1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS journal.
25  *
26  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27  * length and position, while a bud logical eraseblock is any LEB in the main
28  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29  * contains only references to buds and some other stuff like commit
30  * start node. The idea is that when we commit the journal, we do
31  * not copy the data, the buds just become indexed. Since after the commit the
32  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34  * become leafs in the future.
35  *
36  * The journal is multi-headed because we want to write data to the journal as
37  * optimally as possible. It is nice to have nodes belonging to the same inode
38  * in one LEB, so we may write data owned by different inodes to different
39  * journal heads, although at present only one data head is used.
40  *
41  * For recovery reasons, the base head contains all inode nodes, all directory
42  * entry nodes and all truncate nodes. This means that the other heads contain
43  * only data nodes.
44  *
45  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46  * time of commit, the bud is retained to continue to be used in the journal,
47  * even though the "front" of the LEB is now indexed. In that case, the log
48  * reference contains the offset where the bud starts for the purposes of the
49  * journal.
50  *
51  * The journal size has to be limited, because the larger is the journal, the
52  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53  * takes (indexing in the TNC).
54  *
55  * All the journal write operations like 'ubifs_jnl_update()' here, which write
56  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57  * unclean reboots. Should the unclean reboot happen, the recovery code drops
58  * all the nodes.
59  */
60 
61 #include "ubifs.h"
62 
63 /**
64  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65  * @ino: the inode to zero out
66  */
zero_ino_node_unused(struct ubifs_ino_node * ino)67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 	memset(ino->padding1, 0, 4);
70 	memset(ino->padding2, 0, 26);
71 }
72 
73 /**
74  * zero_dent_node_unused - zero out unused fields of an on-flash directory
75  *                         entry node.
76  * @dent: the directory entry to zero out
77  */
zero_dent_node_unused(struct ubifs_dent_node * dent)78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 	dent->padding1 = 0;
81 	memset(dent->padding2, 0, 4);
82 }
83 
84 /**
85  * zero_data_node_unused - zero out unused fields of an on-flash data node.
86  * @data: the data node to zero out
87  */
zero_data_node_unused(struct ubifs_data_node * data)88 static inline void zero_data_node_unused(struct ubifs_data_node *data)
89 {
90 	memset(data->padding, 0, 2);
91 }
92 
93 /**
94  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95  *                         node.
96  * @trun: the truncation node to zero out
97  */
zero_trun_node_unused(struct ubifs_trun_node * trun)98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
99 {
100 	memset(trun->padding, 0, 12);
101 }
102 
103 /**
104  * reserve_space - reserve space in the journal.
105  * @c: UBIFS file-system description object
106  * @jhead: journal head number
107  * @len: node length
108  *
109  * This function reserves space in journal head @head. If the reservation
110  * succeeded, the journal head stays locked and later has to be unlocked using
111  * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112  * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113  * other negative error codes in case of other failures.
114  */
reserve_space(struct ubifs_info * c,int jhead,int len)115 static int reserve_space(struct ubifs_info *c, int jhead, int len)
116 {
117 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
118 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
119 
120 	/*
121 	 * Typically, the base head has smaller nodes written to it, so it is
122 	 * better to try to allocate space at the ends of eraseblocks. This is
123 	 * what the squeeze parameter does.
124 	 */
125 	ubifs_assert(!c->ro_media && !c->ro_mount);
126 	squeeze = (jhead == BASEHD);
127 again:
128 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
129 
130 	if (c->ro_error) {
131 		err = -EROFS;
132 		goto out_unlock;
133 	}
134 
135 	avail = c->leb_size - wbuf->offs - wbuf->used;
136 	if (wbuf->lnum != -1 && avail >= len)
137 		return 0;
138 
139 	/*
140 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
141 	 * LEB with some empty space.
142 	 */
143 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
144 	if (lnum >= 0) {
145 		/* Found an LEB, add it to the journal head */
146 		err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
147 		if (err)
148 			goto out_return;
149 		/* A new bud was successfully allocated and added to the log */
150 		goto out;
151 	}
152 
153 	err = lnum;
154 	if (err != -ENOSPC)
155 		goto out_unlock;
156 
157 	/*
158 	 * No free space, we have to run garbage collector to make
159 	 * some. But the write-buffer mutex has to be unlocked because
160 	 * GC also takes it.
161 	 */
162 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
163 	mutex_unlock(&wbuf->io_mutex);
164 
165 	lnum = ubifs_garbage_collect(c, 0);
166 	if (lnum < 0) {
167 		err = lnum;
168 		if (err != -ENOSPC)
169 			return err;
170 
171 		/*
172 		 * GC could not make a free LEB. But someone else may
173 		 * have allocated new bud for this journal head,
174 		 * because we dropped @wbuf->io_mutex, so try once
175 		 * again.
176 		 */
177 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
178 			dbg_jhead(jhead));
179 		if (retries++ < 2) {
180 			dbg_jnl("retry (%d)", retries);
181 			goto again;
182 		}
183 
184 		dbg_jnl("return -ENOSPC");
185 		return err;
186 	}
187 
188 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
189 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
190 	avail = c->leb_size - wbuf->offs - wbuf->used;
191 
192 	if (wbuf->lnum != -1 && avail >= len) {
193 		/*
194 		 * Someone else has switched the journal head and we have
195 		 * enough space now. This happens when more than one process is
196 		 * trying to write to the same journal head at the same time.
197 		 */
198 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
199 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
200 		err = ubifs_return_leb(c, lnum);
201 		if (err)
202 			goto out_unlock;
203 		return 0;
204 	}
205 
206 	err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
207 	if (err)
208 		goto out_return;
209 	offs = 0;
210 
211 out:
212 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype);
213 	if (err)
214 		goto out_unlock;
215 
216 	return 0;
217 
218 out_unlock:
219 	mutex_unlock(&wbuf->io_mutex);
220 	return err;
221 
222 out_return:
223 	/* An error occurred and the LEB has to be returned to lprops */
224 	ubifs_assert(err < 0);
225 	err1 = ubifs_return_leb(c, lnum);
226 	if (err1 && err == -EAGAIN)
227 		/*
228 		 * Return original error code only if it is not %-EAGAIN,
229 		 * which is not really an error. Otherwise, return the error
230 		 * code of 'ubifs_return_leb()'.
231 		 */
232 		err = err1;
233 	mutex_unlock(&wbuf->io_mutex);
234 	return err;
235 }
236 
237 /**
238  * write_node - write node to a journal head.
239  * @c: UBIFS file-system description object
240  * @jhead: journal head
241  * @node: node to write
242  * @len: node length
243  * @lnum: LEB number written is returned here
244  * @offs: offset written is returned here
245  *
246  * This function writes a node to reserved space of journal head @jhead.
247  * Returns zero in case of success and a negative error code in case of
248  * failure.
249  */
write_node(struct ubifs_info * c,int jhead,void * node,int len,int * lnum,int * offs)250 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
251 		      int *lnum, int *offs)
252 {
253 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
254 
255 	ubifs_assert(jhead != GCHD);
256 
257 	*lnum = c->jheads[jhead].wbuf.lnum;
258 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
259 
260 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
261 		dbg_jhead(jhead), *lnum, *offs, len);
262 	ubifs_prepare_node(c, node, len, 0);
263 
264 	return ubifs_wbuf_write_nolock(wbuf, node, len);
265 }
266 
267 /**
268  * write_head - write data to a journal head.
269  * @c: UBIFS file-system description object
270  * @jhead: journal head
271  * @buf: buffer to write
272  * @len: length to write
273  * @lnum: LEB number written is returned here
274  * @offs: offset written is returned here
275  * @sync: non-zero if the write-buffer has to by synchronized
276  *
277  * This function is the same as 'write_node()' but it does not assume the
278  * buffer it is writing is a node, so it does not prepare it (which means
279  * initializing common header and calculating CRC).
280  */
write_head(struct ubifs_info * c,int jhead,void * buf,int len,int * lnum,int * offs,int sync)281 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
282 		      int *lnum, int *offs, int sync)
283 {
284 	int err;
285 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
286 
287 	ubifs_assert(jhead != GCHD);
288 
289 	*lnum = c->jheads[jhead].wbuf.lnum;
290 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
291 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
292 		dbg_jhead(jhead), *lnum, *offs, len);
293 
294 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
295 	if (err)
296 		return err;
297 	if (sync)
298 		err = ubifs_wbuf_sync_nolock(wbuf);
299 	return err;
300 }
301 
302 /**
303  * make_reservation - reserve journal space.
304  * @c: UBIFS file-system description object
305  * @jhead: journal head
306  * @len: how many bytes to reserve
307  *
308  * This function makes space reservation in journal head @jhead. The function
309  * takes the commit lock and locks the journal head, and the caller has to
310  * unlock the head and finish the reservation with 'finish_reservation()'.
311  * Returns zero in case of success and a negative error code in case of
312  * failure.
313  *
314  * Note, the journal head may be unlocked as soon as the data is written, while
315  * the commit lock has to be released after the data has been added to the
316  * TNC.
317  */
make_reservation(struct ubifs_info * c,int jhead,int len)318 static int make_reservation(struct ubifs_info *c, int jhead, int len)
319 {
320 	int err, cmt_retries = 0, nospc_retries = 0;
321 
322 again:
323 	down_read(&c->commit_sem);
324 	err = reserve_space(c, jhead, len);
325 	if (!err)
326 		return 0;
327 	up_read(&c->commit_sem);
328 
329 	if (err == -ENOSPC) {
330 		/*
331 		 * GC could not make any progress. We should try to commit
332 		 * once because it could make some dirty space and GC would
333 		 * make progress, so make the error -EAGAIN so that the below
334 		 * will commit and re-try.
335 		 */
336 		if (nospc_retries++ < 2) {
337 			dbg_jnl("no space, retry");
338 			err = -EAGAIN;
339 		}
340 
341 		/*
342 		 * This means that the budgeting is incorrect. We always have
343 		 * to be able to write to the media, because all operations are
344 		 * budgeted. Deletions are not budgeted, though, but we reserve
345 		 * an extra LEB for them.
346 		 */
347 	}
348 
349 	if (err != -EAGAIN)
350 		goto out;
351 
352 	/*
353 	 * -EAGAIN means that the journal is full or too large, or the above
354 	 * code wants to do one commit. Do this and re-try.
355 	 */
356 	if (cmt_retries > 128) {
357 		/*
358 		 * This should not happen unless the journal size limitations
359 		 * are too tough.
360 		 */
361 		ubifs_err("stuck in space allocation");
362 		err = -ENOSPC;
363 		goto out;
364 	} else if (cmt_retries > 32)
365 		ubifs_warn("too many space allocation re-tries (%d)",
366 			   cmt_retries);
367 
368 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
369 		cmt_retries);
370 	cmt_retries += 1;
371 
372 	err = ubifs_run_commit(c);
373 	if (err)
374 		return err;
375 	goto again;
376 
377 out:
378 	ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
379 		  len, jhead, err);
380 	if (err == -ENOSPC) {
381 		/* This are some budgeting problems, print useful information */
382 		down_write(&c->commit_sem);
383 		spin_lock(&c->space_lock);
384 		dbg_dump_stack();
385 		dbg_dump_budg(c);
386 		spin_unlock(&c->space_lock);
387 		dbg_dump_lprops(c);
388 		cmt_retries = dbg_check_lprops(c);
389 		up_write(&c->commit_sem);
390 	}
391 	return err;
392 }
393 
394 /**
395  * release_head - release a journal head.
396  * @c: UBIFS file-system description object
397  * @jhead: journal head
398  *
399  * This function releases journal head @jhead which was locked by
400  * the 'make_reservation()' function. It has to be called after each successful
401  * 'make_reservation()' invocation.
402  */
release_head(struct ubifs_info * c,int jhead)403 static inline void release_head(struct ubifs_info *c, int jhead)
404 {
405 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
406 }
407 
408 /**
409  * finish_reservation - finish a reservation.
410  * @c: UBIFS file-system description object
411  *
412  * This function finishes journal space reservation. It must be called after
413  * 'make_reservation()'.
414  */
finish_reservation(struct ubifs_info * c)415 static void finish_reservation(struct ubifs_info *c)
416 {
417 	up_read(&c->commit_sem);
418 }
419 
420 /**
421  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
422  * @mode: inode mode
423  */
get_dent_type(int mode)424 static int get_dent_type(int mode)
425 {
426 	switch (mode & S_IFMT) {
427 	case S_IFREG:
428 		return UBIFS_ITYPE_REG;
429 	case S_IFDIR:
430 		return UBIFS_ITYPE_DIR;
431 	case S_IFLNK:
432 		return UBIFS_ITYPE_LNK;
433 	case S_IFBLK:
434 		return UBIFS_ITYPE_BLK;
435 	case S_IFCHR:
436 		return UBIFS_ITYPE_CHR;
437 	case S_IFIFO:
438 		return UBIFS_ITYPE_FIFO;
439 	case S_IFSOCK:
440 		return UBIFS_ITYPE_SOCK;
441 	default:
442 		BUG();
443 	}
444 	return 0;
445 }
446 
447 /**
448  * pack_inode - pack an inode node.
449  * @c: UBIFS file-system description object
450  * @ino: buffer in which to pack inode node
451  * @inode: inode to pack
452  * @last: indicates the last node of the group
453  */
pack_inode(struct ubifs_info * c,struct ubifs_ino_node * ino,const struct inode * inode,int last)454 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
455 		       const struct inode *inode, int last)
456 {
457 	int data_len = 0, last_reference = !inode->i_nlink;
458 	struct ubifs_inode *ui = ubifs_inode(inode);
459 
460 	ino->ch.node_type = UBIFS_INO_NODE;
461 	ino_key_init_flash(c, &ino->key, inode->i_ino);
462 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
463 	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
464 	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
465 	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
466 	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
467 	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
468 	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
469 	ino->uid   = cpu_to_le32(inode->i_uid);
470 	ino->gid   = cpu_to_le32(inode->i_gid);
471 	ino->mode  = cpu_to_le32(inode->i_mode);
472 	ino->flags = cpu_to_le32(ui->flags);
473 	ino->size  = cpu_to_le64(ui->ui_size);
474 	ino->nlink = cpu_to_le32(inode->i_nlink);
475 	ino->compr_type  = cpu_to_le16(ui->compr_type);
476 	ino->data_len    = cpu_to_le32(ui->data_len);
477 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
478 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
479 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
480 	zero_ino_node_unused(ino);
481 
482 	/*
483 	 * Drop the attached data if this is a deletion inode, the data is not
484 	 * needed anymore.
485 	 */
486 	if (!last_reference) {
487 		memcpy(ino->data, ui->data, ui->data_len);
488 		data_len = ui->data_len;
489 	}
490 
491 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
492 }
493 
494 /**
495  * mark_inode_clean - mark UBIFS inode as clean.
496  * @c: UBIFS file-system description object
497  * @ui: UBIFS inode to mark as clean
498  *
499  * This helper function marks UBIFS inode @ui as clean by cleaning the
500  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
501  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
502  * just do nothing.
503  */
mark_inode_clean(struct ubifs_info * c,struct ubifs_inode * ui)504 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
505 {
506 	if (ui->dirty)
507 		ubifs_release_dirty_inode_budget(c, ui);
508 	ui->dirty = 0;
509 }
510 
511 /**
512  * ubifs_jnl_update - update inode.
513  * @c: UBIFS file-system description object
514  * @dir: parent inode or host inode in case of extended attributes
515  * @nm: directory entry name
516  * @inode: inode to update
517  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518  * @xent: non-zero if the directory entry is an extended attribute entry
519  *
520  * This function updates an inode by writing a directory entry (or extended
521  * attribute entry), the inode itself, and the parent directory inode (or the
522  * host inode) to the journal.
523  *
524  * The function writes the host inode @dir last, which is important in case of
525  * extended attributes. Indeed, then we guarantee that if the host inode gets
526  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527  * the extended attribute inode gets flushed too. And this is exactly what the
528  * user expects - synchronizing the host inode synchronizes its extended
529  * attributes. Similarly, this guarantees that if @dir is synchronized, its
530  * directory entry corresponding to @nm gets synchronized too.
531  *
532  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533  * function synchronizes the write-buffer.
534  *
535  * This function marks the @dir and @inode inodes as clean and returns zero on
536  * success. In case of failure, a negative error code is returned.
537  */
ubifs_jnl_update(struct ubifs_info * c,const struct inode * dir,const struct qstr * nm,const struct inode * inode,int deletion,int xent)538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 		     const struct qstr *nm, const struct inode *inode,
540 		     int deletion, int xent)
541 {
542 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
543 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 	int last_reference = !!(deletion && inode->i_nlink == 0);
545 	struct ubifs_inode *ui = ubifs_inode(inode);
546 	struct ubifs_inode *dir_ui = ubifs_inode(dir);
547 	struct ubifs_dent_node *dent;
548 	struct ubifs_ino_node *ino;
549 	union ubifs_key dent_key, ino_key;
550 
551 	dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
552 		inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
553 	ubifs_assert(dir_ui->data_len == 0);
554 	ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
555 
556 	dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
557 	ilen = UBIFS_INO_NODE_SZ;
558 
559 	/*
560 	 * If the last reference to the inode is being deleted, then there is
561 	 * no need to attach and write inode data, it is being deleted anyway.
562 	 * And if the inode is being deleted, no need to synchronize
563 	 * write-buffer even if the inode is synchronous.
564 	 */
565 	if (!last_reference) {
566 		ilen += ui->data_len;
567 		sync |= IS_SYNC(inode);
568 	}
569 
570 	aligned_dlen = ALIGN(dlen, 8);
571 	aligned_ilen = ALIGN(ilen, 8);
572 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
573 	dent = kmalloc(len, GFP_NOFS);
574 	if (!dent)
575 		return -ENOMEM;
576 
577 	/* Make reservation before allocating sequence numbers */
578 	err = make_reservation(c, BASEHD, len);
579 	if (err)
580 		goto out_free;
581 
582 	if (!xent) {
583 		dent->ch.node_type = UBIFS_DENT_NODE;
584 		dent_key_init(c, &dent_key, dir->i_ino, nm);
585 	} else {
586 		dent->ch.node_type = UBIFS_XENT_NODE;
587 		xent_key_init(c, &dent_key, dir->i_ino, nm);
588 	}
589 
590 	key_write(c, &dent_key, dent->key);
591 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
592 	dent->type = get_dent_type(inode->i_mode);
593 	dent->nlen = cpu_to_le16(nm->len);
594 	memcpy(dent->name, nm->name, nm->len);
595 	dent->name[nm->len] = '\0';
596 	zero_dent_node_unused(dent);
597 	ubifs_prep_grp_node(c, dent, dlen, 0);
598 
599 	ino = (void *)dent + aligned_dlen;
600 	pack_inode(c, ino, inode, 0);
601 	ino = (void *)ino + aligned_ilen;
602 	pack_inode(c, ino, dir, 1);
603 
604 	if (last_reference) {
605 		err = ubifs_add_orphan(c, inode->i_ino);
606 		if (err) {
607 			release_head(c, BASEHD);
608 			goto out_finish;
609 		}
610 		ui->del_cmtno = c->cmt_no;
611 	}
612 
613 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
614 	if (err)
615 		goto out_release;
616 	if (!sync) {
617 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
618 
619 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
620 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
621 	}
622 	release_head(c, BASEHD);
623 	kfree(dent);
624 
625 	if (deletion) {
626 		err = ubifs_tnc_remove_nm(c, &dent_key, nm);
627 		if (err)
628 			goto out_ro;
629 		err = ubifs_add_dirt(c, lnum, dlen);
630 	} else
631 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
632 	if (err)
633 		goto out_ro;
634 
635 	/*
636 	 * Note, we do not remove the inode from TNC even if the last reference
637 	 * to it has just been deleted, because the inode may still be opened.
638 	 * Instead, the inode has been added to orphan lists and the orphan
639 	 * subsystem will take further care about it.
640 	 */
641 	ino_key_init(c, &ino_key, inode->i_ino);
642 	ino_offs = dent_offs + aligned_dlen;
643 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
644 	if (err)
645 		goto out_ro;
646 
647 	ino_key_init(c, &ino_key, dir->i_ino);
648 	ino_offs += aligned_ilen;
649 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
650 	if (err)
651 		goto out_ro;
652 
653 	finish_reservation(c);
654 	spin_lock(&ui->ui_lock);
655 	ui->synced_i_size = ui->ui_size;
656 	spin_unlock(&ui->ui_lock);
657 	mark_inode_clean(c, ui);
658 	mark_inode_clean(c, dir_ui);
659 	return 0;
660 
661 out_finish:
662 	finish_reservation(c);
663 out_free:
664 	kfree(dent);
665 	return err;
666 
667 out_release:
668 	release_head(c, BASEHD);
669 out_ro:
670 	ubifs_ro_mode(c, err);
671 	if (last_reference)
672 		ubifs_delete_orphan(c, inode->i_ino);
673 	finish_reservation(c);
674 	return err;
675 }
676 
677 /**
678  * ubifs_jnl_write_data - write a data node to the journal.
679  * @c: UBIFS file-system description object
680  * @inode: inode the data node belongs to
681  * @key: node key
682  * @buf: buffer to write
683  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
684  *
685  * This function writes a data node to the journal. Returns %0 if the data node
686  * was successfully written, and a negative error code in case of failure.
687  */
ubifs_jnl_write_data(struct ubifs_info * c,const struct inode * inode,const union ubifs_key * key,const void * buf,int len)688 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
689 			 const union ubifs_key *key, const void *buf, int len)
690 {
691 	struct ubifs_data_node *data;
692 	int err, lnum, offs, compr_type, out_len;
693 	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
694 	struct ubifs_inode *ui = ubifs_inode(inode);
695 
696 	dbg_jnl("ino %lu, blk %u, len %d, key %s",
697 		(unsigned long)key_inum(c, key), key_block(c, key), len,
698 		DBGKEY(key));
699 	ubifs_assert(len <= UBIFS_BLOCK_SIZE);
700 
701 	data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
702 	if (!data) {
703 		/*
704 		 * Fall-back to the write reserve buffer. Note, we might be
705 		 * currently on the memory reclaim path, when the kernel is
706 		 * trying to free some memory by writing out dirty pages. The
707 		 * write reserve buffer helps us to guarantee that we are
708 		 * always able to write the data.
709 		 */
710 		allocated = 0;
711 		mutex_lock(&c->write_reserve_mutex);
712 		data = c->write_reserve_buf;
713 	}
714 
715 	data->ch.node_type = UBIFS_DATA_NODE;
716 	key_write(c, key, &data->key);
717 	data->size = cpu_to_le32(len);
718 	zero_data_node_unused(data);
719 
720 	if (!(ui->flags & UBIFS_COMPR_FL))
721 		/* Compression is disabled for this inode */
722 		compr_type = UBIFS_COMPR_NONE;
723 	else
724 		compr_type = ui->compr_type;
725 
726 	out_len = dlen - UBIFS_DATA_NODE_SZ;
727 	ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
728 	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
729 
730 	dlen = UBIFS_DATA_NODE_SZ + out_len;
731 	data->compr_type = cpu_to_le16(compr_type);
732 
733 	/* Make reservation before allocating sequence numbers */
734 	err = make_reservation(c, DATAHD, dlen);
735 	if (err)
736 		goto out_free;
737 
738 	err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
739 	if (err)
740 		goto out_release;
741 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
742 	release_head(c, DATAHD);
743 
744 	err = ubifs_tnc_add(c, key, lnum, offs, dlen);
745 	if (err)
746 		goto out_ro;
747 
748 	finish_reservation(c);
749 	if (!allocated)
750 		mutex_unlock(&c->write_reserve_mutex);
751 	else
752 		kfree(data);
753 	return 0;
754 
755 out_release:
756 	release_head(c, DATAHD);
757 out_ro:
758 	ubifs_ro_mode(c, err);
759 	finish_reservation(c);
760 out_free:
761 	if (!allocated)
762 		mutex_unlock(&c->write_reserve_mutex);
763 	else
764 		kfree(data);
765 	return err;
766 }
767 
768 /**
769  * ubifs_jnl_write_inode - flush inode to the journal.
770  * @c: UBIFS file-system description object
771  * @inode: inode to flush
772  *
773  * This function writes inode @inode to the journal. If the inode is
774  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
775  * success and a negative error code in case of failure.
776  */
ubifs_jnl_write_inode(struct ubifs_info * c,const struct inode * inode)777 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
778 {
779 	int err, lnum, offs;
780 	struct ubifs_ino_node *ino;
781 	struct ubifs_inode *ui = ubifs_inode(inode);
782 	int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
783 
784 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
785 
786 	/*
787 	 * If the inode is being deleted, do not write the attached data. No
788 	 * need to synchronize the write-buffer either.
789 	 */
790 	if (!last_reference) {
791 		len += ui->data_len;
792 		sync = IS_SYNC(inode);
793 	}
794 	ino = kmalloc(len, GFP_NOFS);
795 	if (!ino)
796 		return -ENOMEM;
797 
798 	/* Make reservation before allocating sequence numbers */
799 	err = make_reservation(c, BASEHD, len);
800 	if (err)
801 		goto out_free;
802 
803 	pack_inode(c, ino, inode, 1);
804 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
805 	if (err)
806 		goto out_release;
807 	if (!sync)
808 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
809 					  inode->i_ino);
810 	release_head(c, BASEHD);
811 
812 	if (last_reference) {
813 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
814 		if (err)
815 			goto out_ro;
816 		ubifs_delete_orphan(c, inode->i_ino);
817 		err = ubifs_add_dirt(c, lnum, len);
818 	} else {
819 		union ubifs_key key;
820 
821 		ino_key_init(c, &key, inode->i_ino);
822 		err = ubifs_tnc_add(c, &key, lnum, offs, len);
823 	}
824 	if (err)
825 		goto out_ro;
826 
827 	finish_reservation(c);
828 	spin_lock(&ui->ui_lock);
829 	ui->synced_i_size = ui->ui_size;
830 	spin_unlock(&ui->ui_lock);
831 	kfree(ino);
832 	return 0;
833 
834 out_release:
835 	release_head(c, BASEHD);
836 out_ro:
837 	ubifs_ro_mode(c, err);
838 	finish_reservation(c);
839 out_free:
840 	kfree(ino);
841 	return err;
842 }
843 
844 /**
845  * ubifs_jnl_delete_inode - delete an inode.
846  * @c: UBIFS file-system description object
847  * @inode: inode to delete
848  *
849  * This function deletes inode @inode which includes removing it from orphans,
850  * deleting it from TNC and, in some cases, writing a deletion inode to the
851  * journal.
852  *
853  * When regular file inodes are unlinked or a directory inode is removed, the
854  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
855  * direntry to the media, and adds the inode to orphans. After this, when the
856  * last reference to this inode has been dropped, this function is called. In
857  * general, it has to write one more deletion inode to the media, because if
858  * a commit happened between 'ubifs_jnl_update()' and
859  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
860  * anymore, and in fact it might not be on the flash anymore, because it might
861  * have been garbage-collected already. And for optimization reasons UBIFS does
862  * not read the orphan area if it has been unmounted cleanly, so it would have
863  * no indication in the journal that there is a deleted inode which has to be
864  * removed from TNC.
865  *
866  * However, if there was no commit between 'ubifs_jnl_update()' and
867  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
868  * inode to the media for the second time. And this is quite a typical case.
869  *
870  * This function returns zero in case of success and a negative error code in
871  * case of failure.
872  */
ubifs_jnl_delete_inode(struct ubifs_info * c,const struct inode * inode)873 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
874 {
875 	int err;
876 	struct ubifs_inode *ui = ubifs_inode(inode);
877 
878 	ubifs_assert(inode->i_nlink == 0);
879 
880 	if (ui->del_cmtno != c->cmt_no)
881 		/* A commit happened for sure */
882 		return ubifs_jnl_write_inode(c, inode);
883 
884 	down_read(&c->commit_sem);
885 	/*
886 	 * Check commit number again, because the first test has been done
887 	 * without @c->commit_sem, so a commit might have happened.
888 	 */
889 	if (ui->del_cmtno != c->cmt_no) {
890 		up_read(&c->commit_sem);
891 		return ubifs_jnl_write_inode(c, inode);
892 	}
893 
894 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
895 	if (err)
896 		ubifs_ro_mode(c, err);
897 	else
898 		ubifs_delete_orphan(c, inode->i_ino);
899 	up_read(&c->commit_sem);
900 	return err;
901 }
902 
903 /**
904  * ubifs_jnl_rename - rename a directory entry.
905  * @c: UBIFS file-system description object
906  * @old_dir: parent inode of directory entry to rename
907  * @old_dentry: directory entry to rename
908  * @new_dir: parent inode of directory entry to rename
909  * @new_dentry: new directory entry (or directory entry to replace)
910  * @sync: non-zero if the write-buffer has to be synchronized
911  *
912  * This function implements the re-name operation which may involve writing up
913  * to 3 inodes and 2 directory entries. It marks the written inodes as clean
914  * and returns zero on success. In case of failure, a negative error code is
915  * returned.
916  */
ubifs_jnl_rename(struct ubifs_info * c,const struct inode * old_dir,const struct dentry * old_dentry,const struct inode * new_dir,const struct dentry * new_dentry,int sync)917 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
918 		     const struct dentry *old_dentry,
919 		     const struct inode *new_dir,
920 		     const struct dentry *new_dentry, int sync)
921 {
922 	void *p;
923 	union ubifs_key key;
924 	struct ubifs_dent_node *dent, *dent2;
925 	int err, dlen1, dlen2, ilen, lnum, offs, len;
926 	const struct inode *old_inode = old_dentry->d_inode;
927 	const struct inode *new_inode = new_dentry->d_inode;
928 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
929 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
930 	int move = (old_dir != new_dir);
931 	struct ubifs_inode *uninitialized_var(new_ui);
932 
933 	dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
934 		old_dentry->d_name.len, old_dentry->d_name.name,
935 		old_dir->i_ino, new_dentry->d_name.len,
936 		new_dentry->d_name.name, new_dir->i_ino);
937 	ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
938 	ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
939 	ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
940 	ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
941 
942 	dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
943 	dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
944 	if (new_inode) {
945 		new_ui = ubifs_inode(new_inode);
946 		ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
947 		ilen = UBIFS_INO_NODE_SZ;
948 		if (!last_reference)
949 			ilen += new_ui->data_len;
950 	} else
951 		ilen = 0;
952 
953 	aligned_dlen1 = ALIGN(dlen1, 8);
954 	aligned_dlen2 = ALIGN(dlen2, 8);
955 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
956 	if (old_dir != new_dir)
957 		len += plen;
958 	dent = kmalloc(len, GFP_NOFS);
959 	if (!dent)
960 		return -ENOMEM;
961 
962 	/* Make reservation before allocating sequence numbers */
963 	err = make_reservation(c, BASEHD, len);
964 	if (err)
965 		goto out_free;
966 
967 	/* Make new dent */
968 	dent->ch.node_type = UBIFS_DENT_NODE;
969 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
970 	dent->inum = cpu_to_le64(old_inode->i_ino);
971 	dent->type = get_dent_type(old_inode->i_mode);
972 	dent->nlen = cpu_to_le16(new_dentry->d_name.len);
973 	memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
974 	dent->name[new_dentry->d_name.len] = '\0';
975 	zero_dent_node_unused(dent);
976 	ubifs_prep_grp_node(c, dent, dlen1, 0);
977 
978 	/* Make deletion dent */
979 	dent2 = (void *)dent + aligned_dlen1;
980 	dent2->ch.node_type = UBIFS_DENT_NODE;
981 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
982 			    &old_dentry->d_name);
983 	dent2->inum = 0;
984 	dent2->type = DT_UNKNOWN;
985 	dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
986 	memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
987 	dent2->name[old_dentry->d_name.len] = '\0';
988 	zero_dent_node_unused(dent2);
989 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
990 
991 	p = (void *)dent2 + aligned_dlen2;
992 	if (new_inode) {
993 		pack_inode(c, p, new_inode, 0);
994 		p += ALIGN(ilen, 8);
995 	}
996 
997 	if (!move)
998 		pack_inode(c, p, old_dir, 1);
999 	else {
1000 		pack_inode(c, p, old_dir, 0);
1001 		p += ALIGN(plen, 8);
1002 		pack_inode(c, p, new_dir, 1);
1003 	}
1004 
1005 	if (last_reference) {
1006 		err = ubifs_add_orphan(c, new_inode->i_ino);
1007 		if (err) {
1008 			release_head(c, BASEHD);
1009 			goto out_finish;
1010 		}
1011 		new_ui->del_cmtno = c->cmt_no;
1012 	}
1013 
1014 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1015 	if (err)
1016 		goto out_release;
1017 	if (!sync) {
1018 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1019 
1020 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1021 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1022 		if (new_inode)
1023 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1024 						  new_inode->i_ino);
1025 	}
1026 	release_head(c, BASEHD);
1027 
1028 	dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1029 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1030 	if (err)
1031 		goto out_ro;
1032 
1033 	err = ubifs_add_dirt(c, lnum, dlen2);
1034 	if (err)
1035 		goto out_ro;
1036 
1037 	dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1038 	err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1039 	if (err)
1040 		goto out_ro;
1041 
1042 	offs += aligned_dlen1 + aligned_dlen2;
1043 	if (new_inode) {
1044 		ino_key_init(c, &key, new_inode->i_ino);
1045 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1046 		if (err)
1047 			goto out_ro;
1048 		offs += ALIGN(ilen, 8);
1049 	}
1050 
1051 	ino_key_init(c, &key, old_dir->i_ino);
1052 	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1053 	if (err)
1054 		goto out_ro;
1055 
1056 	if (old_dir != new_dir) {
1057 		offs += ALIGN(plen, 8);
1058 		ino_key_init(c, &key, new_dir->i_ino);
1059 		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1060 		if (err)
1061 			goto out_ro;
1062 	}
1063 
1064 	finish_reservation(c);
1065 	if (new_inode) {
1066 		mark_inode_clean(c, new_ui);
1067 		spin_lock(&new_ui->ui_lock);
1068 		new_ui->synced_i_size = new_ui->ui_size;
1069 		spin_unlock(&new_ui->ui_lock);
1070 	}
1071 	mark_inode_clean(c, ubifs_inode(old_dir));
1072 	if (move)
1073 		mark_inode_clean(c, ubifs_inode(new_dir));
1074 	kfree(dent);
1075 	return 0;
1076 
1077 out_release:
1078 	release_head(c, BASEHD);
1079 out_ro:
1080 	ubifs_ro_mode(c, err);
1081 	if (last_reference)
1082 		ubifs_delete_orphan(c, new_inode->i_ino);
1083 out_finish:
1084 	finish_reservation(c);
1085 out_free:
1086 	kfree(dent);
1087 	return err;
1088 }
1089 
1090 /**
1091  * recomp_data_node - re-compress a truncated data node.
1092  * @dn: data node to re-compress
1093  * @new_len: new length
1094  *
1095  * This function is used when an inode is truncated and the last data node of
1096  * the inode has to be re-compressed and re-written.
1097  */
recomp_data_node(struct ubifs_data_node * dn,int * new_len)1098 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1099 {
1100 	void *buf;
1101 	int err, len, compr_type, out_len;
1102 
1103 	out_len = le32_to_cpu(dn->size);
1104 	buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1105 	if (!buf)
1106 		return -ENOMEM;
1107 
1108 	len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1109 	compr_type = le16_to_cpu(dn->compr_type);
1110 	err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1111 	if (err)
1112 		goto out;
1113 
1114 	ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1115 	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1116 	dn->compr_type = cpu_to_le16(compr_type);
1117 	dn->size = cpu_to_le32(*new_len);
1118 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1119 out:
1120 	kfree(buf);
1121 	return err;
1122 }
1123 
1124 /**
1125  * ubifs_jnl_truncate - update the journal for a truncation.
1126  * @c: UBIFS file-system description object
1127  * @inode: inode to truncate
1128  * @old_size: old size
1129  * @new_size: new size
1130  *
1131  * When the size of a file decreases due to truncation, a truncation node is
1132  * written, the journal tree is updated, and the last data block is re-written
1133  * if it has been affected. The inode is also updated in order to synchronize
1134  * the new inode size.
1135  *
1136  * This function marks the inode as clean and returns zero on success. In case
1137  * of failure, a negative error code is returned.
1138  */
ubifs_jnl_truncate(struct ubifs_info * c,const struct inode * inode,loff_t old_size,loff_t new_size)1139 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1140 		       loff_t old_size, loff_t new_size)
1141 {
1142 	union ubifs_key key, to_key;
1143 	struct ubifs_ino_node *ino;
1144 	struct ubifs_trun_node *trun;
1145 	struct ubifs_data_node *uninitialized_var(dn);
1146 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1147 	struct ubifs_inode *ui = ubifs_inode(inode);
1148 	ino_t inum = inode->i_ino;
1149 	unsigned int blk;
1150 
1151 	dbg_jnl("ino %lu, size %lld -> %lld",
1152 		(unsigned long)inum, old_size, new_size);
1153 	ubifs_assert(!ui->data_len);
1154 	ubifs_assert(S_ISREG(inode->i_mode));
1155 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1156 
1157 	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1158 	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1159 	ino = kmalloc(sz, GFP_NOFS);
1160 	if (!ino)
1161 		return -ENOMEM;
1162 
1163 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1164 	trun->ch.node_type = UBIFS_TRUN_NODE;
1165 	trun->inum = cpu_to_le32(inum);
1166 	trun->old_size = cpu_to_le64(old_size);
1167 	trun->new_size = cpu_to_le64(new_size);
1168 	zero_trun_node_unused(trun);
1169 
1170 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1171 	if (dlen) {
1172 		/* Get last data block so it can be truncated */
1173 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1174 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1175 		data_key_init(c, &key, inum, blk);
1176 		dbg_jnl("last block key %s", DBGKEY(&key));
1177 		err = ubifs_tnc_lookup(c, &key, dn);
1178 		if (err == -ENOENT)
1179 			dlen = 0; /* Not found (so it is a hole) */
1180 		else if (err)
1181 			goto out_free;
1182 		else {
1183 			if (le32_to_cpu(dn->size) <= dlen)
1184 				dlen = 0; /* Nothing to do */
1185 			else {
1186 				int compr_type = le16_to_cpu(dn->compr_type);
1187 
1188 				if (compr_type != UBIFS_COMPR_NONE) {
1189 					err = recomp_data_node(dn, &dlen);
1190 					if (err)
1191 						goto out_free;
1192 				} else {
1193 					dn->size = cpu_to_le32(dlen);
1194 					dlen += UBIFS_DATA_NODE_SZ;
1195 				}
1196 				zero_data_node_unused(dn);
1197 			}
1198 		}
1199 	}
1200 
1201 	/* Must make reservation before allocating sequence numbers */
1202 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1203 	if (dlen)
1204 		len += dlen;
1205 	err = make_reservation(c, BASEHD, len);
1206 	if (err)
1207 		goto out_free;
1208 
1209 	pack_inode(c, ino, inode, 0);
1210 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1211 	if (dlen)
1212 		ubifs_prep_grp_node(c, dn, dlen, 1);
1213 
1214 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1215 	if (err)
1216 		goto out_release;
1217 	if (!sync)
1218 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1219 	release_head(c, BASEHD);
1220 
1221 	if (dlen) {
1222 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1223 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1224 		if (err)
1225 			goto out_ro;
1226 	}
1227 
1228 	ino_key_init(c, &key, inum);
1229 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1230 	if (err)
1231 		goto out_ro;
1232 
1233 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1234 	if (err)
1235 		goto out_ro;
1236 
1237 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1238 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1239 	data_key_init(c, &key, inum, blk);
1240 
1241 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1242 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1243 	data_key_init(c, &to_key, inum, blk);
1244 
1245 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1246 	if (err)
1247 		goto out_ro;
1248 
1249 	finish_reservation(c);
1250 	spin_lock(&ui->ui_lock);
1251 	ui->synced_i_size = ui->ui_size;
1252 	spin_unlock(&ui->ui_lock);
1253 	mark_inode_clean(c, ui);
1254 	kfree(ino);
1255 	return 0;
1256 
1257 out_release:
1258 	release_head(c, BASEHD);
1259 out_ro:
1260 	ubifs_ro_mode(c, err);
1261 	finish_reservation(c);
1262 out_free:
1263 	kfree(ino);
1264 	return err;
1265 }
1266 
1267 #ifdef CONFIG_UBIFS_FS_XATTR
1268 
1269 /**
1270  * ubifs_jnl_delete_xattr - delete an extended attribute.
1271  * @c: UBIFS file-system description object
1272  * @host: host inode
1273  * @inode: extended attribute inode
1274  * @nm: extended attribute entry name
1275  *
1276  * This function delete an extended attribute which is very similar to
1277  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1278  * updates the target inode. Returns zero in case of success and a negative
1279  * error code in case of failure.
1280  */
ubifs_jnl_delete_xattr(struct ubifs_info * c,const struct inode * host,const struct inode * inode,const struct qstr * nm)1281 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1282 			   const struct inode *inode, const struct qstr *nm)
1283 {
1284 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1285 	struct ubifs_dent_node *xent;
1286 	struct ubifs_ino_node *ino;
1287 	union ubifs_key xent_key, key1, key2;
1288 	int sync = IS_DIRSYNC(host);
1289 	struct ubifs_inode *host_ui = ubifs_inode(host);
1290 
1291 	dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1292 		host->i_ino, inode->i_ino, nm->name,
1293 		ubifs_inode(inode)->data_len);
1294 	ubifs_assert(inode->i_nlink == 0);
1295 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1296 
1297 	/*
1298 	 * Since we are deleting the inode, we do not bother to attach any data
1299 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1300 	 */
1301 	xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1302 	aligned_xlen = ALIGN(xlen, 8);
1303 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1304 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1305 
1306 	xent = kmalloc(len, GFP_NOFS);
1307 	if (!xent)
1308 		return -ENOMEM;
1309 
1310 	/* Make reservation before allocating sequence numbers */
1311 	err = make_reservation(c, BASEHD, len);
1312 	if (err) {
1313 		kfree(xent);
1314 		return err;
1315 	}
1316 
1317 	xent->ch.node_type = UBIFS_XENT_NODE;
1318 	xent_key_init(c, &xent_key, host->i_ino, nm);
1319 	key_write(c, &xent_key, xent->key);
1320 	xent->inum = 0;
1321 	xent->type = get_dent_type(inode->i_mode);
1322 	xent->nlen = cpu_to_le16(nm->len);
1323 	memcpy(xent->name, nm->name, nm->len);
1324 	xent->name[nm->len] = '\0';
1325 	zero_dent_node_unused(xent);
1326 	ubifs_prep_grp_node(c, xent, xlen, 0);
1327 
1328 	ino = (void *)xent + aligned_xlen;
1329 	pack_inode(c, ino, inode, 0);
1330 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1331 	pack_inode(c, ino, host, 1);
1332 
1333 	err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1334 	if (!sync && !err)
1335 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1336 	release_head(c, BASEHD);
1337 	kfree(xent);
1338 	if (err)
1339 		goto out_ro;
1340 
1341 	/* Remove the extended attribute entry from TNC */
1342 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1343 	if (err)
1344 		goto out_ro;
1345 	err = ubifs_add_dirt(c, lnum, xlen);
1346 	if (err)
1347 		goto out_ro;
1348 
1349 	/*
1350 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1351 	 * Well, there actually must be only one node - the inode itself.
1352 	 */
1353 	lowest_ino_key(c, &key1, inode->i_ino);
1354 	highest_ino_key(c, &key2, inode->i_ino);
1355 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1356 	if (err)
1357 		goto out_ro;
1358 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1359 	if (err)
1360 		goto out_ro;
1361 
1362 	/* And update TNC with the new host inode position */
1363 	ino_key_init(c, &key1, host->i_ino);
1364 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1365 	if (err)
1366 		goto out_ro;
1367 
1368 	finish_reservation(c);
1369 	spin_lock(&host_ui->ui_lock);
1370 	host_ui->synced_i_size = host_ui->ui_size;
1371 	spin_unlock(&host_ui->ui_lock);
1372 	mark_inode_clean(c, host_ui);
1373 	return 0;
1374 
1375 out_ro:
1376 	ubifs_ro_mode(c, err);
1377 	finish_reservation(c);
1378 	return err;
1379 }
1380 
1381 /**
1382  * ubifs_jnl_change_xattr - change an extended attribute.
1383  * @c: UBIFS file-system description object
1384  * @inode: extended attribute inode
1385  * @host: host inode
1386  *
1387  * This function writes the updated version of an extended attribute inode and
1388  * the host inode to the journal (to the base head). The host inode is written
1389  * after the extended attribute inode in order to guarantee that the extended
1390  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1391  * consequently, the write-buffer is synchronized. This function returns zero
1392  * in case of success and a negative error code in case of failure.
1393  */
ubifs_jnl_change_xattr(struct ubifs_info * c,const struct inode * inode,const struct inode * host)1394 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1395 			   const struct inode *host)
1396 {
1397 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1398 	struct ubifs_inode *host_ui = ubifs_inode(host);
1399 	struct ubifs_ino_node *ino;
1400 	union ubifs_key key;
1401 	int sync = IS_DIRSYNC(host);
1402 
1403 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1404 	ubifs_assert(host->i_nlink > 0);
1405 	ubifs_assert(inode->i_nlink > 0);
1406 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1407 
1408 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1409 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1410 	aligned_len1 = ALIGN(len1, 8);
1411 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1412 
1413 	ino = kmalloc(aligned_len, GFP_NOFS);
1414 	if (!ino)
1415 		return -ENOMEM;
1416 
1417 	/* Make reservation before allocating sequence numbers */
1418 	err = make_reservation(c, BASEHD, aligned_len);
1419 	if (err)
1420 		goto out_free;
1421 
1422 	pack_inode(c, ino, host, 0);
1423 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1424 
1425 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1426 	if (!sync && !err) {
1427 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1428 
1429 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1430 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1431 	}
1432 	release_head(c, BASEHD);
1433 	if (err)
1434 		goto out_ro;
1435 
1436 	ino_key_init(c, &key, host->i_ino);
1437 	err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1438 	if (err)
1439 		goto out_ro;
1440 
1441 	ino_key_init(c, &key, inode->i_ino);
1442 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1443 	if (err)
1444 		goto out_ro;
1445 
1446 	finish_reservation(c);
1447 	spin_lock(&host_ui->ui_lock);
1448 	host_ui->synced_i_size = host_ui->ui_size;
1449 	spin_unlock(&host_ui->ui_lock);
1450 	mark_inode_clean(c, host_ui);
1451 	kfree(ino);
1452 	return 0;
1453 
1454 out_ro:
1455 	ubifs_ro_mode(c, err);
1456 	finish_reservation(c);
1457 out_free:
1458 	kfree(ino);
1459 	return err;
1460 }
1461 
1462 #endif /* CONFIG_UBIFS_FS_XATTR */
1463