1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 /*
38  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
39  * @NAME_LESS: name corresponding to the first argument is less than second
40  * @NAME_MATCHES: names match
41  * @NAME_GREATER: name corresponding to the second argument is greater than
42  *                first
43  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
44  *
45  * These constants were introduce to improve readability.
46  */
47 enum {
48 	NAME_LESS    = 0,
49 	NAME_MATCHES = 1,
50 	NAME_GREATER = 2,
51 	NOT_ON_MEDIA = 3,
52 };
53 
54 /**
55  * insert_old_idx - record an index node obsoleted since the last commit start.
56  * @c: UBIFS file-system description object
57  * @lnum: LEB number of obsoleted index node
58  * @offs: offset of obsoleted index node
59  *
60  * Returns %0 on success, and a negative error code on failure.
61  *
62  * For recovery, there must always be a complete intact version of the index on
63  * flash at all times. That is called the "old index". It is the index as at the
64  * time of the last successful commit. Many of the index nodes in the old index
65  * may be dirty, but they must not be erased until the next successful commit
66  * (at which point that index becomes the old index).
67  *
68  * That means that the garbage collection and the in-the-gaps method of
69  * committing must be able to determine if an index node is in the old index.
70  * Most of the old index nodes can be found by looking up the TNC using the
71  * 'lookup_znode()' function. However, some of the old index nodes may have
72  * been deleted from the current index or may have been changed so much that
73  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
74  * That is what this function does. The RB-tree is ordered by LEB number and
75  * offset because they uniquely identify the old index node.
76  */
insert_old_idx(struct ubifs_info * c,int lnum,int offs)77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
78 {
79 	struct ubifs_old_idx *old_idx, *o;
80 	struct rb_node **p, *parent = NULL;
81 
82 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
83 	if (unlikely(!old_idx))
84 		return -ENOMEM;
85 	old_idx->lnum = lnum;
86 	old_idx->offs = offs;
87 
88 	p = &c->old_idx.rb_node;
89 	while (*p) {
90 		parent = *p;
91 		o = rb_entry(parent, struct ubifs_old_idx, rb);
92 		if (lnum < o->lnum)
93 			p = &(*p)->rb_left;
94 		else if (lnum > o->lnum)
95 			p = &(*p)->rb_right;
96 		else if (offs < o->offs)
97 			p = &(*p)->rb_left;
98 		else if (offs > o->offs)
99 			p = &(*p)->rb_right;
100 		else {
101 			ubifs_err("old idx added twice!");
102 			kfree(old_idx);
103 			return 0;
104 		}
105 	}
106 	rb_link_node(&old_idx->rb, parent, p);
107 	rb_insert_color(&old_idx->rb, &c->old_idx);
108 	return 0;
109 }
110 
111 /**
112  * insert_old_idx_znode - record a znode obsoleted since last commit start.
113  * @c: UBIFS file-system description object
114  * @znode: znode of obsoleted index node
115  *
116  * Returns %0 on success, and a negative error code on failure.
117  */
insert_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
119 {
120 	if (znode->parent) {
121 		struct ubifs_zbranch *zbr;
122 
123 		zbr = &znode->parent->zbranch[znode->iip];
124 		if (zbr->len)
125 			return insert_old_idx(c, zbr->lnum, zbr->offs);
126 	} else
127 		if (c->zroot.len)
128 			return insert_old_idx(c, c->zroot.lnum,
129 					      c->zroot.offs);
130 	return 0;
131 }
132 
133 /**
134  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135  * @c: UBIFS file-system description object
136  * @znode: znode of obsoleted index node
137  *
138  * Returns %0 on success, and a negative error code on failure.
139  */
ins_clr_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)140 static int ins_clr_old_idx_znode(struct ubifs_info *c,
141 				 struct ubifs_znode *znode)
142 {
143 	int err;
144 
145 	if (znode->parent) {
146 		struct ubifs_zbranch *zbr;
147 
148 		zbr = &znode->parent->zbranch[znode->iip];
149 		if (zbr->len) {
150 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
151 			if (err)
152 				return err;
153 			zbr->lnum = 0;
154 			zbr->offs = 0;
155 			zbr->len = 0;
156 		}
157 	} else
158 		if (c->zroot.len) {
159 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
160 			if (err)
161 				return err;
162 			c->zroot.lnum = 0;
163 			c->zroot.offs = 0;
164 			c->zroot.len = 0;
165 		}
166 	return 0;
167 }
168 
169 /**
170  * destroy_old_idx - destroy the old_idx RB-tree.
171  * @c: UBIFS file-system description object
172  *
173  * During start commit, the old_idx RB-tree is used to avoid overwriting index
174  * nodes that were in the index last commit but have since been deleted.  This
175  * is necessary for recovery i.e. the old index must be kept intact until the
176  * new index is successfully written.  The old-idx RB-tree is used for the
177  * in-the-gaps method of writing index nodes and is destroyed every commit.
178  */
destroy_old_idx(struct ubifs_info * c)179 void destroy_old_idx(struct ubifs_info *c)
180 {
181 	struct rb_node *this = c->old_idx.rb_node;
182 	struct ubifs_old_idx *old_idx;
183 
184 	while (this) {
185 		if (this->rb_left) {
186 			this = this->rb_left;
187 			continue;
188 		} else if (this->rb_right) {
189 			this = this->rb_right;
190 			continue;
191 		}
192 		old_idx = rb_entry(this, struct ubifs_old_idx, rb);
193 		this = rb_parent(this);
194 		if (this) {
195 			if (this->rb_left == &old_idx->rb)
196 				this->rb_left = NULL;
197 			else
198 				this->rb_right = NULL;
199 		}
200 		kfree(old_idx);
201 	}
202 	c->old_idx = RB_ROOT;
203 }
204 
205 /**
206  * copy_znode - copy a dirty znode.
207  * @c: UBIFS file-system description object
208  * @znode: znode to copy
209  *
210  * A dirty znode being committed may not be changed, so it is copied.
211  */
copy_znode(struct ubifs_info * c,struct ubifs_znode * znode)212 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
213 				      struct ubifs_znode *znode)
214 {
215 	struct ubifs_znode *zn;
216 
217 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
218 	if (unlikely(!zn))
219 		return ERR_PTR(-ENOMEM);
220 
221 	memcpy(zn, znode, c->max_znode_sz);
222 	zn->cnext = NULL;
223 	__set_bit(DIRTY_ZNODE, &zn->flags);
224 	__clear_bit(COW_ZNODE, &zn->flags);
225 
226 	ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
227 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
228 
229 	if (znode->level != 0) {
230 		int i;
231 		const int n = zn->child_cnt;
232 
233 		/* The children now have new parent */
234 		for (i = 0; i < n; i++) {
235 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
236 
237 			if (zbr->znode)
238 				zbr->znode->parent = zn;
239 		}
240 	}
241 
242 	atomic_long_inc(&c->dirty_zn_cnt);
243 	return zn;
244 }
245 
246 /**
247  * add_idx_dirt - add dirt due to a dirty znode.
248  * @c: UBIFS file-system description object
249  * @lnum: LEB number of index node
250  * @dirt: size of index node
251  *
252  * This function updates lprops dirty space and the new size of the index.
253  */
add_idx_dirt(struct ubifs_info * c,int lnum,int dirt)254 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
255 {
256 	c->calc_idx_sz -= ALIGN(dirt, 8);
257 	return ubifs_add_dirt(c, lnum, dirt);
258 }
259 
260 /**
261  * dirty_cow_znode - ensure a znode is not being committed.
262  * @c: UBIFS file-system description object
263  * @zbr: branch of znode to check
264  *
265  * Returns dirtied znode on success or negative error code on failure.
266  */
dirty_cow_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)267 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
268 					   struct ubifs_zbranch *zbr)
269 {
270 	struct ubifs_znode *znode = zbr->znode;
271 	struct ubifs_znode *zn;
272 	int err;
273 
274 	if (!test_bit(COW_ZNODE, &znode->flags)) {
275 		/* znode is not being committed */
276 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
277 			atomic_long_inc(&c->dirty_zn_cnt);
278 			atomic_long_dec(&c->clean_zn_cnt);
279 			atomic_long_dec(&ubifs_clean_zn_cnt);
280 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
281 			if (unlikely(err))
282 				return ERR_PTR(err);
283 		}
284 		return znode;
285 	}
286 
287 	zn = copy_znode(c, znode);
288 	if (IS_ERR(zn))
289 		return zn;
290 
291 	if (zbr->len) {
292 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
293 		if (unlikely(err))
294 			return ERR_PTR(err);
295 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
296 	} else
297 		err = 0;
298 
299 	zbr->znode = zn;
300 	zbr->lnum = 0;
301 	zbr->offs = 0;
302 	zbr->len = 0;
303 
304 	if (unlikely(err))
305 		return ERR_PTR(err);
306 	return zn;
307 }
308 
309 /**
310  * lnc_add - add a leaf node to the leaf node cache.
311  * @c: UBIFS file-system description object
312  * @zbr: zbranch of leaf node
313  * @node: leaf node
314  *
315  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
316  * purpose of the leaf node cache is to save re-reading the same leaf node over
317  * and over again. Most things are cached by VFS, however the file system must
318  * cache directory entries for readdir and for resolving hash collisions. The
319  * present implementation of the leaf node cache is extremely simple, and
320  * allows for error returns that are not used but that may be needed if a more
321  * complex implementation is created.
322  *
323  * Note, this function does not add the @node object to LNC directly, but
324  * allocates a copy of the object and adds the copy to LNC. The reason for this
325  * is that @node has been allocated outside of the TNC subsystem and will be
326  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
327  * may be changed at any time, e.g. freed by the shrinker.
328  */
lnc_add(struct ubifs_info * c,struct ubifs_zbranch * zbr,const void * node)329 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
330 		   const void *node)
331 {
332 	int err;
333 	void *lnc_node;
334 	const struct ubifs_dent_node *dent = node;
335 
336 	ubifs_assert(!zbr->leaf);
337 	ubifs_assert(zbr->len != 0);
338 	ubifs_assert(is_hash_key(c, &zbr->key));
339 
340 	err = ubifs_validate_entry(c, dent);
341 	if (err) {
342 		dbg_dump_stack();
343 		dbg_dump_node(c, dent);
344 		return err;
345 	}
346 
347 	lnc_node = kmalloc(zbr->len, GFP_NOFS);
348 	if (!lnc_node)
349 		/* We don't have to have the cache, so no error */
350 		return 0;
351 
352 	memcpy(lnc_node, node, zbr->len);
353 	zbr->leaf = lnc_node;
354 	return 0;
355 }
356 
357  /**
358  * lnc_add_directly - add a leaf node to the leaf-node-cache.
359  * @c: UBIFS file-system description object
360  * @zbr: zbranch of leaf node
361  * @node: leaf node
362  *
363  * This function is similar to 'lnc_add()', but it does not create a copy of
364  * @node but inserts @node to TNC directly.
365  */
lnc_add_directly(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)366 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
367 			    void *node)
368 {
369 	int err;
370 
371 	ubifs_assert(!zbr->leaf);
372 	ubifs_assert(zbr->len != 0);
373 
374 	err = ubifs_validate_entry(c, node);
375 	if (err) {
376 		dbg_dump_stack();
377 		dbg_dump_node(c, node);
378 		return err;
379 	}
380 
381 	zbr->leaf = node;
382 	return 0;
383 }
384 
385 /**
386  * lnc_free - remove a leaf node from the leaf node cache.
387  * @zbr: zbranch of leaf node
388  * @node: leaf node
389  */
lnc_free(struct ubifs_zbranch * zbr)390 static void lnc_free(struct ubifs_zbranch *zbr)
391 {
392 	if (!zbr->leaf)
393 		return;
394 	kfree(zbr->leaf);
395 	zbr->leaf = NULL;
396 }
397 
398 /**
399  * tnc_read_node_nm - read a "hashed" leaf node.
400  * @c: UBIFS file-system description object
401  * @zbr: key and position of the node
402  * @node: node is returned here
403  *
404  * This function reads a "hashed" node defined by @zbr from the leaf node cache
405  * (in it is there) or from the hash media, in which case the node is also
406  * added to LNC. Returns zero in case of success or a negative negative error
407  * code in case of failure.
408  */
tnc_read_node_nm(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)409 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
410 			    void *node)
411 {
412 	int err;
413 
414 	ubifs_assert(is_hash_key(c, &zbr->key));
415 
416 	if (zbr->leaf) {
417 		/* Read from the leaf node cache */
418 		ubifs_assert(zbr->len != 0);
419 		memcpy(node, zbr->leaf, zbr->len);
420 		return 0;
421 	}
422 
423 	err = ubifs_tnc_read_node(c, zbr, node);
424 	if (err)
425 		return err;
426 
427 	/* Add the node to the leaf node cache */
428 	err = lnc_add(c, zbr, node);
429 	return err;
430 }
431 
432 /**
433  * try_read_node - read a node if it is a node.
434  * @c: UBIFS file-system description object
435  * @buf: buffer to read to
436  * @type: node type
437  * @len: node length (not aligned)
438  * @lnum: LEB number of node to read
439  * @offs: offset of node to read
440  *
441  * This function tries to read a node of known type and length, checks it and
442  * stores it in @buf. This function returns %1 if a node is present and %0 if
443  * a node is not present. A negative error code is returned for I/O errors.
444  * This function performs that same function as ubifs_read_node except that
445  * it does not require that there is actually a node present and instead
446  * the return code indicates if a node was read.
447  *
448  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
449  * is true (it is controlled by corresponding mount option). However, if
450  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
451  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
452  * because during mounting or re-mounting from R/O mode to R/W mode we may read
453  * journal nodes (when replying the journal or doing the recovery) and the
454  * journal nodes may potentially be corrupted, so checking is required.
455  */
try_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)456 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
457 			 int len, int lnum, int offs)
458 {
459 	int err, node_len;
460 	struct ubifs_ch *ch = buf;
461 	uint32_t crc, node_crc;
462 
463 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
464 
465 	err = ubi_read(c->ubi, lnum, buf, offs, len);
466 	if (err) {
467 		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
468 			  type, lnum, offs, err);
469 		return err;
470 	}
471 
472 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
473 		return 0;
474 
475 	if (ch->node_type != type)
476 		return 0;
477 
478 	node_len = le32_to_cpu(ch->len);
479 	if (node_len != len)
480 		return 0;
481 
482 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
483 	    !c->remounting_rw)
484 		return 1;
485 
486 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
487 	node_crc = le32_to_cpu(ch->crc);
488 	if (crc != node_crc)
489 		return 0;
490 
491 	return 1;
492 }
493 
494 /**
495  * fallible_read_node - try to read a leaf node.
496  * @c: UBIFS file-system description object
497  * @key:  key of node to read
498  * @zbr:  position of node
499  * @node: node returned
500  *
501  * This function tries to read a node and returns %1 if the node is read, %0
502  * if the node is not present, and a negative error code in the case of error.
503  */
fallible_read_node(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_zbranch * zbr,void * node)504 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
505 			      struct ubifs_zbranch *zbr, void *node)
506 {
507 	int ret;
508 
509 	dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
510 
511 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
512 			    zbr->offs);
513 	if (ret == 1) {
514 		union ubifs_key node_key;
515 		struct ubifs_dent_node *dent = node;
516 
517 		/* All nodes have key in the same place */
518 		key_read(c, &dent->key, &node_key);
519 		if (keys_cmp(c, key, &node_key) != 0)
520 			ret = 0;
521 	}
522 	if (ret == 0 && c->replaying)
523 		dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
524 			zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
525 	return ret;
526 }
527 
528 /**
529  * matches_name - determine if a direntry or xattr entry matches a given name.
530  * @c: UBIFS file-system description object
531  * @zbr: zbranch of dent
532  * @nm: name to match
533  *
534  * This function checks if xentry/direntry referred by zbranch @zbr matches name
535  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
536  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
537  * of failure, a negative error code is returned.
538  */
matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct qstr * nm)539 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
540 			const struct qstr *nm)
541 {
542 	struct ubifs_dent_node *dent;
543 	int nlen, err;
544 
545 	/* If possible, match against the dent in the leaf node cache */
546 	if (!zbr->leaf) {
547 		dent = kmalloc(zbr->len, GFP_NOFS);
548 		if (!dent)
549 			return -ENOMEM;
550 
551 		err = ubifs_tnc_read_node(c, zbr, dent);
552 		if (err)
553 			goto out_free;
554 
555 		/* Add the node to the leaf node cache */
556 		err = lnc_add_directly(c, zbr, dent);
557 		if (err)
558 			goto out_free;
559 	} else
560 		dent = zbr->leaf;
561 
562 	nlen = le16_to_cpu(dent->nlen);
563 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
564 	if (err == 0) {
565 		if (nlen == nm->len)
566 			return NAME_MATCHES;
567 		else if (nlen < nm->len)
568 			return NAME_LESS;
569 		else
570 			return NAME_GREATER;
571 	} else if (err < 0)
572 		return NAME_LESS;
573 	else
574 		return NAME_GREATER;
575 
576 out_free:
577 	kfree(dent);
578 	return err;
579 }
580 
581 /**
582  * get_znode - get a TNC znode that may not be loaded yet.
583  * @c: UBIFS file-system description object
584  * @znode: parent znode
585  * @n: znode branch slot number
586  *
587  * This function returns the znode or a negative error code.
588  */
get_znode(struct ubifs_info * c,struct ubifs_znode * znode,int n)589 static struct ubifs_znode *get_znode(struct ubifs_info *c,
590 				     struct ubifs_znode *znode, int n)
591 {
592 	struct ubifs_zbranch *zbr;
593 
594 	zbr = &znode->zbranch[n];
595 	if (zbr->znode)
596 		znode = zbr->znode;
597 	else
598 		znode = ubifs_load_znode(c, zbr, znode, n);
599 	return znode;
600 }
601 
602 /**
603  * tnc_next - find next TNC entry.
604  * @c: UBIFS file-system description object
605  * @zn: znode is passed and returned here
606  * @n: znode branch slot number is passed and returned here
607  *
608  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
609  * no next entry, or a negative error code otherwise.
610  */
tnc_next(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)611 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
612 {
613 	struct ubifs_znode *znode = *zn;
614 	int nn = *n;
615 
616 	nn += 1;
617 	if (nn < znode->child_cnt) {
618 		*n = nn;
619 		return 0;
620 	}
621 	while (1) {
622 		struct ubifs_znode *zp;
623 
624 		zp = znode->parent;
625 		if (!zp)
626 			return -ENOENT;
627 		nn = znode->iip + 1;
628 		znode = zp;
629 		if (nn < znode->child_cnt) {
630 			znode = get_znode(c, znode, nn);
631 			if (IS_ERR(znode))
632 				return PTR_ERR(znode);
633 			while (znode->level != 0) {
634 				znode = get_znode(c, znode, 0);
635 				if (IS_ERR(znode))
636 					return PTR_ERR(znode);
637 			}
638 			nn = 0;
639 			break;
640 		}
641 	}
642 	*zn = znode;
643 	*n = nn;
644 	return 0;
645 }
646 
647 /**
648  * tnc_prev - find previous TNC entry.
649  * @c: UBIFS file-system description object
650  * @zn: znode is returned here
651  * @n: znode branch slot number is passed and returned here
652  *
653  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
654  * there is no next entry, or a negative error code otherwise.
655  */
tnc_prev(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)656 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
657 {
658 	struct ubifs_znode *znode = *zn;
659 	int nn = *n;
660 
661 	if (nn > 0) {
662 		*n = nn - 1;
663 		return 0;
664 	}
665 	while (1) {
666 		struct ubifs_znode *zp;
667 
668 		zp = znode->parent;
669 		if (!zp)
670 			return -ENOENT;
671 		nn = znode->iip - 1;
672 		znode = zp;
673 		if (nn >= 0) {
674 			znode = get_znode(c, znode, nn);
675 			if (IS_ERR(znode))
676 				return PTR_ERR(znode);
677 			while (znode->level != 0) {
678 				nn = znode->child_cnt - 1;
679 				znode = get_znode(c, znode, nn);
680 				if (IS_ERR(znode))
681 					return PTR_ERR(znode);
682 			}
683 			nn = znode->child_cnt - 1;
684 			break;
685 		}
686 	}
687 	*zn = znode;
688 	*n = nn;
689 	return 0;
690 }
691 
692 /**
693  * resolve_collision - resolve a collision.
694  * @c: UBIFS file-system description object
695  * @key: key of a directory or extended attribute entry
696  * @zn: znode is returned here
697  * @n: zbranch number is passed and returned here
698  * @nm: name of the entry
699  *
700  * This function is called for "hashed" keys to make sure that the found key
701  * really corresponds to the looked up node (directory or extended attribute
702  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
703  * %0 is returned if @nm is not found and @zn and @n are set to the previous
704  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
705  * This means that @n may be set to %-1 if the leftmost key in @zn is the
706  * previous one. A negative error code is returned on failures.
707  */
resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct qstr * nm)708 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
709 			     struct ubifs_znode **zn, int *n,
710 			     const struct qstr *nm)
711 {
712 	int err;
713 
714 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
715 	if (unlikely(err < 0))
716 		return err;
717 	if (err == NAME_MATCHES)
718 		return 1;
719 
720 	if (err == NAME_GREATER) {
721 		/* Look left */
722 		while (1) {
723 			err = tnc_prev(c, zn, n);
724 			if (err == -ENOENT) {
725 				ubifs_assert(*n == 0);
726 				*n = -1;
727 				return 0;
728 			}
729 			if (err < 0)
730 				return err;
731 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
732 				/*
733 				 * We have found the branch after which we would
734 				 * like to insert, but inserting in this znode
735 				 * may still be wrong. Consider the following 3
736 				 * znodes, in the case where we are resolving a
737 				 * collision with Key2.
738 				 *
739 				 *                  znode zp
740 				 *            ----------------------
741 				 * level 1     |  Key0  |  Key1  |
742 				 *            -----------------------
743 				 *                 |            |
744 				 *       znode za  |            |  znode zb
745 				 *          ------------      ------------
746 				 * level 0  |  Key0  |        |  Key2  |
747 				 *          ------------      ------------
748 				 *
749 				 * The lookup finds Key2 in znode zb. Lets say
750 				 * there is no match and the name is greater so
751 				 * we look left. When we find Key0, we end up
752 				 * here. If we return now, we will insert into
753 				 * znode za at slot n = 1.  But that is invalid
754 				 * according to the parent's keys.  Key2 must
755 				 * be inserted into znode zb.
756 				 *
757 				 * Note, this problem is not relevant for the
758 				 * case when we go right, because
759 				 * 'tnc_insert()' would correct the parent key.
760 				 */
761 				if (*n == (*zn)->child_cnt - 1) {
762 					err = tnc_next(c, zn, n);
763 					if (err) {
764 						/* Should be impossible */
765 						ubifs_assert(0);
766 						if (err == -ENOENT)
767 							err = -EINVAL;
768 						return err;
769 					}
770 					ubifs_assert(*n == 0);
771 					*n = -1;
772 				}
773 				return 0;
774 			}
775 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
776 			if (err < 0)
777 				return err;
778 			if (err == NAME_LESS)
779 				return 0;
780 			if (err == NAME_MATCHES)
781 				return 1;
782 			ubifs_assert(err == NAME_GREATER);
783 		}
784 	} else {
785 		int nn = *n;
786 		struct ubifs_znode *znode = *zn;
787 
788 		/* Look right */
789 		while (1) {
790 			err = tnc_next(c, &znode, &nn);
791 			if (err == -ENOENT)
792 				return 0;
793 			if (err < 0)
794 				return err;
795 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
796 				return 0;
797 			err = matches_name(c, &znode->zbranch[nn], nm);
798 			if (err < 0)
799 				return err;
800 			if (err == NAME_GREATER)
801 				return 0;
802 			*zn = znode;
803 			*n = nn;
804 			if (err == NAME_MATCHES)
805 				return 1;
806 			ubifs_assert(err == NAME_LESS);
807 		}
808 	}
809 }
810 
811 /**
812  * fallible_matches_name - determine if a dent matches a given name.
813  * @c: UBIFS file-system description object
814  * @zbr: zbranch of dent
815  * @nm: name to match
816  *
817  * This is a "fallible" version of 'matches_name()' function which does not
818  * panic if the direntry/xentry referred by @zbr does not exist on the media.
819  *
820  * This function checks if xentry/direntry referred by zbranch @zbr matches name
821  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
822  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
823  * if xentry/direntry referred by @zbr does not exist on the media. A negative
824  * error code is returned in case of failure.
825  */
fallible_matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct qstr * nm)826 static int fallible_matches_name(struct ubifs_info *c,
827 				 struct ubifs_zbranch *zbr,
828 				 const struct qstr *nm)
829 {
830 	struct ubifs_dent_node *dent;
831 	int nlen, err;
832 
833 	/* If possible, match against the dent in the leaf node cache */
834 	if (!zbr->leaf) {
835 		dent = kmalloc(zbr->len, GFP_NOFS);
836 		if (!dent)
837 			return -ENOMEM;
838 
839 		err = fallible_read_node(c, &zbr->key, zbr, dent);
840 		if (err < 0)
841 			goto out_free;
842 		if (err == 0) {
843 			/* The node was not present */
844 			err = NOT_ON_MEDIA;
845 			goto out_free;
846 		}
847 		ubifs_assert(err == 1);
848 
849 		err = lnc_add_directly(c, zbr, dent);
850 		if (err)
851 			goto out_free;
852 	} else
853 		dent = zbr->leaf;
854 
855 	nlen = le16_to_cpu(dent->nlen);
856 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
857 	if (err == 0) {
858 		if (nlen == nm->len)
859 			return NAME_MATCHES;
860 		else if (nlen < nm->len)
861 			return NAME_LESS;
862 		else
863 			return NAME_GREATER;
864 	} else if (err < 0)
865 		return NAME_LESS;
866 	else
867 		return NAME_GREATER;
868 
869 out_free:
870 	kfree(dent);
871 	return err;
872 }
873 
874 /**
875  * fallible_resolve_collision - resolve a collision even if nodes are missing.
876  * @c: UBIFS file-system description object
877  * @key: key
878  * @zn: znode is returned here
879  * @n: branch number is passed and returned here
880  * @nm: name of directory entry
881  * @adding: indicates caller is adding a key to the TNC
882  *
883  * This is a "fallible" version of the 'resolve_collision()' function which
884  * does not panic if one of the nodes referred to by TNC does not exist on the
885  * media. This may happen when replaying the journal if a deleted node was
886  * Garbage-collected and the commit was not done. A branch that refers to a node
887  * that is not present is called a dangling branch. The following are the return
888  * codes for this function:
889  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
890  *    branch;
891  *  o if we are @adding and @nm was not found, %0 is returned;
892  *  o if we are not @adding and @nm was not found, but a dangling branch was
893  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
894  *  o a negative error code is returned in case of failure.
895  */
fallible_resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct qstr * nm,int adding)896 static int fallible_resolve_collision(struct ubifs_info *c,
897 				      const union ubifs_key *key,
898 				      struct ubifs_znode **zn, int *n,
899 				      const struct qstr *nm, int adding)
900 {
901 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
902 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
903 
904 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
905 	if (unlikely(cmp < 0))
906 		return cmp;
907 	if (cmp == NAME_MATCHES)
908 		return 1;
909 	if (cmp == NOT_ON_MEDIA) {
910 		o_znode = znode;
911 		o_n = nn;
912 		/*
913 		 * We are unlucky and hit a dangling branch straight away.
914 		 * Now we do not really know where to go to find the needed
915 		 * branch - to the left or to the right. Well, let's try left.
916 		 */
917 		unsure = 1;
918 	} else if (!adding)
919 		unsure = 1; /* Remove a dangling branch wherever it is */
920 
921 	if (cmp == NAME_GREATER || unsure) {
922 		/* Look left */
923 		while (1) {
924 			err = tnc_prev(c, zn, n);
925 			if (err == -ENOENT) {
926 				ubifs_assert(*n == 0);
927 				*n = -1;
928 				break;
929 			}
930 			if (err < 0)
931 				return err;
932 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
933 				/* See comments in 'resolve_collision()' */
934 				if (*n == (*zn)->child_cnt - 1) {
935 					err = tnc_next(c, zn, n);
936 					if (err) {
937 						/* Should be impossible */
938 						ubifs_assert(0);
939 						if (err == -ENOENT)
940 							err = -EINVAL;
941 						return err;
942 					}
943 					ubifs_assert(*n == 0);
944 					*n = -1;
945 				}
946 				break;
947 			}
948 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
949 			if (err < 0)
950 				return err;
951 			if (err == NAME_MATCHES)
952 				return 1;
953 			if (err == NOT_ON_MEDIA) {
954 				o_znode = *zn;
955 				o_n = *n;
956 				continue;
957 			}
958 			if (!adding)
959 				continue;
960 			if (err == NAME_LESS)
961 				break;
962 			else
963 				unsure = 0;
964 		}
965 	}
966 
967 	if (cmp == NAME_LESS || unsure) {
968 		/* Look right */
969 		*zn = znode;
970 		*n = nn;
971 		while (1) {
972 			err = tnc_next(c, &znode, &nn);
973 			if (err == -ENOENT)
974 				break;
975 			if (err < 0)
976 				return err;
977 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 				break;
979 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
980 			if (err < 0)
981 				return err;
982 			if (err == NAME_GREATER)
983 				break;
984 			*zn = znode;
985 			*n = nn;
986 			if (err == NAME_MATCHES)
987 				return 1;
988 			if (err == NOT_ON_MEDIA) {
989 				o_znode = znode;
990 				o_n = nn;
991 			}
992 		}
993 	}
994 
995 	/* Never match a dangling branch when adding */
996 	if (adding || !o_znode)
997 		return 0;
998 
999 	dbg_mnt("dangling match LEB %d:%d len %d %s",
1000 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1001 		o_znode->zbranch[o_n].len, DBGKEY(key));
1002 	*zn = o_znode;
1003 	*n = o_n;
1004 	return 1;
1005 }
1006 
1007 /**
1008  * matches_position - determine if a zbranch matches a given position.
1009  * @zbr: zbranch of dent
1010  * @lnum: LEB number of dent to match
1011  * @offs: offset of dent to match
1012  *
1013  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014  */
matches_position(struct ubifs_zbranch * zbr,int lnum,int offs)1015 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016 {
1017 	if (zbr->lnum == lnum && zbr->offs == offs)
1018 		return 1;
1019 	else
1020 		return 0;
1021 }
1022 
1023 /**
1024  * resolve_collision_directly - resolve a collision directly.
1025  * @c: UBIFS file-system description object
1026  * @key: key of directory entry
1027  * @zn: znode is passed and returned here
1028  * @n: zbranch number is passed and returned here
1029  * @lnum: LEB number of dent node to match
1030  * @offs: offset of dent node to match
1031  *
1032  * This function is used for "hashed" keys to make sure the found directory or
1033  * extended attribute entry node is what was looked for. It is used when the
1034  * flash address of the right node is known (@lnum:@offs) which makes it much
1035  * easier to resolve collisions (no need to read entries and match full
1036  * names). This function returns %1 and sets @zn and @n if the collision is
1037  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038  * previous directory entry. Otherwise a negative error code is returned.
1039  */
resolve_collision_directly(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,int lnum,int offs)1040 static int resolve_collision_directly(struct ubifs_info *c,
1041 				      const union ubifs_key *key,
1042 				      struct ubifs_znode **zn, int *n,
1043 				      int lnum, int offs)
1044 {
1045 	struct ubifs_znode *znode;
1046 	int nn, err;
1047 
1048 	znode = *zn;
1049 	nn = *n;
1050 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1051 		return 1;
1052 
1053 	/* Look left */
1054 	while (1) {
1055 		err = tnc_prev(c, &znode, &nn);
1056 		if (err == -ENOENT)
1057 			break;
1058 		if (err < 0)
1059 			return err;
1060 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 			break;
1062 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063 			*zn = znode;
1064 			*n = nn;
1065 			return 1;
1066 		}
1067 	}
1068 
1069 	/* Look right */
1070 	znode = *zn;
1071 	nn = *n;
1072 	while (1) {
1073 		err = tnc_next(c, &znode, &nn);
1074 		if (err == -ENOENT)
1075 			return 0;
1076 		if (err < 0)
1077 			return err;
1078 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079 			return 0;
1080 		*zn = znode;
1081 		*n = nn;
1082 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1083 			return 1;
1084 	}
1085 }
1086 
1087 /**
1088  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089  * @c: UBIFS file-system description object
1090  * @znode: znode to dirty
1091  *
1092  * If we do not have a unique key that resides in a znode, then we cannot
1093  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094  * This function records the path back to the last dirty ancestor, and then
1095  * dirties the znodes on that path.
1096  */
dirty_cow_bottom_up(struct ubifs_info * c,struct ubifs_znode * znode)1097 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098 					       struct ubifs_znode *znode)
1099 {
1100 	struct ubifs_znode *zp;
1101 	int *path = c->bottom_up_buf, p = 0;
1102 
1103 	ubifs_assert(c->zroot.znode);
1104 	ubifs_assert(znode);
1105 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106 		kfree(c->bottom_up_buf);
1107 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1108 					   GFP_NOFS);
1109 		if (!c->bottom_up_buf)
1110 			return ERR_PTR(-ENOMEM);
1111 		path = c->bottom_up_buf;
1112 	}
1113 	if (c->zroot.znode->level) {
1114 		/* Go up until parent is dirty */
1115 		while (1) {
1116 			int n;
1117 
1118 			zp = znode->parent;
1119 			if (!zp)
1120 				break;
1121 			n = znode->iip;
1122 			ubifs_assert(p < c->zroot.znode->level);
1123 			path[p++] = n;
1124 			if (!zp->cnext && ubifs_zn_dirty(znode))
1125 				break;
1126 			znode = zp;
1127 		}
1128 	}
1129 
1130 	/* Come back down, dirtying as we go */
1131 	while (1) {
1132 		struct ubifs_zbranch *zbr;
1133 
1134 		zp = znode->parent;
1135 		if (zp) {
1136 			ubifs_assert(path[p - 1] >= 0);
1137 			ubifs_assert(path[p - 1] < zp->child_cnt);
1138 			zbr = &zp->zbranch[path[--p]];
1139 			znode = dirty_cow_znode(c, zbr);
1140 		} else {
1141 			ubifs_assert(znode == c->zroot.znode);
1142 			znode = dirty_cow_znode(c, &c->zroot);
1143 		}
1144 		if (IS_ERR(znode) || !p)
1145 			break;
1146 		ubifs_assert(path[p - 1] >= 0);
1147 		ubifs_assert(path[p - 1] < znode->child_cnt);
1148 		znode = znode->zbranch[path[p - 1]].znode;
1149 	}
1150 
1151 	return znode;
1152 }
1153 
1154 /**
1155  * ubifs_lookup_level0 - search for zero-level znode.
1156  * @c: UBIFS file-system description object
1157  * @key:  key to lookup
1158  * @zn: znode is returned here
1159  * @n: znode branch slot number is returned here
1160  *
1161  * This function looks up the TNC tree and search for zero-level znode which
1162  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1163  * cases:
1164  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1165  *     is returned and slot number of the matched branch is stored in @n;
1166  *   o not exact match, which means that zero-level znode does not contain
1167  *     @key, then %0 is returned and slot number of the closest branch is stored
1168  *     in @n;
1169  *   o @key is so small that it is even less than the lowest key of the
1170  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1171  *
1172  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173  * function reads corresponding indexing nodes and inserts them to TNC. In
1174  * case of failure, a negative error code is returned.
1175  */
ubifs_lookup_level0(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177 			struct ubifs_znode **zn, int *n)
1178 {
1179 	int err, exact;
1180 	struct ubifs_znode *znode;
1181 	unsigned long time = get_seconds();
1182 
1183 	dbg_tnc("search key %s", DBGKEY(key));
1184 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1185 
1186 	znode = c->zroot.znode;
1187 	if (unlikely(!znode)) {
1188 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1189 		if (IS_ERR(znode))
1190 			return PTR_ERR(znode);
1191 	}
1192 
1193 	znode->time = time;
1194 
1195 	while (1) {
1196 		struct ubifs_zbranch *zbr;
1197 
1198 		exact = ubifs_search_zbranch(c, znode, key, n);
1199 
1200 		if (znode->level == 0)
1201 			break;
1202 
1203 		if (*n < 0)
1204 			*n = 0;
1205 		zbr = &znode->zbranch[*n];
1206 
1207 		if (zbr->znode) {
1208 			znode->time = time;
1209 			znode = zbr->znode;
1210 			continue;
1211 		}
1212 
1213 		/* znode is not in TNC cache, load it from the media */
1214 		znode = ubifs_load_znode(c, zbr, znode, *n);
1215 		if (IS_ERR(znode))
1216 			return PTR_ERR(znode);
1217 	}
1218 
1219 	*zn = znode;
1220 	if (exact || !is_hash_key(c, key) || *n != -1) {
1221 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1222 		return exact;
1223 	}
1224 
1225 	/*
1226 	 * Here is a tricky place. We have not found the key and this is a
1227 	 * "hashed" key, which may collide. The rest of the code deals with
1228 	 * situations like this:
1229 	 *
1230 	 *                  | 3 | 5 |
1231 	 *                  /       \
1232 	 *          | 3 | 5 |      | 6 | 7 | (x)
1233 	 *
1234 	 * Or more a complex example:
1235 	 *
1236 	 *                | 1 | 5 |
1237 	 *                /       \
1238 	 *       | 1 | 3 |         | 5 | 8 |
1239 	 *              \           /
1240 	 *          | 5 | 5 |   | 6 | 7 | (x)
1241 	 *
1242 	 * In the examples, if we are looking for key "5", we may reach nodes
1243 	 * marked with "(x)". In this case what we have do is to look at the
1244 	 * left and see if there is "5" key there. If there is, we have to
1245 	 * return it.
1246 	 *
1247 	 * Note, this whole situation is possible because we allow to have
1248 	 * elements which are equivalent to the next key in the parent in the
1249 	 * children of current znode. For example, this happens if we split a
1250 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1251 	 * like this:
1252 	 *                      | 3 | 5 |
1253 	 *                       /     \
1254 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1255 	 *                              ^
1256 	 * And this becomes what is at the first "picture" after key "5" marked
1257 	 * with "^" is removed. What could be done is we could prohibit
1258 	 * splitting in the middle of the colliding sequence. Also, when
1259 	 * removing the leftmost key, we would have to correct the key of the
1260 	 * parent node, which would introduce additional complications. Namely,
1261 	 * if we changed the leftmost key of the parent znode, the garbage
1262 	 * collector would be unable to find it (GC is doing this when GC'ing
1263 	 * indexing LEBs). Although we already have an additional RB-tree where
1264 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265 	 * after the commit. But anyway, this does not look easy to implement
1266 	 * so we did not try this.
1267 	 */
1268 	err = tnc_prev(c, &znode, n);
1269 	if (err == -ENOENT) {
1270 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271 		*n = -1;
1272 		return 0;
1273 	}
1274 	if (unlikely(err < 0))
1275 		return err;
1276 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278 		*n = -1;
1279 		return 0;
1280 	}
1281 
1282 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1283 	*zn = znode;
1284 	return 1;
1285 }
1286 
1287 /**
1288  * lookup_level0_dirty - search for zero-level znode dirtying.
1289  * @c: UBIFS file-system description object
1290  * @key:  key to lookup
1291  * @zn: znode is returned here
1292  * @n: znode branch slot number is returned here
1293  *
1294  * This function looks up the TNC tree and search for zero-level znode which
1295  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1296  * cases:
1297  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1298  *     is returned and slot number of the matched branch is stored in @n;
1299  *   o not exact match, which means that zero-level znode does not contain @key
1300  *     then %0 is returned and slot number of the closed branch is stored in
1301  *     @n;
1302  *   o @key is so small that it is even less than the lowest key of the
1303  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1304  *
1305  * Additionally all znodes in the path from the root to the located zero-level
1306  * znode are marked as dirty.
1307  *
1308  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309  * function reads corresponding indexing nodes and inserts them to TNC. In
1310  * case of failure, a negative error code is returned.
1311  */
lookup_level0_dirty(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313 			       struct ubifs_znode **zn, int *n)
1314 {
1315 	int err, exact;
1316 	struct ubifs_znode *znode;
1317 	unsigned long time = get_seconds();
1318 
1319 	dbg_tnc("search and dirty key %s", DBGKEY(key));
1320 
1321 	znode = c->zroot.znode;
1322 	if (unlikely(!znode)) {
1323 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1324 		if (IS_ERR(znode))
1325 			return PTR_ERR(znode);
1326 	}
1327 
1328 	znode = dirty_cow_znode(c, &c->zroot);
1329 	if (IS_ERR(znode))
1330 		return PTR_ERR(znode);
1331 
1332 	znode->time = time;
1333 
1334 	while (1) {
1335 		struct ubifs_zbranch *zbr;
1336 
1337 		exact = ubifs_search_zbranch(c, znode, key, n);
1338 
1339 		if (znode->level == 0)
1340 			break;
1341 
1342 		if (*n < 0)
1343 			*n = 0;
1344 		zbr = &znode->zbranch[*n];
1345 
1346 		if (zbr->znode) {
1347 			znode->time = time;
1348 			znode = dirty_cow_znode(c, zbr);
1349 			if (IS_ERR(znode))
1350 				return PTR_ERR(znode);
1351 			continue;
1352 		}
1353 
1354 		/* znode is not in TNC cache, load it from the media */
1355 		znode = ubifs_load_znode(c, zbr, znode, *n);
1356 		if (IS_ERR(znode))
1357 			return PTR_ERR(znode);
1358 		znode = dirty_cow_znode(c, zbr);
1359 		if (IS_ERR(znode))
1360 			return PTR_ERR(znode);
1361 	}
1362 
1363 	*zn = znode;
1364 	if (exact || !is_hash_key(c, key) || *n != -1) {
1365 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1366 		return exact;
1367 	}
1368 
1369 	/*
1370 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1371 	 * code.
1372 	 */
1373 	err = tnc_prev(c, &znode, n);
1374 	if (err == -ENOENT) {
1375 		*n = -1;
1376 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377 		return 0;
1378 	}
1379 	if (unlikely(err < 0))
1380 		return err;
1381 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1382 		*n = -1;
1383 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384 		return 0;
1385 	}
1386 
1387 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388 		znode = dirty_cow_bottom_up(c, znode);
1389 		if (IS_ERR(znode))
1390 			return PTR_ERR(znode);
1391 	}
1392 
1393 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1394 	*zn = znode;
1395 	return 1;
1396 }
1397 
1398 /**
1399  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400  * @c: UBIFS file-system description object
1401  * @lnum: LEB number
1402  * @gc_seq1: garbage collection sequence number
1403  *
1404  * This function determines if @lnum may have been garbage collected since
1405  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1406  * %0 is returned.
1407  */
maybe_leb_gced(struct ubifs_info * c,int lnum,int gc_seq1)1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1409 {
1410 	int gc_seq2, gced_lnum;
1411 
1412 	gced_lnum = c->gced_lnum;
1413 	smp_rmb();
1414 	gc_seq2 = c->gc_seq;
1415 	/* Same seq means no GC */
1416 	if (gc_seq1 == gc_seq2)
1417 		return 0;
1418 	/* Different by more than 1 means we don't know */
1419 	if (gc_seq1 + 1 != gc_seq2)
1420 		return 1;
1421 	/*
1422 	 * We have seen the sequence number has increased by 1. Now we need to
1423 	 * be sure we read the right LEB number, so read it again.
1424 	 */
1425 	smp_rmb();
1426 	if (gced_lnum != c->gced_lnum)
1427 		return 1;
1428 	/* Finally we can check lnum */
1429 	if (gced_lnum == lnum)
1430 		return 1;
1431 	return 0;
1432 }
1433 
1434 /**
1435  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436  * @c: UBIFS file-system description object
1437  * @key: node key to lookup
1438  * @node: the node is returned here
1439  * @lnum: LEB number is returned here
1440  * @offs: offset is returned here
1441  *
1442  * This function looks up and reads node with key @key. The caller has to make
1443  * sure the @node buffer is large enough to fit the node. Returns zero in case
1444  * of success, %-ENOENT if the node was not found, and a negative error code in
1445  * case of failure. The node location can be returned in @lnum and @offs.
1446  */
ubifs_tnc_locate(struct ubifs_info * c,const union ubifs_key * key,void * node,int * lnum,int * offs)1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448 		     void *node, int *lnum, int *offs)
1449 {
1450 	int found, n, err, safely = 0, gc_seq1;
1451 	struct ubifs_znode *znode;
1452 	struct ubifs_zbranch zbr, *zt;
1453 
1454 again:
1455 	mutex_lock(&c->tnc_mutex);
1456 	found = ubifs_lookup_level0(c, key, &znode, &n);
1457 	if (!found) {
1458 		err = -ENOENT;
1459 		goto out;
1460 	} else if (found < 0) {
1461 		err = found;
1462 		goto out;
1463 	}
1464 	zt = &znode->zbranch[n];
1465 	if (lnum) {
1466 		*lnum = zt->lnum;
1467 		*offs = zt->offs;
1468 	}
1469 	if (is_hash_key(c, key)) {
1470 		/*
1471 		 * In this case the leaf node cache gets used, so we pass the
1472 		 * address of the zbranch and keep the mutex locked
1473 		 */
1474 		err = tnc_read_node_nm(c, zt, node);
1475 		goto out;
1476 	}
1477 	if (safely) {
1478 		err = ubifs_tnc_read_node(c, zt, node);
1479 		goto out;
1480 	}
1481 	/* Drop the TNC mutex prematurely and race with garbage collection */
1482 	zbr = znode->zbranch[n];
1483 	gc_seq1 = c->gc_seq;
1484 	mutex_unlock(&c->tnc_mutex);
1485 
1486 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1487 		/* We do not GC journal heads */
1488 		err = ubifs_tnc_read_node(c, &zbr, node);
1489 		return err;
1490 	}
1491 
1492 	err = fallible_read_node(c, key, &zbr, node);
1493 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1494 		/*
1495 		 * The node may have been GC'ed out from under us so try again
1496 		 * while keeping the TNC mutex locked.
1497 		 */
1498 		safely = 1;
1499 		goto again;
1500 	}
1501 	return 0;
1502 
1503 out:
1504 	mutex_unlock(&c->tnc_mutex);
1505 	return err;
1506 }
1507 
1508 /**
1509  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510  * @c: UBIFS file-system description object
1511  * @bu: bulk-read parameters and results
1512  *
1513  * Lookup consecutive data node keys for the same inode that reside
1514  * consecutively in the same LEB. This function returns zero in case of success
1515  * and a negative error code in case of failure.
1516  *
1517  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519  * maximum possible amount of nodes for bulk-read.
1520  */
ubifs_tnc_get_bu_keys(struct ubifs_info * c,struct bu_info * bu)1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1522 {
1523 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1524 	int uninitialized_var(len);
1525 	unsigned int block = key_block(c, &bu->key);
1526 	struct ubifs_znode *znode;
1527 
1528 	bu->cnt = 0;
1529 	bu->blk_cnt = 0;
1530 	bu->eof = 0;
1531 
1532 	mutex_lock(&c->tnc_mutex);
1533 	/* Find first key */
1534 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1535 	if (err < 0)
1536 		goto out;
1537 	if (err) {
1538 		/* Key found */
1539 		len = znode->zbranch[n].len;
1540 		/* The buffer must be big enough for at least 1 node */
1541 		if (len > bu->buf_len) {
1542 			err = -EINVAL;
1543 			goto out;
1544 		}
1545 		/* Add this key */
1546 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1547 		bu->blk_cnt += 1;
1548 		lnum = znode->zbranch[n].lnum;
1549 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1550 	}
1551 	while (1) {
1552 		struct ubifs_zbranch *zbr;
1553 		union ubifs_key *key;
1554 		unsigned int next_block;
1555 
1556 		/* Find next key */
1557 		err = tnc_next(c, &znode, &n);
1558 		if (err)
1559 			goto out;
1560 		zbr = &znode->zbranch[n];
1561 		key = &zbr->key;
1562 		/* See if there is another data key for this file */
1563 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564 		    key_type(c, key) != UBIFS_DATA_KEY) {
1565 			err = -ENOENT;
1566 			goto out;
1567 		}
1568 		if (lnum < 0) {
1569 			/* First key found */
1570 			lnum = zbr->lnum;
1571 			offs = ALIGN(zbr->offs + zbr->len, 8);
1572 			len = zbr->len;
1573 			if (len > bu->buf_len) {
1574 				err = -EINVAL;
1575 				goto out;
1576 			}
1577 		} else {
1578 			/*
1579 			 * The data nodes must be in consecutive positions in
1580 			 * the same LEB.
1581 			 */
1582 			if (zbr->lnum != lnum || zbr->offs != offs)
1583 				goto out;
1584 			offs += ALIGN(zbr->len, 8);
1585 			len = ALIGN(len, 8) + zbr->len;
1586 			/* Must not exceed buffer length */
1587 			if (len > bu->buf_len)
1588 				goto out;
1589 		}
1590 		/* Allow for holes */
1591 		next_block = key_block(c, key);
1592 		bu->blk_cnt += (next_block - block - 1);
1593 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1594 			goto out;
1595 		block = next_block;
1596 		/* Add this key */
1597 		bu->zbranch[bu->cnt++] = *zbr;
1598 		bu->blk_cnt += 1;
1599 		/* See if we have room for more */
1600 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1601 			goto out;
1602 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1603 			goto out;
1604 	}
1605 out:
1606 	if (err == -ENOENT) {
1607 		bu->eof = 1;
1608 		err = 0;
1609 	}
1610 	bu->gc_seq = c->gc_seq;
1611 	mutex_unlock(&c->tnc_mutex);
1612 	if (err)
1613 		return err;
1614 	/*
1615 	 * An enormous hole could cause bulk-read to encompass too many
1616 	 * page cache pages, so limit the number here.
1617 	 */
1618 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1619 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1620 	/*
1621 	 * Ensure that bulk-read covers a whole number of page cache
1622 	 * pages.
1623 	 */
1624 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1626 		return 0;
1627 	if (bu->eof) {
1628 		/* At the end of file we can round up */
1629 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1630 		return 0;
1631 	}
1632 	/* Exclude data nodes that do not make up a whole page cache page */
1633 	block = key_block(c, &bu->key) + bu->blk_cnt;
1634 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1635 	while (bu->cnt) {
1636 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637 			break;
1638 		bu->cnt -= 1;
1639 	}
1640 	return 0;
1641 }
1642 
1643 /**
1644  * read_wbuf - bulk-read from a LEB with a wbuf.
1645  * @wbuf: wbuf that may overlap the read
1646  * @buf: buffer into which to read
1647  * @len: read length
1648  * @lnum: LEB number from which to read
1649  * @offs: offset from which to read
1650  *
1651  * This functions returns %0 on success or a negative error code on failure.
1652  */
read_wbuf(struct ubifs_wbuf * wbuf,void * buf,int len,int lnum,int offs)1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1654 		     int offs)
1655 {
1656 	const struct ubifs_info *c = wbuf->c;
1657 	int rlen, overlap;
1658 
1659 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1662 	ubifs_assert(offs + len <= c->leb_size);
1663 
1664 	spin_lock(&wbuf->lock);
1665 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1666 	if (!overlap) {
1667 		/* We may safely unlock the write-buffer and read the data */
1668 		spin_unlock(&wbuf->lock);
1669 		return ubi_read(c->ubi, lnum, buf, offs, len);
1670 	}
1671 
1672 	/* Don't read under wbuf */
1673 	rlen = wbuf->offs - offs;
1674 	if (rlen < 0)
1675 		rlen = 0;
1676 
1677 	/* Copy the rest from the write-buffer */
1678 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679 	spin_unlock(&wbuf->lock);
1680 
1681 	if (rlen > 0)
1682 		/* Read everything that goes before write-buffer */
1683 		return ubi_read(c->ubi, lnum, buf, offs, rlen);
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * validate_data_node - validate data nodes for bulk-read.
1690  * @c: UBIFS file-system description object
1691  * @buf: buffer containing data node to validate
1692  * @zbr: zbranch of data node to validate
1693  *
1694  * This functions returns %0 on success or a negative error code on failure.
1695  */
validate_data_node(struct ubifs_info * c,void * buf,struct ubifs_zbranch * zbr)1696 static int validate_data_node(struct ubifs_info *c, void *buf,
1697 			      struct ubifs_zbranch *zbr)
1698 {
1699 	union ubifs_key key1;
1700 	struct ubifs_ch *ch = buf;
1701 	int err, len;
1702 
1703 	if (ch->node_type != UBIFS_DATA_NODE) {
1704 		ubifs_err("bad node type (%d but expected %d)",
1705 			  ch->node_type, UBIFS_DATA_NODE);
1706 		goto out_err;
1707 	}
1708 
1709 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1710 	if (err) {
1711 		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1712 		goto out;
1713 	}
1714 
1715 	len = le32_to_cpu(ch->len);
1716 	if (len != zbr->len) {
1717 		ubifs_err("bad node length %d, expected %d", len, zbr->len);
1718 		goto out_err;
1719 	}
1720 
1721 	/* Make sure the key of the read node is correct */
1722 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723 	if (!keys_eq(c, &zbr->key, &key1)) {
1724 		ubifs_err("bad key in node at LEB %d:%d",
1725 			  zbr->lnum, zbr->offs);
1726 		dbg_tnc("looked for key %s found node's key %s",
1727 			DBGKEY(&zbr->key), DBGKEY1(&key1));
1728 		goto out_err;
1729 	}
1730 
1731 	return 0;
1732 
1733 out_err:
1734 	err = -EINVAL;
1735 out:
1736 	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737 	dbg_dump_node(c, buf);
1738 	dbg_dump_stack();
1739 	return err;
1740 }
1741 
1742 /**
1743  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744  * @c: UBIFS file-system description object
1745  * @bu: bulk-read parameters and results
1746  *
1747  * This functions reads and validates the data nodes that were identified by the
1748  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749  * -EAGAIN to indicate a race with GC, or another negative error code on
1750  * failure.
1751  */
ubifs_tnc_bulk_read(struct ubifs_info * c,struct bu_info * bu)1752 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753 {
1754 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755 	struct ubifs_wbuf *wbuf;
1756 	void *buf;
1757 
1758 	len = bu->zbranch[bu->cnt - 1].offs;
1759 	len += bu->zbranch[bu->cnt - 1].len - offs;
1760 	if (len > bu->buf_len) {
1761 		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1762 		return -EINVAL;
1763 	}
1764 
1765 	/* Do the read */
1766 	wbuf = ubifs_get_wbuf(c, lnum);
1767 	if (wbuf)
1768 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769 	else
1770 		err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
1771 
1772 	/* Check for a race with GC */
1773 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774 		return -EAGAIN;
1775 
1776 	if (err && err != -EBADMSG) {
1777 		ubifs_err("failed to read from LEB %d:%d, error %d",
1778 			  lnum, offs, err);
1779 		dbg_dump_stack();
1780 		dbg_tnc("key %s", DBGKEY(&bu->key));
1781 		return err;
1782 	}
1783 
1784 	/* Validate the nodes read */
1785 	buf = bu->buf;
1786 	for (i = 0; i < bu->cnt; i++) {
1787 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1788 		if (err)
1789 			return err;
1790 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 /**
1797  * do_lookup_nm- look up a "hashed" node.
1798  * @c: UBIFS file-system description object
1799  * @key: node key to lookup
1800  * @node: the node is returned here
1801  * @nm: node name
1802  *
1803  * This function look up and reads a node which contains name hash in the key.
1804  * Since the hash may have collisions, there may be many nodes with the same
1805  * key, so we have to sequentially look to all of them until the needed one is
1806  * found. This function returns zero in case of success, %-ENOENT if the node
1807  * was not found, and a negative error code in case of failure.
1808  */
do_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct qstr * nm)1809 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810 			void *node, const struct qstr *nm)
1811 {
1812 	int found, n, err;
1813 	struct ubifs_znode *znode;
1814 
1815 	dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1816 	mutex_lock(&c->tnc_mutex);
1817 	found = ubifs_lookup_level0(c, key, &znode, &n);
1818 	if (!found) {
1819 		err = -ENOENT;
1820 		goto out_unlock;
1821 	} else if (found < 0) {
1822 		err = found;
1823 		goto out_unlock;
1824 	}
1825 
1826 	ubifs_assert(n >= 0);
1827 
1828 	err = resolve_collision(c, key, &znode, &n, nm);
1829 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830 	if (unlikely(err < 0))
1831 		goto out_unlock;
1832 	if (err == 0) {
1833 		err = -ENOENT;
1834 		goto out_unlock;
1835 	}
1836 
1837 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1838 
1839 out_unlock:
1840 	mutex_unlock(&c->tnc_mutex);
1841 	return err;
1842 }
1843 
1844 /**
1845  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846  * @c: UBIFS file-system description object
1847  * @key: node key to lookup
1848  * @node: the node is returned here
1849  * @nm: node name
1850  *
1851  * This function look up and reads a node which contains name hash in the key.
1852  * Since the hash may have collisions, there may be many nodes with the same
1853  * key, so we have to sequentially look to all of them until the needed one is
1854  * found. This function returns zero in case of success, %-ENOENT if the node
1855  * was not found, and a negative error code in case of failure.
1856  */
ubifs_tnc_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct qstr * nm)1857 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858 			void *node, const struct qstr *nm)
1859 {
1860 	int err, len;
1861 	const struct ubifs_dent_node *dent = node;
1862 
1863 	/*
1864 	 * We assume that in most of the cases there are no name collisions and
1865 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866 	 */
1867 	err = ubifs_tnc_lookup(c, key, node);
1868 	if (err)
1869 		return err;
1870 
1871 	len = le16_to_cpu(dent->nlen);
1872 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1873 		return 0;
1874 
1875 	/*
1876 	 * Unluckily, there are hash collisions and we have to iterate over
1877 	 * them look at each direntry with colliding name hash sequentially.
1878 	 */
1879 	return do_lookup_nm(c, key, node, nm);
1880 }
1881 
1882 /**
1883  * correct_parent_keys - correct parent znodes' keys.
1884  * @c: UBIFS file-system description object
1885  * @znode: znode to correct parent znodes for
1886  *
1887  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1888  * zbranch changes, keys of parent znodes have to be corrected. This helper
1889  * function is called in such situations and corrects the keys if needed.
1890  */
correct_parent_keys(const struct ubifs_info * c,struct ubifs_znode * znode)1891 static void correct_parent_keys(const struct ubifs_info *c,
1892 				struct ubifs_znode *znode)
1893 {
1894 	union ubifs_key *key, *key1;
1895 
1896 	ubifs_assert(znode->parent);
1897 	ubifs_assert(znode->iip == 0);
1898 
1899 	key = &znode->zbranch[0].key;
1900 	key1 = &znode->parent->zbranch[0].key;
1901 
1902 	while (keys_cmp(c, key, key1) < 0) {
1903 		key_copy(c, key, key1);
1904 		znode = znode->parent;
1905 		znode->alt = 1;
1906 		if (!znode->parent || znode->iip)
1907 			break;
1908 		key1 = &znode->parent->zbranch[0].key;
1909 	}
1910 }
1911 
1912 /**
1913  * insert_zbranch - insert a zbranch into a znode.
1914  * @znode: znode into which to insert
1915  * @zbr: zbranch to insert
1916  * @n: slot number to insert to
1917  *
1918  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1919  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1920  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1921  * slot, zbranches starting from @n have to be moved right.
1922  */
insert_zbranch(struct ubifs_znode * znode,const struct ubifs_zbranch * zbr,int n)1923 static void insert_zbranch(struct ubifs_znode *znode,
1924 			   const struct ubifs_zbranch *zbr, int n)
1925 {
1926 	int i;
1927 
1928 	ubifs_assert(ubifs_zn_dirty(znode));
1929 
1930 	if (znode->level) {
1931 		for (i = znode->child_cnt; i > n; i--) {
1932 			znode->zbranch[i] = znode->zbranch[i - 1];
1933 			if (znode->zbranch[i].znode)
1934 				znode->zbranch[i].znode->iip = i;
1935 		}
1936 		if (zbr->znode)
1937 			zbr->znode->iip = n;
1938 	} else
1939 		for (i = znode->child_cnt; i > n; i--)
1940 			znode->zbranch[i] = znode->zbranch[i - 1];
1941 
1942 	znode->zbranch[n] = *zbr;
1943 	znode->child_cnt += 1;
1944 
1945 	/*
1946 	 * After inserting at slot zero, the lower bound of the key range of
1947 	 * this znode may have changed. If this znode is subsequently split
1948 	 * then the upper bound of the key range may change, and furthermore
1949 	 * it could change to be lower than the original lower bound. If that
1950 	 * happens, then it will no longer be possible to find this znode in the
1951 	 * TNC using the key from the index node on flash. That is bad because
1952 	 * if it is not found, we will assume it is obsolete and may overwrite
1953 	 * it. Then if there is an unclean unmount, we will start using the
1954 	 * old index which will be broken.
1955 	 *
1956 	 * So we first mark znodes that have insertions at slot zero, and then
1957 	 * if they are split we add their lnum/offs to the old_idx tree.
1958 	 */
1959 	if (n == 0)
1960 		znode->alt = 1;
1961 }
1962 
1963 /**
1964  * tnc_insert - insert a node into TNC.
1965  * @c: UBIFS file-system description object
1966  * @znode: znode to insert into
1967  * @zbr: branch to insert
1968  * @n: slot number to insert new zbranch to
1969  *
1970  * This function inserts a new node described by @zbr into znode @znode. If
1971  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1972  * are splat as well if needed. Returns zero in case of success or a negative
1973  * error code in case of failure.
1974  */
tnc_insert(struct ubifs_info * c,struct ubifs_znode * znode,struct ubifs_zbranch * zbr,int n)1975 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1976 		      struct ubifs_zbranch *zbr, int n)
1977 {
1978 	struct ubifs_znode *zn, *zi, *zp;
1979 	int i, keep, move, appending = 0;
1980 	union ubifs_key *key = &zbr->key, *key1;
1981 
1982 	ubifs_assert(n >= 0 && n <= c->fanout);
1983 
1984 	/* Implement naive insert for now */
1985 again:
1986 	zp = znode->parent;
1987 	if (znode->child_cnt < c->fanout) {
1988 		ubifs_assert(n != c->fanout);
1989 		dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1990 			DBGKEY(key));
1991 
1992 		insert_zbranch(znode, zbr, n);
1993 
1994 		/* Ensure parent's key is correct */
1995 		if (n == 0 && zp && znode->iip == 0)
1996 			correct_parent_keys(c, znode);
1997 
1998 		return 0;
1999 	}
2000 
2001 	/*
2002 	 * Unfortunately, @znode does not have more empty slots and we have to
2003 	 * split it.
2004 	 */
2005 	dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
2006 
2007 	if (znode->alt)
2008 		/*
2009 		 * We can no longer be sure of finding this znode by key, so we
2010 		 * record it in the old_idx tree.
2011 		 */
2012 		ins_clr_old_idx_znode(c, znode);
2013 
2014 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2015 	if (!zn)
2016 		return -ENOMEM;
2017 	zn->parent = zp;
2018 	zn->level = znode->level;
2019 
2020 	/* Decide where to split */
2021 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2022 		/* Try not to split consecutive data keys */
2023 		if (n == c->fanout) {
2024 			key1 = &znode->zbranch[n - 1].key;
2025 			if (key_inum(c, key1) == key_inum(c, key) &&
2026 			    key_type(c, key1) == UBIFS_DATA_KEY)
2027 				appending = 1;
2028 		} else
2029 			goto check_split;
2030 	} else if (appending && n != c->fanout) {
2031 		/* Try not to split consecutive data keys */
2032 		appending = 0;
2033 check_split:
2034 		if (n >= (c->fanout + 1) / 2) {
2035 			key1 = &znode->zbranch[0].key;
2036 			if (key_inum(c, key1) == key_inum(c, key) &&
2037 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2038 				key1 = &znode->zbranch[n].key;
2039 				if (key_inum(c, key1) != key_inum(c, key) ||
2040 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2041 					keep = n;
2042 					move = c->fanout - keep;
2043 					zi = znode;
2044 					goto do_split;
2045 				}
2046 			}
2047 		}
2048 	}
2049 
2050 	if (appending) {
2051 		keep = c->fanout;
2052 		move = 0;
2053 	} else {
2054 		keep = (c->fanout + 1) / 2;
2055 		move = c->fanout - keep;
2056 	}
2057 
2058 	/*
2059 	 * Although we don't at present, we could look at the neighbors and see
2060 	 * if we can move some zbranches there.
2061 	 */
2062 
2063 	if (n < keep) {
2064 		/* Insert into existing znode */
2065 		zi = znode;
2066 		move += 1;
2067 		keep -= 1;
2068 	} else {
2069 		/* Insert into new znode */
2070 		zi = zn;
2071 		n -= keep;
2072 		/* Re-parent */
2073 		if (zn->level != 0)
2074 			zbr->znode->parent = zn;
2075 	}
2076 
2077 do_split:
2078 
2079 	__set_bit(DIRTY_ZNODE, &zn->flags);
2080 	atomic_long_inc(&c->dirty_zn_cnt);
2081 
2082 	zn->child_cnt = move;
2083 	znode->child_cnt = keep;
2084 
2085 	dbg_tnc("moving %d, keeping %d", move, keep);
2086 
2087 	/* Move zbranch */
2088 	for (i = 0; i < move; i++) {
2089 		zn->zbranch[i] = znode->zbranch[keep + i];
2090 		/* Re-parent */
2091 		if (zn->level != 0)
2092 			if (zn->zbranch[i].znode) {
2093 				zn->zbranch[i].znode->parent = zn;
2094 				zn->zbranch[i].znode->iip = i;
2095 			}
2096 	}
2097 
2098 	/* Insert new key and branch */
2099 	dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2100 
2101 	insert_zbranch(zi, zbr, n);
2102 
2103 	/* Insert new znode (produced by spitting) into the parent */
2104 	if (zp) {
2105 		if (n == 0 && zi == znode && znode->iip == 0)
2106 			correct_parent_keys(c, znode);
2107 
2108 		/* Locate insertion point */
2109 		n = znode->iip + 1;
2110 
2111 		/* Tail recursion */
2112 		zbr->key = zn->zbranch[0].key;
2113 		zbr->znode = zn;
2114 		zbr->lnum = 0;
2115 		zbr->offs = 0;
2116 		zbr->len = 0;
2117 		znode = zp;
2118 
2119 		goto again;
2120 	}
2121 
2122 	/* We have to split root znode */
2123 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2124 
2125 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2126 	if (!zi)
2127 		return -ENOMEM;
2128 
2129 	zi->child_cnt = 2;
2130 	zi->level = znode->level + 1;
2131 
2132 	__set_bit(DIRTY_ZNODE, &zi->flags);
2133 	atomic_long_inc(&c->dirty_zn_cnt);
2134 
2135 	zi->zbranch[0].key = znode->zbranch[0].key;
2136 	zi->zbranch[0].znode = znode;
2137 	zi->zbranch[0].lnum = c->zroot.lnum;
2138 	zi->zbranch[0].offs = c->zroot.offs;
2139 	zi->zbranch[0].len = c->zroot.len;
2140 	zi->zbranch[1].key = zn->zbranch[0].key;
2141 	zi->zbranch[1].znode = zn;
2142 
2143 	c->zroot.lnum = 0;
2144 	c->zroot.offs = 0;
2145 	c->zroot.len = 0;
2146 	c->zroot.znode = zi;
2147 
2148 	zn->parent = zi;
2149 	zn->iip = 1;
2150 	znode->parent = zi;
2151 	znode->iip = 0;
2152 
2153 	return 0;
2154 }
2155 
2156 /**
2157  * ubifs_tnc_add - add a node to TNC.
2158  * @c: UBIFS file-system description object
2159  * @key: key to add
2160  * @lnum: LEB number of node
2161  * @offs: node offset
2162  * @len: node length
2163  *
2164  * This function adds a node with key @key to TNC. The node may be new or it may
2165  * obsolete some existing one. Returns %0 on success or negative error code on
2166  * failure.
2167  */
ubifs_tnc_add(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len)2168 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2169 		  int offs, int len)
2170 {
2171 	int found, n, err = 0;
2172 	struct ubifs_znode *znode;
2173 
2174 	mutex_lock(&c->tnc_mutex);
2175 	dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2176 	found = lookup_level0_dirty(c, key, &znode, &n);
2177 	if (!found) {
2178 		struct ubifs_zbranch zbr;
2179 
2180 		zbr.znode = NULL;
2181 		zbr.lnum = lnum;
2182 		zbr.offs = offs;
2183 		zbr.len = len;
2184 		key_copy(c, key, &zbr.key);
2185 		err = tnc_insert(c, znode, &zbr, n + 1);
2186 	} else if (found == 1) {
2187 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2188 
2189 		lnc_free(zbr);
2190 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2191 		zbr->lnum = lnum;
2192 		zbr->offs = offs;
2193 		zbr->len = len;
2194 	} else
2195 		err = found;
2196 	if (!err)
2197 		err = dbg_check_tnc(c, 0);
2198 	mutex_unlock(&c->tnc_mutex);
2199 
2200 	return err;
2201 }
2202 
2203 /**
2204  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2205  * @c: UBIFS file-system description object
2206  * @key: key to add
2207  * @old_lnum: LEB number of old node
2208  * @old_offs: old node offset
2209  * @lnum: LEB number of node
2210  * @offs: node offset
2211  * @len: node length
2212  *
2213  * This function replaces a node with key @key in the TNC only if the old node
2214  * is found.  This function is called by garbage collection when node are moved.
2215  * Returns %0 on success or negative error code on failure.
2216  */
ubifs_tnc_replace(struct ubifs_info * c,const union ubifs_key * key,int old_lnum,int old_offs,int lnum,int offs,int len)2217 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2218 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2219 {
2220 	int found, n, err = 0;
2221 	struct ubifs_znode *znode;
2222 
2223 	mutex_lock(&c->tnc_mutex);
2224 	dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2225 		old_offs, lnum, offs, len, DBGKEY(key));
2226 	found = lookup_level0_dirty(c, key, &znode, &n);
2227 	if (found < 0) {
2228 		err = found;
2229 		goto out_unlock;
2230 	}
2231 
2232 	if (found == 1) {
2233 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2234 
2235 		found = 0;
2236 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2237 			lnc_free(zbr);
2238 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2239 			if (err)
2240 				goto out_unlock;
2241 			zbr->lnum = lnum;
2242 			zbr->offs = offs;
2243 			zbr->len = len;
2244 			found = 1;
2245 		} else if (is_hash_key(c, key)) {
2246 			found = resolve_collision_directly(c, key, &znode, &n,
2247 							   old_lnum, old_offs);
2248 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2249 				found, znode, n, old_lnum, old_offs);
2250 			if (found < 0) {
2251 				err = found;
2252 				goto out_unlock;
2253 			}
2254 
2255 			if (found) {
2256 				/* Ensure the znode is dirtied */
2257 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2258 					znode = dirty_cow_bottom_up(c, znode);
2259 					if (IS_ERR(znode)) {
2260 						err = PTR_ERR(znode);
2261 						goto out_unlock;
2262 					}
2263 				}
2264 				zbr = &znode->zbranch[n];
2265 				lnc_free(zbr);
2266 				err = ubifs_add_dirt(c, zbr->lnum,
2267 						     zbr->len);
2268 				if (err)
2269 					goto out_unlock;
2270 				zbr->lnum = lnum;
2271 				zbr->offs = offs;
2272 				zbr->len = len;
2273 			}
2274 		}
2275 	}
2276 
2277 	if (!found)
2278 		err = ubifs_add_dirt(c, lnum, len);
2279 
2280 	if (!err)
2281 		err = dbg_check_tnc(c, 0);
2282 
2283 out_unlock:
2284 	mutex_unlock(&c->tnc_mutex);
2285 	return err;
2286 }
2287 
2288 /**
2289  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2290  * @c: UBIFS file-system description object
2291  * @key: key to add
2292  * @lnum: LEB number of node
2293  * @offs: node offset
2294  * @len: node length
2295  * @nm: node name
2296  *
2297  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2298  * may have collisions, like directory entry keys.
2299  */
ubifs_tnc_add_nm(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len,const struct qstr * nm)2300 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2301 		     int lnum, int offs, int len, const struct qstr *nm)
2302 {
2303 	int found, n, err = 0;
2304 	struct ubifs_znode *znode;
2305 
2306 	mutex_lock(&c->tnc_mutex);
2307 	dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2308 		DBGKEY(key));
2309 	found = lookup_level0_dirty(c, key, &znode, &n);
2310 	if (found < 0) {
2311 		err = found;
2312 		goto out_unlock;
2313 	}
2314 
2315 	if (found == 1) {
2316 		if (c->replaying)
2317 			found = fallible_resolve_collision(c, key, &znode, &n,
2318 							   nm, 1);
2319 		else
2320 			found = resolve_collision(c, key, &znode, &n, nm);
2321 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2322 		if (found < 0) {
2323 			err = found;
2324 			goto out_unlock;
2325 		}
2326 
2327 		/* Ensure the znode is dirtied */
2328 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2329 			znode = dirty_cow_bottom_up(c, znode);
2330 			if (IS_ERR(znode)) {
2331 				err = PTR_ERR(znode);
2332 				goto out_unlock;
2333 			}
2334 		}
2335 
2336 		if (found == 1) {
2337 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2338 
2339 			lnc_free(zbr);
2340 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2341 			zbr->lnum = lnum;
2342 			zbr->offs = offs;
2343 			zbr->len = len;
2344 			goto out_unlock;
2345 		}
2346 	}
2347 
2348 	if (!found) {
2349 		struct ubifs_zbranch zbr;
2350 
2351 		zbr.znode = NULL;
2352 		zbr.lnum = lnum;
2353 		zbr.offs = offs;
2354 		zbr.len = len;
2355 		key_copy(c, key, &zbr.key);
2356 		err = tnc_insert(c, znode, &zbr, n + 1);
2357 		if (err)
2358 			goto out_unlock;
2359 		if (c->replaying) {
2360 			/*
2361 			 * We did not find it in the index so there may be a
2362 			 * dangling branch still in the index. So we remove it
2363 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2364 			 * an unmatchable name.
2365 			 */
2366 			struct qstr noname = { .len = 0, .name = "" };
2367 
2368 			err = dbg_check_tnc(c, 0);
2369 			mutex_unlock(&c->tnc_mutex);
2370 			if (err)
2371 				return err;
2372 			return ubifs_tnc_remove_nm(c, key, &noname);
2373 		}
2374 	}
2375 
2376 out_unlock:
2377 	if (!err)
2378 		err = dbg_check_tnc(c, 0);
2379 	mutex_unlock(&c->tnc_mutex);
2380 	return err;
2381 }
2382 
2383 /**
2384  * tnc_delete - delete a znode form TNC.
2385  * @c: UBIFS file-system description object
2386  * @znode: znode to delete from
2387  * @n: zbranch slot number to delete
2388  *
2389  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2390  * case of success and a negative error code in case of failure.
2391  */
tnc_delete(struct ubifs_info * c,struct ubifs_znode * znode,int n)2392 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2393 {
2394 	struct ubifs_zbranch *zbr;
2395 	struct ubifs_znode *zp;
2396 	int i, err;
2397 
2398 	/* Delete without merge for now */
2399 	ubifs_assert(znode->level == 0);
2400 	ubifs_assert(n >= 0 && n < c->fanout);
2401 	dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2402 
2403 	zbr = &znode->zbranch[n];
2404 	lnc_free(zbr);
2405 
2406 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2407 	if (err) {
2408 		dbg_dump_znode(c, znode);
2409 		return err;
2410 	}
2411 
2412 	/* We do not "gap" zbranch slots */
2413 	for (i = n; i < znode->child_cnt - 1; i++)
2414 		znode->zbranch[i] = znode->zbranch[i + 1];
2415 	znode->child_cnt -= 1;
2416 
2417 	if (znode->child_cnt > 0)
2418 		return 0;
2419 
2420 	/*
2421 	 * This was the last zbranch, we have to delete this znode from the
2422 	 * parent.
2423 	 */
2424 
2425 	do {
2426 		ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2427 		ubifs_assert(ubifs_zn_dirty(znode));
2428 
2429 		zp = znode->parent;
2430 		n = znode->iip;
2431 
2432 		atomic_long_dec(&c->dirty_zn_cnt);
2433 
2434 		err = insert_old_idx_znode(c, znode);
2435 		if (err)
2436 			return err;
2437 
2438 		if (znode->cnext) {
2439 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2440 			atomic_long_inc(&c->clean_zn_cnt);
2441 			atomic_long_inc(&ubifs_clean_zn_cnt);
2442 		} else
2443 			kfree(znode);
2444 		znode = zp;
2445 	} while (znode->child_cnt == 1); /* while removing last child */
2446 
2447 	/* Remove from znode, entry n - 1 */
2448 	znode->child_cnt -= 1;
2449 	ubifs_assert(znode->level != 0);
2450 	for (i = n; i < znode->child_cnt; i++) {
2451 		znode->zbranch[i] = znode->zbranch[i + 1];
2452 		if (znode->zbranch[i].znode)
2453 			znode->zbranch[i].znode->iip = i;
2454 	}
2455 
2456 	/*
2457 	 * If this is the root and it has only 1 child then
2458 	 * collapse the tree.
2459 	 */
2460 	if (!znode->parent) {
2461 		while (znode->child_cnt == 1 && znode->level != 0) {
2462 			zp = znode;
2463 			zbr = &znode->zbranch[0];
2464 			znode = get_znode(c, znode, 0);
2465 			if (IS_ERR(znode))
2466 				return PTR_ERR(znode);
2467 			znode = dirty_cow_znode(c, zbr);
2468 			if (IS_ERR(znode))
2469 				return PTR_ERR(znode);
2470 			znode->parent = NULL;
2471 			znode->iip = 0;
2472 			if (c->zroot.len) {
2473 				err = insert_old_idx(c, c->zroot.lnum,
2474 						     c->zroot.offs);
2475 				if (err)
2476 					return err;
2477 			}
2478 			c->zroot.lnum = zbr->lnum;
2479 			c->zroot.offs = zbr->offs;
2480 			c->zroot.len = zbr->len;
2481 			c->zroot.znode = znode;
2482 			ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2483 				     &zp->flags));
2484 			ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2485 			atomic_long_dec(&c->dirty_zn_cnt);
2486 
2487 			if (zp->cnext) {
2488 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2489 				atomic_long_inc(&c->clean_zn_cnt);
2490 				atomic_long_inc(&ubifs_clean_zn_cnt);
2491 			} else
2492 				kfree(zp);
2493 		}
2494 	}
2495 
2496 	return 0;
2497 }
2498 
2499 /**
2500  * ubifs_tnc_remove - remove an index entry of a node.
2501  * @c: UBIFS file-system description object
2502  * @key: key of node
2503  *
2504  * Returns %0 on success or negative error code on failure.
2505  */
ubifs_tnc_remove(struct ubifs_info * c,const union ubifs_key * key)2506 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2507 {
2508 	int found, n, err = 0;
2509 	struct ubifs_znode *znode;
2510 
2511 	mutex_lock(&c->tnc_mutex);
2512 	dbg_tnc("key %s", DBGKEY(key));
2513 	found = lookup_level0_dirty(c, key, &znode, &n);
2514 	if (found < 0) {
2515 		err = found;
2516 		goto out_unlock;
2517 	}
2518 	if (found == 1)
2519 		err = tnc_delete(c, znode, n);
2520 	if (!err)
2521 		err = dbg_check_tnc(c, 0);
2522 
2523 out_unlock:
2524 	mutex_unlock(&c->tnc_mutex);
2525 	return err;
2526 }
2527 
2528 /**
2529  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2530  * @c: UBIFS file-system description object
2531  * @key: key of node
2532  * @nm: directory entry name
2533  *
2534  * Returns %0 on success or negative error code on failure.
2535  */
ubifs_tnc_remove_nm(struct ubifs_info * c,const union ubifs_key * key,const struct qstr * nm)2536 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2537 			const struct qstr *nm)
2538 {
2539 	int n, err;
2540 	struct ubifs_znode *znode;
2541 
2542 	mutex_lock(&c->tnc_mutex);
2543 	dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2544 	err = lookup_level0_dirty(c, key, &znode, &n);
2545 	if (err < 0)
2546 		goto out_unlock;
2547 
2548 	if (err) {
2549 		if (c->replaying)
2550 			err = fallible_resolve_collision(c, key, &znode, &n,
2551 							 nm, 0);
2552 		else
2553 			err = resolve_collision(c, key, &znode, &n, nm);
2554 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2555 		if (err < 0)
2556 			goto out_unlock;
2557 		if (err) {
2558 			/* Ensure the znode is dirtied */
2559 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2560 				    znode = dirty_cow_bottom_up(c, znode);
2561 				    if (IS_ERR(znode)) {
2562 					    err = PTR_ERR(znode);
2563 					    goto out_unlock;
2564 				    }
2565 			}
2566 			err = tnc_delete(c, znode, n);
2567 		}
2568 	}
2569 
2570 out_unlock:
2571 	if (!err)
2572 		err = dbg_check_tnc(c, 0);
2573 	mutex_unlock(&c->tnc_mutex);
2574 	return err;
2575 }
2576 
2577 /**
2578  * key_in_range - determine if a key falls within a range of keys.
2579  * @c: UBIFS file-system description object
2580  * @key: key to check
2581  * @from_key: lowest key in range
2582  * @to_key: highest key in range
2583  *
2584  * This function returns %1 if the key is in range and %0 otherwise.
2585  */
key_in_range(struct ubifs_info * c,union ubifs_key * key,union ubifs_key * from_key,union ubifs_key * to_key)2586 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2587 			union ubifs_key *from_key, union ubifs_key *to_key)
2588 {
2589 	if (keys_cmp(c, key, from_key) < 0)
2590 		return 0;
2591 	if (keys_cmp(c, key, to_key) > 0)
2592 		return 0;
2593 	return 1;
2594 }
2595 
2596 /**
2597  * ubifs_tnc_remove_range - remove index entries in range.
2598  * @c: UBIFS file-system description object
2599  * @from_key: lowest key to remove
2600  * @to_key: highest key to remove
2601  *
2602  * This function removes index entries starting at @from_key and ending at
2603  * @to_key.  This function returns zero in case of success and a negative error
2604  * code in case of failure.
2605  */
ubifs_tnc_remove_range(struct ubifs_info * c,union ubifs_key * from_key,union ubifs_key * to_key)2606 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2607 			   union ubifs_key *to_key)
2608 {
2609 	int i, n, k, err = 0;
2610 	struct ubifs_znode *znode;
2611 	union ubifs_key *key;
2612 
2613 	mutex_lock(&c->tnc_mutex);
2614 	while (1) {
2615 		/* Find first level 0 znode that contains keys to remove */
2616 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2617 		if (err < 0)
2618 			goto out_unlock;
2619 
2620 		if (err)
2621 			key = from_key;
2622 		else {
2623 			err = tnc_next(c, &znode, &n);
2624 			if (err == -ENOENT) {
2625 				err = 0;
2626 				goto out_unlock;
2627 			}
2628 			if (err < 0)
2629 				goto out_unlock;
2630 			key = &znode->zbranch[n].key;
2631 			if (!key_in_range(c, key, from_key, to_key)) {
2632 				err = 0;
2633 				goto out_unlock;
2634 			}
2635 		}
2636 
2637 		/* Ensure the znode is dirtied */
2638 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2639 			znode = dirty_cow_bottom_up(c, znode);
2640 			if (IS_ERR(znode)) {
2641 				err = PTR_ERR(znode);
2642 				goto out_unlock;
2643 			}
2644 		}
2645 
2646 		/* Remove all keys in range except the first */
2647 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2648 			key = &znode->zbranch[i].key;
2649 			if (!key_in_range(c, key, from_key, to_key))
2650 				break;
2651 			lnc_free(&znode->zbranch[i]);
2652 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2653 					     znode->zbranch[i].len);
2654 			if (err) {
2655 				dbg_dump_znode(c, znode);
2656 				goto out_unlock;
2657 			}
2658 			dbg_tnc("removing %s", DBGKEY(key));
2659 		}
2660 		if (k) {
2661 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2662 				znode->zbranch[i - k] = znode->zbranch[i];
2663 			znode->child_cnt -= k;
2664 		}
2665 
2666 		/* Now delete the first */
2667 		err = tnc_delete(c, znode, n);
2668 		if (err)
2669 			goto out_unlock;
2670 	}
2671 
2672 out_unlock:
2673 	if (!err)
2674 		err = dbg_check_tnc(c, 0);
2675 	mutex_unlock(&c->tnc_mutex);
2676 	return err;
2677 }
2678 
2679 /**
2680  * ubifs_tnc_remove_ino - remove an inode from TNC.
2681  * @c: UBIFS file-system description object
2682  * @inum: inode number to remove
2683  *
2684  * This function remove inode @inum and all the extended attributes associated
2685  * with the anode from TNC and returns zero in case of success or a negative
2686  * error code in case of failure.
2687  */
ubifs_tnc_remove_ino(struct ubifs_info * c,ino_t inum)2688 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2689 {
2690 	union ubifs_key key1, key2;
2691 	struct ubifs_dent_node *xent, *pxent = NULL;
2692 	struct qstr nm = { .name = NULL };
2693 
2694 	dbg_tnc("ino %lu", (unsigned long)inum);
2695 
2696 	/*
2697 	 * Walk all extended attribute entries and remove them together with
2698 	 * corresponding extended attribute inodes.
2699 	 */
2700 	lowest_xent_key(c, &key1, inum);
2701 	while (1) {
2702 		ino_t xattr_inum;
2703 		int err;
2704 
2705 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2706 		if (IS_ERR(xent)) {
2707 			err = PTR_ERR(xent);
2708 			if (err == -ENOENT)
2709 				break;
2710 			return err;
2711 		}
2712 
2713 		xattr_inum = le64_to_cpu(xent->inum);
2714 		dbg_tnc("xent '%s', ino %lu", xent->name,
2715 			(unsigned long)xattr_inum);
2716 
2717 		nm.name = xent->name;
2718 		nm.len = le16_to_cpu(xent->nlen);
2719 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2720 		if (err) {
2721 			kfree(xent);
2722 			return err;
2723 		}
2724 
2725 		lowest_ino_key(c, &key1, xattr_inum);
2726 		highest_ino_key(c, &key2, xattr_inum);
2727 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2728 		if (err) {
2729 			kfree(xent);
2730 			return err;
2731 		}
2732 
2733 		kfree(pxent);
2734 		pxent = xent;
2735 		key_read(c, &xent->key, &key1);
2736 	}
2737 
2738 	kfree(pxent);
2739 	lowest_ino_key(c, &key1, inum);
2740 	highest_ino_key(c, &key2, inum);
2741 
2742 	return ubifs_tnc_remove_range(c, &key1, &key2);
2743 }
2744 
2745 /**
2746  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2747  * @c: UBIFS file-system description object
2748  * @key: key of last entry
2749  * @nm: name of last entry found or %NULL
2750  *
2751  * This function finds and reads the next directory or extended attribute entry
2752  * after the given key (@key) if there is one. @nm is used to resolve
2753  * collisions.
2754  *
2755  * If the name of the current entry is not known and only the key is known,
2756  * @nm->name has to be %NULL. In this case the semantics of this function is a
2757  * little bit different and it returns the entry corresponding to this key, not
2758  * the next one. If the key was not found, the closest "right" entry is
2759  * returned.
2760  *
2761  * If the fist entry has to be found, @key has to contain the lowest possible
2762  * key value for this inode and @name has to be %NULL.
2763  *
2764  * This function returns the found directory or extended attribute entry node
2765  * in case of success, %-ENOENT is returned if no entry was found, and a
2766  * negative error code is returned in case of failure.
2767  */
ubifs_tnc_next_ent(struct ubifs_info * c,union ubifs_key * key,const struct qstr * nm)2768 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2769 					   union ubifs_key *key,
2770 					   const struct qstr *nm)
2771 {
2772 	int n, err, type = key_type(c, key);
2773 	struct ubifs_znode *znode;
2774 	struct ubifs_dent_node *dent;
2775 	struct ubifs_zbranch *zbr;
2776 	union ubifs_key *dkey;
2777 
2778 	dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2779 	ubifs_assert(is_hash_key(c, key));
2780 
2781 	mutex_lock(&c->tnc_mutex);
2782 	err = ubifs_lookup_level0(c, key, &znode, &n);
2783 	if (unlikely(err < 0))
2784 		goto out_unlock;
2785 
2786 	if (nm->name) {
2787 		if (err) {
2788 			/* Handle collisions */
2789 			err = resolve_collision(c, key, &znode, &n, nm);
2790 			dbg_tnc("rc returned %d, znode %p, n %d",
2791 				err, znode, n);
2792 			if (unlikely(err < 0))
2793 				goto out_unlock;
2794 		}
2795 
2796 		/* Now find next entry */
2797 		err = tnc_next(c, &znode, &n);
2798 		if (unlikely(err))
2799 			goto out_unlock;
2800 	} else {
2801 		/*
2802 		 * The full name of the entry was not given, in which case the
2803 		 * behavior of this function is a little different and it
2804 		 * returns current entry, not the next one.
2805 		 */
2806 		if (!err) {
2807 			/*
2808 			 * However, the given key does not exist in the TNC
2809 			 * tree and @znode/@n variables contain the closest
2810 			 * "preceding" element. Switch to the next one.
2811 			 */
2812 			err = tnc_next(c, &znode, &n);
2813 			if (err)
2814 				goto out_unlock;
2815 		}
2816 	}
2817 
2818 	zbr = &znode->zbranch[n];
2819 	dent = kmalloc(zbr->len, GFP_NOFS);
2820 	if (unlikely(!dent)) {
2821 		err = -ENOMEM;
2822 		goto out_unlock;
2823 	}
2824 
2825 	/*
2826 	 * The above 'tnc_next()' call could lead us to the next inode, check
2827 	 * this.
2828 	 */
2829 	dkey = &zbr->key;
2830 	if (key_inum(c, dkey) != key_inum(c, key) ||
2831 	    key_type(c, dkey) != type) {
2832 		err = -ENOENT;
2833 		goto out_free;
2834 	}
2835 
2836 	err = tnc_read_node_nm(c, zbr, dent);
2837 	if (unlikely(err))
2838 		goto out_free;
2839 
2840 	mutex_unlock(&c->tnc_mutex);
2841 	return dent;
2842 
2843 out_free:
2844 	kfree(dent);
2845 out_unlock:
2846 	mutex_unlock(&c->tnc_mutex);
2847 	return ERR_PTR(err);
2848 }
2849 
2850 /**
2851  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2852  * @c: UBIFS file-system description object
2853  *
2854  * Destroy left-over obsolete znodes from a failed commit.
2855  */
tnc_destroy_cnext(struct ubifs_info * c)2856 static void tnc_destroy_cnext(struct ubifs_info *c)
2857 {
2858 	struct ubifs_znode *cnext;
2859 
2860 	if (!c->cnext)
2861 		return;
2862 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2863 	cnext = c->cnext;
2864 	do {
2865 		struct ubifs_znode *znode = cnext;
2866 
2867 		cnext = cnext->cnext;
2868 		if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2869 			kfree(znode);
2870 	} while (cnext && cnext != c->cnext);
2871 }
2872 
2873 /**
2874  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2875  * @c: UBIFS file-system description object
2876  */
ubifs_tnc_close(struct ubifs_info * c)2877 void ubifs_tnc_close(struct ubifs_info *c)
2878 {
2879 	long clean_freed;
2880 
2881 	tnc_destroy_cnext(c);
2882 	if (c->zroot.znode) {
2883 		clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2884 		atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2885 	}
2886 	kfree(c->gap_lebs);
2887 	kfree(c->ilebs);
2888 	destroy_old_idx(c);
2889 }
2890 
2891 /**
2892  * left_znode - get the znode to the left.
2893  * @c: UBIFS file-system description object
2894  * @znode: znode
2895  *
2896  * This function returns a pointer to the znode to the left of @znode or NULL if
2897  * there is not one. A negative error code is returned on failure.
2898  */
left_znode(struct ubifs_info * c,struct ubifs_znode * znode)2899 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2900 				      struct ubifs_znode *znode)
2901 {
2902 	int level = znode->level;
2903 
2904 	while (1) {
2905 		int n = znode->iip - 1;
2906 
2907 		/* Go up until we can go left */
2908 		znode = znode->parent;
2909 		if (!znode)
2910 			return NULL;
2911 		if (n >= 0) {
2912 			/* Now go down the rightmost branch to 'level' */
2913 			znode = get_znode(c, znode, n);
2914 			if (IS_ERR(znode))
2915 				return znode;
2916 			while (znode->level != level) {
2917 				n = znode->child_cnt - 1;
2918 				znode = get_znode(c, znode, n);
2919 				if (IS_ERR(znode))
2920 					return znode;
2921 			}
2922 			break;
2923 		}
2924 	}
2925 	return znode;
2926 }
2927 
2928 /**
2929  * right_znode - get the znode to the right.
2930  * @c: UBIFS file-system description object
2931  * @znode: znode
2932  *
2933  * This function returns a pointer to the znode to the right of @znode or NULL
2934  * if there is not one. A negative error code is returned on failure.
2935  */
right_znode(struct ubifs_info * c,struct ubifs_znode * znode)2936 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2937 				       struct ubifs_znode *znode)
2938 {
2939 	int level = znode->level;
2940 
2941 	while (1) {
2942 		int n = znode->iip + 1;
2943 
2944 		/* Go up until we can go right */
2945 		znode = znode->parent;
2946 		if (!znode)
2947 			return NULL;
2948 		if (n < znode->child_cnt) {
2949 			/* Now go down the leftmost branch to 'level' */
2950 			znode = get_znode(c, znode, n);
2951 			if (IS_ERR(znode))
2952 				return znode;
2953 			while (znode->level != level) {
2954 				znode = get_znode(c, znode, 0);
2955 				if (IS_ERR(znode))
2956 					return znode;
2957 			}
2958 			break;
2959 		}
2960 	}
2961 	return znode;
2962 }
2963 
2964 /**
2965  * lookup_znode - find a particular indexing node from TNC.
2966  * @c: UBIFS file-system description object
2967  * @key: index node key to lookup
2968  * @level: index node level
2969  * @lnum: index node LEB number
2970  * @offs: index node offset
2971  *
2972  * This function searches an indexing node by its first key @key and its
2973  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2974  * nodes it traverses to TNC. This function is called for indexing nodes which
2975  * were found on the media by scanning, for example when garbage-collecting or
2976  * when doing in-the-gaps commit. This means that the indexing node which is
2977  * looked for does not have to have exactly the same leftmost key @key, because
2978  * the leftmost key may have been changed, in which case TNC will contain a
2979  * dirty znode which still refers the same @lnum:@offs. This function is clever
2980  * enough to recognize such indexing nodes.
2981  *
2982  * Note, if a znode was deleted or changed too much, then this function will
2983  * not find it. For situations like this UBIFS has the old index RB-tree
2984  * (indexed by @lnum:@offs).
2985  *
2986  * This function returns a pointer to the znode found or %NULL if it is not
2987  * found. A negative error code is returned on failure.
2988  */
lookup_znode(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)2989 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2990 					union ubifs_key *key, int level,
2991 					int lnum, int offs)
2992 {
2993 	struct ubifs_znode *znode, *zn;
2994 	int n, nn;
2995 
2996 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2997 
2998 	/*
2999 	 * The arguments have probably been read off flash, so don't assume
3000 	 * they are valid.
3001 	 */
3002 	if (level < 0)
3003 		return ERR_PTR(-EINVAL);
3004 
3005 	/* Get the root znode */
3006 	znode = c->zroot.znode;
3007 	if (!znode) {
3008 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3009 		if (IS_ERR(znode))
3010 			return znode;
3011 	}
3012 	/* Check if it is the one we are looking for */
3013 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3014 		return znode;
3015 	/* Descend to the parent level i.e. (level + 1) */
3016 	if (level >= znode->level)
3017 		return NULL;
3018 	while (1) {
3019 		ubifs_search_zbranch(c, znode, key, &n);
3020 		if (n < 0) {
3021 			/*
3022 			 * We reached a znode where the leftmost key is greater
3023 			 * than the key we are searching for. This is the same
3024 			 * situation as the one described in a huge comment at
3025 			 * the end of the 'ubifs_lookup_level0()' function. And
3026 			 * for exactly the same reasons we have to try to look
3027 			 * left before giving up.
3028 			 */
3029 			znode = left_znode(c, znode);
3030 			if (!znode)
3031 				return NULL;
3032 			if (IS_ERR(znode))
3033 				return znode;
3034 			ubifs_search_zbranch(c, znode, key, &n);
3035 			ubifs_assert(n >= 0);
3036 		}
3037 		if (znode->level == level + 1)
3038 			break;
3039 		znode = get_znode(c, znode, n);
3040 		if (IS_ERR(znode))
3041 			return znode;
3042 	}
3043 	/* Check if the child is the one we are looking for */
3044 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3045 		return get_znode(c, znode, n);
3046 	/* If the key is unique, there is nowhere else to look */
3047 	if (!is_hash_key(c, key))
3048 		return NULL;
3049 	/*
3050 	 * The key is not unique and so may be also in the znodes to either
3051 	 * side.
3052 	 */
3053 	zn = znode;
3054 	nn = n;
3055 	/* Look left */
3056 	while (1) {
3057 		/* Move one branch to the left */
3058 		if (n)
3059 			n -= 1;
3060 		else {
3061 			znode = left_znode(c, znode);
3062 			if (!znode)
3063 				break;
3064 			if (IS_ERR(znode))
3065 				return znode;
3066 			n = znode->child_cnt - 1;
3067 		}
3068 		/* Check it */
3069 		if (znode->zbranch[n].lnum == lnum &&
3070 		    znode->zbranch[n].offs == offs)
3071 			return get_znode(c, znode, n);
3072 		/* Stop if the key is less than the one we are looking for */
3073 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3074 			break;
3075 	}
3076 	/* Back to the middle */
3077 	znode = zn;
3078 	n = nn;
3079 	/* Look right */
3080 	while (1) {
3081 		/* Move one branch to the right */
3082 		if (++n >= znode->child_cnt) {
3083 			znode = right_znode(c, znode);
3084 			if (!znode)
3085 				break;
3086 			if (IS_ERR(znode))
3087 				return znode;
3088 			n = 0;
3089 		}
3090 		/* Check it */
3091 		if (znode->zbranch[n].lnum == lnum &&
3092 		    znode->zbranch[n].offs == offs)
3093 			return get_znode(c, znode, n);
3094 		/* Stop if the key is greater than the one we are looking for */
3095 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3096 			break;
3097 	}
3098 	return NULL;
3099 }
3100 
3101 /**
3102  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3103  * @c: UBIFS file-system description object
3104  * @key: key of index node
3105  * @level: index node level
3106  * @lnum: LEB number of index node
3107  * @offs: offset of index node
3108  *
3109  * This function returns %0 if the index node is not referred to in the TNC, %1
3110  * if the index node is referred to in the TNC and the corresponding znode is
3111  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3112  * znode is clean, and a negative error code in case of failure.
3113  *
3114  * Note, the @key argument has to be the key of the first child. Also note,
3115  * this function relies on the fact that 0:0 is never a valid LEB number and
3116  * offset for a main-area node.
3117  */
is_idx_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3118 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3119 		       int lnum, int offs)
3120 {
3121 	struct ubifs_znode *znode;
3122 
3123 	znode = lookup_znode(c, key, level, lnum, offs);
3124 	if (!znode)
3125 		return 0;
3126 	if (IS_ERR(znode))
3127 		return PTR_ERR(znode);
3128 
3129 	return ubifs_zn_dirty(znode) ? 1 : 2;
3130 }
3131 
3132 /**
3133  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3134  * @c: UBIFS file-system description object
3135  * @key: node key
3136  * @lnum: node LEB number
3137  * @offs: node offset
3138  *
3139  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3140  * not, and a negative error code in case of failure.
3141  *
3142  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3143  * and offset for a main-area node.
3144  */
is_leaf_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int lnum,int offs)3145 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3146 			       int lnum, int offs)
3147 {
3148 	struct ubifs_zbranch *zbr;
3149 	struct ubifs_znode *znode, *zn;
3150 	int n, found, err, nn;
3151 	const int unique = !is_hash_key(c, key);
3152 
3153 	found = ubifs_lookup_level0(c, key, &znode, &n);
3154 	if (found < 0)
3155 		return found; /* Error code */
3156 	if (!found)
3157 		return 0;
3158 	zbr = &znode->zbranch[n];
3159 	if (lnum == zbr->lnum && offs == zbr->offs)
3160 		return 1; /* Found it */
3161 	if (unique)
3162 		return 0;
3163 	/*
3164 	 * Because the key is not unique, we have to look left
3165 	 * and right as well
3166 	 */
3167 	zn = znode;
3168 	nn = n;
3169 	/* Look left */
3170 	while (1) {
3171 		err = tnc_prev(c, &znode, &n);
3172 		if (err == -ENOENT)
3173 			break;
3174 		if (err)
3175 			return err;
3176 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3177 			break;
3178 		zbr = &znode->zbranch[n];
3179 		if (lnum == zbr->lnum && offs == zbr->offs)
3180 			return 1; /* Found it */
3181 	}
3182 	/* Look right */
3183 	znode = zn;
3184 	n = nn;
3185 	while (1) {
3186 		err = tnc_next(c, &znode, &n);
3187 		if (err) {
3188 			if (err == -ENOENT)
3189 				return 0;
3190 			return err;
3191 		}
3192 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3193 			break;
3194 		zbr = &znode->zbranch[n];
3195 		if (lnum == zbr->lnum && offs == zbr->offs)
3196 			return 1; /* Found it */
3197 	}
3198 	return 0;
3199 }
3200 
3201 /**
3202  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3203  * @c: UBIFS file-system description object
3204  * @key: node key
3205  * @level: index node level (if it is an index node)
3206  * @lnum: node LEB number
3207  * @offs: node offset
3208  * @is_idx: non-zero if the node is an index node
3209  *
3210  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3211  * negative error code in case of failure. For index nodes, @key has to be the
3212  * key of the first child. An index node is considered to be in the TNC only if
3213  * the corresponding znode is clean or has not been loaded.
3214  */
ubifs_tnc_has_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs,int is_idx)3215 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3216 		       int lnum, int offs, int is_idx)
3217 {
3218 	int err;
3219 
3220 	mutex_lock(&c->tnc_mutex);
3221 	if (is_idx) {
3222 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3223 		if (err < 0)
3224 			goto out_unlock;
3225 		if (err == 1)
3226 			/* The index node was found but it was dirty */
3227 			err = 0;
3228 		else if (err == 2)
3229 			/* The index node was found and it was clean */
3230 			err = 1;
3231 		else
3232 			BUG_ON(err != 0);
3233 	} else
3234 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3235 
3236 out_unlock:
3237 	mutex_unlock(&c->tnc_mutex);
3238 	return err;
3239 }
3240 
3241 /**
3242  * ubifs_dirty_idx_node - dirty an index node.
3243  * @c: UBIFS file-system description object
3244  * @key: index node key
3245  * @level: index node level
3246  * @lnum: index node LEB number
3247  * @offs: index node offset
3248  *
3249  * This function loads and dirties an index node so that it can be garbage
3250  * collected. The @key argument has to be the key of the first child. This
3251  * function relies on the fact that 0:0 is never a valid LEB number and offset
3252  * for a main-area node. Returns %0 on success and a negative error code on
3253  * failure.
3254  */
ubifs_dirty_idx_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3255 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3256 			 int lnum, int offs)
3257 {
3258 	struct ubifs_znode *znode;
3259 	int err = 0;
3260 
3261 	mutex_lock(&c->tnc_mutex);
3262 	znode = lookup_znode(c, key, level, lnum, offs);
3263 	if (!znode)
3264 		goto out_unlock;
3265 	if (IS_ERR(znode)) {
3266 		err = PTR_ERR(znode);
3267 		goto out_unlock;
3268 	}
3269 	znode = dirty_cow_bottom_up(c, znode);
3270 	if (IS_ERR(znode)) {
3271 		err = PTR_ERR(znode);
3272 		goto out_unlock;
3273 	}
3274 
3275 out_unlock:
3276 	mutex_unlock(&c->tnc_mutex);
3277 	return err;
3278 }
3279 
3280 #ifdef CONFIG_UBIFS_FS_DEBUG
3281 
3282 /**
3283  * dbg_check_inode_size - check if inode size is correct.
3284  * @c: UBIFS file-system description object
3285  * @inum: inode number
3286  * @size: inode size
3287  *
3288  * This function makes sure that the inode size (@size) is correct and it does
3289  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3290  * if it has a data page beyond @size, and other negative error code in case of
3291  * other errors.
3292  */
dbg_check_inode_size(struct ubifs_info * c,const struct inode * inode,loff_t size)3293 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3294 			 loff_t size)
3295 {
3296 	int err, n;
3297 	union ubifs_key from_key, to_key, *key;
3298 	struct ubifs_znode *znode;
3299 	unsigned int block;
3300 
3301 	if (!S_ISREG(inode->i_mode))
3302 		return 0;
3303 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
3304 		return 0;
3305 
3306 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3307 	data_key_init(c, &from_key, inode->i_ino, block);
3308 	highest_data_key(c, &to_key, inode->i_ino);
3309 
3310 	mutex_lock(&c->tnc_mutex);
3311 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3312 	if (err < 0)
3313 		goto out_unlock;
3314 
3315 	if (err) {
3316 		err = -EINVAL;
3317 		key = &from_key;
3318 		goto out_dump;
3319 	}
3320 
3321 	err = tnc_next(c, &znode, &n);
3322 	if (err == -ENOENT) {
3323 		err = 0;
3324 		goto out_unlock;
3325 	}
3326 	if (err < 0)
3327 		goto out_unlock;
3328 
3329 	ubifs_assert(err == 0);
3330 	key = &znode->zbranch[n].key;
3331 	if (!key_in_range(c, key, &from_key, &to_key))
3332 		goto out_unlock;
3333 
3334 out_dump:
3335 	block = key_block(c, key);
3336 	ubifs_err("inode %lu has size %lld, but there are data at offset %lld "
3337 		  "(data key %s)", (unsigned long)inode->i_ino, size,
3338 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key));
3339 	dbg_dump_inode(c, inode);
3340 	dbg_dump_stack();
3341 	err = -EINVAL;
3342 
3343 out_unlock:
3344 	mutex_unlock(&c->tnc_mutex);
3345 	return err;
3346 }
3347 
3348 #endif /* CONFIG_UBIFS_FS_DEBUG */
3349