1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements the functions that access LEB properties and their
25 * categories. LEBs are categorized based on the needs of UBIFS, and the
26 * categories are stored as either heaps or lists to provide a fast way of
27 * finding a LEB in a particular category. For example, UBIFS may need to find
28 * an empty LEB for the journal, or a very dirty LEB for garbage collection.
29 */
30
31 #include "ubifs.h"
32
33 /**
34 * get_heap_comp_val - get the LEB properties value for heap comparisons.
35 * @lprops: LEB properties
36 * @cat: LEB category
37 */
get_heap_comp_val(struct ubifs_lprops * lprops,int cat)38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
39 {
40 switch (cat) {
41 case LPROPS_FREE:
42 return lprops->free;
43 case LPROPS_DIRTY_IDX:
44 return lprops->free + lprops->dirty;
45 default:
46 return lprops->dirty;
47 }
48 }
49
50 /**
51 * move_up_lpt_heap - move a new heap entry up as far as possible.
52 * @c: UBIFS file-system description object
53 * @heap: LEB category heap
54 * @lprops: LEB properties to move
55 * @cat: LEB category
56 *
57 * New entries to a heap are added at the bottom and then moved up until the
58 * parent's value is greater. In the case of LPT's category heaps, the value
59 * is either the amount of free space or the amount of dirty space, depending
60 * on the category.
61 */
move_up_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int cat)62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
63 struct ubifs_lprops *lprops, int cat)
64 {
65 int val1, val2, hpos;
66
67 hpos = lprops->hpos;
68 if (!hpos)
69 return; /* Already top of the heap */
70 val1 = get_heap_comp_val(lprops, cat);
71 /* Compare to parent and, if greater, move up the heap */
72 do {
73 int ppos = (hpos - 1) / 2;
74
75 val2 = get_heap_comp_val(heap->arr[ppos], cat);
76 if (val2 >= val1)
77 return;
78 /* Greater than parent so move up */
79 heap->arr[ppos]->hpos = hpos;
80 heap->arr[hpos] = heap->arr[ppos];
81 heap->arr[ppos] = lprops;
82 lprops->hpos = ppos;
83 hpos = ppos;
84 } while (hpos);
85 }
86
87 /**
88 * adjust_lpt_heap - move a changed heap entry up or down the heap.
89 * @c: UBIFS file-system description object
90 * @heap: LEB category heap
91 * @lprops: LEB properties to move
92 * @hpos: heap position of @lprops
93 * @cat: LEB category
94 *
95 * Changed entries in a heap are moved up or down until the parent's value is
96 * greater. In the case of LPT's category heaps, the value is either the amount
97 * of free space or the amount of dirty space, depending on the category.
98 */
adjust_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int hpos,int cat)99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
100 struct ubifs_lprops *lprops, int hpos, int cat)
101 {
102 int val1, val2, val3, cpos;
103
104 val1 = get_heap_comp_val(lprops, cat);
105 /* Compare to parent and, if greater than parent, move up the heap */
106 if (hpos) {
107 int ppos = (hpos - 1) / 2;
108
109 val2 = get_heap_comp_val(heap->arr[ppos], cat);
110 if (val1 > val2) {
111 /* Greater than parent so move up */
112 while (1) {
113 heap->arr[ppos]->hpos = hpos;
114 heap->arr[hpos] = heap->arr[ppos];
115 heap->arr[ppos] = lprops;
116 lprops->hpos = ppos;
117 hpos = ppos;
118 if (!hpos)
119 return;
120 ppos = (hpos - 1) / 2;
121 val2 = get_heap_comp_val(heap->arr[ppos], cat);
122 if (val1 <= val2)
123 return;
124 /* Still greater than parent so keep going */
125 }
126 }
127 }
128
129 /* Not greater than parent, so compare to children */
130 while (1) {
131 /* Compare to left child */
132 cpos = hpos * 2 + 1;
133 if (cpos >= heap->cnt)
134 return;
135 val2 = get_heap_comp_val(heap->arr[cpos], cat);
136 if (val1 < val2) {
137 /* Less than left child, so promote biggest child */
138 if (cpos + 1 < heap->cnt) {
139 val3 = get_heap_comp_val(heap->arr[cpos + 1],
140 cat);
141 if (val3 > val2)
142 cpos += 1; /* Right child is bigger */
143 }
144 heap->arr[cpos]->hpos = hpos;
145 heap->arr[hpos] = heap->arr[cpos];
146 heap->arr[cpos] = lprops;
147 lprops->hpos = cpos;
148 hpos = cpos;
149 continue;
150 }
151 /* Compare to right child */
152 cpos += 1;
153 if (cpos >= heap->cnt)
154 return;
155 val3 = get_heap_comp_val(heap->arr[cpos], cat);
156 if (val1 < val3) {
157 /* Less than right child, so promote right child */
158 heap->arr[cpos]->hpos = hpos;
159 heap->arr[hpos] = heap->arr[cpos];
160 heap->arr[cpos] = lprops;
161 lprops->hpos = cpos;
162 hpos = cpos;
163 continue;
164 }
165 return;
166 }
167 }
168
169 /**
170 * add_to_lpt_heap - add LEB properties to a LEB category heap.
171 * @c: UBIFS file-system description object
172 * @lprops: LEB properties to add
173 * @cat: LEB category
174 *
175 * This function returns %1 if @lprops is added to the heap for LEB category
176 * @cat, otherwise %0 is returned because the heap is full.
177 */
add_to_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
179 int cat)
180 {
181 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
182
183 if (heap->cnt >= heap->max_cnt) {
184 const int b = LPT_HEAP_SZ / 2 - 1;
185 int cpos, val1, val2;
186
187 /* Compare to some other LEB on the bottom of heap */
188 /* Pick a position kind of randomly */
189 cpos = (((size_t)lprops >> 4) & b) + b;
190 ubifs_assert(cpos >= b);
191 ubifs_assert(cpos < LPT_HEAP_SZ);
192 ubifs_assert(cpos < heap->cnt);
193
194 val1 = get_heap_comp_val(lprops, cat);
195 val2 = get_heap_comp_val(heap->arr[cpos], cat);
196 if (val1 > val2) {
197 struct ubifs_lprops *lp;
198
199 lp = heap->arr[cpos];
200 lp->flags &= ~LPROPS_CAT_MASK;
201 lp->flags |= LPROPS_UNCAT;
202 list_add(&lp->list, &c->uncat_list);
203 lprops->hpos = cpos;
204 heap->arr[cpos] = lprops;
205 move_up_lpt_heap(c, heap, lprops, cat);
206 dbg_check_heap(c, heap, cat, lprops->hpos);
207 return 1; /* Added to heap */
208 }
209 dbg_check_heap(c, heap, cat, -1);
210 return 0; /* Not added to heap */
211 } else {
212 lprops->hpos = heap->cnt++;
213 heap->arr[lprops->hpos] = lprops;
214 move_up_lpt_heap(c, heap, lprops, cat);
215 dbg_check_heap(c, heap, cat, lprops->hpos);
216 return 1; /* Added to heap */
217 }
218 }
219
220 /**
221 * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
222 * @c: UBIFS file-system description object
223 * @lprops: LEB properties to remove
224 * @cat: LEB category
225 */
remove_from_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)226 static void remove_from_lpt_heap(struct ubifs_info *c,
227 struct ubifs_lprops *lprops, int cat)
228 {
229 struct ubifs_lpt_heap *heap;
230 int hpos = lprops->hpos;
231
232 heap = &c->lpt_heap[cat - 1];
233 ubifs_assert(hpos >= 0 && hpos < heap->cnt);
234 ubifs_assert(heap->arr[hpos] == lprops);
235 heap->cnt -= 1;
236 if (hpos < heap->cnt) {
237 heap->arr[hpos] = heap->arr[heap->cnt];
238 heap->arr[hpos]->hpos = hpos;
239 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
240 }
241 dbg_check_heap(c, heap, cat, -1);
242 }
243
244 /**
245 * lpt_heap_replace - replace lprops in a category heap.
246 * @c: UBIFS file-system description object
247 * @old_lprops: LEB properties to replace
248 * @new_lprops: LEB properties with which to replace
249 * @cat: LEB category
250 *
251 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
252 * and the lprops that the pnode contains. When that happens, references in
253 * the category heaps to those lprops must be updated to point to the new
254 * lprops. This function does that.
255 */
lpt_heap_replace(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops,int cat)256 static void lpt_heap_replace(struct ubifs_info *c,
257 struct ubifs_lprops *old_lprops,
258 struct ubifs_lprops *new_lprops, int cat)
259 {
260 struct ubifs_lpt_heap *heap;
261 int hpos = new_lprops->hpos;
262
263 heap = &c->lpt_heap[cat - 1];
264 heap->arr[hpos] = new_lprops;
265 }
266
267 /**
268 * ubifs_add_to_cat - add LEB properties to a category list or heap.
269 * @c: UBIFS file-system description object
270 * @lprops: LEB properties to add
271 * @cat: LEB category to which to add
272 *
273 * LEB properties are categorized to enable fast find operations.
274 */
ubifs_add_to_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)275 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
276 int cat)
277 {
278 switch (cat) {
279 case LPROPS_DIRTY:
280 case LPROPS_DIRTY_IDX:
281 case LPROPS_FREE:
282 if (add_to_lpt_heap(c, lprops, cat))
283 break;
284 /* No more room on heap so make it un-categorized */
285 cat = LPROPS_UNCAT;
286 /* Fall through */
287 case LPROPS_UNCAT:
288 list_add(&lprops->list, &c->uncat_list);
289 break;
290 case LPROPS_EMPTY:
291 list_add(&lprops->list, &c->empty_list);
292 break;
293 case LPROPS_FREEABLE:
294 list_add(&lprops->list, &c->freeable_list);
295 c->freeable_cnt += 1;
296 break;
297 case LPROPS_FRDI_IDX:
298 list_add(&lprops->list, &c->frdi_idx_list);
299 break;
300 default:
301 ubifs_assert(0);
302 }
303 lprops->flags &= ~LPROPS_CAT_MASK;
304 lprops->flags |= cat;
305 }
306
307 /**
308 * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
309 * @c: UBIFS file-system description object
310 * @lprops: LEB properties to remove
311 * @cat: LEB category from which to remove
312 *
313 * LEB properties are categorized to enable fast find operations.
314 */
ubifs_remove_from_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)315 static void ubifs_remove_from_cat(struct ubifs_info *c,
316 struct ubifs_lprops *lprops, int cat)
317 {
318 switch (cat) {
319 case LPROPS_DIRTY:
320 case LPROPS_DIRTY_IDX:
321 case LPROPS_FREE:
322 remove_from_lpt_heap(c, lprops, cat);
323 break;
324 case LPROPS_FREEABLE:
325 c->freeable_cnt -= 1;
326 ubifs_assert(c->freeable_cnt >= 0);
327 /* Fall through */
328 case LPROPS_UNCAT:
329 case LPROPS_EMPTY:
330 case LPROPS_FRDI_IDX:
331 ubifs_assert(!list_empty(&lprops->list));
332 list_del(&lprops->list);
333 break;
334 default:
335 ubifs_assert(0);
336 }
337 }
338
339 /**
340 * ubifs_replace_cat - replace lprops in a category list or heap.
341 * @c: UBIFS file-system description object
342 * @old_lprops: LEB properties to replace
343 * @new_lprops: LEB properties with which to replace
344 *
345 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
346 * and the lprops that the pnode contains. When that happens, references in
347 * category lists and heaps must be replaced. This function does that.
348 */
ubifs_replace_cat(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops)349 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
350 struct ubifs_lprops *new_lprops)
351 {
352 int cat;
353
354 cat = new_lprops->flags & LPROPS_CAT_MASK;
355 switch (cat) {
356 case LPROPS_DIRTY:
357 case LPROPS_DIRTY_IDX:
358 case LPROPS_FREE:
359 lpt_heap_replace(c, old_lprops, new_lprops, cat);
360 break;
361 case LPROPS_UNCAT:
362 case LPROPS_EMPTY:
363 case LPROPS_FREEABLE:
364 case LPROPS_FRDI_IDX:
365 list_replace(&old_lprops->list, &new_lprops->list);
366 break;
367 default:
368 ubifs_assert(0);
369 }
370 }
371
372 /**
373 * ubifs_ensure_cat - ensure LEB properties are categorized.
374 * @c: UBIFS file-system description object
375 * @lprops: LEB properties
376 *
377 * A LEB may have fallen off of the bottom of a heap, and ended up as
378 * un-categorized even though it has enough space for us now. If that is the
379 * case this function will put the LEB back onto a heap.
380 */
ubifs_ensure_cat(struct ubifs_info * c,struct ubifs_lprops * lprops)381 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
382 {
383 int cat = lprops->flags & LPROPS_CAT_MASK;
384
385 if (cat != LPROPS_UNCAT)
386 return;
387 cat = ubifs_categorize_lprops(c, lprops);
388 if (cat == LPROPS_UNCAT)
389 return;
390 ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
391 ubifs_add_to_cat(c, lprops, cat);
392 }
393
394 /**
395 * ubifs_categorize_lprops - categorize LEB properties.
396 * @c: UBIFS file-system description object
397 * @lprops: LEB properties to categorize
398 *
399 * LEB properties are categorized to enable fast find operations. This function
400 * returns the LEB category to which the LEB properties belong. Note however
401 * that if the LEB category is stored as a heap and the heap is full, the
402 * LEB properties may have their category changed to %LPROPS_UNCAT.
403 */
ubifs_categorize_lprops(const struct ubifs_info * c,const struct ubifs_lprops * lprops)404 int ubifs_categorize_lprops(const struct ubifs_info *c,
405 const struct ubifs_lprops *lprops)
406 {
407 if (lprops->flags & LPROPS_TAKEN)
408 return LPROPS_UNCAT;
409
410 if (lprops->free == c->leb_size) {
411 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
412 return LPROPS_EMPTY;
413 }
414
415 if (lprops->free + lprops->dirty == c->leb_size) {
416 if (lprops->flags & LPROPS_INDEX)
417 return LPROPS_FRDI_IDX;
418 else
419 return LPROPS_FREEABLE;
420 }
421
422 if (lprops->flags & LPROPS_INDEX) {
423 if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
424 return LPROPS_DIRTY_IDX;
425 } else {
426 if (lprops->dirty >= c->dead_wm &&
427 lprops->dirty > lprops->free)
428 return LPROPS_DIRTY;
429 if (lprops->free > 0)
430 return LPROPS_FREE;
431 }
432
433 return LPROPS_UNCAT;
434 }
435
436 /**
437 * change_category - change LEB properties category.
438 * @c: UBIFS file-system description object
439 * @lprops: LEB properties to re-categorize
440 *
441 * LEB properties are categorized to enable fast find operations. When the LEB
442 * properties change they must be re-categorized.
443 */
change_category(struct ubifs_info * c,struct ubifs_lprops * lprops)444 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
445 {
446 int old_cat = lprops->flags & LPROPS_CAT_MASK;
447 int new_cat = ubifs_categorize_lprops(c, lprops);
448
449 if (old_cat == new_cat) {
450 struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1];
451
452 /* lprops on a heap now must be moved up or down */
453 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
454 return; /* Not on a heap */
455 heap = &c->lpt_heap[new_cat - 1];
456 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
457 } else {
458 ubifs_remove_from_cat(c, lprops, old_cat);
459 ubifs_add_to_cat(c, lprops, new_cat);
460 }
461 }
462
463 /**
464 * ubifs_calc_dark - calculate LEB dark space size.
465 * @c: the UBIFS file-system description object
466 * @spc: amount of free and dirty space in the LEB
467 *
468 * This function calculates and returns amount of dark space in an LEB which
469 * has @spc bytes of free and dirty space.
470 *
471 * UBIFS is trying to account the space which might not be usable, and this
472 * space is called "dark space". For example, if an LEB has only %512 free
473 * bytes, it is dark space, because it cannot fit a large data node.
474 */
ubifs_calc_dark(const struct ubifs_info * c,int spc)475 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
476 {
477 ubifs_assert(!(spc & 7));
478
479 if (spc < c->dark_wm)
480 return spc;
481
482 /*
483 * If we have slightly more space then the dark space watermark, we can
484 * anyway safely assume it we'll be able to write a node of the
485 * smallest size there.
486 */
487 if (spc - c->dark_wm < MIN_WRITE_SZ)
488 return spc - MIN_WRITE_SZ;
489
490 return c->dark_wm;
491 }
492
493 /**
494 * is_lprops_dirty - determine if LEB properties are dirty.
495 * @c: the UBIFS file-system description object
496 * @lprops: LEB properties to test
497 */
is_lprops_dirty(struct ubifs_info * c,struct ubifs_lprops * lprops)498 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
499 {
500 struct ubifs_pnode *pnode;
501 int pos;
502
503 pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
504 pnode = (struct ubifs_pnode *)container_of(lprops - pos,
505 struct ubifs_pnode,
506 lprops[0]);
507 return !test_bit(COW_ZNODE, &pnode->flags) &&
508 test_bit(DIRTY_CNODE, &pnode->flags);
509 }
510
511 /**
512 * ubifs_change_lp - change LEB properties.
513 * @c: the UBIFS file-system description object
514 * @lp: LEB properties to change
515 * @free: new free space amount
516 * @dirty: new dirty space amount
517 * @flags: new flags
518 * @idx_gc_cnt: change to the count of @idx_gc list
519 *
520 * This function changes LEB properties (@free, @dirty or @flag). However, the
521 * property which has the %LPROPS_NC value is not changed. Returns a pointer to
522 * the updated LEB properties on success and a negative error code on failure.
523 *
524 * Note, the LEB properties may have had to be copied (due to COW) and
525 * consequently the pointer returned may not be the same as the pointer
526 * passed.
527 */
ubifs_change_lp(struct ubifs_info * c,const struct ubifs_lprops * lp,int free,int dirty,int flags,int idx_gc_cnt)528 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
529 const struct ubifs_lprops *lp,
530 int free, int dirty, int flags,
531 int idx_gc_cnt)
532 {
533 /*
534 * This is the only function that is allowed to change lprops, so we
535 * discard the "const" qualifier.
536 */
537 struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
538
539 dbg_lp("LEB %d, free %d, dirty %d, flags %d",
540 lprops->lnum, free, dirty, flags);
541
542 ubifs_assert(mutex_is_locked(&c->lp_mutex));
543 ubifs_assert(c->lst.empty_lebs >= 0 &&
544 c->lst.empty_lebs <= c->main_lebs);
545 ubifs_assert(c->freeable_cnt >= 0);
546 ubifs_assert(c->freeable_cnt <= c->main_lebs);
547 ubifs_assert(c->lst.taken_empty_lebs >= 0);
548 ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
549 ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
550 ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
551 ubifs_assert(!(c->lst.total_used & 7));
552 ubifs_assert(free == LPROPS_NC || free >= 0);
553 ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
554
555 if (!is_lprops_dirty(c, lprops)) {
556 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
557 if (IS_ERR(lprops))
558 return lprops;
559 } else
560 ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
561
562 ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
563
564 spin_lock(&c->space_lock);
565 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
566 c->lst.taken_empty_lebs -= 1;
567
568 if (!(lprops->flags & LPROPS_INDEX)) {
569 int old_spc;
570
571 old_spc = lprops->free + lprops->dirty;
572 if (old_spc < c->dead_wm)
573 c->lst.total_dead -= old_spc;
574 else
575 c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
576
577 c->lst.total_used -= c->leb_size - old_spc;
578 }
579
580 if (free != LPROPS_NC) {
581 free = ALIGN(free, 8);
582 c->lst.total_free += free - lprops->free;
583
584 /* Increase or decrease empty LEBs counter if needed */
585 if (free == c->leb_size) {
586 if (lprops->free != c->leb_size)
587 c->lst.empty_lebs += 1;
588 } else if (lprops->free == c->leb_size)
589 c->lst.empty_lebs -= 1;
590 lprops->free = free;
591 }
592
593 if (dirty != LPROPS_NC) {
594 dirty = ALIGN(dirty, 8);
595 c->lst.total_dirty += dirty - lprops->dirty;
596 lprops->dirty = dirty;
597 }
598
599 if (flags != LPROPS_NC) {
600 /* Take care about indexing LEBs counter if needed */
601 if ((lprops->flags & LPROPS_INDEX)) {
602 if (!(flags & LPROPS_INDEX))
603 c->lst.idx_lebs -= 1;
604 } else if (flags & LPROPS_INDEX)
605 c->lst.idx_lebs += 1;
606 lprops->flags = flags;
607 }
608
609 if (!(lprops->flags & LPROPS_INDEX)) {
610 int new_spc;
611
612 new_spc = lprops->free + lprops->dirty;
613 if (new_spc < c->dead_wm)
614 c->lst.total_dead += new_spc;
615 else
616 c->lst.total_dark += ubifs_calc_dark(c, new_spc);
617
618 c->lst.total_used += c->leb_size - new_spc;
619 }
620
621 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
622 c->lst.taken_empty_lebs += 1;
623
624 change_category(c, lprops);
625 c->idx_gc_cnt += idx_gc_cnt;
626 spin_unlock(&c->space_lock);
627 return lprops;
628 }
629
630 /**
631 * ubifs_get_lp_stats - get lprops statistics.
632 * @c: UBIFS file-system description object
633 * @st: return statistics
634 */
ubifs_get_lp_stats(struct ubifs_info * c,struct ubifs_lp_stats * lst)635 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
636 {
637 spin_lock(&c->space_lock);
638 memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
639 spin_unlock(&c->space_lock);
640 }
641
642 /**
643 * ubifs_change_one_lp - change LEB properties.
644 * @c: the UBIFS file-system description object
645 * @lnum: LEB to change properties for
646 * @free: amount of free space
647 * @dirty: amount of dirty space
648 * @flags_set: flags to set
649 * @flags_clean: flags to clean
650 * @idx_gc_cnt: change to the count of idx_gc list
651 *
652 * This function changes properties of LEB @lnum. It is a helper wrapper over
653 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
654 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
655 * a negative error code in case of failure.
656 */
ubifs_change_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean,int idx_gc_cnt)657 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
658 int flags_set, int flags_clean, int idx_gc_cnt)
659 {
660 int err = 0, flags;
661 const struct ubifs_lprops *lp;
662
663 ubifs_get_lprops(c);
664
665 lp = ubifs_lpt_lookup_dirty(c, lnum);
666 if (IS_ERR(lp)) {
667 err = PTR_ERR(lp);
668 goto out;
669 }
670
671 flags = (lp->flags | flags_set) & ~flags_clean;
672 lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
673 if (IS_ERR(lp))
674 err = PTR_ERR(lp);
675
676 out:
677 ubifs_release_lprops(c);
678 if (err)
679 ubifs_err("cannot change properties of LEB %d, error %d",
680 lnum, err);
681 return err;
682 }
683
684 /**
685 * ubifs_update_one_lp - update LEB properties.
686 * @c: the UBIFS file-system description object
687 * @lnum: LEB to change properties for
688 * @free: amount of free space
689 * @dirty: amount of dirty space to add
690 * @flags_set: flags to set
691 * @flags_clean: flags to clean
692 *
693 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
694 * current dirty space, not substitutes it.
695 */
ubifs_update_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean)696 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
697 int flags_set, int flags_clean)
698 {
699 int err = 0, flags;
700 const struct ubifs_lprops *lp;
701
702 ubifs_get_lprops(c);
703
704 lp = ubifs_lpt_lookup_dirty(c, lnum);
705 if (IS_ERR(lp)) {
706 err = PTR_ERR(lp);
707 goto out;
708 }
709
710 flags = (lp->flags | flags_set) & ~flags_clean;
711 lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
712 if (IS_ERR(lp))
713 err = PTR_ERR(lp);
714
715 out:
716 ubifs_release_lprops(c);
717 if (err)
718 ubifs_err("cannot update properties of LEB %d, error %d",
719 lnum, err);
720 return err;
721 }
722
723 /**
724 * ubifs_read_one_lp - read LEB properties.
725 * @c: the UBIFS file-system description object
726 * @lnum: LEB to read properties for
727 * @lp: where to store read properties
728 *
729 * This helper function reads properties of a LEB @lnum and stores them in @lp.
730 * Returns zero in case of success and a negative error code in case of
731 * failure.
732 */
ubifs_read_one_lp(struct ubifs_info * c,int lnum,struct ubifs_lprops * lp)733 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
734 {
735 int err = 0;
736 const struct ubifs_lprops *lpp;
737
738 ubifs_get_lprops(c);
739
740 lpp = ubifs_lpt_lookup(c, lnum);
741 if (IS_ERR(lpp)) {
742 err = PTR_ERR(lpp);
743 ubifs_err("cannot read properties of LEB %d, error %d",
744 lnum, err);
745 goto out;
746 }
747
748 memcpy(lp, lpp, sizeof(struct ubifs_lprops));
749
750 out:
751 ubifs_release_lprops(c);
752 return err;
753 }
754
755 /**
756 * ubifs_fast_find_free - try to find a LEB with free space quickly.
757 * @c: the UBIFS file-system description object
758 *
759 * This function returns LEB properties for a LEB with free space or %NULL if
760 * the function is unable to find a LEB quickly.
761 */
ubifs_fast_find_free(struct ubifs_info * c)762 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
763 {
764 struct ubifs_lprops *lprops;
765 struct ubifs_lpt_heap *heap;
766
767 ubifs_assert(mutex_is_locked(&c->lp_mutex));
768
769 heap = &c->lpt_heap[LPROPS_FREE - 1];
770 if (heap->cnt == 0)
771 return NULL;
772
773 lprops = heap->arr[0];
774 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
775 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
776 return lprops;
777 }
778
779 /**
780 * ubifs_fast_find_empty - try to find an empty LEB quickly.
781 * @c: the UBIFS file-system description object
782 *
783 * This function returns LEB properties for an empty LEB or %NULL if the
784 * function is unable to find an empty LEB quickly.
785 */
ubifs_fast_find_empty(struct ubifs_info * c)786 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
787 {
788 struct ubifs_lprops *lprops;
789
790 ubifs_assert(mutex_is_locked(&c->lp_mutex));
791
792 if (list_empty(&c->empty_list))
793 return NULL;
794
795 lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
796 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
797 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
798 ubifs_assert(lprops->free == c->leb_size);
799 return lprops;
800 }
801
802 /**
803 * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
804 * @c: the UBIFS file-system description object
805 *
806 * This function returns LEB properties for a freeable LEB or %NULL if the
807 * function is unable to find a freeable LEB quickly.
808 */
ubifs_fast_find_freeable(struct ubifs_info * c)809 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
810 {
811 struct ubifs_lprops *lprops;
812
813 ubifs_assert(mutex_is_locked(&c->lp_mutex));
814
815 if (list_empty(&c->freeable_list))
816 return NULL;
817
818 lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
819 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
820 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
821 ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
822 ubifs_assert(c->freeable_cnt > 0);
823 return lprops;
824 }
825
826 /**
827 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
828 * @c: the UBIFS file-system description object
829 *
830 * This function returns LEB properties for a freeable index LEB or %NULL if the
831 * function is unable to find a freeable index LEB quickly.
832 */
ubifs_fast_find_frdi_idx(struct ubifs_info * c)833 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
834 {
835 struct ubifs_lprops *lprops;
836
837 ubifs_assert(mutex_is_locked(&c->lp_mutex));
838
839 if (list_empty(&c->frdi_idx_list))
840 return NULL;
841
842 lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
843 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
844 ubifs_assert((lprops->flags & LPROPS_INDEX));
845 ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
846 return lprops;
847 }
848
849 #ifdef CONFIG_UBIFS_FS_DEBUG
850
851 /**
852 * dbg_check_cats - check category heaps and lists.
853 * @c: UBIFS file-system description object
854 *
855 * This function returns %0 on success and a negative error code on failure.
856 */
dbg_check_cats(struct ubifs_info * c)857 int dbg_check_cats(struct ubifs_info *c)
858 {
859 struct ubifs_lprops *lprops;
860 struct list_head *pos;
861 int i, cat;
862
863 if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS)))
864 return 0;
865
866 list_for_each_entry(lprops, &c->empty_list, list) {
867 if (lprops->free != c->leb_size) {
868 ubifs_err("non-empty LEB %d on empty list "
869 "(free %d dirty %d flags %d)", lprops->lnum,
870 lprops->free, lprops->dirty, lprops->flags);
871 return -EINVAL;
872 }
873 if (lprops->flags & LPROPS_TAKEN) {
874 ubifs_err("taken LEB %d on empty list "
875 "(free %d dirty %d flags %d)", lprops->lnum,
876 lprops->free, lprops->dirty, lprops->flags);
877 return -EINVAL;
878 }
879 }
880
881 i = 0;
882 list_for_each_entry(lprops, &c->freeable_list, list) {
883 if (lprops->free + lprops->dirty != c->leb_size) {
884 ubifs_err("non-freeable LEB %d on freeable list "
885 "(free %d dirty %d flags %d)", lprops->lnum,
886 lprops->free, lprops->dirty, lprops->flags);
887 return -EINVAL;
888 }
889 if (lprops->flags & LPROPS_TAKEN) {
890 ubifs_err("taken LEB %d on freeable list "
891 "(free %d dirty %d flags %d)", lprops->lnum,
892 lprops->free, lprops->dirty, lprops->flags);
893 return -EINVAL;
894 }
895 i += 1;
896 }
897 if (i != c->freeable_cnt) {
898 ubifs_err("freeable list count %d expected %d", i,
899 c->freeable_cnt);
900 return -EINVAL;
901 }
902
903 i = 0;
904 list_for_each(pos, &c->idx_gc)
905 i += 1;
906 if (i != c->idx_gc_cnt) {
907 ubifs_err("idx_gc list count %d expected %d", i,
908 c->idx_gc_cnt);
909 return -EINVAL;
910 }
911
912 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
913 if (lprops->free + lprops->dirty != c->leb_size) {
914 ubifs_err("non-freeable LEB %d on frdi_idx list "
915 "(free %d dirty %d flags %d)", lprops->lnum,
916 lprops->free, lprops->dirty, lprops->flags);
917 return -EINVAL;
918 }
919 if (lprops->flags & LPROPS_TAKEN) {
920 ubifs_err("taken LEB %d on frdi_idx list "
921 "(free %d dirty %d flags %d)", lprops->lnum,
922 lprops->free, lprops->dirty, lprops->flags);
923 return -EINVAL;
924 }
925 if (!(lprops->flags & LPROPS_INDEX)) {
926 ubifs_err("non-index LEB %d on frdi_idx list "
927 "(free %d dirty %d flags %d)", lprops->lnum,
928 lprops->free, lprops->dirty, lprops->flags);
929 return -EINVAL;
930 }
931 }
932
933 for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
934 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
935
936 for (i = 0; i < heap->cnt; i++) {
937 lprops = heap->arr[i];
938 if (!lprops) {
939 ubifs_err("null ptr in LPT heap cat %d", cat);
940 return -EINVAL;
941 }
942 if (lprops->hpos != i) {
943 ubifs_err("bad ptr in LPT heap cat %d", cat);
944 return -EINVAL;
945 }
946 if (lprops->flags & LPROPS_TAKEN) {
947 ubifs_err("taken LEB in LPT heap cat %d", cat);
948 return -EINVAL;
949 }
950 }
951 }
952
953 return 0;
954 }
955
dbg_check_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat,int add_pos)956 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
957 int add_pos)
958 {
959 int i = 0, j, err = 0;
960
961 if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS)))
962 return;
963
964 for (i = 0; i < heap->cnt; i++) {
965 struct ubifs_lprops *lprops = heap->arr[i];
966 struct ubifs_lprops *lp;
967
968 if (i != add_pos)
969 if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
970 err = 1;
971 goto out;
972 }
973 if (lprops->hpos != i) {
974 err = 2;
975 goto out;
976 }
977 lp = ubifs_lpt_lookup(c, lprops->lnum);
978 if (IS_ERR(lp)) {
979 err = 3;
980 goto out;
981 }
982 if (lprops != lp) {
983 dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
984 (size_t)lprops, (size_t)lp, lprops->lnum,
985 lp->lnum);
986 err = 4;
987 goto out;
988 }
989 for (j = 0; j < i; j++) {
990 lp = heap->arr[j];
991 if (lp == lprops) {
992 err = 5;
993 goto out;
994 }
995 if (lp->lnum == lprops->lnum) {
996 err = 6;
997 goto out;
998 }
999 }
1000 }
1001 out:
1002 if (err) {
1003 dbg_msg("failed cat %d hpos %d err %d", cat, i, err);
1004 dbg_dump_stack();
1005 dbg_dump_heap(c, heap, cat);
1006 }
1007 }
1008
1009 /**
1010 * struct scan_check_data - data provided to scan callback function.
1011 * @lst: LEB properties statistics
1012 * @err: error code
1013 */
1014 struct scan_check_data {
1015 struct ubifs_lp_stats lst;
1016 int err;
1017 };
1018
1019 /**
1020 * scan_check_cb - scan callback.
1021 * @c: the UBIFS file-system description object
1022 * @lp: LEB properties to scan
1023 * @in_tree: whether the LEB properties are in main memory
1024 * @data: information passed to and from the caller of the scan
1025 *
1026 * This function returns a code that indicates whether the scan should continue
1027 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1028 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1029 * (%LPT_SCAN_STOP).
1030 */
scan_check_cb(struct ubifs_info * c,const struct ubifs_lprops * lp,int in_tree,struct scan_check_data * data)1031 static int scan_check_cb(struct ubifs_info *c,
1032 const struct ubifs_lprops *lp, int in_tree,
1033 struct scan_check_data *data)
1034 {
1035 struct ubifs_scan_leb *sleb;
1036 struct ubifs_scan_node *snod;
1037 struct ubifs_lp_stats *lst = &data->lst;
1038 int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1039 void *buf = NULL;
1040
1041 cat = lp->flags & LPROPS_CAT_MASK;
1042 if (cat != LPROPS_UNCAT) {
1043 cat = ubifs_categorize_lprops(c, lp);
1044 if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1045 ubifs_err("bad LEB category %d expected %d",
1046 (lp->flags & LPROPS_CAT_MASK), cat);
1047 goto out;
1048 }
1049 }
1050
1051 /* Check lp is on its category list (if it has one) */
1052 if (in_tree) {
1053 struct list_head *list = NULL;
1054
1055 switch (cat) {
1056 case LPROPS_EMPTY:
1057 list = &c->empty_list;
1058 break;
1059 case LPROPS_FREEABLE:
1060 list = &c->freeable_list;
1061 break;
1062 case LPROPS_FRDI_IDX:
1063 list = &c->frdi_idx_list;
1064 break;
1065 case LPROPS_UNCAT:
1066 list = &c->uncat_list;
1067 break;
1068 }
1069 if (list) {
1070 struct ubifs_lprops *lprops;
1071 int found = 0;
1072
1073 list_for_each_entry(lprops, list, list) {
1074 if (lprops == lp) {
1075 found = 1;
1076 break;
1077 }
1078 }
1079 if (!found) {
1080 ubifs_err("bad LPT list (category %d)", cat);
1081 goto out;
1082 }
1083 }
1084 }
1085
1086 /* Check lp is on its category heap (if it has one) */
1087 if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1088 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1089
1090 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1091 lp != heap->arr[lp->hpos]) {
1092 ubifs_err("bad LPT heap (category %d)", cat);
1093 goto out;
1094 }
1095 }
1096
1097 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1098 if (!buf) {
1099 ubifs_err("cannot allocate memory to scan LEB %d", lnum);
1100 goto out;
1101 }
1102
1103 sleb = ubifs_scan(c, lnum, 0, buf, 0);
1104 if (IS_ERR(sleb)) {
1105 /*
1106 * After an unclean unmount, empty and freeable LEBs
1107 * may contain garbage.
1108 */
1109 if (lp->free == c->leb_size) {
1110 ubifs_err("scan errors were in empty LEB "
1111 "- continuing checking");
1112 lst->empty_lebs += 1;
1113 lst->total_free += c->leb_size;
1114 lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1115 ret = LPT_SCAN_CONTINUE;
1116 goto exit;
1117 }
1118
1119 if (lp->free + lp->dirty == c->leb_size &&
1120 !(lp->flags & LPROPS_INDEX)) {
1121 ubifs_err("scan errors were in freeable LEB "
1122 "- continuing checking");
1123 lst->total_free += lp->free;
1124 lst->total_dirty += lp->dirty;
1125 lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1126 ret = LPT_SCAN_CONTINUE;
1127 goto exit;
1128 }
1129 data->err = PTR_ERR(sleb);
1130 ret = LPT_SCAN_STOP;
1131 goto exit;
1132 }
1133
1134 is_idx = -1;
1135 list_for_each_entry(snod, &sleb->nodes, list) {
1136 int found, level = 0;
1137
1138 cond_resched();
1139
1140 if (is_idx == -1)
1141 is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1142
1143 if (is_idx && snod->type != UBIFS_IDX_NODE) {
1144 ubifs_err("indexing node in data LEB %d:%d",
1145 lnum, snod->offs);
1146 goto out_destroy;
1147 }
1148
1149 if (snod->type == UBIFS_IDX_NODE) {
1150 struct ubifs_idx_node *idx = snod->node;
1151
1152 key_read(c, ubifs_idx_key(c, idx), &snod->key);
1153 level = le16_to_cpu(idx->level);
1154 }
1155
1156 found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1157 snod->offs, is_idx);
1158 if (found) {
1159 if (found < 0)
1160 goto out_destroy;
1161 used += ALIGN(snod->len, 8);
1162 }
1163 }
1164
1165 free = c->leb_size - sleb->endpt;
1166 dirty = sleb->endpt - used;
1167
1168 if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1169 dirty < 0) {
1170 ubifs_err("bad calculated accounting for LEB %d: "
1171 "free %d, dirty %d", lnum, free, dirty);
1172 goto out_destroy;
1173 }
1174
1175 if (lp->free + lp->dirty == c->leb_size &&
1176 free + dirty == c->leb_size)
1177 if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1178 (!is_idx && free == c->leb_size) ||
1179 lp->free == c->leb_size) {
1180 /*
1181 * Empty or freeable LEBs could contain index
1182 * nodes from an uncompleted commit due to an
1183 * unclean unmount. Or they could be empty for
1184 * the same reason. Or it may simply not have been
1185 * unmapped.
1186 */
1187 free = lp->free;
1188 dirty = lp->dirty;
1189 is_idx = 0;
1190 }
1191
1192 if (is_idx && lp->free + lp->dirty == free + dirty &&
1193 lnum != c->ihead_lnum) {
1194 /*
1195 * After an unclean unmount, an index LEB could have a different
1196 * amount of free space than the value recorded by lprops. That
1197 * is because the in-the-gaps method may use free space or
1198 * create free space (as a side-effect of using ubi_leb_change
1199 * and not writing the whole LEB). The incorrect free space
1200 * value is not a problem because the index is only ever
1201 * allocated empty LEBs, so there will never be an attempt to
1202 * write to the free space at the end of an index LEB - except
1203 * by the in-the-gaps method for which it is not a problem.
1204 */
1205 free = lp->free;
1206 dirty = lp->dirty;
1207 }
1208
1209 if (lp->free != free || lp->dirty != dirty)
1210 goto out_print;
1211
1212 if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1213 if (free == c->leb_size)
1214 /* Free but not unmapped LEB, it's fine */
1215 is_idx = 0;
1216 else {
1217 ubifs_err("indexing node without indexing "
1218 "flag");
1219 goto out_print;
1220 }
1221 }
1222
1223 if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1224 ubifs_err("data node with indexing flag");
1225 goto out_print;
1226 }
1227
1228 if (free == c->leb_size)
1229 lst->empty_lebs += 1;
1230
1231 if (is_idx)
1232 lst->idx_lebs += 1;
1233
1234 if (!(lp->flags & LPROPS_INDEX))
1235 lst->total_used += c->leb_size - free - dirty;
1236 lst->total_free += free;
1237 lst->total_dirty += dirty;
1238
1239 if (!(lp->flags & LPROPS_INDEX)) {
1240 int spc = free + dirty;
1241
1242 if (spc < c->dead_wm)
1243 lst->total_dead += spc;
1244 else
1245 lst->total_dark += ubifs_calc_dark(c, spc);
1246 }
1247
1248 ubifs_scan_destroy(sleb);
1249 ret = LPT_SCAN_CONTINUE;
1250 exit:
1251 vfree(buf);
1252 return ret;
1253
1254 out_print:
1255 ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, "
1256 "should be free %d, dirty %d",
1257 lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1258 dbg_dump_leb(c, lnum);
1259 out_destroy:
1260 ubifs_scan_destroy(sleb);
1261 out:
1262 vfree(buf);
1263 data->err = -EINVAL;
1264 return LPT_SCAN_STOP;
1265 }
1266
1267 /**
1268 * dbg_check_lprops - check all LEB properties.
1269 * @c: UBIFS file-system description object
1270 *
1271 * This function checks all LEB properties and makes sure they are all correct.
1272 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1273 * and other negative error codes in case of other errors. This function is
1274 * called while the file system is locked (because of commit start), so no
1275 * additional locking is required. Note that locking the LPT mutex would cause
1276 * a circular lock dependency with the TNC mutex.
1277 */
dbg_check_lprops(struct ubifs_info * c)1278 int dbg_check_lprops(struct ubifs_info *c)
1279 {
1280 int i, err;
1281 struct scan_check_data data;
1282 struct ubifs_lp_stats *lst = &data.lst;
1283
1284 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1285 return 0;
1286
1287 /*
1288 * As we are going to scan the media, the write buffers have to be
1289 * synchronized.
1290 */
1291 for (i = 0; i < c->jhead_cnt; i++) {
1292 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1293 if (err)
1294 return err;
1295 }
1296
1297 memset(lst, 0, sizeof(struct ubifs_lp_stats));
1298
1299 data.err = 0;
1300 err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1301 (ubifs_lpt_scan_callback)scan_check_cb,
1302 &data);
1303 if (err && err != -ENOSPC)
1304 goto out;
1305 if (data.err) {
1306 err = data.err;
1307 goto out;
1308 }
1309
1310 if (lst->empty_lebs != c->lst.empty_lebs ||
1311 lst->idx_lebs != c->lst.idx_lebs ||
1312 lst->total_free != c->lst.total_free ||
1313 lst->total_dirty != c->lst.total_dirty ||
1314 lst->total_used != c->lst.total_used) {
1315 ubifs_err("bad overall accounting");
1316 ubifs_err("calculated: empty_lebs %d, idx_lebs %d, "
1317 "total_free %lld, total_dirty %lld, total_used %lld",
1318 lst->empty_lebs, lst->idx_lebs, lst->total_free,
1319 lst->total_dirty, lst->total_used);
1320 ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, "
1321 "total_free %lld, total_dirty %lld, total_used %lld",
1322 c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1323 c->lst.total_dirty, c->lst.total_used);
1324 err = -EINVAL;
1325 goto out;
1326 }
1327
1328 if (lst->total_dead != c->lst.total_dead ||
1329 lst->total_dark != c->lst.total_dark) {
1330 ubifs_err("bad dead/dark space accounting");
1331 ubifs_err("calculated: total_dead %lld, total_dark %lld",
1332 lst->total_dead, lst->total_dark);
1333 ubifs_err("read from lprops: total_dead %lld, total_dark %lld",
1334 c->lst.total_dead, c->lst.total_dark);
1335 err = -EINVAL;
1336 goto out;
1337 }
1338
1339 err = dbg_check_cats(c);
1340 out:
1341 return err;
1342 }
1343
1344 #endif /* CONFIG_UBIFS_FS_DEBUG */
1345