1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements the functions that access LEB properties and their
25 * categories. LEBs are categorized based on the needs of UBIFS, and the
26 * categories are stored as either heaps or lists to provide a fast way of
27 * finding a LEB in a particular category. For example, UBIFS may need to find
28 * an empty LEB for the journal, or a very dirty LEB for garbage collection.
29 */
30
31 #include "ubifs.h"
32
33 /**
34 * get_heap_comp_val - get the LEB properties value for heap comparisons.
35 * @lprops: LEB properties
36 * @cat: LEB category
37 */
get_heap_comp_val(struct ubifs_lprops * lprops,int cat)38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
39 {
40 switch (cat) {
41 case LPROPS_FREE:
42 return lprops->free;
43 case LPROPS_DIRTY_IDX:
44 return lprops->free + lprops->dirty;
45 default:
46 return lprops->dirty;
47 }
48 }
49
50 /**
51 * move_up_lpt_heap - move a new heap entry up as far as possible.
52 * @c: UBIFS file-system description object
53 * @heap: LEB category heap
54 * @lprops: LEB properties to move
55 * @cat: LEB category
56 *
57 * New entries to a heap are added at the bottom and then moved up until the
58 * parent's value is greater. In the case of LPT's category heaps, the value
59 * is either the amount of free space or the amount of dirty space, depending
60 * on the category.
61 */
move_up_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int cat)62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
63 struct ubifs_lprops *lprops, int cat)
64 {
65 int val1, val2, hpos;
66
67 hpos = lprops->hpos;
68 if (!hpos)
69 return; /* Already top of the heap */
70 val1 = get_heap_comp_val(lprops, cat);
71 /* Compare to parent and, if greater, move up the heap */
72 do {
73 int ppos = (hpos - 1) / 2;
74
75 val2 = get_heap_comp_val(heap->arr[ppos], cat);
76 if (val2 >= val1)
77 return;
78 /* Greater than parent so move up */
79 heap->arr[ppos]->hpos = hpos;
80 heap->arr[hpos] = heap->arr[ppos];
81 heap->arr[ppos] = lprops;
82 lprops->hpos = ppos;
83 hpos = ppos;
84 } while (hpos);
85 }
86
87 /**
88 * adjust_lpt_heap - move a changed heap entry up or down the heap.
89 * @c: UBIFS file-system description object
90 * @heap: LEB category heap
91 * @lprops: LEB properties to move
92 * @hpos: heap position of @lprops
93 * @cat: LEB category
94 *
95 * Changed entries in a heap are moved up or down until the parent's value is
96 * greater. In the case of LPT's category heaps, the value is either the amount
97 * of free space or the amount of dirty space, depending on the category.
98 */
adjust_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int hpos,int cat)99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
100 struct ubifs_lprops *lprops, int hpos, int cat)
101 {
102 int val1, val2, val3, cpos;
103
104 val1 = get_heap_comp_val(lprops, cat);
105 /* Compare to parent and, if greater than parent, move up the heap */
106 if (hpos) {
107 int ppos = (hpos - 1) / 2;
108
109 val2 = get_heap_comp_val(heap->arr[ppos], cat);
110 if (val1 > val2) {
111 /* Greater than parent so move up */
112 while (1) {
113 heap->arr[ppos]->hpos = hpos;
114 heap->arr[hpos] = heap->arr[ppos];
115 heap->arr[ppos] = lprops;
116 lprops->hpos = ppos;
117 hpos = ppos;
118 if (!hpos)
119 return;
120 ppos = (hpos - 1) / 2;
121 val2 = get_heap_comp_val(heap->arr[ppos], cat);
122 if (val1 <= val2)
123 return;
124 /* Still greater than parent so keep going */
125 }
126 }
127 }
128
129 /* Not greater than parent, so compare to children */
130 while (1) {
131 /* Compare to left child */
132 cpos = hpos * 2 + 1;
133 if (cpos >= heap->cnt)
134 return;
135 val2 = get_heap_comp_val(heap->arr[cpos], cat);
136 if (val1 < val2) {
137 /* Less than left child, so promote biggest child */
138 if (cpos + 1 < heap->cnt) {
139 val3 = get_heap_comp_val(heap->arr[cpos + 1],
140 cat);
141 if (val3 > val2)
142 cpos += 1; /* Right child is bigger */
143 }
144 heap->arr[cpos]->hpos = hpos;
145 heap->arr[hpos] = heap->arr[cpos];
146 heap->arr[cpos] = lprops;
147 lprops->hpos = cpos;
148 hpos = cpos;
149 continue;
150 }
151 /* Compare to right child */
152 cpos += 1;
153 if (cpos >= heap->cnt)
154 return;
155 val3 = get_heap_comp_val(heap->arr[cpos], cat);
156 if (val1 < val3) {
157 /* Less than right child, so promote right child */
158 heap->arr[cpos]->hpos = hpos;
159 heap->arr[hpos] = heap->arr[cpos];
160 heap->arr[cpos] = lprops;
161 lprops->hpos = cpos;
162 hpos = cpos;
163 continue;
164 }
165 return;
166 }
167 }
168
169 /**
170 * add_to_lpt_heap - add LEB properties to a LEB category heap.
171 * @c: UBIFS file-system description object
172 * @lprops: LEB properties to add
173 * @cat: LEB category
174 *
175 * This function returns %1 if @lprops is added to the heap for LEB category
176 * @cat, otherwise %0 is returned because the heap is full.
177 */
add_to_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
179 int cat)
180 {
181 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
182
183 if (heap->cnt >= heap->max_cnt) {
184 const int b = LPT_HEAP_SZ / 2 - 1;
185 int cpos, val1, val2;
186
187 /* Compare to some other LEB on the bottom of heap */
188 /* Pick a position kind of randomly */
189 cpos = (((size_t)lprops >> 4) & b) + b;
190 ubifs_assert(cpos >= b);
191 ubifs_assert(cpos < LPT_HEAP_SZ);
192 ubifs_assert(cpos < heap->cnt);
193
194 val1 = get_heap_comp_val(lprops, cat);
195 val2 = get_heap_comp_val(heap->arr[cpos], cat);
196 if (val1 > val2) {
197 struct ubifs_lprops *lp;
198
199 lp = heap->arr[cpos];
200 lp->flags &= ~LPROPS_CAT_MASK;
201 lp->flags |= LPROPS_UNCAT;
202 list_add(&lp->list, &c->uncat_list);
203 lprops->hpos = cpos;
204 heap->arr[cpos] = lprops;
205 move_up_lpt_heap(c, heap, lprops, cat);
206 dbg_check_heap(c, heap, cat, lprops->hpos);
207 return 1; /* Added to heap */
208 }
209 dbg_check_heap(c, heap, cat, -1);
210 return 0; /* Not added to heap */
211 } else {
212 lprops->hpos = heap->cnt++;
213 heap->arr[lprops->hpos] = lprops;
214 move_up_lpt_heap(c, heap, lprops, cat);
215 dbg_check_heap(c, heap, cat, lprops->hpos);
216 return 1; /* Added to heap */
217 }
218 }
219
220 /**
221 * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
222 * @c: UBIFS file-system description object
223 * @lprops: LEB properties to remove
224 * @cat: LEB category
225 */
remove_from_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)226 static void remove_from_lpt_heap(struct ubifs_info *c,
227 struct ubifs_lprops *lprops, int cat)
228 {
229 struct ubifs_lpt_heap *heap;
230 int hpos = lprops->hpos;
231
232 heap = &c->lpt_heap[cat - 1];
233 ubifs_assert(hpos >= 0 && hpos < heap->cnt);
234 ubifs_assert(heap->arr[hpos] == lprops);
235 heap->cnt -= 1;
236 if (hpos < heap->cnt) {
237 heap->arr[hpos] = heap->arr[heap->cnt];
238 heap->arr[hpos]->hpos = hpos;
239 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
240 }
241 dbg_check_heap(c, heap, cat, -1);
242 }
243
244 /**
245 * lpt_heap_replace - replace lprops in a category heap.
246 * @c: UBIFS file-system description object
247 * @old_lprops: LEB properties to replace
248 * @new_lprops: LEB properties with which to replace
249 * @cat: LEB category
250 *
251 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
252 * and the lprops that the pnode contains. When that happens, references in
253 * the category heaps to those lprops must be updated to point to the new
254 * lprops. This function does that.
255 */
lpt_heap_replace(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops,int cat)256 static void lpt_heap_replace(struct ubifs_info *c,
257 struct ubifs_lprops *old_lprops,
258 struct ubifs_lprops *new_lprops, int cat)
259 {
260 struct ubifs_lpt_heap *heap;
261 int hpos = new_lprops->hpos;
262
263 heap = &c->lpt_heap[cat - 1];
264 heap->arr[hpos] = new_lprops;
265 }
266
267 /**
268 * ubifs_add_to_cat - add LEB properties to a category list or heap.
269 * @c: UBIFS file-system description object
270 * @lprops: LEB properties to add
271 * @cat: LEB category to which to add
272 *
273 * LEB properties are categorized to enable fast find operations.
274 */
ubifs_add_to_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)275 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
276 int cat)
277 {
278 switch (cat) {
279 case LPROPS_DIRTY:
280 case LPROPS_DIRTY_IDX:
281 case LPROPS_FREE:
282 if (add_to_lpt_heap(c, lprops, cat))
283 break;
284 /* No more room on heap so make it un-categorized */
285 cat = LPROPS_UNCAT;
286 /* Fall through */
287 case LPROPS_UNCAT:
288 list_add(&lprops->list, &c->uncat_list);
289 break;
290 case LPROPS_EMPTY:
291 list_add(&lprops->list, &c->empty_list);
292 break;
293 case LPROPS_FREEABLE:
294 list_add(&lprops->list, &c->freeable_list);
295 c->freeable_cnt += 1;
296 break;
297 case LPROPS_FRDI_IDX:
298 list_add(&lprops->list, &c->frdi_idx_list);
299 break;
300 default:
301 ubifs_assert(0);
302 }
303
304 lprops->flags &= ~LPROPS_CAT_MASK;
305 lprops->flags |= cat;
306 c->in_a_category_cnt += 1;
307 ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
308 }
309
310 /**
311 * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
312 * @c: UBIFS file-system description object
313 * @lprops: LEB properties to remove
314 * @cat: LEB category from which to remove
315 *
316 * LEB properties are categorized to enable fast find operations.
317 */
ubifs_remove_from_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)318 static void ubifs_remove_from_cat(struct ubifs_info *c,
319 struct ubifs_lprops *lprops, int cat)
320 {
321 switch (cat) {
322 case LPROPS_DIRTY:
323 case LPROPS_DIRTY_IDX:
324 case LPROPS_FREE:
325 remove_from_lpt_heap(c, lprops, cat);
326 break;
327 case LPROPS_FREEABLE:
328 c->freeable_cnt -= 1;
329 ubifs_assert(c->freeable_cnt >= 0);
330 /* Fall through */
331 case LPROPS_UNCAT:
332 case LPROPS_EMPTY:
333 case LPROPS_FRDI_IDX:
334 ubifs_assert(!list_empty(&lprops->list));
335 list_del(&lprops->list);
336 break;
337 default:
338 ubifs_assert(0);
339 }
340
341 c->in_a_category_cnt -= 1;
342 ubifs_assert(c->in_a_category_cnt >= 0);
343 }
344
345 /**
346 * ubifs_replace_cat - replace lprops in a category list or heap.
347 * @c: UBIFS file-system description object
348 * @old_lprops: LEB properties to replace
349 * @new_lprops: LEB properties with which to replace
350 *
351 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
352 * and the lprops that the pnode contains. When that happens, references in
353 * category lists and heaps must be replaced. This function does that.
354 */
ubifs_replace_cat(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops)355 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
356 struct ubifs_lprops *new_lprops)
357 {
358 int cat;
359
360 cat = new_lprops->flags & LPROPS_CAT_MASK;
361 switch (cat) {
362 case LPROPS_DIRTY:
363 case LPROPS_DIRTY_IDX:
364 case LPROPS_FREE:
365 lpt_heap_replace(c, old_lprops, new_lprops, cat);
366 break;
367 case LPROPS_UNCAT:
368 case LPROPS_EMPTY:
369 case LPROPS_FREEABLE:
370 case LPROPS_FRDI_IDX:
371 list_replace(&old_lprops->list, &new_lprops->list);
372 break;
373 default:
374 ubifs_assert(0);
375 }
376 }
377
378 /**
379 * ubifs_ensure_cat - ensure LEB properties are categorized.
380 * @c: UBIFS file-system description object
381 * @lprops: LEB properties
382 *
383 * A LEB may have fallen off of the bottom of a heap, and ended up as
384 * un-categorized even though it has enough space for us now. If that is the
385 * case this function will put the LEB back onto a heap.
386 */
ubifs_ensure_cat(struct ubifs_info * c,struct ubifs_lprops * lprops)387 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
388 {
389 int cat = lprops->flags & LPROPS_CAT_MASK;
390
391 if (cat != LPROPS_UNCAT)
392 return;
393 cat = ubifs_categorize_lprops(c, lprops);
394 if (cat == LPROPS_UNCAT)
395 return;
396 ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
397 ubifs_add_to_cat(c, lprops, cat);
398 }
399
400 /**
401 * ubifs_categorize_lprops - categorize LEB properties.
402 * @c: UBIFS file-system description object
403 * @lprops: LEB properties to categorize
404 *
405 * LEB properties are categorized to enable fast find operations. This function
406 * returns the LEB category to which the LEB properties belong. Note however
407 * that if the LEB category is stored as a heap and the heap is full, the
408 * LEB properties may have their category changed to %LPROPS_UNCAT.
409 */
ubifs_categorize_lprops(const struct ubifs_info * c,const struct ubifs_lprops * lprops)410 int ubifs_categorize_lprops(const struct ubifs_info *c,
411 const struct ubifs_lprops *lprops)
412 {
413 if (lprops->flags & LPROPS_TAKEN)
414 return LPROPS_UNCAT;
415
416 if (lprops->free == c->leb_size) {
417 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
418 return LPROPS_EMPTY;
419 }
420
421 if (lprops->free + lprops->dirty == c->leb_size) {
422 if (lprops->flags & LPROPS_INDEX)
423 return LPROPS_FRDI_IDX;
424 else
425 return LPROPS_FREEABLE;
426 }
427
428 if (lprops->flags & LPROPS_INDEX) {
429 if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
430 return LPROPS_DIRTY_IDX;
431 } else {
432 if (lprops->dirty >= c->dead_wm &&
433 lprops->dirty > lprops->free)
434 return LPROPS_DIRTY;
435 if (lprops->free > 0)
436 return LPROPS_FREE;
437 }
438
439 return LPROPS_UNCAT;
440 }
441
442 /**
443 * change_category - change LEB properties category.
444 * @c: UBIFS file-system description object
445 * @lprops: LEB properties to re-categorize
446 *
447 * LEB properties are categorized to enable fast find operations. When the LEB
448 * properties change they must be re-categorized.
449 */
change_category(struct ubifs_info * c,struct ubifs_lprops * lprops)450 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
451 {
452 int old_cat = lprops->flags & LPROPS_CAT_MASK;
453 int new_cat = ubifs_categorize_lprops(c, lprops);
454
455 if (old_cat == new_cat) {
456 struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1];
457
458 /* lprops on a heap now must be moved up or down */
459 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
460 return; /* Not on a heap */
461 heap = &c->lpt_heap[new_cat - 1];
462 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
463 } else {
464 ubifs_remove_from_cat(c, lprops, old_cat);
465 ubifs_add_to_cat(c, lprops, new_cat);
466 }
467 }
468
469 /**
470 * ubifs_calc_dark - calculate LEB dark space size.
471 * @c: the UBIFS file-system description object
472 * @spc: amount of free and dirty space in the LEB
473 *
474 * This function calculates and returns amount of dark space in an LEB which
475 * has @spc bytes of free and dirty space.
476 *
477 * UBIFS is trying to account the space which might not be usable, and this
478 * space is called "dark space". For example, if an LEB has only %512 free
479 * bytes, it is dark space, because it cannot fit a large data node.
480 */
ubifs_calc_dark(const struct ubifs_info * c,int spc)481 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
482 {
483 ubifs_assert(!(spc & 7));
484
485 if (spc < c->dark_wm)
486 return spc;
487
488 /*
489 * If we have slightly more space then the dark space watermark, we can
490 * anyway safely assume it we'll be able to write a node of the
491 * smallest size there.
492 */
493 if (spc - c->dark_wm < MIN_WRITE_SZ)
494 return spc - MIN_WRITE_SZ;
495
496 return c->dark_wm;
497 }
498
499 /**
500 * is_lprops_dirty - determine if LEB properties are dirty.
501 * @c: the UBIFS file-system description object
502 * @lprops: LEB properties to test
503 */
is_lprops_dirty(struct ubifs_info * c,struct ubifs_lprops * lprops)504 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
505 {
506 struct ubifs_pnode *pnode;
507 int pos;
508
509 pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
510 pnode = (struct ubifs_pnode *)container_of(lprops - pos,
511 struct ubifs_pnode,
512 lprops[0]);
513 return !test_bit(COW_CNODE, &pnode->flags) &&
514 test_bit(DIRTY_CNODE, &pnode->flags);
515 }
516
517 /**
518 * ubifs_change_lp - change LEB properties.
519 * @c: the UBIFS file-system description object
520 * @lp: LEB properties to change
521 * @free: new free space amount
522 * @dirty: new dirty space amount
523 * @flags: new flags
524 * @idx_gc_cnt: change to the count of @idx_gc list
525 *
526 * This function changes LEB properties (@free, @dirty or @flag). However, the
527 * property which has the %LPROPS_NC value is not changed. Returns a pointer to
528 * the updated LEB properties on success and a negative error code on failure.
529 *
530 * Note, the LEB properties may have had to be copied (due to COW) and
531 * consequently the pointer returned may not be the same as the pointer
532 * passed.
533 */
ubifs_change_lp(struct ubifs_info * c,const struct ubifs_lprops * lp,int free,int dirty,int flags,int idx_gc_cnt)534 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
535 const struct ubifs_lprops *lp,
536 int free, int dirty, int flags,
537 int idx_gc_cnt)
538 {
539 /*
540 * This is the only function that is allowed to change lprops, so we
541 * discard the "const" qualifier.
542 */
543 struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
544
545 dbg_lp("LEB %d, free %d, dirty %d, flags %d",
546 lprops->lnum, free, dirty, flags);
547
548 ubifs_assert(mutex_is_locked(&c->lp_mutex));
549 ubifs_assert(c->lst.empty_lebs >= 0 &&
550 c->lst.empty_lebs <= c->main_lebs);
551 ubifs_assert(c->freeable_cnt >= 0);
552 ubifs_assert(c->freeable_cnt <= c->main_lebs);
553 ubifs_assert(c->lst.taken_empty_lebs >= 0);
554 ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
555 ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
556 ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
557 ubifs_assert(!(c->lst.total_used & 7));
558 ubifs_assert(free == LPROPS_NC || free >= 0);
559 ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
560
561 if (!is_lprops_dirty(c, lprops)) {
562 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
563 if (IS_ERR(lprops))
564 return lprops;
565 } else
566 ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
567
568 ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
569
570 spin_lock(&c->space_lock);
571 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
572 c->lst.taken_empty_lebs -= 1;
573
574 if (!(lprops->flags & LPROPS_INDEX)) {
575 int old_spc;
576
577 old_spc = lprops->free + lprops->dirty;
578 if (old_spc < c->dead_wm)
579 c->lst.total_dead -= old_spc;
580 else
581 c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
582
583 c->lst.total_used -= c->leb_size - old_spc;
584 }
585
586 if (free != LPROPS_NC) {
587 free = ALIGN(free, 8);
588 c->lst.total_free += free - lprops->free;
589
590 /* Increase or decrease empty LEBs counter if needed */
591 if (free == c->leb_size) {
592 if (lprops->free != c->leb_size)
593 c->lst.empty_lebs += 1;
594 } else if (lprops->free == c->leb_size)
595 c->lst.empty_lebs -= 1;
596 lprops->free = free;
597 }
598
599 if (dirty != LPROPS_NC) {
600 dirty = ALIGN(dirty, 8);
601 c->lst.total_dirty += dirty - lprops->dirty;
602 lprops->dirty = dirty;
603 }
604
605 if (flags != LPROPS_NC) {
606 /* Take care about indexing LEBs counter if needed */
607 if ((lprops->flags & LPROPS_INDEX)) {
608 if (!(flags & LPROPS_INDEX))
609 c->lst.idx_lebs -= 1;
610 } else if (flags & LPROPS_INDEX)
611 c->lst.idx_lebs += 1;
612 lprops->flags = flags;
613 }
614
615 if (!(lprops->flags & LPROPS_INDEX)) {
616 int new_spc;
617
618 new_spc = lprops->free + lprops->dirty;
619 if (new_spc < c->dead_wm)
620 c->lst.total_dead += new_spc;
621 else
622 c->lst.total_dark += ubifs_calc_dark(c, new_spc);
623
624 c->lst.total_used += c->leb_size - new_spc;
625 }
626
627 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
628 c->lst.taken_empty_lebs += 1;
629
630 change_category(c, lprops);
631 c->idx_gc_cnt += idx_gc_cnt;
632 spin_unlock(&c->space_lock);
633 return lprops;
634 }
635
636 /**
637 * ubifs_get_lp_stats - get lprops statistics.
638 * @c: UBIFS file-system description object
639 * @st: return statistics
640 */
ubifs_get_lp_stats(struct ubifs_info * c,struct ubifs_lp_stats * lst)641 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
642 {
643 spin_lock(&c->space_lock);
644 memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
645 spin_unlock(&c->space_lock);
646 }
647
648 /**
649 * ubifs_change_one_lp - change LEB properties.
650 * @c: the UBIFS file-system description object
651 * @lnum: LEB to change properties for
652 * @free: amount of free space
653 * @dirty: amount of dirty space
654 * @flags_set: flags to set
655 * @flags_clean: flags to clean
656 * @idx_gc_cnt: change to the count of idx_gc list
657 *
658 * This function changes properties of LEB @lnum. It is a helper wrapper over
659 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
660 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
661 * a negative error code in case of failure.
662 */
ubifs_change_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean,int idx_gc_cnt)663 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
664 int flags_set, int flags_clean, int idx_gc_cnt)
665 {
666 int err = 0, flags;
667 const struct ubifs_lprops *lp;
668
669 ubifs_get_lprops(c);
670
671 lp = ubifs_lpt_lookup_dirty(c, lnum);
672 if (IS_ERR(lp)) {
673 err = PTR_ERR(lp);
674 goto out;
675 }
676
677 flags = (lp->flags | flags_set) & ~flags_clean;
678 lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
679 if (IS_ERR(lp))
680 err = PTR_ERR(lp);
681
682 out:
683 ubifs_release_lprops(c);
684 if (err)
685 ubifs_err("cannot change properties of LEB %d, error %d",
686 lnum, err);
687 return err;
688 }
689
690 /**
691 * ubifs_update_one_lp - update LEB properties.
692 * @c: the UBIFS file-system description object
693 * @lnum: LEB to change properties for
694 * @free: amount of free space
695 * @dirty: amount of dirty space to add
696 * @flags_set: flags to set
697 * @flags_clean: flags to clean
698 *
699 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
700 * current dirty space, not substitutes it.
701 */
ubifs_update_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean)702 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
703 int flags_set, int flags_clean)
704 {
705 int err = 0, flags;
706 const struct ubifs_lprops *lp;
707
708 ubifs_get_lprops(c);
709
710 lp = ubifs_lpt_lookup_dirty(c, lnum);
711 if (IS_ERR(lp)) {
712 err = PTR_ERR(lp);
713 goto out;
714 }
715
716 flags = (lp->flags | flags_set) & ~flags_clean;
717 lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
718 if (IS_ERR(lp))
719 err = PTR_ERR(lp);
720
721 out:
722 ubifs_release_lprops(c);
723 if (err)
724 ubifs_err("cannot update properties of LEB %d, error %d",
725 lnum, err);
726 return err;
727 }
728
729 /**
730 * ubifs_read_one_lp - read LEB properties.
731 * @c: the UBIFS file-system description object
732 * @lnum: LEB to read properties for
733 * @lp: where to store read properties
734 *
735 * This helper function reads properties of a LEB @lnum and stores them in @lp.
736 * Returns zero in case of success and a negative error code in case of
737 * failure.
738 */
ubifs_read_one_lp(struct ubifs_info * c,int lnum,struct ubifs_lprops * lp)739 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
740 {
741 int err = 0;
742 const struct ubifs_lprops *lpp;
743
744 ubifs_get_lprops(c);
745
746 lpp = ubifs_lpt_lookup(c, lnum);
747 if (IS_ERR(lpp)) {
748 err = PTR_ERR(lpp);
749 ubifs_err("cannot read properties of LEB %d, error %d",
750 lnum, err);
751 goto out;
752 }
753
754 memcpy(lp, lpp, sizeof(struct ubifs_lprops));
755
756 out:
757 ubifs_release_lprops(c);
758 return err;
759 }
760
761 /**
762 * ubifs_fast_find_free - try to find a LEB with free space quickly.
763 * @c: the UBIFS file-system description object
764 *
765 * This function returns LEB properties for a LEB with free space or %NULL if
766 * the function is unable to find a LEB quickly.
767 */
ubifs_fast_find_free(struct ubifs_info * c)768 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
769 {
770 struct ubifs_lprops *lprops;
771 struct ubifs_lpt_heap *heap;
772
773 ubifs_assert(mutex_is_locked(&c->lp_mutex));
774
775 heap = &c->lpt_heap[LPROPS_FREE - 1];
776 if (heap->cnt == 0)
777 return NULL;
778
779 lprops = heap->arr[0];
780 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
781 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
782 return lprops;
783 }
784
785 /**
786 * ubifs_fast_find_empty - try to find an empty LEB quickly.
787 * @c: the UBIFS file-system description object
788 *
789 * This function returns LEB properties for an empty LEB or %NULL if the
790 * function is unable to find an empty LEB quickly.
791 */
ubifs_fast_find_empty(struct ubifs_info * c)792 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
793 {
794 struct ubifs_lprops *lprops;
795
796 ubifs_assert(mutex_is_locked(&c->lp_mutex));
797
798 if (list_empty(&c->empty_list))
799 return NULL;
800
801 lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
802 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
803 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
804 ubifs_assert(lprops->free == c->leb_size);
805 return lprops;
806 }
807
808 /**
809 * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
810 * @c: the UBIFS file-system description object
811 *
812 * This function returns LEB properties for a freeable LEB or %NULL if the
813 * function is unable to find a freeable LEB quickly.
814 */
ubifs_fast_find_freeable(struct ubifs_info * c)815 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
816 {
817 struct ubifs_lprops *lprops;
818
819 ubifs_assert(mutex_is_locked(&c->lp_mutex));
820
821 if (list_empty(&c->freeable_list))
822 return NULL;
823
824 lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
825 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
826 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
827 ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
828 ubifs_assert(c->freeable_cnt > 0);
829 return lprops;
830 }
831
832 /**
833 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
834 * @c: the UBIFS file-system description object
835 *
836 * This function returns LEB properties for a freeable index LEB or %NULL if the
837 * function is unable to find a freeable index LEB quickly.
838 */
ubifs_fast_find_frdi_idx(struct ubifs_info * c)839 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
840 {
841 struct ubifs_lprops *lprops;
842
843 ubifs_assert(mutex_is_locked(&c->lp_mutex));
844
845 if (list_empty(&c->frdi_idx_list))
846 return NULL;
847
848 lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
849 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
850 ubifs_assert((lprops->flags & LPROPS_INDEX));
851 ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
852 return lprops;
853 }
854
855 #ifdef CONFIG_UBIFS_FS_DEBUG
856
857 /**
858 * dbg_check_cats - check category heaps and lists.
859 * @c: UBIFS file-system description object
860 *
861 * This function returns %0 on success and a negative error code on failure.
862 */
dbg_check_cats(struct ubifs_info * c)863 int dbg_check_cats(struct ubifs_info *c)
864 {
865 struct ubifs_lprops *lprops;
866 struct list_head *pos;
867 int i, cat;
868
869 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
870 return 0;
871
872 list_for_each_entry(lprops, &c->empty_list, list) {
873 if (lprops->free != c->leb_size) {
874 ubifs_err("non-empty LEB %d on empty list "
875 "(free %d dirty %d flags %d)", lprops->lnum,
876 lprops->free, lprops->dirty, lprops->flags);
877 return -EINVAL;
878 }
879 if (lprops->flags & LPROPS_TAKEN) {
880 ubifs_err("taken LEB %d on empty list "
881 "(free %d dirty %d flags %d)", lprops->lnum,
882 lprops->free, lprops->dirty, lprops->flags);
883 return -EINVAL;
884 }
885 }
886
887 i = 0;
888 list_for_each_entry(lprops, &c->freeable_list, list) {
889 if (lprops->free + lprops->dirty != c->leb_size) {
890 ubifs_err("non-freeable LEB %d on freeable list "
891 "(free %d dirty %d flags %d)", lprops->lnum,
892 lprops->free, lprops->dirty, lprops->flags);
893 return -EINVAL;
894 }
895 if (lprops->flags & LPROPS_TAKEN) {
896 ubifs_err("taken LEB %d on freeable list "
897 "(free %d dirty %d flags %d)", lprops->lnum,
898 lprops->free, lprops->dirty, lprops->flags);
899 return -EINVAL;
900 }
901 i += 1;
902 }
903 if (i != c->freeable_cnt) {
904 ubifs_err("freeable list count %d expected %d", i,
905 c->freeable_cnt);
906 return -EINVAL;
907 }
908
909 i = 0;
910 list_for_each(pos, &c->idx_gc)
911 i += 1;
912 if (i != c->idx_gc_cnt) {
913 ubifs_err("idx_gc list count %d expected %d", i,
914 c->idx_gc_cnt);
915 return -EINVAL;
916 }
917
918 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
919 if (lprops->free + lprops->dirty != c->leb_size) {
920 ubifs_err("non-freeable LEB %d on frdi_idx list "
921 "(free %d dirty %d flags %d)", lprops->lnum,
922 lprops->free, lprops->dirty, lprops->flags);
923 return -EINVAL;
924 }
925 if (lprops->flags & LPROPS_TAKEN) {
926 ubifs_err("taken LEB %d on frdi_idx list "
927 "(free %d dirty %d flags %d)", lprops->lnum,
928 lprops->free, lprops->dirty, lprops->flags);
929 return -EINVAL;
930 }
931 if (!(lprops->flags & LPROPS_INDEX)) {
932 ubifs_err("non-index LEB %d on frdi_idx list "
933 "(free %d dirty %d flags %d)", lprops->lnum,
934 lprops->free, lprops->dirty, lprops->flags);
935 return -EINVAL;
936 }
937 }
938
939 for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
940 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
941
942 for (i = 0; i < heap->cnt; i++) {
943 lprops = heap->arr[i];
944 if (!lprops) {
945 ubifs_err("null ptr in LPT heap cat %d", cat);
946 return -EINVAL;
947 }
948 if (lprops->hpos != i) {
949 ubifs_err("bad ptr in LPT heap cat %d", cat);
950 return -EINVAL;
951 }
952 if (lprops->flags & LPROPS_TAKEN) {
953 ubifs_err("taken LEB in LPT heap cat %d", cat);
954 return -EINVAL;
955 }
956 }
957 }
958
959 return 0;
960 }
961
dbg_check_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat,int add_pos)962 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
963 int add_pos)
964 {
965 int i = 0, j, err = 0;
966
967 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
968 return;
969
970 for (i = 0; i < heap->cnt; i++) {
971 struct ubifs_lprops *lprops = heap->arr[i];
972 struct ubifs_lprops *lp;
973
974 if (i != add_pos)
975 if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
976 err = 1;
977 goto out;
978 }
979 if (lprops->hpos != i) {
980 err = 2;
981 goto out;
982 }
983 lp = ubifs_lpt_lookup(c, lprops->lnum);
984 if (IS_ERR(lp)) {
985 err = 3;
986 goto out;
987 }
988 if (lprops != lp) {
989 dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
990 (size_t)lprops, (size_t)lp, lprops->lnum,
991 lp->lnum);
992 err = 4;
993 goto out;
994 }
995 for (j = 0; j < i; j++) {
996 lp = heap->arr[j];
997 if (lp == lprops) {
998 err = 5;
999 goto out;
1000 }
1001 if (lp->lnum == lprops->lnum) {
1002 err = 6;
1003 goto out;
1004 }
1005 }
1006 }
1007 out:
1008 if (err) {
1009 dbg_msg("failed cat %d hpos %d err %d", cat, i, err);
1010 dbg_dump_stack();
1011 dbg_dump_heap(c, heap, cat);
1012 }
1013 }
1014
1015 /**
1016 * scan_check_cb - scan callback.
1017 * @c: the UBIFS file-system description object
1018 * @lp: LEB properties to scan
1019 * @in_tree: whether the LEB properties are in main memory
1020 * @lst: lprops statistics to update
1021 *
1022 * This function returns a code that indicates whether the scan should continue
1023 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1024 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1025 * (%LPT_SCAN_STOP).
1026 */
scan_check_cb(struct ubifs_info * c,const struct ubifs_lprops * lp,int in_tree,struct ubifs_lp_stats * lst)1027 static int scan_check_cb(struct ubifs_info *c,
1028 const struct ubifs_lprops *lp, int in_tree,
1029 struct ubifs_lp_stats *lst)
1030 {
1031 struct ubifs_scan_leb *sleb;
1032 struct ubifs_scan_node *snod;
1033 int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1034 void *buf = NULL;
1035
1036 cat = lp->flags & LPROPS_CAT_MASK;
1037 if (cat != LPROPS_UNCAT) {
1038 cat = ubifs_categorize_lprops(c, lp);
1039 if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1040 ubifs_err("bad LEB category %d expected %d",
1041 (lp->flags & LPROPS_CAT_MASK), cat);
1042 return -EINVAL;
1043 }
1044 }
1045
1046 /* Check lp is on its category list (if it has one) */
1047 if (in_tree) {
1048 struct list_head *list = NULL;
1049
1050 switch (cat) {
1051 case LPROPS_EMPTY:
1052 list = &c->empty_list;
1053 break;
1054 case LPROPS_FREEABLE:
1055 list = &c->freeable_list;
1056 break;
1057 case LPROPS_FRDI_IDX:
1058 list = &c->frdi_idx_list;
1059 break;
1060 case LPROPS_UNCAT:
1061 list = &c->uncat_list;
1062 break;
1063 }
1064 if (list) {
1065 struct ubifs_lprops *lprops;
1066 int found = 0;
1067
1068 list_for_each_entry(lprops, list, list) {
1069 if (lprops == lp) {
1070 found = 1;
1071 break;
1072 }
1073 }
1074 if (!found) {
1075 ubifs_err("bad LPT list (category %d)", cat);
1076 return -EINVAL;
1077 }
1078 }
1079 }
1080
1081 /* Check lp is on its category heap (if it has one) */
1082 if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1083 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1084
1085 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1086 lp != heap->arr[lp->hpos]) {
1087 ubifs_err("bad LPT heap (category %d)", cat);
1088 return -EINVAL;
1089 }
1090 }
1091
1092 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1093 if (!buf)
1094 return -ENOMEM;
1095
1096 /*
1097 * After an unclean unmount, empty and freeable LEBs
1098 * may contain garbage - do not scan them.
1099 */
1100 if (lp->free == c->leb_size) {
1101 lst->empty_lebs += 1;
1102 lst->total_free += c->leb_size;
1103 lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1104 return LPT_SCAN_CONTINUE;
1105 }
1106 if (lp->free + lp->dirty == c->leb_size &&
1107 !(lp->flags & LPROPS_INDEX)) {
1108 lst->total_free += lp->free;
1109 lst->total_dirty += lp->dirty;
1110 lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1111 return LPT_SCAN_CONTINUE;
1112 }
1113
1114 sleb = ubifs_scan(c, lnum, 0, buf, 0);
1115 if (IS_ERR(sleb)) {
1116 ret = PTR_ERR(sleb);
1117 if (ret == -EUCLEAN) {
1118 dbg_dump_lprops(c);
1119 dbg_dump_budg(c, &c->bi);
1120 }
1121 goto out;
1122 }
1123
1124 is_idx = -1;
1125 list_for_each_entry(snod, &sleb->nodes, list) {
1126 int found, level = 0;
1127
1128 cond_resched();
1129
1130 if (is_idx == -1)
1131 is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1132
1133 if (is_idx && snod->type != UBIFS_IDX_NODE) {
1134 ubifs_err("indexing node in data LEB %d:%d",
1135 lnum, snod->offs);
1136 goto out_destroy;
1137 }
1138
1139 if (snod->type == UBIFS_IDX_NODE) {
1140 struct ubifs_idx_node *idx = snod->node;
1141
1142 key_read(c, ubifs_idx_key(c, idx), &snod->key);
1143 level = le16_to_cpu(idx->level);
1144 }
1145
1146 found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1147 snod->offs, is_idx);
1148 if (found) {
1149 if (found < 0)
1150 goto out_destroy;
1151 used += ALIGN(snod->len, 8);
1152 }
1153 }
1154
1155 free = c->leb_size - sleb->endpt;
1156 dirty = sleb->endpt - used;
1157
1158 if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1159 dirty < 0) {
1160 ubifs_err("bad calculated accounting for LEB %d: "
1161 "free %d, dirty %d", lnum, free, dirty);
1162 goto out_destroy;
1163 }
1164
1165 if (lp->free + lp->dirty == c->leb_size &&
1166 free + dirty == c->leb_size)
1167 if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1168 (!is_idx && free == c->leb_size) ||
1169 lp->free == c->leb_size) {
1170 /*
1171 * Empty or freeable LEBs could contain index
1172 * nodes from an uncompleted commit due to an
1173 * unclean unmount. Or they could be empty for
1174 * the same reason. Or it may simply not have been
1175 * unmapped.
1176 */
1177 free = lp->free;
1178 dirty = lp->dirty;
1179 is_idx = 0;
1180 }
1181
1182 if (is_idx && lp->free + lp->dirty == free + dirty &&
1183 lnum != c->ihead_lnum) {
1184 /*
1185 * After an unclean unmount, an index LEB could have a different
1186 * amount of free space than the value recorded by lprops. That
1187 * is because the in-the-gaps method may use free space or
1188 * create free space (as a side-effect of using ubi_leb_change
1189 * and not writing the whole LEB). The incorrect free space
1190 * value is not a problem because the index is only ever
1191 * allocated empty LEBs, so there will never be an attempt to
1192 * write to the free space at the end of an index LEB - except
1193 * by the in-the-gaps method for which it is not a problem.
1194 */
1195 free = lp->free;
1196 dirty = lp->dirty;
1197 }
1198
1199 if (lp->free != free || lp->dirty != dirty)
1200 goto out_print;
1201
1202 if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1203 if (free == c->leb_size)
1204 /* Free but not unmapped LEB, it's fine */
1205 is_idx = 0;
1206 else {
1207 ubifs_err("indexing node without indexing "
1208 "flag");
1209 goto out_print;
1210 }
1211 }
1212
1213 if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1214 ubifs_err("data node with indexing flag");
1215 goto out_print;
1216 }
1217
1218 if (free == c->leb_size)
1219 lst->empty_lebs += 1;
1220
1221 if (is_idx)
1222 lst->idx_lebs += 1;
1223
1224 if (!(lp->flags & LPROPS_INDEX))
1225 lst->total_used += c->leb_size - free - dirty;
1226 lst->total_free += free;
1227 lst->total_dirty += dirty;
1228
1229 if (!(lp->flags & LPROPS_INDEX)) {
1230 int spc = free + dirty;
1231
1232 if (spc < c->dead_wm)
1233 lst->total_dead += spc;
1234 else
1235 lst->total_dark += ubifs_calc_dark(c, spc);
1236 }
1237
1238 ubifs_scan_destroy(sleb);
1239 vfree(buf);
1240 return LPT_SCAN_CONTINUE;
1241
1242 out_print:
1243 ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, "
1244 "should be free %d, dirty %d",
1245 lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1246 dbg_dump_leb(c, lnum);
1247 out_destroy:
1248 ubifs_scan_destroy(sleb);
1249 ret = -EINVAL;
1250 out:
1251 vfree(buf);
1252 return ret;
1253 }
1254
1255 /**
1256 * dbg_check_lprops - check all LEB properties.
1257 * @c: UBIFS file-system description object
1258 *
1259 * This function checks all LEB properties and makes sure they are all correct.
1260 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1261 * and other negative error codes in case of other errors. This function is
1262 * called while the file system is locked (because of commit start), so no
1263 * additional locking is required. Note that locking the LPT mutex would cause
1264 * a circular lock dependency with the TNC mutex.
1265 */
dbg_check_lprops(struct ubifs_info * c)1266 int dbg_check_lprops(struct ubifs_info *c)
1267 {
1268 int i, err;
1269 struct ubifs_lp_stats lst;
1270
1271 if (!dbg_is_chk_lprops(c))
1272 return 0;
1273
1274 /*
1275 * As we are going to scan the media, the write buffers have to be
1276 * synchronized.
1277 */
1278 for (i = 0; i < c->jhead_cnt; i++) {
1279 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1280 if (err)
1281 return err;
1282 }
1283
1284 memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1285 err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1286 (ubifs_lpt_scan_callback)scan_check_cb,
1287 &lst);
1288 if (err && err != -ENOSPC)
1289 goto out;
1290
1291 if (lst.empty_lebs != c->lst.empty_lebs ||
1292 lst.idx_lebs != c->lst.idx_lebs ||
1293 lst.total_free != c->lst.total_free ||
1294 lst.total_dirty != c->lst.total_dirty ||
1295 lst.total_used != c->lst.total_used) {
1296 ubifs_err("bad overall accounting");
1297 ubifs_err("calculated: empty_lebs %d, idx_lebs %d, "
1298 "total_free %lld, total_dirty %lld, total_used %lld",
1299 lst.empty_lebs, lst.idx_lebs, lst.total_free,
1300 lst.total_dirty, lst.total_used);
1301 ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, "
1302 "total_free %lld, total_dirty %lld, total_used %lld",
1303 c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1304 c->lst.total_dirty, c->lst.total_used);
1305 err = -EINVAL;
1306 goto out;
1307 }
1308
1309 if (lst.total_dead != c->lst.total_dead ||
1310 lst.total_dark != c->lst.total_dark) {
1311 ubifs_err("bad dead/dark space accounting");
1312 ubifs_err("calculated: total_dead %lld, total_dark %lld",
1313 lst.total_dead, lst.total_dark);
1314 ubifs_err("read from lprops: total_dead %lld, total_dark %lld",
1315 c->lst.total_dead, c->lst.total_dark);
1316 err = -EINVAL;
1317 goto out;
1318 }
1319
1320 err = dbg_check_cats(c);
1321 out:
1322 return err;
1323 }
1324
1325 #endif /* CONFIG_UBIFS_FS_DEBUG */
1326