1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions needed to recover from unclean un-mounts.
25  * When UBIFS is mounted, it checks a flag on the master node to determine if
26  * an un-mount was completed successfully. If not, the process of mounting
27  * incorporates additional checking and fixing of on-flash data structures.
28  * UBIFS always cleans away all remnants of an unclean un-mount, so that
29  * errors do not accumulate. However UBIFS defers recovery if it is mounted
30  * read-only, and the flash is not modified in that case.
31  *
32  * The general UBIFS approach to the recovery is that it recovers from
33  * corruptions which could be caused by power cuts, but it refuses to recover
34  * from corruption caused by other reasons. And UBIFS tries to distinguish
35  * between these 2 reasons of corruptions and silently recover in the former
36  * case and loudly complain in the latter case.
37  *
38  * UBIFS writes only to erased LEBs, so it writes only to the flash space
39  * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40  * of the LEB to the end. And UBIFS assumes that the underlying flash media
41  * writes in @c->max_write_size bytes at a time.
42  *
43  * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44  * I/O unit corresponding to offset X to contain corrupted data, all the
45  * following min. I/O units have to contain empty space (all 0xFFs). If this is
46  * not true, the corruption cannot be the result of a power cut, and UBIFS
47  * refuses to mount.
48  */
49 
50 #include <linux/crc32.h>
51 #include <linux/slab.h>
52 #include "ubifs.h"
53 
54 /**
55  * is_empty - determine whether a buffer is empty (contains all 0xff).
56  * @buf: buffer to clean
57  * @len: length of buffer
58  *
59  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
60  * %0 is returned.
61  */
is_empty(void * buf,int len)62 static int is_empty(void *buf, int len)
63 {
64 	uint8_t *p = buf;
65 	int i;
66 
67 	for (i = 0; i < len; i++)
68 		if (*p++ != 0xff)
69 			return 0;
70 	return 1;
71 }
72 
73 /**
74  * first_non_ff - find offset of the first non-0xff byte.
75  * @buf: buffer to search in
76  * @len: length of buffer
77  *
78  * This function returns offset of the first non-0xff byte in @buf or %-1 if
79  * the buffer contains only 0xff bytes.
80  */
first_non_ff(void * buf,int len)81 static int first_non_ff(void *buf, int len)
82 {
83 	uint8_t *p = buf;
84 	int i;
85 
86 	for (i = 0; i < len; i++)
87 		if (*p++ != 0xff)
88 			return i;
89 	return -1;
90 }
91 
92 /**
93  * get_master_node - get the last valid master node allowing for corruption.
94  * @c: UBIFS file-system description object
95  * @lnum: LEB number
96  * @pbuf: buffer containing the LEB read, is returned here
97  * @mst: master node, if found, is returned here
98  * @cor: corruption, if found, is returned here
99  *
100  * This function allocates a buffer, reads the LEB into it, and finds and
101  * returns the last valid master node allowing for one area of corruption.
102  * The corrupt area, if there is one, must be consistent with the assumption
103  * that it is the result of an unclean unmount while the master node was being
104  * written. Under those circumstances, it is valid to use the previously written
105  * master node.
106  *
107  * This function returns %0 on success and a negative error code on failure.
108  */
get_master_node(const struct ubifs_info * c,int lnum,void ** pbuf,struct ubifs_mst_node ** mst,void ** cor)109 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
110 			   struct ubifs_mst_node **mst, void **cor)
111 {
112 	const int sz = c->mst_node_alsz;
113 	int err, offs, len;
114 	void *sbuf, *buf;
115 
116 	sbuf = vmalloc(c->leb_size);
117 	if (!sbuf)
118 		return -ENOMEM;
119 
120 	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
121 	if (err && err != -EBADMSG)
122 		goto out_free;
123 
124 	/* Find the first position that is definitely not a node */
125 	offs = 0;
126 	buf = sbuf;
127 	len = c->leb_size;
128 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
129 		struct ubifs_ch *ch = buf;
130 
131 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
132 			break;
133 		offs += sz;
134 		buf  += sz;
135 		len  -= sz;
136 	}
137 	/* See if there was a valid master node before that */
138 	if (offs) {
139 		int ret;
140 
141 		offs -= sz;
142 		buf  -= sz;
143 		len  += sz;
144 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
145 		if (ret != SCANNED_A_NODE && offs) {
146 			/* Could have been corruption so check one place back */
147 			offs -= sz;
148 			buf  -= sz;
149 			len  += sz;
150 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
151 			if (ret != SCANNED_A_NODE)
152 				/*
153 				 * We accept only one area of corruption because
154 				 * we are assuming that it was caused while
155 				 * trying to write a master node.
156 				 */
157 				goto out_err;
158 		}
159 		if (ret == SCANNED_A_NODE) {
160 			struct ubifs_ch *ch = buf;
161 
162 			if (ch->node_type != UBIFS_MST_NODE)
163 				goto out_err;
164 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
165 			*mst = buf;
166 			offs += sz;
167 			buf  += sz;
168 			len  -= sz;
169 		}
170 	}
171 	/* Check for corruption */
172 	if (offs < c->leb_size) {
173 		if (!is_empty(buf, min_t(int, len, sz))) {
174 			*cor = buf;
175 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
176 		}
177 		offs += sz;
178 		buf  += sz;
179 		len  -= sz;
180 	}
181 	/* Check remaining empty space */
182 	if (offs < c->leb_size)
183 		if (!is_empty(buf, len))
184 			goto out_err;
185 	*pbuf = sbuf;
186 	return 0;
187 
188 out_err:
189 	err = -EINVAL;
190 out_free:
191 	vfree(sbuf);
192 	*mst = NULL;
193 	*cor = NULL;
194 	return err;
195 }
196 
197 /**
198  * write_rcvrd_mst_node - write recovered master node.
199  * @c: UBIFS file-system description object
200  * @mst: master node
201  *
202  * This function returns %0 on success and a negative error code on failure.
203  */
write_rcvrd_mst_node(struct ubifs_info * c,struct ubifs_mst_node * mst)204 static int write_rcvrd_mst_node(struct ubifs_info *c,
205 				struct ubifs_mst_node *mst)
206 {
207 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
208 	__le32 save_flags;
209 
210 	dbg_rcvry("recovery");
211 
212 	save_flags = mst->flags;
213 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
214 
215 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
216 	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
217 	if (err)
218 		goto out;
219 	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
220 	if (err)
221 		goto out;
222 out:
223 	mst->flags = save_flags;
224 	return err;
225 }
226 
227 /**
228  * ubifs_recover_master_node - recover the master node.
229  * @c: UBIFS file-system description object
230  *
231  * This function recovers the master node from corruption that may occur due to
232  * an unclean unmount.
233  *
234  * This function returns %0 on success and a negative error code on failure.
235  */
ubifs_recover_master_node(struct ubifs_info * c)236 int ubifs_recover_master_node(struct ubifs_info *c)
237 {
238 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
239 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
240 	const int sz = c->mst_node_alsz;
241 	int err, offs1, offs2;
242 
243 	dbg_rcvry("recovery");
244 
245 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
246 	if (err)
247 		goto out_free;
248 
249 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
250 	if (err)
251 		goto out_free;
252 
253 	if (mst1) {
254 		offs1 = (void *)mst1 - buf1;
255 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
256 		    (offs1 == 0 && !cor1)) {
257 			/*
258 			 * mst1 was written by recovery at offset 0 with no
259 			 * corruption.
260 			 */
261 			dbg_rcvry("recovery recovery");
262 			mst = mst1;
263 		} else if (mst2) {
264 			offs2 = (void *)mst2 - buf2;
265 			if (offs1 == offs2) {
266 				/* Same offset, so must be the same */
267 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
268 					   (void *)mst2 + UBIFS_CH_SZ,
269 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
270 					goto out_err;
271 				mst = mst1;
272 			} else if (offs2 + sz == offs1) {
273 				/* 1st LEB was written, 2nd was not */
274 				if (cor1)
275 					goto out_err;
276 				mst = mst1;
277 			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
278 				/* 1st LEB was unmapped and written, 2nd not */
279 				if (cor1)
280 					goto out_err;
281 				mst = mst1;
282 			} else
283 				goto out_err;
284 		} else {
285 			/*
286 			 * 2nd LEB was unmapped and about to be written, so
287 			 * there must be only one master node in the first LEB
288 			 * and no corruption.
289 			 */
290 			if (offs1 != 0 || cor1)
291 				goto out_err;
292 			mst = mst1;
293 		}
294 	} else {
295 		if (!mst2)
296 			goto out_err;
297 		/*
298 		 * 1st LEB was unmapped and about to be written, so there must
299 		 * be no room left in 2nd LEB.
300 		 */
301 		offs2 = (void *)mst2 - buf2;
302 		if (offs2 + sz + sz <= c->leb_size)
303 			goto out_err;
304 		mst = mst2;
305 	}
306 
307 	ubifs_msg("recovered master node from LEB %d",
308 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
309 
310 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
311 
312 	if (c->ro_mount) {
313 		/* Read-only mode. Keep a copy for switching to rw mode */
314 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
315 		if (!c->rcvrd_mst_node) {
316 			err = -ENOMEM;
317 			goto out_free;
318 		}
319 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
320 
321 		/*
322 		 * We had to recover the master node, which means there was an
323 		 * unclean reboot. However, it is possible that the master node
324 		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
325 		 * E.g., consider the following chain of events:
326 		 *
327 		 * 1. UBIFS was cleanly unmounted, so the master node is clean
328 		 * 2. UBIFS is being mounted R/W and starts changing the master
329 		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
330 		 *    so this LEB ends up with some amount of garbage at the
331 		 *    end.
332 		 * 3. UBIFS is being mounted R/O. We reach this place and
333 		 *    recover the master node from the second LEB
334 		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
335 		 *    because we are being mounted R/O. We have to defer the
336 		 *    operation.
337 		 * 4. However, this master node (@c->mst_node) is marked as
338 		 *    clean (since the step 1). And if we just return, the
339 		 *    mount code will be confused and won't recover the master
340 		 *    node when it is re-mounter R/W later.
341 		 *
342 		 *    Thus, to force the recovery by marking the master node as
343 		 *    dirty.
344 		 */
345 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
346 	} else {
347 		/* Write the recovered master node */
348 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
349 		err = write_rcvrd_mst_node(c, c->mst_node);
350 		if (err)
351 			goto out_free;
352 	}
353 
354 	vfree(buf2);
355 	vfree(buf1);
356 
357 	return 0;
358 
359 out_err:
360 	err = -EINVAL;
361 out_free:
362 	ubifs_err("failed to recover master node");
363 	if (mst1) {
364 		dbg_err("dumping first master node");
365 		dbg_dump_node(c, mst1);
366 	}
367 	if (mst2) {
368 		dbg_err("dumping second master node");
369 		dbg_dump_node(c, mst2);
370 	}
371 	vfree(buf2);
372 	vfree(buf1);
373 	return err;
374 }
375 
376 /**
377  * ubifs_write_rcvrd_mst_node - write the recovered master node.
378  * @c: UBIFS file-system description object
379  *
380  * This function writes the master node that was recovered during mounting in
381  * read-only mode and must now be written because we are remounting rw.
382  *
383  * This function returns %0 on success and a negative error code on failure.
384  */
ubifs_write_rcvrd_mst_node(struct ubifs_info * c)385 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
386 {
387 	int err;
388 
389 	if (!c->rcvrd_mst_node)
390 		return 0;
391 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
392 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
393 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
394 	if (err)
395 		return err;
396 	kfree(c->rcvrd_mst_node);
397 	c->rcvrd_mst_node = NULL;
398 	return 0;
399 }
400 
401 /**
402  * is_last_write - determine if an offset was in the last write to a LEB.
403  * @c: UBIFS file-system description object
404  * @buf: buffer to check
405  * @offs: offset to check
406  *
407  * This function returns %1 if @offs was in the last write to the LEB whose data
408  * is in @buf, otherwise %0 is returned. The determination is made by checking
409  * for subsequent empty space starting from the next @c->max_write_size
410  * boundary.
411  */
is_last_write(const struct ubifs_info * c,void * buf,int offs)412 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
413 {
414 	int empty_offs, check_len;
415 	uint8_t *p;
416 
417 	/*
418 	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
419 	 * the last wbuf written. After that should be empty space.
420 	 */
421 	empty_offs = ALIGN(offs + 1, c->max_write_size);
422 	check_len = c->leb_size - empty_offs;
423 	p = buf + empty_offs - offs;
424 	return is_empty(p, check_len);
425 }
426 
427 /**
428  * clean_buf - clean the data from an LEB sitting in a buffer.
429  * @c: UBIFS file-system description object
430  * @buf: buffer to clean
431  * @lnum: LEB number to clean
432  * @offs: offset from which to clean
433  * @len: length of buffer
434  *
435  * This function pads up to the next min_io_size boundary (if there is one) and
436  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
437  * @c->min_io_size boundary.
438  */
clean_buf(const struct ubifs_info * c,void ** buf,int lnum,int * offs,int * len)439 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
440 		      int *offs, int *len)
441 {
442 	int empty_offs, pad_len;
443 
444 	lnum = lnum;
445 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
446 
447 	ubifs_assert(!(*offs & 7));
448 	empty_offs = ALIGN(*offs, c->min_io_size);
449 	pad_len = empty_offs - *offs;
450 	ubifs_pad(c, *buf, pad_len);
451 	*offs += pad_len;
452 	*buf += pad_len;
453 	*len -= pad_len;
454 	memset(*buf, 0xff, c->leb_size - empty_offs);
455 }
456 
457 /**
458  * no_more_nodes - determine if there are no more nodes in a buffer.
459  * @c: UBIFS file-system description object
460  * @buf: buffer to check
461  * @len: length of buffer
462  * @lnum: LEB number of the LEB from which @buf was read
463  * @offs: offset from which @buf was read
464  *
465  * This function ensures that the corrupted node at @offs is the last thing
466  * written to a LEB. This function returns %1 if more data is not found and
467  * %0 if more data is found.
468  */
no_more_nodes(const struct ubifs_info * c,void * buf,int len,int lnum,int offs)469 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
470 			int lnum, int offs)
471 {
472 	struct ubifs_ch *ch = buf;
473 	int skip, dlen = le32_to_cpu(ch->len);
474 
475 	/* Check for empty space after the corrupt node's common header */
476 	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
477 	if (is_empty(buf + skip, len - skip))
478 		return 1;
479 	/*
480 	 * The area after the common header size is not empty, so the common
481 	 * header must be intact. Check it.
482 	 */
483 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
484 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
485 		return 0;
486 	}
487 	/* Now we know the corrupt node's length we can skip over it */
488 	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
489 	/* After which there should be empty space */
490 	if (is_empty(buf + skip, len - skip))
491 		return 1;
492 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
493 	return 0;
494 }
495 
496 /**
497  * fix_unclean_leb - fix an unclean LEB.
498  * @c: UBIFS file-system description object
499  * @sleb: scanned LEB information
500  * @start: offset where scan started
501  */
fix_unclean_leb(struct ubifs_info * c,struct ubifs_scan_leb * sleb,int start)502 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
503 			   int start)
504 {
505 	int lnum = sleb->lnum, endpt = start;
506 
507 	/* Get the end offset of the last node we are keeping */
508 	if (!list_empty(&sleb->nodes)) {
509 		struct ubifs_scan_node *snod;
510 
511 		snod = list_entry(sleb->nodes.prev,
512 				  struct ubifs_scan_node, list);
513 		endpt = snod->offs + snod->len;
514 	}
515 
516 	if (c->ro_mount && !c->remounting_rw) {
517 		/* Add to recovery list */
518 		struct ubifs_unclean_leb *ucleb;
519 
520 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
521 			  lnum, start, sleb->endpt);
522 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
523 		if (!ucleb)
524 			return -ENOMEM;
525 		ucleb->lnum = lnum;
526 		ucleb->endpt = endpt;
527 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
528 	} else {
529 		/* Write the fixed LEB back to flash */
530 		int err;
531 
532 		dbg_rcvry("fixing LEB %d start %d endpt %d",
533 			  lnum, start, sleb->endpt);
534 		if (endpt == 0) {
535 			err = ubifs_leb_unmap(c, lnum);
536 			if (err)
537 				return err;
538 		} else {
539 			int len = ALIGN(endpt, c->min_io_size);
540 
541 			if (start) {
542 				err = ubi_read(c->ubi, lnum, sleb->buf, 0,
543 					       start);
544 				if (err)
545 					return err;
546 			}
547 			/* Pad to min_io_size */
548 			if (len > endpt) {
549 				int pad_len = len - ALIGN(endpt, 8);
550 
551 				if (pad_len > 0) {
552 					void *buf = sleb->buf + len - pad_len;
553 
554 					ubifs_pad(c, buf, pad_len);
555 				}
556 			}
557 			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
558 					     UBI_UNKNOWN);
559 			if (err)
560 				return err;
561 		}
562 	}
563 	return 0;
564 }
565 
566 /**
567  * drop_incomplete_group - drop nodes from an incomplete group.
568  * @sleb: scanned LEB information
569  * @offs: offset of dropped nodes is returned here
570  *
571  * This function returns %1 if nodes are dropped and %0 otherwise.
572  */
drop_incomplete_group(struct ubifs_scan_leb * sleb,int * offs)573 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
574 {
575 	int dropped = 0;
576 
577 	while (!list_empty(&sleb->nodes)) {
578 		struct ubifs_scan_node *snod;
579 		struct ubifs_ch *ch;
580 
581 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
582 				  list);
583 		ch = snod->node;
584 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
585 			return dropped;
586 		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
587 		*offs = snod->offs;
588 		list_del(&snod->list);
589 		kfree(snod);
590 		sleb->nodes_cnt -= 1;
591 		dropped = 1;
592 	}
593 	return dropped;
594 }
595 
596 /**
597  * ubifs_recover_leb - scan and recover a LEB.
598  * @c: UBIFS file-system description object
599  * @lnum: LEB number
600  * @offs: offset
601  * @sbuf: LEB-sized buffer to use
602  * @grouped: nodes may be grouped for recovery
603  *
604  * This function does a scan of a LEB, but caters for errors that might have
605  * been caused by the unclean unmount from which we are attempting to recover.
606  * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
607  * found, and a negative error code in case of failure.
608  */
ubifs_recover_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf,int grouped)609 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
610 					 int offs, void *sbuf, int grouped)
611 {
612 	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
613 	int empty_chkd = 0, start = offs;
614 	struct ubifs_scan_leb *sleb;
615 	void *buf = sbuf + offs;
616 
617 	dbg_rcvry("%d:%d", lnum, offs);
618 
619 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
620 	if (IS_ERR(sleb))
621 		return sleb;
622 
623 	if (sleb->ecc)
624 		need_clean = 1;
625 
626 	while (len >= 8) {
627 		int ret;
628 
629 		dbg_scan("look at LEB %d:%d (%d bytes left)",
630 			 lnum, offs, len);
631 
632 		cond_resched();
633 
634 		/*
635 		 * Scan quietly until there is an error from which we cannot
636 		 * recover
637 		 */
638 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
639 
640 		if (ret == SCANNED_A_NODE) {
641 			/* A valid node, and not a padding node */
642 			struct ubifs_ch *ch = buf;
643 			int node_len;
644 
645 			err = ubifs_add_snod(c, sleb, buf, offs);
646 			if (err)
647 				goto error;
648 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
649 			offs += node_len;
650 			buf += node_len;
651 			len -= node_len;
652 			continue;
653 		}
654 
655 		if (ret > 0) {
656 			/* Padding bytes or a valid padding node */
657 			offs += ret;
658 			buf += ret;
659 			len -= ret;
660 			continue;
661 		}
662 
663 		if (ret == SCANNED_EMPTY_SPACE) {
664 			if (!is_empty(buf, len)) {
665 				if (!is_last_write(c, buf, offs))
666 					break;
667 				clean_buf(c, &buf, lnum, &offs, &len);
668 				need_clean = 1;
669 			}
670 			empty_chkd = 1;
671 			break;
672 		}
673 
674 		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
675 			if (is_last_write(c, buf, offs)) {
676 				clean_buf(c, &buf, lnum, &offs, &len);
677 				need_clean = 1;
678 				empty_chkd = 1;
679 				break;
680 			}
681 
682 		if (ret == SCANNED_A_CORRUPT_NODE)
683 			if (no_more_nodes(c, buf, len, lnum, offs)) {
684 				clean_buf(c, &buf, lnum, &offs, &len);
685 				need_clean = 1;
686 				empty_chkd = 1;
687 				break;
688 			}
689 
690 		if (quiet) {
691 			/* Redo the last scan but noisily */
692 			quiet = 0;
693 			continue;
694 		}
695 
696 		switch (ret) {
697 		case SCANNED_GARBAGE:
698 			dbg_err("garbage");
699 			goto corrupted;
700 		case SCANNED_A_CORRUPT_NODE:
701 		case SCANNED_A_BAD_PAD_NODE:
702 			dbg_err("bad node");
703 			goto corrupted;
704 		default:
705 			dbg_err("unknown");
706 			err = -EINVAL;
707 			goto error;
708 		}
709 	}
710 
711 	if (!empty_chkd && !is_empty(buf, len)) {
712 		if (is_last_write(c, buf, offs)) {
713 			clean_buf(c, &buf, lnum, &offs, &len);
714 			need_clean = 1;
715 		} else {
716 			int corruption = first_non_ff(buf, len);
717 
718 			/*
719 			 * See header comment for this file for more
720 			 * explanations about the reasons we have this check.
721 			 */
722 			ubifs_err("corrupt empty space LEB %d:%d, corruption "
723 				  "starts at %d", lnum, offs, corruption);
724 			/* Make sure we dump interesting non-0xFF data */
725 			offs += corruption;
726 			buf += corruption;
727 			goto corrupted;
728 		}
729 	}
730 
731 	/* Drop nodes from incomplete group */
732 	if (grouped && drop_incomplete_group(sleb, &offs)) {
733 		buf = sbuf + offs;
734 		len = c->leb_size - offs;
735 		clean_buf(c, &buf, lnum, &offs, &len);
736 		need_clean = 1;
737 	}
738 
739 	if (offs % c->min_io_size) {
740 		clean_buf(c, &buf, lnum, &offs, &len);
741 		need_clean = 1;
742 	}
743 
744 	ubifs_end_scan(c, sleb, lnum, offs);
745 
746 	if (need_clean) {
747 		err = fix_unclean_leb(c, sleb, start);
748 		if (err)
749 			goto error;
750 	}
751 
752 	return sleb;
753 
754 corrupted:
755 	ubifs_scanned_corruption(c, lnum, offs, buf);
756 	err = -EUCLEAN;
757 error:
758 	ubifs_err("LEB %d scanning failed", lnum);
759 	ubifs_scan_destroy(sleb);
760 	return ERR_PTR(err);
761 }
762 
763 /**
764  * get_cs_sqnum - get commit start sequence number.
765  * @c: UBIFS file-system description object
766  * @lnum: LEB number of commit start node
767  * @offs: offset of commit start node
768  * @cs_sqnum: commit start sequence number is returned here
769  *
770  * This function returns %0 on success and a negative error code on failure.
771  */
get_cs_sqnum(struct ubifs_info * c,int lnum,int offs,unsigned long long * cs_sqnum)772 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
773 			unsigned long long *cs_sqnum)
774 {
775 	struct ubifs_cs_node *cs_node = NULL;
776 	int err, ret;
777 
778 	dbg_rcvry("at %d:%d", lnum, offs);
779 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
780 	if (!cs_node)
781 		return -ENOMEM;
782 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
783 		goto out_err;
784 	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
785 	if (err && err != -EBADMSG)
786 		goto out_free;
787 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
788 	if (ret != SCANNED_A_NODE) {
789 		dbg_err("Not a valid node");
790 		goto out_err;
791 	}
792 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
793 		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
794 		goto out_err;
795 	}
796 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
797 		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
798 			(unsigned long long)le64_to_cpu(cs_node->cmt_no),
799 			c->cmt_no);
800 		goto out_err;
801 	}
802 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
803 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
804 	kfree(cs_node);
805 	return 0;
806 
807 out_err:
808 	err = -EINVAL;
809 out_free:
810 	ubifs_err("failed to get CS sqnum");
811 	kfree(cs_node);
812 	return err;
813 }
814 
815 /**
816  * ubifs_recover_log_leb - scan and recover a log LEB.
817  * @c: UBIFS file-system description object
818  * @lnum: LEB number
819  * @offs: offset
820  * @sbuf: LEB-sized buffer to use
821  *
822  * This function does a scan of a LEB, but caters for errors that might have
823  * been caused by unclean reboots from which we are attempting to recover
824  * (assume that only the last log LEB can be corrupted by an unclean reboot).
825  *
826  * This function returns %0 on success and a negative error code on failure.
827  */
ubifs_recover_log_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf)828 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
829 					     int offs, void *sbuf)
830 {
831 	struct ubifs_scan_leb *sleb;
832 	int next_lnum;
833 
834 	dbg_rcvry("LEB %d", lnum);
835 	next_lnum = lnum + 1;
836 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
837 		next_lnum = UBIFS_LOG_LNUM;
838 	if (next_lnum != c->ltail_lnum) {
839 		/*
840 		 * We can only recover at the end of the log, so check that the
841 		 * next log LEB is empty or out of date.
842 		 */
843 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
844 		if (IS_ERR(sleb))
845 			return sleb;
846 		if (sleb->nodes_cnt) {
847 			struct ubifs_scan_node *snod;
848 			unsigned long long cs_sqnum = c->cs_sqnum;
849 
850 			snod = list_entry(sleb->nodes.next,
851 					  struct ubifs_scan_node, list);
852 			if (cs_sqnum == 0) {
853 				int err;
854 
855 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
856 				if (err) {
857 					ubifs_scan_destroy(sleb);
858 					return ERR_PTR(err);
859 				}
860 			}
861 			if (snod->sqnum > cs_sqnum) {
862 				ubifs_err("unrecoverable log corruption "
863 					  "in LEB %d", lnum);
864 				ubifs_scan_destroy(sleb);
865 				return ERR_PTR(-EUCLEAN);
866 			}
867 		}
868 		ubifs_scan_destroy(sleb);
869 	}
870 	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
871 }
872 
873 /**
874  * recover_head - recover a head.
875  * @c: UBIFS file-system description object
876  * @lnum: LEB number of head to recover
877  * @offs: offset of head to recover
878  * @sbuf: LEB-sized buffer to use
879  *
880  * This function ensures that there is no data on the flash at a head location.
881  *
882  * This function returns %0 on success and a negative error code on failure.
883  */
recover_head(const struct ubifs_info * c,int lnum,int offs,void * sbuf)884 static int recover_head(const struct ubifs_info *c, int lnum, int offs,
885 			void *sbuf)
886 {
887 	int len = c->max_write_size, err;
888 
889 	if (offs + len > c->leb_size)
890 		len = c->leb_size - offs;
891 
892 	if (!len)
893 		return 0;
894 
895 	/* Read at the head location and check it is empty flash */
896 	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
897 	if (err || !is_empty(sbuf, len)) {
898 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
899 		if (offs == 0)
900 			return ubifs_leb_unmap(c, lnum);
901 		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
902 		if (err)
903 			return err;
904 		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
905 	}
906 
907 	return 0;
908 }
909 
910 /**
911  * ubifs_recover_inl_heads - recover index and LPT heads.
912  * @c: UBIFS file-system description object
913  * @sbuf: LEB-sized buffer to use
914  *
915  * This function ensures that there is no data on the flash at the index and
916  * LPT head locations.
917  *
918  * This deals with the recovery of a half-completed journal commit. UBIFS is
919  * careful never to overwrite the last version of the index or the LPT. Because
920  * the index and LPT are wandering trees, data from a half-completed commit will
921  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
922  * assumed to be empty and will be unmapped anyway before use, or in the index
923  * and LPT heads.
924  *
925  * This function returns %0 on success and a negative error code on failure.
926  */
ubifs_recover_inl_heads(const struct ubifs_info * c,void * sbuf)927 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
928 {
929 	int err;
930 
931 	ubifs_assert(!c->ro_mount || c->remounting_rw);
932 
933 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
934 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
935 	if (err)
936 		return err;
937 
938 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
939 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
940 	if (err)
941 		return err;
942 
943 	return 0;
944 }
945 
946 /**
947  *  clean_an_unclean_leb - read and write a LEB to remove corruption.
948  * @c: UBIFS file-system description object
949  * @ucleb: unclean LEB information
950  * @sbuf: LEB-sized buffer to use
951  *
952  * This function reads a LEB up to a point pre-determined by the mount recovery,
953  * checks the nodes, and writes the result back to the flash, thereby cleaning
954  * off any following corruption, or non-fatal ECC errors.
955  *
956  * This function returns %0 on success and a negative error code on failure.
957  */
clean_an_unclean_leb(const struct ubifs_info * c,struct ubifs_unclean_leb * ucleb,void * sbuf)958 static int clean_an_unclean_leb(const struct ubifs_info *c,
959 				struct ubifs_unclean_leb *ucleb, void *sbuf)
960 {
961 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
962 	void *buf = sbuf;
963 
964 	dbg_rcvry("LEB %d len %d", lnum, len);
965 
966 	if (len == 0) {
967 		/* Nothing to read, just unmap it */
968 		err = ubifs_leb_unmap(c, lnum);
969 		if (err)
970 			return err;
971 		return 0;
972 	}
973 
974 	err = ubi_read(c->ubi, lnum, buf, offs, len);
975 	if (err && err != -EBADMSG)
976 		return err;
977 
978 	while (len >= 8) {
979 		int ret;
980 
981 		cond_resched();
982 
983 		/* Scan quietly until there is an error */
984 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
985 
986 		if (ret == SCANNED_A_NODE) {
987 			/* A valid node, and not a padding node */
988 			struct ubifs_ch *ch = buf;
989 			int node_len;
990 
991 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
992 			offs += node_len;
993 			buf += node_len;
994 			len -= node_len;
995 			continue;
996 		}
997 
998 		if (ret > 0) {
999 			/* Padding bytes or a valid padding node */
1000 			offs += ret;
1001 			buf += ret;
1002 			len -= ret;
1003 			continue;
1004 		}
1005 
1006 		if (ret == SCANNED_EMPTY_SPACE) {
1007 			ubifs_err("unexpected empty space at %d:%d",
1008 				  lnum, offs);
1009 			return -EUCLEAN;
1010 		}
1011 
1012 		if (quiet) {
1013 			/* Redo the last scan but noisily */
1014 			quiet = 0;
1015 			continue;
1016 		}
1017 
1018 		ubifs_scanned_corruption(c, lnum, offs, buf);
1019 		return -EUCLEAN;
1020 	}
1021 
1022 	/* Pad to min_io_size */
1023 	len = ALIGN(ucleb->endpt, c->min_io_size);
1024 	if (len > ucleb->endpt) {
1025 		int pad_len = len - ALIGN(ucleb->endpt, 8);
1026 
1027 		if (pad_len > 0) {
1028 			buf = c->sbuf + len - pad_len;
1029 			ubifs_pad(c, buf, pad_len);
1030 		}
1031 	}
1032 
1033 	/* Write back the LEB atomically */
1034 	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
1035 	if (err)
1036 		return err;
1037 
1038 	dbg_rcvry("cleaned LEB %d", lnum);
1039 
1040 	return 0;
1041 }
1042 
1043 /**
1044  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1045  * @c: UBIFS file-system description object
1046  * @sbuf: LEB-sized buffer to use
1047  *
1048  * This function cleans a LEB identified during recovery that needs to be
1049  * written but was not because UBIFS was mounted read-only. This happens when
1050  * remounting to read-write mode.
1051  *
1052  * This function returns %0 on success and a negative error code on failure.
1053  */
ubifs_clean_lebs(const struct ubifs_info * c,void * sbuf)1054 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1055 {
1056 	dbg_rcvry("recovery");
1057 	while (!list_empty(&c->unclean_leb_list)) {
1058 		struct ubifs_unclean_leb *ucleb;
1059 		int err;
1060 
1061 		ucleb = list_entry(c->unclean_leb_list.next,
1062 				   struct ubifs_unclean_leb, list);
1063 		err = clean_an_unclean_leb(c, ucleb, sbuf);
1064 		if (err)
1065 			return err;
1066 		list_del(&ucleb->list);
1067 		kfree(ucleb);
1068 	}
1069 	return 0;
1070 }
1071 
1072 /**
1073  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1074  * @c: UBIFS file-system description object
1075  *
1076  * Out-of-place garbage collection requires always one empty LEB with which to
1077  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1078  * written to the master node on unmounting. In the case of an unclean unmount
1079  * the value of gc_lnum recorded in the master node is out of date and cannot
1080  * be used. Instead, recovery must allocate an empty LEB for this purpose.
1081  * However, there may not be enough empty space, in which case it must be
1082  * possible to GC the dirtiest LEB into the GC head LEB.
1083  *
1084  * This function also runs the commit which causes the TNC updates from
1085  * size-recovery and orphans to be written to the flash. That is important to
1086  * ensure correct replay order for subsequent mounts.
1087  *
1088  * This function returns %0 on success and a negative error code on failure.
1089  */
ubifs_rcvry_gc_commit(struct ubifs_info * c)1090 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1091 {
1092 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1093 	struct ubifs_lprops lp;
1094 	int lnum, err;
1095 
1096 	c->gc_lnum = -1;
1097 	if (wbuf->lnum == -1) {
1098 		dbg_rcvry("no GC head LEB");
1099 		goto find_free;
1100 	}
1101 	/*
1102 	 * See whether the used space in the dirtiest LEB fits in the GC head
1103 	 * LEB.
1104 	 */
1105 	if (wbuf->offs == c->leb_size) {
1106 		dbg_rcvry("no room in GC head LEB");
1107 		goto find_free;
1108 	}
1109 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1110 	if (err) {
1111 		/*
1112 		 * There are no dirty or empty LEBs subject to here being
1113 		 * enough for the index. Try to use
1114 		 * 'ubifs_find_free_leb_for_idx()', which will return any empty
1115 		 * LEBs (ignoring index requirements). If the index then
1116 		 * doesn't have enough LEBs the recovery commit will fail -
1117 		 * which is the  same result anyway i.e. recovery fails. So
1118 		 * there is no problem ignoring index  requirements and just
1119 		 * grabbing a free LEB since we have already established there
1120 		 * is not a dirty LEB we could have used instead.
1121 		 */
1122 		if (err == -ENOSPC) {
1123 			dbg_rcvry("could not find a dirty LEB");
1124 			goto find_free;
1125 		}
1126 		return err;
1127 	}
1128 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1129 	lnum = lp.lnum;
1130 	if (lp.free + lp.dirty == c->leb_size) {
1131 		/* An empty LEB was returned */
1132 		if (lp.free != c->leb_size) {
1133 			err = ubifs_change_one_lp(c, lnum, c->leb_size,
1134 						  0, 0, 0, 0);
1135 			if (err)
1136 				return err;
1137 		}
1138 		err = ubifs_leb_unmap(c, lnum);
1139 		if (err)
1140 			return err;
1141 		c->gc_lnum = lnum;
1142 		dbg_rcvry("allocated LEB %d for GC", lnum);
1143 		/* Run the commit */
1144 		dbg_rcvry("committing");
1145 		return ubifs_run_commit(c);
1146 	}
1147 	/*
1148 	 * There was no empty LEB so the used space in the dirtiest LEB must fit
1149 	 * in the GC head LEB.
1150 	 */
1151 	if (lp.free + lp.dirty < wbuf->offs) {
1152 		dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1153 			  lnum, wbuf->lnum, wbuf->offs);
1154 		err = ubifs_return_leb(c, lnum);
1155 		if (err)
1156 			return err;
1157 		goto find_free;
1158 	}
1159 	/*
1160 	 * We run the commit before garbage collection otherwise subsequent
1161 	 * mounts will see the GC and orphan deletion in a different order.
1162 	 */
1163 	dbg_rcvry("committing");
1164 	err = ubifs_run_commit(c);
1165 	if (err)
1166 		return err;
1167 	/*
1168 	 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1169 	 * - use locking to keep 'ubifs_assert()' happy.
1170 	 */
1171 	dbg_rcvry("GC'ing LEB %d", lnum);
1172 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1173 	err = ubifs_garbage_collect_leb(c, &lp);
1174 	if (err >= 0) {
1175 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1176 
1177 		if (err2)
1178 			err = err2;
1179 	}
1180 	mutex_unlock(&wbuf->io_mutex);
1181 	if (err < 0) {
1182 		dbg_err("GC failed, error %d", err);
1183 		if (err == -EAGAIN)
1184 			err = -EINVAL;
1185 		return err;
1186 	}
1187 	if (err != LEB_RETAINED) {
1188 		dbg_err("GC returned %d", err);
1189 		return -EINVAL;
1190 	}
1191 	err = ubifs_leb_unmap(c, c->gc_lnum);
1192 	if (err)
1193 		return err;
1194 	dbg_rcvry("allocated LEB %d for GC", lnum);
1195 	return 0;
1196 
1197 find_free:
1198 	/*
1199 	 * There is no GC head LEB or the free space in the GC head LEB is too
1200 	 * small, or there are not dirty LEBs. Allocate gc_lnum by calling
1201 	 * 'ubifs_find_free_leb_for_idx()' so GC is not run.
1202 	 */
1203 	lnum = ubifs_find_free_leb_for_idx(c);
1204 	if (lnum < 0) {
1205 		dbg_err("could not find an empty LEB");
1206 		return lnum;
1207 	}
1208 	/* And reset the index flag */
1209 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1210 				  LPROPS_INDEX, 0);
1211 	if (err)
1212 		return err;
1213 	c->gc_lnum = lnum;
1214 	dbg_rcvry("allocated LEB %d for GC", lnum);
1215 	/* Run the commit */
1216 	dbg_rcvry("committing");
1217 	return ubifs_run_commit(c);
1218 }
1219 
1220 /**
1221  * struct size_entry - inode size information for recovery.
1222  * @rb: link in the RB-tree of sizes
1223  * @inum: inode number
1224  * @i_size: size on inode
1225  * @d_size: maximum size based on data nodes
1226  * @exists: indicates whether the inode exists
1227  * @inode: inode if pinned in memory awaiting rw mode to fix it
1228  */
1229 struct size_entry {
1230 	struct rb_node rb;
1231 	ino_t inum;
1232 	loff_t i_size;
1233 	loff_t d_size;
1234 	int exists;
1235 	struct inode *inode;
1236 };
1237 
1238 /**
1239  * add_ino - add an entry to the size tree.
1240  * @c: UBIFS file-system description object
1241  * @inum: inode number
1242  * @i_size: size on inode
1243  * @d_size: maximum size based on data nodes
1244  * @exists: indicates whether the inode exists
1245  */
add_ino(struct ubifs_info * c,ino_t inum,loff_t i_size,loff_t d_size,int exists)1246 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1247 		   loff_t d_size, int exists)
1248 {
1249 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1250 	struct size_entry *e;
1251 
1252 	while (*p) {
1253 		parent = *p;
1254 		e = rb_entry(parent, struct size_entry, rb);
1255 		if (inum < e->inum)
1256 			p = &(*p)->rb_left;
1257 		else
1258 			p = &(*p)->rb_right;
1259 	}
1260 
1261 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1262 	if (!e)
1263 		return -ENOMEM;
1264 
1265 	e->inum = inum;
1266 	e->i_size = i_size;
1267 	e->d_size = d_size;
1268 	e->exists = exists;
1269 
1270 	rb_link_node(&e->rb, parent, p);
1271 	rb_insert_color(&e->rb, &c->size_tree);
1272 
1273 	return 0;
1274 }
1275 
1276 /**
1277  * find_ino - find an entry on the size tree.
1278  * @c: UBIFS file-system description object
1279  * @inum: inode number
1280  */
find_ino(struct ubifs_info * c,ino_t inum)1281 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1282 {
1283 	struct rb_node *p = c->size_tree.rb_node;
1284 	struct size_entry *e;
1285 
1286 	while (p) {
1287 		e = rb_entry(p, struct size_entry, rb);
1288 		if (inum < e->inum)
1289 			p = p->rb_left;
1290 		else if (inum > e->inum)
1291 			p = p->rb_right;
1292 		else
1293 			return e;
1294 	}
1295 	return NULL;
1296 }
1297 
1298 /**
1299  * remove_ino - remove an entry from the size tree.
1300  * @c: UBIFS file-system description object
1301  * @inum: inode number
1302  */
remove_ino(struct ubifs_info * c,ino_t inum)1303 static void remove_ino(struct ubifs_info *c, ino_t inum)
1304 {
1305 	struct size_entry *e = find_ino(c, inum);
1306 
1307 	if (!e)
1308 		return;
1309 	rb_erase(&e->rb, &c->size_tree);
1310 	kfree(e);
1311 }
1312 
1313 /**
1314  * ubifs_destroy_size_tree - free resources related to the size tree.
1315  * @c: UBIFS file-system description object
1316  */
ubifs_destroy_size_tree(struct ubifs_info * c)1317 void ubifs_destroy_size_tree(struct ubifs_info *c)
1318 {
1319 	struct rb_node *this = c->size_tree.rb_node;
1320 	struct size_entry *e;
1321 
1322 	while (this) {
1323 		if (this->rb_left) {
1324 			this = this->rb_left;
1325 			continue;
1326 		} else if (this->rb_right) {
1327 			this = this->rb_right;
1328 			continue;
1329 		}
1330 		e = rb_entry(this, struct size_entry, rb);
1331 		if (e->inode)
1332 			iput(e->inode);
1333 		this = rb_parent(this);
1334 		if (this) {
1335 			if (this->rb_left == &e->rb)
1336 				this->rb_left = NULL;
1337 			else
1338 				this->rb_right = NULL;
1339 		}
1340 		kfree(e);
1341 	}
1342 	c->size_tree = RB_ROOT;
1343 }
1344 
1345 /**
1346  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1347  * @c: UBIFS file-system description object
1348  * @key: node key
1349  * @deletion: node is for a deletion
1350  * @new_size: inode size
1351  *
1352  * This function has two purposes:
1353  *     1) to ensure there are no data nodes that fall outside the inode size
1354  *     2) to ensure there are no data nodes for inodes that do not exist
1355  * To accomplish those purposes, a rb-tree is constructed containing an entry
1356  * for each inode number in the journal that has not been deleted, and recording
1357  * the size from the inode node, the maximum size of any data node (also altered
1358  * by truncations) and a flag indicating a inode number for which no inode node
1359  * was present in the journal.
1360  *
1361  * Note that there is still the possibility that there are data nodes that have
1362  * been committed that are beyond the inode size, however the only way to find
1363  * them would be to scan the entire index. Alternatively, some provision could
1364  * be made to record the size of inodes at the start of commit, which would seem
1365  * very cumbersome for a scenario that is quite unlikely and the only negative
1366  * consequence of which is wasted space.
1367  *
1368  * This functions returns %0 on success and a negative error code on failure.
1369  */
ubifs_recover_size_accum(struct ubifs_info * c,union ubifs_key * key,int deletion,loff_t new_size)1370 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1371 			     int deletion, loff_t new_size)
1372 {
1373 	ino_t inum = key_inum(c, key);
1374 	struct size_entry *e;
1375 	int err;
1376 
1377 	switch (key_type(c, key)) {
1378 	case UBIFS_INO_KEY:
1379 		if (deletion)
1380 			remove_ino(c, inum);
1381 		else {
1382 			e = find_ino(c, inum);
1383 			if (e) {
1384 				e->i_size = new_size;
1385 				e->exists = 1;
1386 			} else {
1387 				err = add_ino(c, inum, new_size, 0, 1);
1388 				if (err)
1389 					return err;
1390 			}
1391 		}
1392 		break;
1393 	case UBIFS_DATA_KEY:
1394 		e = find_ino(c, inum);
1395 		if (e) {
1396 			if (new_size > e->d_size)
1397 				e->d_size = new_size;
1398 		} else {
1399 			err = add_ino(c, inum, 0, new_size, 0);
1400 			if (err)
1401 				return err;
1402 		}
1403 		break;
1404 	case UBIFS_TRUN_KEY:
1405 		e = find_ino(c, inum);
1406 		if (e)
1407 			e->d_size = new_size;
1408 		break;
1409 	}
1410 	return 0;
1411 }
1412 
1413 /**
1414  * fix_size_in_place - fix inode size in place on flash.
1415  * @c: UBIFS file-system description object
1416  * @e: inode size information for recovery
1417  */
fix_size_in_place(struct ubifs_info * c,struct size_entry * e)1418 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1419 {
1420 	struct ubifs_ino_node *ino = c->sbuf;
1421 	unsigned char *p;
1422 	union ubifs_key key;
1423 	int err, lnum, offs, len;
1424 	loff_t i_size;
1425 	uint32_t crc;
1426 
1427 	/* Locate the inode node LEB number and offset */
1428 	ino_key_init(c, &key, e->inum);
1429 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1430 	if (err)
1431 		goto out;
1432 	/*
1433 	 * If the size recorded on the inode node is greater than the size that
1434 	 * was calculated from nodes in the journal then don't change the inode.
1435 	 */
1436 	i_size = le64_to_cpu(ino->size);
1437 	if (i_size >= e->d_size)
1438 		return 0;
1439 	/* Read the LEB */
1440 	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1441 	if (err)
1442 		goto out;
1443 	/* Change the size field and recalculate the CRC */
1444 	ino = c->sbuf + offs;
1445 	ino->size = cpu_to_le64(e->d_size);
1446 	len = le32_to_cpu(ino->ch.len);
1447 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1448 	ino->ch.crc = cpu_to_le32(crc);
1449 	/* Work out where data in the LEB ends and free space begins */
1450 	p = c->sbuf;
1451 	len = c->leb_size - 1;
1452 	while (p[len] == 0xff)
1453 		len -= 1;
1454 	len = ALIGN(len + 1, c->min_io_size);
1455 	/* Atomically write the fixed LEB back again */
1456 	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1457 	if (err)
1458 		goto out;
1459 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1460 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1461 	return 0;
1462 
1463 out:
1464 	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1465 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1466 	return err;
1467 }
1468 
1469 /**
1470  * ubifs_recover_size - recover inode size.
1471  * @c: UBIFS file-system description object
1472  *
1473  * This function attempts to fix inode size discrepancies identified by the
1474  * 'ubifs_recover_size_accum()' function.
1475  *
1476  * This functions returns %0 on success and a negative error code on failure.
1477  */
ubifs_recover_size(struct ubifs_info * c)1478 int ubifs_recover_size(struct ubifs_info *c)
1479 {
1480 	struct rb_node *this = rb_first(&c->size_tree);
1481 
1482 	while (this) {
1483 		struct size_entry *e;
1484 		int err;
1485 
1486 		e = rb_entry(this, struct size_entry, rb);
1487 		if (!e->exists) {
1488 			union ubifs_key key;
1489 
1490 			ino_key_init(c, &key, e->inum);
1491 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1492 			if (err && err != -ENOENT)
1493 				return err;
1494 			if (err == -ENOENT) {
1495 				/* Remove data nodes that have no inode */
1496 				dbg_rcvry("removing ino %lu",
1497 					  (unsigned long)e->inum);
1498 				err = ubifs_tnc_remove_ino(c, e->inum);
1499 				if (err)
1500 					return err;
1501 			} else {
1502 				struct ubifs_ino_node *ino = c->sbuf;
1503 
1504 				e->exists = 1;
1505 				e->i_size = le64_to_cpu(ino->size);
1506 			}
1507 		}
1508 		if (e->exists && e->i_size < e->d_size) {
1509 			if (!e->inode && c->ro_mount) {
1510 				/* Fix the inode size and pin it in memory */
1511 				struct inode *inode;
1512 
1513 				inode = ubifs_iget(c->vfs_sb, e->inum);
1514 				if (IS_ERR(inode))
1515 					return PTR_ERR(inode);
1516 				if (inode->i_size < e->d_size) {
1517 					dbg_rcvry("ino %lu size %lld -> %lld",
1518 						  (unsigned long)e->inum,
1519 						  e->d_size, inode->i_size);
1520 					inode->i_size = e->d_size;
1521 					ubifs_inode(inode)->ui_size = e->d_size;
1522 					e->inode = inode;
1523 					this = rb_next(this);
1524 					continue;
1525 				}
1526 				iput(inode);
1527 			} else {
1528 				/* Fix the size in place */
1529 				err = fix_size_in_place(c, e);
1530 				if (err)
1531 					return err;
1532 				if (e->inode)
1533 					iput(e->inode);
1534 			}
1535 		}
1536 		this = rb_next(this);
1537 		rb_erase(&e->rb, &c->size_tree);
1538 		kfree(e);
1539 	}
1540 	return 0;
1541 }
1542