */
2809 err = tnc_next(c, &znode, &n);
2810 if (err)
2811 goto out_unlock;
2812 }
2813 }
2814
2815 zbr = &znode->zbranch[n];
2816 dent = kmalloc(zbr->len, GFP_NOFS);
2817 if (unlikely(!dent)) {
2818 err = -ENOMEM;
2819 goto out_unlock;
2820 }
2821
2822 /*
2823 * The above 'tnc_next()' call could lead us to the next inode, check
2824 * this.
2825 */
2826 dkey = &zbr->key;
2827 if (key_inum(c, dkey) != key_inum(c, key) ||
2828 key_type(c, dkey) != type) {
2829 err = -ENOENT;
2830 goto out_free;
2831 }
2832
2833 err = tnc_read_node_nm(c, zbr, dent);
2834 if (unlikely(err))
2835 goto out_free;
2836
2837 mutex_unlock(&c->tnc_mutex);
2838 return dent;
2839
2840 out_free:
2841 kfree(dent);
2842 out_unlock:
2843 mutex_unlock(&c->tnc_mutex);
2844 return ERR_PTR(err);
2845 }
2846
2847 /**
2848 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2849 * @c: UBIFS file-system description object
2850 *
2851 * Destroy left-over obsolete znodes from a failed commit.
2852 */
tnc_destroy_cnext(struct ubifs_info * c)2853 static void tnc_destroy_cnext(struct ubifs_info *c)
2854 {
2855 struct ubifs_znode *cnext;
2856
2857 if (!c->cnext)
2858 return;
2859 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2860 cnext = c->cnext;
2861 do {
2862 struct ubifs_znode *znode = cnext;
2863
2864 cnext = cnext->cnext;
2865 if (ubifs_zn_obsolete(znode))
2866 kfree(znode);
2867 } while (cnext && cnext != c->cnext);
2868 }
2869
2870 /**
2871 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2872 * @c: UBIFS file-system description object
2873 */
ubifs_tnc_close(struct ubifs_info * c)2874 void ubifs_tnc_close(struct ubifs_info *c)
2875 {
2876 tnc_destroy_cnext(c);
2877 if (c->zroot.znode) {
2878 long n;
2879
2880 ubifs_destroy_tnc_subtree(c->zroot.znode);
2881 n = atomic_long_read(&c->clean_zn_cnt);
2882 atomic_long_sub(n, &ubifs_clean_zn_cnt);
2883 }
2884 kfree(c->gap_lebs);
2885 kfree(c->ilebs);
2886 destroy_old_idx(c);
2887 }
2888
2889 /**
2890 * left_znode - get the znode to the left.
2891 * @c: UBIFS file-system description object
2892 * @znode: znode
2893 *
2894 * This function returns a pointer to the znode to the left of @znode or NULL if
2895 * there is not one. A negative error code is returned on failure.
2896 */
left_znode(struct ubifs_info * c,struct ubifs_znode * znode)2897 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2898 struct ubifs_znode *znode)
2899 {
2900 int level = znode->level;
2901
2902 while (1) {
2903 int n = znode->iip - 1;
2904
2905 /* Go up until we can go left */
2906 znode = znode->parent;
2907 if (!znode)
2908 return NULL;
2909 if (n >= 0) {
2910 /* Now go down the rightmost branch to 'level' */
2911 znode = get_znode(c, znode, n);
2912 if (IS_ERR(znode))
2913 return znode;
2914 while (znode->level != level) {
2915 n = znode->child_cnt - 1;
2916 znode = get_znode(c, znode, n);
2917 if (IS_ERR(znode))
2918 return znode;
2919 }
2920 break;
2921 }
2922 }
2923 return znode;
2924 }
2925
2926 /**
2927 * right_znode - get the znode to the right.
2928 * @c: UBIFS file-system description object
2929 * @znode: znode
2930 *
2931 * This function returns a pointer to the znode to the right of @znode or NULL
2932 * if there is not one. A negative error code is returned on failure.
2933 */
right_znode(struct ubifs_info * c,struct ubifs_znode * znode)2934 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2935 struct ubifs_znode *znode)
2936 {
2937 int level = znode->level;
2938
2939 while (1) {
2940 int n = znode->iip + 1;
2941
2942 /* Go up until we can go right */
2943 znode = znode->parent;
2944 if (!znode)
2945 return NULL;
2946 if (n < znode->child_cnt) {
2947 /* Now go down the leftmost branch to 'level' */
2948 znode = get_znode(c, znode, n);
2949 if (IS_ERR(znode))
2950 return znode;
2951 while (znode->level != level) {
2952 znode = get_znode(c, znode, 0);
2953 if (IS_ERR(znode))
2954 return znode;
2955 }
2956 break;
2957 }
2958 }
2959 return znode;
2960 }
2961
2962 /**
2963 * lookup_znode - find a particular indexing node from TNC.
2964 * @c: UBIFS file-system description object
2965 * @key: index node key to lookup
2966 * @level: index node level
2967 * @lnum: index node LEB number
2968 * @offs: index node offset
2969 *
2970 * This function searches an indexing node by its first key @key and its
2971 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2972 * nodes it traverses to TNC. This function is called for indexing nodes which
2973 * were found on the media by scanning, for example when garbage-collecting or
2974 * when doing in-the-gaps commit. This means that the indexing node which is
2975 * looked for does not have to have exactly the same leftmost key @key, because
2976 * the leftmost key may have been changed, in which case TNC will contain a
2977 * dirty znode which still refers the same @lnum:@offs. This function is clever
2978 * enough to recognize such indexing nodes.
2979 *
2980 * Note, if a znode was deleted or changed too much, then this function will
2981 * not find it. For situations like this UBIFS has the old index RB-tree
2982 * (indexed by @lnum:@offs).
2983 *
2984 * This function returns a pointer to the znode found or %NULL if it is not
2985 * found. A negative error code is returned on failure.
2986 */
lookup_znode(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)2987 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2988 union ubifs_key *key, int level,
2989 int lnum, int offs)
2990 {
2991 struct ubifs_znode *znode, *zn;
2992 int n, nn;
2993
2994 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2995
2996 /*
2997 * The arguments have probably been read off flash, so don't assume
2998 * they are valid.
2999 */
3000 if (level < 0)
3001 return ERR_PTR(-EINVAL);
3002
3003 /* Get the root znode */
3004 znode = c->zroot.znode;
3005 if (!znode) {
3006 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3007 if (IS_ERR(znode))
3008 return znode;
3009 }
3010 /* Check if it is the one we are looking for */
3011 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3012 return znode;
3013 /* Descend to the parent level i.e. (level + 1) */
3014 if (level >= znode->level)
3015 return NULL;
3016 while (1) {
3017 ubifs_search_zbranch(c, znode, key, &n);
3018 if (n < 0) {
3019 /*
3020 * We reached a znode where the leftmost key is greater
3021 * than the key we are searching for. This is the same
3022 * situation as the one described in a huge comment at
3023 * the end of the 'ubifs_lookup_level0()' function. And
3024 * for exactly the same reasons we have to try to look
3025 * left before giving up.
3026 */
3027 znode = left_znode(c, znode);
3028 if (!znode)
3029 return NULL;
3030 if (IS_ERR(znode))
3031 return znode;
3032 ubifs_search_zbranch(c, znode, key, &n);
3033 ubifs_assert(n >= 0);
3034 }
3035 if (znode->level == level + 1)
3036 break;
3037 znode = get_znode(c, znode, n);
3038 if (IS_ERR(znode))
3039 return znode;
3040 }
3041 /* Check if the child is the one we are looking for */
3042 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3043 return get_znode(c, znode, n);
3044 /* If the key is unique, there is nowhere else to look */
3045 if (!is_hash_key(c, key))
3046 return NULL;
3047 /*
3048 * The key is not unique and so may be also in the znodes to either
3049 * side.
3050 */
3051 zn = znode;
3052 nn = n;
3053 /* Look left */
3054 while (1) {
3055 /* Move one branch to the left */
3056 if (n)
3057 n -= 1;
3058 else {
3059 znode = left_znode(c, znode);
3060 if (!znode)
3061 break;
3062 if (IS_ERR(znode))
3063 return znode;
3064 n = znode->child_cnt - 1;
3065 }
3066 /* Check it */
3067 if (znode->zbranch[n].lnum == lnum &&
3068 znode->zbranch[n].offs == offs)
3069 return get_znode(c, znode, n);
3070 /* Stop if the key is less than the one we are looking for */
3071 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3072 break;
3073 }
3074 /* Back to the middle */
3075 znode = zn;
3076 n = nn;
3077 /* Look right */
3078 while (1) {
3079 /* Move one branch to the right */
3080 if (++n >= znode->child_cnt) {
3081 znode = right_znode(c, znode);
3082 if (!znode)
3083 break;
3084 if (IS_ERR(znode))
3085 return znode;
3086 n = 0;
3087 }
3088 /* Check it */
3089 if (znode->zbranch[n].lnum == lnum &&
3090 znode->zbranch[n].offs == offs)
3091 return get_znode(c, znode, n);
3092 /* Stop if the key is greater than the one we are looking for */
3093 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3094 break;
3095 }
3096 return NULL;
3097 }
3098
3099 /**
3100 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3101 * @c: UBIFS file-system description object
3102 * @key: key of index node
3103 * @level: index node level
3104 * @lnum: LEB number of index node
3105 * @offs: offset of index node
3106 *
3107 * This function returns %0 if the index node is not referred to in the TNC, %1
3108 * if the index node is referred to in the TNC and the corresponding znode is
3109 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3110 * znode is clean, and a negative error code in case of failure.
3111 *
3112 * Note, the @key argument has to be the key of the first child. Also note,
3113 * this function relies on the fact that 0:0 is never a valid LEB number and
3114 * offset for a main-area node.
3115 */
is_idx_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3116 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3117 int lnum, int offs)
3118 {
3119 struct ubifs_znode *znode;
3120
3121 znode = lookup_znode(c, key, level, lnum, offs);
3122 if (!znode)
3123 return 0;
3124 if (IS_ERR(znode))
3125 return PTR_ERR(znode);
3126
3127 return ubifs_zn_dirty(znode) ? 1 : 2;
3128 }
3129
3130 /**
3131 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3132 * @c: UBIFS file-system description object
3133 * @key: node key
3134 * @lnum: node LEB number
3135 * @offs: node offset
3136 *
3137 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3138 * not, and a negative error code in case of failure.
3139 *
3140 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3141 * and offset for a main-area node.
3142 */
is_leaf_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int lnum,int offs)3143 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3144 int lnum, int offs)
3145 {
3146 struct ubifs_zbranch *zbr;
3147 struct ubifs_znode *znode, *zn;
3148 int n, found, err, nn;
3149 const int unique = !is_hash_key(c, key);
3150
3151 found = ubifs_lookup_level0(c, key, &znode, &n);
3152 if (found < 0)
3153 return found; /* Error code */
3154 if (!found)
3155 return 0;
3156 zbr = &znode->zbranch[n];
3157 if (lnum == zbr->lnum && offs == zbr->offs)
3158 return 1; /* Found it */
3159 if (unique)
3160 return 0;
3161 /*
3162 * Because the key is not unique, we have to look left
3163 * and right as well
3164 */
3165 zn = znode;
3166 nn = n;
3167 /* Look left */
3168 while (1) {
3169 err = tnc_prev(c, &znode, &n);
3170 if (err == -ENOENT)
3171 break;
3172 if (err)
3173 return err;
3174 if (keys_cmp(c, key, &znode->zbranch[n].key))
3175 break;
3176 zbr = &znode->zbranch[n];
3177 if (lnum == zbr->lnum && offs == zbr->offs)
3178 return 1; /* Found it */
3179 }
3180 /* Look right */
3181 znode = zn;
3182 n = nn;
3183 while (1) {
3184 err = tnc_next(c, &znode, &n);
3185 if (err) {
3186 if (err == -ENOENT)
3187 return 0;
3188 return err;
3189 }
3190 if (keys_cmp(c, key, &znode->zbranch[n].key))
3191 break;
3192 zbr = &znode->zbranch[n];
3193 if (lnum == zbr->lnum && offs == zbr->offs)
3194 return 1; /* Found it */
3195 }
3196 return 0;
3197 }
3198
3199 /**
3200 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3201 * @c: UBIFS file-system description object
3202 * @key: node key
3203 * @level: index node level (if it is an index node)
3204 * @lnum: node LEB number
3205 * @offs: node offset
3206 * @is_idx: non-zero if the node is an index node
3207 *
3208 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3209 * negative error code in case of failure. For index nodes, @key has to be the
3210 * key of the first child. An index node is considered to be in the TNC only if
3211 * the corresponding znode is clean or has not been loaded.
3212 */
ubifs_tnc_has_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs,int is_idx)3213 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3214 int lnum, int offs, int is_idx)
3215 {
3216 int err;
3217
3218 mutex_lock(&c->tnc_mutex);
3219 if (is_idx) {
3220 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3221 if (err < 0)
3222 goto out_unlock;
3223 if (err == 1)
3224 /* The index node was found but it was dirty */
3225 err = 0;
3226 else if (err == 2)
3227 /* The index node was found and it was clean */
3228 err = 1;
3229 else
3230 BUG_ON(err != 0);
3231 } else
3232 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3233
3234 out_unlock:
3235 mutex_unlock(&c->tnc_mutex);
3236 return err;
3237 }
3238
3239 /**
3240 * ubifs_dirty_idx_node - dirty an index node.
3241 * @c: UBIFS file-system description object
3242 * @key: index node key
3243 * @level: index node level
3244 * @lnum: index node LEB number
3245 * @offs: index node offset
3246 *
3247 * This function loads and dirties an index node so that it can be garbage
3248 * collected. The @key argument has to be the key of the first child. This
3249 * function relies on the fact that 0:0 is never a valid LEB number and offset
3250 * for a main-area node. Returns %0 on success and a negative error code on
3251 * failure.
3252 */
ubifs_dirty_idx_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3253 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3254 int lnum, int offs)
3255 {
3256 struct ubifs_znode *znode;
3257 int err = 0;
3258
3259 mutex_lock(&c->tnc_mutex);
3260 znode = lookup_znode(c, key, level, lnum, offs);
3261 if (!znode)
3262 goto out_unlock;
3263 if (IS_ERR(znode)) {
3264 err = PTR_ERR(znode);
3265 goto out_unlock;
3266 }
3267 znode = dirty_cow_bottom_up(c, znode);
3268 if (IS_ERR(znode)) {
3269 err = PTR_ERR(znode);
3270 goto out_unlock;
3271 }
3272
3273 out_unlock:
3274 mutex_unlock(&c->tnc_mutex);
3275 return err;
3276 }
3277
3278 #ifdef CONFIG_UBIFS_FS_DEBUG
3279
3280 /**
3281 * dbg_check_inode_size - check if inode size is correct.
3282 * @c: UBIFS file-system description object
3283 * @inum: inode number
3284 * @size: inode size
3285 *
3286 * This function makes sure that the inode size (@size) is correct and it does
3287 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3288 * if it has a data page beyond @size, and other negative error code in case of
3289 * other errors.
3290 */
dbg_check_inode_size(struct ubifs_info * c,const struct inode * inode,loff_t size)3291 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3292 loff_t size)
3293 {
3294 int err, n;
3295 union ubifs_key from_key, to_key, *key;
3296 struct ubifs_znode *znode;
3297 unsigned int block;
3298
3299 if (!S_ISREG(inode->i_mode))
3300 return 0;
3301 if (!dbg_is_chk_gen(c))
3302 return 0;
3303
3304 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3305 data_key_init(c, &from_key, inode->i_ino, block);
3306 highest_data_key(c, &to_key, inode->i_ino);
3307
3308 mutex_lock(&c->tnc_mutex);
3309 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3310 if (err < 0)
3311 goto out_unlock;
3312
3313 if (err) {
3314 err = -EINVAL;
3315 key = &from_key;
3316 goto out_dump;
3317 }
3318
3319 err = tnc_next(c, &znode, &n);
3320 if (err == -ENOENT) {
3321 err = 0;
3322 goto out_unlock;
3323 }
3324 if (err < 0)
3325 goto out_unlock;
3326
3327 ubifs_assert(err == 0);
3328 key = &znode->zbranch[n].key;
3329 if (!key_in_range(c, key, &from_key, &to_key))
3330 goto out_unlock;
3331
3332 out_dump:
3333 block = key_block(c, key);
3334 ubifs_err("inode %lu has size %lld, but there are data at offset %lld",
3335 (unsigned long)inode->i_ino, size,
3336 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3337 mutex_unlock(&c->tnc_mutex);
3338 dbg_dump_inode(c, inode);
3339 dbg_dump_stack();
3340 return -EINVAL;
3341
3342 out_unlock:
3343 mutex_unlock(&c->tnc_mutex);
3344 return err;
3345 }
3346
3347 #endif /* CONFIG_UBIFS_FS_DEBUG */
3348