1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /* This file implements TNC functions for committing */
24 
25 #include <linux/random.h>
26 #include "ubifs.h"
27 
28 /**
29  * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
30  * @c: UBIFS file-system description object
31  * @idx: buffer in which to place new index node
32  * @znode: znode from which to make new index node
33  * @lnum: LEB number where new index node will be written
34  * @offs: offset where new index node will be written
35  * @len: length of new index node
36  */
make_idx_node(struct ubifs_info * c,struct ubifs_idx_node * idx,struct ubifs_znode * znode,int lnum,int offs,int len)37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
38 			 struct ubifs_znode *znode, int lnum, int offs, int len)
39 {
40 	struct ubifs_znode *zp;
41 	int i, err;
42 
43 	/* Make index node */
44 	idx->ch.node_type = UBIFS_IDX_NODE;
45 	idx->child_cnt = cpu_to_le16(znode->child_cnt);
46 	idx->level = cpu_to_le16(znode->level);
47 	for (i = 0; i < znode->child_cnt; i++) {
48 		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
49 		struct ubifs_zbranch *zbr = &znode->zbranch[i];
50 
51 		key_write_idx(c, &zbr->key, &br->key);
52 		br->lnum = cpu_to_le32(zbr->lnum);
53 		br->offs = cpu_to_le32(zbr->offs);
54 		br->len = cpu_to_le32(zbr->len);
55 		if (!zbr->lnum || !zbr->len) {
56 			ubifs_err("bad ref in znode");
57 			dbg_dump_znode(c, znode);
58 			if (zbr->znode)
59 				dbg_dump_znode(c, zbr->znode);
60 		}
61 	}
62 	ubifs_prepare_node(c, idx, len, 0);
63 
64 #ifdef CONFIG_UBIFS_FS_DEBUG
65 	znode->lnum = lnum;
66 	znode->offs = offs;
67 	znode->len = len;
68 #endif
69 
70 	err = insert_old_idx_znode(c, znode);
71 
72 	/* Update the parent */
73 	zp = znode->parent;
74 	if (zp) {
75 		struct ubifs_zbranch *zbr;
76 
77 		zbr = &zp->zbranch[znode->iip];
78 		zbr->lnum = lnum;
79 		zbr->offs = offs;
80 		zbr->len = len;
81 	} else {
82 		c->zroot.lnum = lnum;
83 		c->zroot.offs = offs;
84 		c->zroot.len = len;
85 	}
86 	c->calc_idx_sz += ALIGN(len, 8);
87 
88 	atomic_long_dec(&c->dirty_zn_cnt);
89 
90 	ubifs_assert(ubifs_zn_dirty(znode));
91 	ubifs_assert(ubifs_zn_cow(znode));
92 
93 	/*
94 	 * Note, unlike 'write_index()' we do not add memory barriers here
95 	 * because this function is called with @c->tnc_mutex locked.
96 	 */
97 	__clear_bit(DIRTY_ZNODE, &znode->flags);
98 	__clear_bit(COW_ZNODE, &znode->flags);
99 
100 	return err;
101 }
102 
103 /**
104  * fill_gap - make index nodes in gaps in dirty index LEBs.
105  * @c: UBIFS file-system description object
106  * @lnum: LEB number that gap appears in
107  * @gap_start: offset of start of gap
108  * @gap_end: offset of end of gap
109  * @dirt: adds dirty space to this
110  *
111  * This function returns the number of index nodes written into the gap.
112  */
fill_gap(struct ubifs_info * c,int lnum,int gap_start,int gap_end,int * dirt)113 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
114 		    int *dirt)
115 {
116 	int len, gap_remains, gap_pos, written, pad_len;
117 
118 	ubifs_assert((gap_start & 7) == 0);
119 	ubifs_assert((gap_end & 7) == 0);
120 	ubifs_assert(gap_end >= gap_start);
121 
122 	gap_remains = gap_end - gap_start;
123 	if (!gap_remains)
124 		return 0;
125 	gap_pos = gap_start;
126 	written = 0;
127 	while (c->enext) {
128 		len = ubifs_idx_node_sz(c, c->enext->child_cnt);
129 		if (len < gap_remains) {
130 			struct ubifs_znode *znode = c->enext;
131 			const int alen = ALIGN(len, 8);
132 			int err;
133 
134 			ubifs_assert(alen <= gap_remains);
135 			err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
136 					    lnum, gap_pos, len);
137 			if (err)
138 				return err;
139 			gap_remains -= alen;
140 			gap_pos += alen;
141 			c->enext = znode->cnext;
142 			if (c->enext == c->cnext)
143 				c->enext = NULL;
144 			written += 1;
145 		} else
146 			break;
147 	}
148 	if (gap_end == c->leb_size) {
149 		c->ileb_len = ALIGN(gap_pos, c->min_io_size);
150 		/* Pad to end of min_io_size */
151 		pad_len = c->ileb_len - gap_pos;
152 	} else
153 		/* Pad to end of gap */
154 		pad_len = gap_remains;
155 	dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
156 	       lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
157 	ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
158 	*dirt += pad_len;
159 	return written;
160 }
161 
162 /**
163  * find_old_idx - find an index node obsoleted since the last commit start.
164  * @c: UBIFS file-system description object
165  * @lnum: LEB number of obsoleted index node
166  * @offs: offset of obsoleted index node
167  *
168  * Returns %1 if found and %0 otherwise.
169  */
find_old_idx(struct ubifs_info * c,int lnum,int offs)170 static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
171 {
172 	struct ubifs_old_idx *o;
173 	struct rb_node *p;
174 
175 	p = c->old_idx.rb_node;
176 	while (p) {
177 		o = rb_entry(p, struct ubifs_old_idx, rb);
178 		if (lnum < o->lnum)
179 			p = p->rb_left;
180 		else if (lnum > o->lnum)
181 			p = p->rb_right;
182 		else if (offs < o->offs)
183 			p = p->rb_left;
184 		else if (offs > o->offs)
185 			p = p->rb_right;
186 		else
187 			return 1;
188 	}
189 	return 0;
190 }
191 
192 /**
193  * is_idx_node_in_use - determine if an index node can be overwritten.
194  * @c: UBIFS file-system description object
195  * @key: key of index node
196  * @level: index node level
197  * @lnum: LEB number of index node
198  * @offs: offset of index node
199  *
200  * If @key / @lnum / @offs identify an index node that was not part of the old
201  * index, then this function returns %0 (obsolete).  Else if the index node was
202  * part of the old index but is now dirty %1 is returned, else if it is clean %2
203  * is returned. A negative error code is returned on failure.
204  */
is_idx_node_in_use(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)205 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
206 			      int level, int lnum, int offs)
207 {
208 	int ret;
209 
210 	ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
211 	if (ret < 0)
212 		return ret; /* Error code */
213 	if (ret == 0)
214 		if (find_old_idx(c, lnum, offs))
215 			return 1;
216 	return ret;
217 }
218 
219 /**
220  * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
221  * @c: UBIFS file-system description object
222  * @p: return LEB number here
223  *
224  * This function lays out new index nodes for dirty znodes using in-the-gaps
225  * method of TNC commit.
226  * This function merely puts the next znode into the next gap, making no attempt
227  * to try to maximise the number of znodes that fit.
228  * This function returns the number of index nodes written into the gaps, or a
229  * negative error code on failure.
230  */
layout_leb_in_gaps(struct ubifs_info * c,int * p)231 static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
232 {
233 	struct ubifs_scan_leb *sleb;
234 	struct ubifs_scan_node *snod;
235 	int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
236 
237 	tot_written = 0;
238 	/* Get an index LEB with lots of obsolete index nodes */
239 	lnum = ubifs_find_dirty_idx_leb(c);
240 	if (lnum < 0)
241 		/*
242 		 * There also may be dirt in the index head that could be
243 		 * filled, however we do not check there at present.
244 		 */
245 		return lnum; /* Error code */
246 	*p = lnum;
247 	dbg_gc("LEB %d", lnum);
248 	/*
249 	 * Scan the index LEB.  We use the generic scan for this even though
250 	 * it is more comprehensive and less efficient than is needed for this
251 	 * purpose.
252 	 */
253 	sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
254 	c->ileb_len = 0;
255 	if (IS_ERR(sleb))
256 		return PTR_ERR(sleb);
257 	gap_start = 0;
258 	list_for_each_entry(snod, &sleb->nodes, list) {
259 		struct ubifs_idx_node *idx;
260 		int in_use, level;
261 
262 		ubifs_assert(snod->type == UBIFS_IDX_NODE);
263 		idx = snod->node;
264 		key_read(c, ubifs_idx_key(c, idx), &snod->key);
265 		level = le16_to_cpu(idx->level);
266 		/* Determine if the index node is in use (not obsolete) */
267 		in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
268 					    snod->offs);
269 		if (in_use < 0) {
270 			ubifs_scan_destroy(sleb);
271 			return in_use; /* Error code */
272 		}
273 		if (in_use) {
274 			if (in_use == 1)
275 				dirt += ALIGN(snod->len, 8);
276 			/*
277 			 * The obsolete index nodes form gaps that can be
278 			 * overwritten.  This gap has ended because we have
279 			 * found an index node that is still in use
280 			 * i.e. not obsolete
281 			 */
282 			gap_end = snod->offs;
283 			/* Try to fill gap */
284 			written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
285 			if (written < 0) {
286 				ubifs_scan_destroy(sleb);
287 				return written; /* Error code */
288 			}
289 			tot_written += written;
290 			gap_start = ALIGN(snod->offs + snod->len, 8);
291 		}
292 	}
293 	ubifs_scan_destroy(sleb);
294 	c->ileb_len = c->leb_size;
295 	gap_end = c->leb_size;
296 	/* Try to fill gap */
297 	written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
298 	if (written < 0)
299 		return written; /* Error code */
300 	tot_written += written;
301 	if (tot_written == 0) {
302 		struct ubifs_lprops lp;
303 
304 		dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
305 		err = ubifs_read_one_lp(c, lnum, &lp);
306 		if (err)
307 			return err;
308 		if (lp.free == c->leb_size) {
309 			/*
310 			 * We must have snatched this LEB from the idx_gc list
311 			 * so we need to correct the free and dirty space.
312 			 */
313 			err = ubifs_change_one_lp(c, lnum,
314 						  c->leb_size - c->ileb_len,
315 						  dirt, 0, 0, 0);
316 			if (err)
317 				return err;
318 		}
319 		return 0;
320 	}
321 	err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
322 				  0, 0, 0);
323 	if (err)
324 		return err;
325 	err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len,
326 			       UBI_SHORTTERM);
327 	if (err)
328 		return err;
329 	dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
330 	return tot_written;
331 }
332 
333 /**
334  * get_leb_cnt - calculate the number of empty LEBs needed to commit.
335  * @c: UBIFS file-system description object
336  * @cnt: number of znodes to commit
337  *
338  * This function returns the number of empty LEBs needed to commit @cnt znodes
339  * to the current index head.  The number is not exact and may be more than
340  * needed.
341  */
get_leb_cnt(struct ubifs_info * c,int cnt)342 static int get_leb_cnt(struct ubifs_info *c, int cnt)
343 {
344 	int d;
345 
346 	/* Assume maximum index node size (i.e. overestimate space needed) */
347 	cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
348 	if (cnt < 0)
349 		cnt = 0;
350 	d = c->leb_size / c->max_idx_node_sz;
351 	return DIV_ROUND_UP(cnt, d);
352 }
353 
354 /**
355  * layout_in_gaps - in-the-gaps method of committing TNC.
356  * @c: UBIFS file-system description object
357  * @cnt: number of dirty znodes to commit.
358  *
359  * This function lays out new index nodes for dirty znodes using in-the-gaps
360  * method of TNC commit.
361  *
362  * This function returns %0 on success and a negative error code on failure.
363  */
layout_in_gaps(struct ubifs_info * c,int cnt)364 static int layout_in_gaps(struct ubifs_info *c, int cnt)
365 {
366 	int err, leb_needed_cnt, written, *p;
367 
368 	dbg_gc("%d znodes to write", cnt);
369 
370 	c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS);
371 	if (!c->gap_lebs)
372 		return -ENOMEM;
373 
374 	p = c->gap_lebs;
375 	do {
376 		ubifs_assert(p < c->gap_lebs + sizeof(int) * c->lst.idx_lebs);
377 		written = layout_leb_in_gaps(c, p);
378 		if (written < 0) {
379 			err = written;
380 			if (err != -ENOSPC) {
381 				kfree(c->gap_lebs);
382 				c->gap_lebs = NULL;
383 				return err;
384 			}
385 			if (!dbg_is_chk_index(c)) {
386 				/*
387 				 * Do not print scary warnings if the debugging
388 				 * option which forces in-the-gaps is enabled.
389 				 */
390 				ubifs_warn("out of space");
391 				dbg_dump_budg(c, &c->bi);
392 				dbg_dump_lprops(c);
393 			}
394 			/* Try to commit anyway */
395 			err = 0;
396 			break;
397 		}
398 		p++;
399 		cnt -= written;
400 		leb_needed_cnt = get_leb_cnt(c, cnt);
401 		dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
402 		       leb_needed_cnt, c->ileb_cnt);
403 	} while (leb_needed_cnt > c->ileb_cnt);
404 
405 	*p = -1;
406 	return 0;
407 }
408 
409 /**
410  * layout_in_empty_space - layout index nodes in empty space.
411  * @c: UBIFS file-system description object
412  *
413  * This function lays out new index nodes for dirty znodes using empty LEBs.
414  *
415  * This function returns %0 on success and a negative error code on failure.
416  */
layout_in_empty_space(struct ubifs_info * c)417 static int layout_in_empty_space(struct ubifs_info *c)
418 {
419 	struct ubifs_znode *znode, *cnext, *zp;
420 	int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
421 	int wlen, blen, err;
422 
423 	cnext = c->enext;
424 	if (!cnext)
425 		return 0;
426 
427 	lnum = c->ihead_lnum;
428 	buf_offs = c->ihead_offs;
429 
430 	buf_len = ubifs_idx_node_sz(c, c->fanout);
431 	buf_len = ALIGN(buf_len, c->min_io_size);
432 	used = 0;
433 	avail = buf_len;
434 
435 	/* Ensure there is enough room for first write */
436 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
437 	if (buf_offs + next_len > c->leb_size)
438 		lnum = -1;
439 
440 	while (1) {
441 		znode = cnext;
442 
443 		len = ubifs_idx_node_sz(c, znode->child_cnt);
444 
445 		/* Determine the index node position */
446 		if (lnum == -1) {
447 			if (c->ileb_nxt >= c->ileb_cnt) {
448 				ubifs_err("out of space");
449 				return -ENOSPC;
450 			}
451 			lnum = c->ilebs[c->ileb_nxt++];
452 			buf_offs = 0;
453 			used = 0;
454 			avail = buf_len;
455 		}
456 
457 		offs = buf_offs + used;
458 
459 #ifdef CONFIG_UBIFS_FS_DEBUG
460 		znode->lnum = lnum;
461 		znode->offs = offs;
462 		znode->len = len;
463 #endif
464 
465 		/* Update the parent */
466 		zp = znode->parent;
467 		if (zp) {
468 			struct ubifs_zbranch *zbr;
469 			int i;
470 
471 			i = znode->iip;
472 			zbr = &zp->zbranch[i];
473 			zbr->lnum = lnum;
474 			zbr->offs = offs;
475 			zbr->len = len;
476 		} else {
477 			c->zroot.lnum = lnum;
478 			c->zroot.offs = offs;
479 			c->zroot.len = len;
480 		}
481 		c->calc_idx_sz += ALIGN(len, 8);
482 
483 		/*
484 		 * Once lprops is updated, we can decrease the dirty znode count
485 		 * but it is easier to just do it here.
486 		 */
487 		atomic_long_dec(&c->dirty_zn_cnt);
488 
489 		/*
490 		 * Calculate the next index node length to see if there is
491 		 * enough room for it
492 		 */
493 		cnext = znode->cnext;
494 		if (cnext == c->cnext)
495 			next_len = 0;
496 		else
497 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
498 
499 		/* Update buffer positions */
500 		wlen = used + len;
501 		used += ALIGN(len, 8);
502 		avail -= ALIGN(len, 8);
503 
504 		if (next_len != 0 &&
505 		    buf_offs + used + next_len <= c->leb_size &&
506 		    avail > 0)
507 			continue;
508 
509 		if (avail <= 0 && next_len &&
510 		    buf_offs + used + next_len <= c->leb_size)
511 			blen = buf_len;
512 		else
513 			blen = ALIGN(wlen, c->min_io_size);
514 
515 		/* The buffer is full or there are no more znodes to do */
516 		buf_offs += blen;
517 		if (next_len) {
518 			if (buf_offs + next_len > c->leb_size) {
519 				err = ubifs_update_one_lp(c, lnum,
520 					c->leb_size - buf_offs, blen - used,
521 					0, 0);
522 				if (err)
523 					return err;
524 				lnum = -1;
525 			}
526 			used -= blen;
527 			if (used < 0)
528 				used = 0;
529 			avail = buf_len - used;
530 			continue;
531 		}
532 		err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
533 					  blen - used, 0, 0);
534 		if (err)
535 			return err;
536 		break;
537 	}
538 
539 #ifdef CONFIG_UBIFS_FS_DEBUG
540 	c->dbg->new_ihead_lnum = lnum;
541 	c->dbg->new_ihead_offs = buf_offs;
542 #endif
543 
544 	return 0;
545 }
546 
547 /**
548  * layout_commit - determine positions of index nodes to commit.
549  * @c: UBIFS file-system description object
550  * @no_space: indicates that insufficient empty LEBs were allocated
551  * @cnt: number of znodes to commit
552  *
553  * Calculate and update the positions of index nodes to commit.  If there were
554  * an insufficient number of empty LEBs allocated, then index nodes are placed
555  * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
556  * this purpose, an obsolete index node is one that was not in the index as at
557  * the end of the last commit.  To write "in-the-gaps" requires that those index
558  * LEBs are updated atomically in-place.
559  */
layout_commit(struct ubifs_info * c,int no_space,int cnt)560 static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
561 {
562 	int err;
563 
564 	if (no_space) {
565 		err = layout_in_gaps(c, cnt);
566 		if (err)
567 			return err;
568 	}
569 	err = layout_in_empty_space(c);
570 	return err;
571 }
572 
573 /**
574  * find_first_dirty - find first dirty znode.
575  * @znode: znode to begin searching from
576  */
find_first_dirty(struct ubifs_znode * znode)577 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
578 {
579 	int i, cont;
580 
581 	if (!znode)
582 		return NULL;
583 
584 	while (1) {
585 		if (znode->level == 0) {
586 			if (ubifs_zn_dirty(znode))
587 				return znode;
588 			return NULL;
589 		}
590 		cont = 0;
591 		for (i = 0; i < znode->child_cnt; i++) {
592 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
593 
594 			if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
595 				znode = zbr->znode;
596 				cont = 1;
597 				break;
598 			}
599 		}
600 		if (!cont) {
601 			if (ubifs_zn_dirty(znode))
602 				return znode;
603 			return NULL;
604 		}
605 	}
606 }
607 
608 /**
609  * find_next_dirty - find next dirty znode.
610  * @znode: znode to begin searching from
611  */
find_next_dirty(struct ubifs_znode * znode)612 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
613 {
614 	int n = znode->iip + 1;
615 
616 	znode = znode->parent;
617 	if (!znode)
618 		return NULL;
619 	for (; n < znode->child_cnt; n++) {
620 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
621 
622 		if (zbr->znode && ubifs_zn_dirty(zbr->znode))
623 			return find_first_dirty(zbr->znode);
624 	}
625 	return znode;
626 }
627 
628 /**
629  * get_znodes_to_commit - create list of dirty znodes to commit.
630  * @c: UBIFS file-system description object
631  *
632  * This function returns the number of znodes to commit.
633  */
get_znodes_to_commit(struct ubifs_info * c)634 static int get_znodes_to_commit(struct ubifs_info *c)
635 {
636 	struct ubifs_znode *znode, *cnext;
637 	int cnt = 0;
638 
639 	c->cnext = find_first_dirty(c->zroot.znode);
640 	znode = c->enext = c->cnext;
641 	if (!znode) {
642 		dbg_cmt("no znodes to commit");
643 		return 0;
644 	}
645 	cnt += 1;
646 	while (1) {
647 		ubifs_assert(!ubifs_zn_cow(znode));
648 		__set_bit(COW_ZNODE, &znode->flags);
649 		znode->alt = 0;
650 		cnext = find_next_dirty(znode);
651 		if (!cnext) {
652 			znode->cnext = c->cnext;
653 			break;
654 		}
655 		znode->cnext = cnext;
656 		znode = cnext;
657 		cnt += 1;
658 	}
659 	dbg_cmt("committing %d znodes", cnt);
660 	ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt));
661 	return cnt;
662 }
663 
664 /**
665  * alloc_idx_lebs - allocate empty LEBs to be used to commit.
666  * @c: UBIFS file-system description object
667  * @cnt: number of znodes to commit
668  *
669  * This function returns %-ENOSPC if it cannot allocate a sufficient number of
670  * empty LEBs.  %0 is returned on success, otherwise a negative error code
671  * is returned.
672  */
alloc_idx_lebs(struct ubifs_info * c,int cnt)673 static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
674 {
675 	int i, leb_cnt, lnum;
676 
677 	c->ileb_cnt = 0;
678 	c->ileb_nxt = 0;
679 	leb_cnt = get_leb_cnt(c, cnt);
680 	dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
681 	if (!leb_cnt)
682 		return 0;
683 	c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS);
684 	if (!c->ilebs)
685 		return -ENOMEM;
686 	for (i = 0; i < leb_cnt; i++) {
687 		lnum = ubifs_find_free_leb_for_idx(c);
688 		if (lnum < 0)
689 			return lnum;
690 		c->ilebs[c->ileb_cnt++] = lnum;
691 		dbg_cmt("LEB %d", lnum);
692 	}
693 	if (dbg_is_chk_index(c) && !(random32() & 7))
694 		return -ENOSPC;
695 	return 0;
696 }
697 
698 /**
699  * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
700  * @c: UBIFS file-system description object
701  *
702  * It is possible that we allocate more empty LEBs for the commit than we need.
703  * This functions frees the surplus.
704  *
705  * This function returns %0 on success and a negative error code on failure.
706  */
free_unused_idx_lebs(struct ubifs_info * c)707 static int free_unused_idx_lebs(struct ubifs_info *c)
708 {
709 	int i, err = 0, lnum, er;
710 
711 	for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
712 		lnum = c->ilebs[i];
713 		dbg_cmt("LEB %d", lnum);
714 		er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
715 					 LPROPS_INDEX | LPROPS_TAKEN, 0);
716 		if (!err)
717 			err = er;
718 	}
719 	return err;
720 }
721 
722 /**
723  * free_idx_lebs - free unused LEBs after commit end.
724  * @c: UBIFS file-system description object
725  *
726  * This function returns %0 on success and a negative error code on failure.
727  */
free_idx_lebs(struct ubifs_info * c)728 static int free_idx_lebs(struct ubifs_info *c)
729 {
730 	int err;
731 
732 	err = free_unused_idx_lebs(c);
733 	kfree(c->ilebs);
734 	c->ilebs = NULL;
735 	return err;
736 }
737 
738 /**
739  * ubifs_tnc_start_commit - start TNC commit.
740  * @c: UBIFS file-system description object
741  * @zroot: new index root position is returned here
742  *
743  * This function prepares the list of indexing nodes to commit and lays out
744  * their positions on flash. If there is not enough free space it uses the
745  * in-gap commit method. Returns zero in case of success and a negative error
746  * code in case of failure.
747  */
ubifs_tnc_start_commit(struct ubifs_info * c,struct ubifs_zbranch * zroot)748 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
749 {
750 	int err = 0, cnt;
751 
752 	mutex_lock(&c->tnc_mutex);
753 	err = dbg_check_tnc(c, 1);
754 	if (err)
755 		goto out;
756 	cnt = get_znodes_to_commit(c);
757 	if (cnt != 0) {
758 		int no_space = 0;
759 
760 		err = alloc_idx_lebs(c, cnt);
761 		if (err == -ENOSPC)
762 			no_space = 1;
763 		else if (err)
764 			goto out_free;
765 		err = layout_commit(c, no_space, cnt);
766 		if (err)
767 			goto out_free;
768 		ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
769 		err = free_unused_idx_lebs(c);
770 		if (err)
771 			goto out;
772 	}
773 	destroy_old_idx(c);
774 	memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
775 
776 	err = ubifs_save_dirty_idx_lnums(c);
777 	if (err)
778 		goto out;
779 
780 	spin_lock(&c->space_lock);
781 	/*
782 	 * Although we have not finished committing yet, update size of the
783 	 * committed index ('c->bi.old_idx_sz') and zero out the index growth
784 	 * budget. It is OK to do this now, because we've reserved all the
785 	 * space which is needed to commit the index, and it is save for the
786 	 * budgeting subsystem to assume the index is already committed,
787 	 * even though it is not.
788 	 */
789 	ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
790 	c->bi.old_idx_sz = c->calc_idx_sz;
791 	c->bi.uncommitted_idx = 0;
792 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
793 	spin_unlock(&c->space_lock);
794 	mutex_unlock(&c->tnc_mutex);
795 
796 	dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
797 	dbg_cmt("size of index %llu", c->calc_idx_sz);
798 	return err;
799 
800 out_free:
801 	free_idx_lebs(c);
802 out:
803 	mutex_unlock(&c->tnc_mutex);
804 	return err;
805 }
806 
807 /**
808  * write_index - write index nodes.
809  * @c: UBIFS file-system description object
810  *
811  * This function writes the index nodes whose positions were laid out in the
812  * layout_in_empty_space function.
813  */
write_index(struct ubifs_info * c)814 static int write_index(struct ubifs_info *c)
815 {
816 	struct ubifs_idx_node *idx;
817 	struct ubifs_znode *znode, *cnext;
818 	int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
819 	int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
820 
821 	cnext = c->enext;
822 	if (!cnext)
823 		return 0;
824 
825 	/*
826 	 * Always write index nodes to the index head so that index nodes and
827 	 * other types of nodes are never mixed in the same erase block.
828 	 */
829 	lnum = c->ihead_lnum;
830 	buf_offs = c->ihead_offs;
831 
832 	/* Allocate commit buffer */
833 	buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
834 	used = 0;
835 	avail = buf_len;
836 
837 	/* Ensure there is enough room for first write */
838 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
839 	if (buf_offs + next_len > c->leb_size) {
840 		err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
841 					  LPROPS_TAKEN);
842 		if (err)
843 			return err;
844 		lnum = -1;
845 	}
846 
847 	while (1) {
848 		cond_resched();
849 
850 		znode = cnext;
851 		idx = c->cbuf + used;
852 
853 		/* Make index node */
854 		idx->ch.node_type = UBIFS_IDX_NODE;
855 		idx->child_cnt = cpu_to_le16(znode->child_cnt);
856 		idx->level = cpu_to_le16(znode->level);
857 		for (i = 0; i < znode->child_cnt; i++) {
858 			struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
859 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
860 
861 			key_write_idx(c, &zbr->key, &br->key);
862 			br->lnum = cpu_to_le32(zbr->lnum);
863 			br->offs = cpu_to_le32(zbr->offs);
864 			br->len = cpu_to_le32(zbr->len);
865 			if (!zbr->lnum || !zbr->len) {
866 				ubifs_err("bad ref in znode");
867 				dbg_dump_znode(c, znode);
868 				if (zbr->znode)
869 					dbg_dump_znode(c, zbr->znode);
870 			}
871 		}
872 		len = ubifs_idx_node_sz(c, znode->child_cnt);
873 		ubifs_prepare_node(c, idx, len, 0);
874 
875 		/* Determine the index node position */
876 		if (lnum == -1) {
877 			lnum = c->ilebs[lnum_pos++];
878 			buf_offs = 0;
879 			used = 0;
880 			avail = buf_len;
881 		}
882 		offs = buf_offs + used;
883 
884 #ifdef CONFIG_UBIFS_FS_DEBUG
885 		if (lnum != znode->lnum || offs != znode->offs ||
886 		    len != znode->len) {
887 			ubifs_err("inconsistent znode posn");
888 			return -EINVAL;
889 		}
890 #endif
891 
892 		/* Grab some stuff from znode while we still can */
893 		cnext = znode->cnext;
894 
895 		ubifs_assert(ubifs_zn_dirty(znode));
896 		ubifs_assert(ubifs_zn_cow(znode));
897 
898 		/*
899 		 * It is important that other threads should see %DIRTY_ZNODE
900 		 * flag cleared before %COW_ZNODE. Specifically, it matters in
901 		 * the 'dirty_cow_znode()' function. This is the reason for the
902 		 * first barrier. Also, we want the bit changes to be seen to
903 		 * other threads ASAP, to avoid unnecesarry copying, which is
904 		 * the reason for the second barrier.
905 		 */
906 		clear_bit(DIRTY_ZNODE, &znode->flags);
907 		smp_mb__before_clear_bit();
908 		clear_bit(COW_ZNODE, &znode->flags);
909 		smp_mb__after_clear_bit();
910 
911 		/*
912 		 * We have marked the znode as clean but have not updated the
913 		 * @c->clean_zn_cnt counter. If this znode becomes dirty again
914 		 * before 'free_obsolete_znodes()' is called, then
915 		 * @c->clean_zn_cnt will be decremented before it gets
916 		 * incremented (resulting in 2 decrements for the same znode).
917 		 * This means that @c->clean_zn_cnt may become negative for a
918 		 * while.
919 		 *
920 		 * Q: why we cannot increment @c->clean_zn_cnt?
921 		 * A: because we do not have the @c->tnc_mutex locked, and the
922 		 *    following code would be racy and buggy:
923 		 *
924 		 *    if (!ubifs_zn_obsolete(znode)) {
925 		 *            atomic_long_inc(&c->clean_zn_cnt);
926 		 *            atomic_long_inc(&ubifs_clean_zn_cnt);
927 		 *    }
928 		 *
929 		 *    Thus, we just delay the @c->clean_zn_cnt update until we
930 		 *    have the mutex locked.
931 		 */
932 
933 		/* Do not access znode from this point on */
934 
935 		/* Update buffer positions */
936 		wlen = used + len;
937 		used += ALIGN(len, 8);
938 		avail -= ALIGN(len, 8);
939 
940 		/*
941 		 * Calculate the next index node length to see if there is
942 		 * enough room for it
943 		 */
944 		if (cnext == c->cnext)
945 			next_len = 0;
946 		else
947 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
948 
949 		nxt_offs = buf_offs + used + next_len;
950 		if (next_len && nxt_offs <= c->leb_size) {
951 			if (avail > 0)
952 				continue;
953 			else
954 				blen = buf_len;
955 		} else {
956 			wlen = ALIGN(wlen, 8);
957 			blen = ALIGN(wlen, c->min_io_size);
958 			ubifs_pad(c, c->cbuf + wlen, blen - wlen);
959 		}
960 
961 		/* The buffer is full or there are no more znodes to do */
962 		err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen,
963 				      UBI_SHORTTERM);
964 		if (err)
965 			return err;
966 		buf_offs += blen;
967 		if (next_len) {
968 			if (nxt_offs > c->leb_size) {
969 				err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
970 							  0, LPROPS_TAKEN);
971 				if (err)
972 					return err;
973 				lnum = -1;
974 			}
975 			used -= blen;
976 			if (used < 0)
977 				used = 0;
978 			avail = buf_len - used;
979 			memmove(c->cbuf, c->cbuf + blen, used);
980 			continue;
981 		}
982 		break;
983 	}
984 
985 #ifdef CONFIG_UBIFS_FS_DEBUG
986 	if (lnum != c->dbg->new_ihead_lnum ||
987 	    buf_offs != c->dbg->new_ihead_offs) {
988 		ubifs_err("inconsistent ihead");
989 		return -EINVAL;
990 	}
991 #endif
992 
993 	c->ihead_lnum = lnum;
994 	c->ihead_offs = buf_offs;
995 
996 	return 0;
997 }
998 
999 /**
1000  * free_obsolete_znodes - free obsolete znodes.
1001  * @c: UBIFS file-system description object
1002  *
1003  * At the end of commit end, obsolete znodes are freed.
1004  */
free_obsolete_znodes(struct ubifs_info * c)1005 static void free_obsolete_znodes(struct ubifs_info *c)
1006 {
1007 	struct ubifs_znode *znode, *cnext;
1008 
1009 	cnext = c->cnext;
1010 	do {
1011 		znode = cnext;
1012 		cnext = znode->cnext;
1013 		if (ubifs_zn_obsolete(znode))
1014 			kfree(znode);
1015 		else {
1016 			znode->cnext = NULL;
1017 			atomic_long_inc(&c->clean_zn_cnt);
1018 			atomic_long_inc(&ubifs_clean_zn_cnt);
1019 		}
1020 	} while (cnext != c->cnext);
1021 }
1022 
1023 /**
1024  * return_gap_lebs - return LEBs used by the in-gap commit method.
1025  * @c: UBIFS file-system description object
1026  *
1027  * This function clears the "taken" flag for the LEBs which were used by the
1028  * "commit in-the-gaps" method.
1029  */
return_gap_lebs(struct ubifs_info * c)1030 static int return_gap_lebs(struct ubifs_info *c)
1031 {
1032 	int *p, err;
1033 
1034 	if (!c->gap_lebs)
1035 		return 0;
1036 
1037 	dbg_cmt("");
1038 	for (p = c->gap_lebs; *p != -1; p++) {
1039 		err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1040 					  LPROPS_TAKEN, 0);
1041 		if (err)
1042 			return err;
1043 	}
1044 
1045 	kfree(c->gap_lebs);
1046 	c->gap_lebs = NULL;
1047 	return 0;
1048 }
1049 
1050 /**
1051  * ubifs_tnc_end_commit - update the TNC for commit end.
1052  * @c: UBIFS file-system description object
1053  *
1054  * Write the dirty znodes.
1055  */
ubifs_tnc_end_commit(struct ubifs_info * c)1056 int ubifs_tnc_end_commit(struct ubifs_info *c)
1057 {
1058 	int err;
1059 
1060 	if (!c->cnext)
1061 		return 0;
1062 
1063 	err = return_gap_lebs(c);
1064 	if (err)
1065 		return err;
1066 
1067 	err = write_index(c);
1068 	if (err)
1069 		return err;
1070 
1071 	mutex_lock(&c->tnc_mutex);
1072 
1073 	dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1074 
1075 	free_obsolete_znodes(c);
1076 
1077 	c->cnext = NULL;
1078 	kfree(c->ilebs);
1079 	c->ilebs = NULL;
1080 
1081 	mutex_unlock(&c->tnc_mutex);
1082 
1083 	return 0;
1084 }
1085