1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28
ubifs_default_version_set(const char * val,const struct kernel_param * kp)29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30 {
31 int n = 0, ret;
32
33 ret = kstrtoint(val, 10, &n);
34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 return -EINVAL;
36 return param_set_int(val, kp);
37 }
38
39 static const struct kernel_param_ops ubifs_default_version_ops = {
40 .set = ubifs_default_version_set,
41 .get = param_get_int,
42 };
43
44 int ubifs_default_version = UBIFS_FORMAT_VERSION;
45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46
47 /*
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
50 */
51 #define UBIFS_KMALLOC_OK (128*1024)
52
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache *ubifs_inode_slab;
55
56 /* UBIFS TNC shrinker description */
57 static struct shrinker ubifs_shrinker_info = {
58 .scan_objects = ubifs_shrink_scan,
59 .count_objects = ubifs_shrink_count,
60 .seeks = DEFAULT_SEEKS,
61 };
62
63 /**
64 * validate_inode - validate inode.
65 * @c: UBIFS file-system description object
66 * @inode: the inode to validate
67 *
68 * This is a helper function for 'ubifs_iget()' which validates various fields
69 * of a newly built inode to make sure they contain sane values and prevent
70 * possible vulnerabilities. Returns zero if the inode is all right and
71 * a non-zero error code if not.
72 */
validate_inode(struct ubifs_info * c,const struct inode * inode)73 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
74 {
75 int err;
76 const struct ubifs_inode *ui = ubifs_inode(inode);
77
78 if (inode->i_size > c->max_inode_sz) {
79 ubifs_err(c, "inode is too large (%lld)",
80 (long long)inode->i_size);
81 return 1;
82 }
83
84 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
85 ubifs_err(c, "unknown compression type %d", ui->compr_type);
86 return 2;
87 }
88
89 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
90 return 3;
91
92 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
93 return 4;
94
95 if (ui->xattr && !S_ISREG(inode->i_mode))
96 return 5;
97
98 if (!ubifs_compr_present(c, ui->compr_type)) {
99 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
100 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
101 }
102
103 err = dbg_check_dir(c, inode);
104 return err;
105 }
106
ubifs_iget(struct super_block * sb,unsigned long inum)107 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
108 {
109 int err;
110 union ubifs_key key;
111 struct ubifs_ino_node *ino;
112 struct ubifs_info *c = sb->s_fs_info;
113 struct inode *inode;
114 struct ubifs_inode *ui;
115
116 dbg_gen("inode %lu", inum);
117
118 inode = iget_locked(sb, inum);
119 if (!inode)
120 return ERR_PTR(-ENOMEM);
121 if (!(inode->i_state & I_NEW))
122 return inode;
123 ui = ubifs_inode(inode);
124
125 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
126 if (!ino) {
127 err = -ENOMEM;
128 goto out;
129 }
130
131 ino_key_init(c, &key, inode->i_ino);
132
133 err = ubifs_tnc_lookup(c, &key, ino);
134 if (err)
135 goto out_ino;
136
137 inode->i_flags |= S_NOCMTIME;
138
139 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
140 inode->i_flags |= S_NOATIME;
141
142 set_nlink(inode, le32_to_cpu(ino->nlink));
143 i_uid_write(inode, le32_to_cpu(ino->uid));
144 i_gid_write(inode, le32_to_cpu(ino->gid));
145 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
146 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
147 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
148 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
149 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
150 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
151 inode->i_mode = le32_to_cpu(ino->mode);
152 inode->i_size = le64_to_cpu(ino->size);
153
154 ui->data_len = le32_to_cpu(ino->data_len);
155 ui->flags = le32_to_cpu(ino->flags);
156 ui->compr_type = le16_to_cpu(ino->compr_type);
157 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
158 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
159 ui->xattr_size = le32_to_cpu(ino->xattr_size);
160 ui->xattr_names = le32_to_cpu(ino->xattr_names);
161 ui->synced_i_size = ui->ui_size = inode->i_size;
162
163 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
164
165 err = validate_inode(c, inode);
166 if (err)
167 goto out_invalid;
168
169 switch (inode->i_mode & S_IFMT) {
170 case S_IFREG:
171 inode->i_mapping->a_ops = &ubifs_file_address_operations;
172 inode->i_op = &ubifs_file_inode_operations;
173 inode->i_fop = &ubifs_file_operations;
174 if (ui->xattr) {
175 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
176 if (!ui->data) {
177 err = -ENOMEM;
178 goto out_ino;
179 }
180 memcpy(ui->data, ino->data, ui->data_len);
181 ((char *)ui->data)[ui->data_len] = '\0';
182 } else if (ui->data_len != 0) {
183 err = 10;
184 goto out_invalid;
185 }
186 break;
187 case S_IFDIR:
188 inode->i_op = &ubifs_dir_inode_operations;
189 inode->i_fop = &ubifs_dir_operations;
190 if (ui->data_len != 0) {
191 err = 11;
192 goto out_invalid;
193 }
194 break;
195 case S_IFLNK:
196 inode->i_op = &ubifs_symlink_inode_operations;
197 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
198 err = 12;
199 goto out_invalid;
200 }
201 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
202 if (!ui->data) {
203 err = -ENOMEM;
204 goto out_ino;
205 }
206 memcpy(ui->data, ino->data, ui->data_len);
207 ((char *)ui->data)[ui->data_len] = '\0';
208 break;
209 case S_IFBLK:
210 case S_IFCHR:
211 {
212 dev_t rdev;
213 union ubifs_dev_desc *dev;
214
215 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
216 if (!ui->data) {
217 err = -ENOMEM;
218 goto out_ino;
219 }
220
221 dev = (union ubifs_dev_desc *)ino->data;
222 if (ui->data_len == sizeof(dev->new))
223 rdev = new_decode_dev(le32_to_cpu(dev->new));
224 else if (ui->data_len == sizeof(dev->huge))
225 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
226 else {
227 err = 13;
228 goto out_invalid;
229 }
230 memcpy(ui->data, ino->data, ui->data_len);
231 inode->i_op = &ubifs_file_inode_operations;
232 init_special_inode(inode, inode->i_mode, rdev);
233 break;
234 }
235 case S_IFSOCK:
236 case S_IFIFO:
237 inode->i_op = &ubifs_file_inode_operations;
238 init_special_inode(inode, inode->i_mode, 0);
239 if (ui->data_len != 0) {
240 err = 14;
241 goto out_invalid;
242 }
243 break;
244 default:
245 err = 15;
246 goto out_invalid;
247 }
248
249 kfree(ino);
250 ubifs_set_inode_flags(inode);
251 unlock_new_inode(inode);
252 return inode;
253
254 out_invalid:
255 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
256 ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
257 ubifs_dump_inode(c, inode);
258 err = -EINVAL;
259 out_ino:
260 kfree(ino);
261 out:
262 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
263 iget_failed(inode);
264 return ERR_PTR(err);
265 }
266
ubifs_alloc_inode(struct super_block * sb)267 static struct inode *ubifs_alloc_inode(struct super_block *sb)
268 {
269 struct ubifs_inode *ui;
270
271 ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
272 if (!ui)
273 return NULL;
274
275 memset((void *)ui + sizeof(struct inode), 0,
276 sizeof(struct ubifs_inode) - sizeof(struct inode));
277 mutex_init(&ui->ui_mutex);
278 init_rwsem(&ui->xattr_sem);
279 spin_lock_init(&ui->ui_lock);
280 return &ui->vfs_inode;
281 };
282
ubifs_free_inode(struct inode * inode)283 static void ubifs_free_inode(struct inode *inode)
284 {
285 struct ubifs_inode *ui = ubifs_inode(inode);
286
287 kfree(ui->data);
288 fscrypt_free_inode(inode);
289
290 kmem_cache_free(ubifs_inode_slab, ui);
291 }
292
293 /*
294 * Note, Linux write-back code calls this without 'i_mutex'.
295 */
ubifs_write_inode(struct inode * inode,struct writeback_control * wbc)296 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
297 {
298 int err = 0;
299 struct ubifs_info *c = inode->i_sb->s_fs_info;
300 struct ubifs_inode *ui = ubifs_inode(inode);
301
302 ubifs_assert(c, !ui->xattr);
303 if (is_bad_inode(inode))
304 return 0;
305
306 mutex_lock(&ui->ui_mutex);
307 /*
308 * Due to races between write-back forced by budgeting
309 * (see 'sync_some_inodes()') and background write-back, the inode may
310 * have already been synchronized, do not do this again. This might
311 * also happen if it was synchronized in an VFS operation, e.g.
312 * 'ubifs_link()'.
313 */
314 if (!ui->dirty) {
315 mutex_unlock(&ui->ui_mutex);
316 return 0;
317 }
318
319 /*
320 * As an optimization, do not write orphan inodes to the media just
321 * because this is not needed.
322 */
323 dbg_gen("inode %lu, mode %#x, nlink %u",
324 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
325 if (inode->i_nlink) {
326 err = ubifs_jnl_write_inode(c, inode);
327 if (err)
328 ubifs_err(c, "can't write inode %lu, error %d",
329 inode->i_ino, err);
330 else
331 err = dbg_check_inode_size(c, inode, ui->ui_size);
332 }
333
334 ui->dirty = 0;
335 mutex_unlock(&ui->ui_mutex);
336 ubifs_release_dirty_inode_budget(c, ui);
337 return err;
338 }
339
ubifs_drop_inode(struct inode * inode)340 static int ubifs_drop_inode(struct inode *inode)
341 {
342 int drop = generic_drop_inode(inode);
343
344 if (!drop)
345 drop = fscrypt_drop_inode(inode);
346
347 return drop;
348 }
349
ubifs_evict_inode(struct inode * inode)350 static void ubifs_evict_inode(struct inode *inode)
351 {
352 int err;
353 struct ubifs_info *c = inode->i_sb->s_fs_info;
354 struct ubifs_inode *ui = ubifs_inode(inode);
355
356 if (ui->xattr)
357 /*
358 * Extended attribute inode deletions are fully handled in
359 * 'ubifs_removexattr()'. These inodes are special and have
360 * limited usage, so there is nothing to do here.
361 */
362 goto out;
363
364 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
365 ubifs_assert(c, !atomic_read(&inode->i_count));
366
367 truncate_inode_pages_final(&inode->i_data);
368
369 if (inode->i_nlink)
370 goto done;
371
372 if (is_bad_inode(inode))
373 goto out;
374
375 ui->ui_size = inode->i_size = 0;
376 err = ubifs_jnl_delete_inode(c, inode);
377 if (err)
378 /*
379 * Worst case we have a lost orphan inode wasting space, so a
380 * simple error message is OK here.
381 */
382 ubifs_err(c, "can't delete inode %lu, error %d",
383 inode->i_ino, err);
384
385 out:
386 if (ui->dirty)
387 ubifs_release_dirty_inode_budget(c, ui);
388 else {
389 /* We've deleted something - clean the "no space" flags */
390 c->bi.nospace = c->bi.nospace_rp = 0;
391 smp_wmb();
392 }
393 done:
394 clear_inode(inode);
395 fscrypt_put_encryption_info(inode);
396 }
397
ubifs_dirty_inode(struct inode * inode,int flags)398 static void ubifs_dirty_inode(struct inode *inode, int flags)
399 {
400 struct ubifs_info *c = inode->i_sb->s_fs_info;
401 struct ubifs_inode *ui = ubifs_inode(inode);
402
403 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
404 if (!ui->dirty) {
405 ui->dirty = 1;
406 dbg_gen("inode %lu", inode->i_ino);
407 }
408 }
409
ubifs_statfs(struct dentry * dentry,struct kstatfs * buf)410 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
411 {
412 struct ubifs_info *c = dentry->d_sb->s_fs_info;
413 unsigned long long free;
414 __le32 *uuid = (__le32 *)c->uuid;
415
416 free = ubifs_get_free_space(c);
417 dbg_gen("free space %lld bytes (%lld blocks)",
418 free, free >> UBIFS_BLOCK_SHIFT);
419
420 buf->f_type = UBIFS_SUPER_MAGIC;
421 buf->f_bsize = UBIFS_BLOCK_SIZE;
422 buf->f_blocks = c->block_cnt;
423 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
424 if (free > c->report_rp_size)
425 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
426 else
427 buf->f_bavail = 0;
428 buf->f_files = 0;
429 buf->f_ffree = 0;
430 buf->f_namelen = UBIFS_MAX_NLEN;
431 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
432 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
433 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
434 return 0;
435 }
436
ubifs_show_options(struct seq_file * s,struct dentry * root)437 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
438 {
439 struct ubifs_info *c = root->d_sb->s_fs_info;
440
441 if (c->mount_opts.unmount_mode == 2)
442 seq_puts(s, ",fast_unmount");
443 else if (c->mount_opts.unmount_mode == 1)
444 seq_puts(s, ",norm_unmount");
445
446 if (c->mount_opts.bulk_read == 2)
447 seq_puts(s, ",bulk_read");
448 else if (c->mount_opts.bulk_read == 1)
449 seq_puts(s, ",no_bulk_read");
450
451 if (c->mount_opts.chk_data_crc == 2)
452 seq_puts(s, ",chk_data_crc");
453 else if (c->mount_opts.chk_data_crc == 1)
454 seq_puts(s, ",no_chk_data_crc");
455
456 if (c->mount_opts.override_compr) {
457 seq_printf(s, ",compr=%s",
458 ubifs_compr_name(c, c->mount_opts.compr_type));
459 }
460
461 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
462 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
463
464 return 0;
465 }
466
ubifs_sync_fs(struct super_block * sb,int wait)467 static int ubifs_sync_fs(struct super_block *sb, int wait)
468 {
469 int i, err;
470 struct ubifs_info *c = sb->s_fs_info;
471
472 /*
473 * Zero @wait is just an advisory thing to help the file system shove
474 * lots of data into the queues, and there will be the second
475 * '->sync_fs()' call, with non-zero @wait.
476 */
477 if (!wait)
478 return 0;
479
480 /*
481 * Synchronize write buffers, because 'ubifs_run_commit()' does not
482 * do this if it waits for an already running commit.
483 */
484 for (i = 0; i < c->jhead_cnt; i++) {
485 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
486 if (err)
487 return err;
488 }
489
490 /*
491 * Strictly speaking, it is not necessary to commit the journal here,
492 * synchronizing write-buffers would be enough. But committing makes
493 * UBIFS free space predictions much more accurate, so we want to let
494 * the user be able to get more accurate results of 'statfs()' after
495 * they synchronize the file system.
496 */
497 err = ubifs_run_commit(c);
498 if (err)
499 return err;
500
501 return ubi_sync(c->vi.ubi_num);
502 }
503
504 /**
505 * init_constants_early - initialize UBIFS constants.
506 * @c: UBIFS file-system description object
507 *
508 * This function initialize UBIFS constants which do not need the superblock to
509 * be read. It also checks that the UBI volume satisfies basic UBIFS
510 * requirements. Returns zero in case of success and a negative error code in
511 * case of failure.
512 */
init_constants_early(struct ubifs_info * c)513 static int init_constants_early(struct ubifs_info *c)
514 {
515 if (c->vi.corrupted) {
516 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
517 c->ro_media = 1;
518 }
519
520 if (c->di.ro_mode) {
521 ubifs_msg(c, "read-only UBI device");
522 c->ro_media = 1;
523 }
524
525 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
526 ubifs_msg(c, "static UBI volume - read-only mode");
527 c->ro_media = 1;
528 }
529
530 c->leb_cnt = c->vi.size;
531 c->leb_size = c->vi.usable_leb_size;
532 c->leb_start = c->di.leb_start;
533 c->half_leb_size = c->leb_size / 2;
534 c->min_io_size = c->di.min_io_size;
535 c->min_io_shift = fls(c->min_io_size) - 1;
536 c->max_write_size = c->di.max_write_size;
537 c->max_write_shift = fls(c->max_write_size) - 1;
538
539 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
540 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
541 c->leb_size, UBIFS_MIN_LEB_SZ);
542 return -EINVAL;
543 }
544
545 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
546 ubifs_errc(c, "too few LEBs (%d), min. is %d",
547 c->leb_cnt, UBIFS_MIN_LEB_CNT);
548 return -EINVAL;
549 }
550
551 if (!is_power_of_2(c->min_io_size)) {
552 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
553 return -EINVAL;
554 }
555
556 /*
557 * Maximum write size has to be greater or equivalent to min. I/O
558 * size, and be multiple of min. I/O size.
559 */
560 if (c->max_write_size < c->min_io_size ||
561 c->max_write_size % c->min_io_size ||
562 !is_power_of_2(c->max_write_size)) {
563 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
564 c->max_write_size, c->min_io_size);
565 return -EINVAL;
566 }
567
568 /*
569 * UBIFS aligns all node to 8-byte boundary, so to make function in
570 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
571 * less than 8.
572 */
573 if (c->min_io_size < 8) {
574 c->min_io_size = 8;
575 c->min_io_shift = 3;
576 if (c->max_write_size < c->min_io_size) {
577 c->max_write_size = c->min_io_size;
578 c->max_write_shift = c->min_io_shift;
579 }
580 }
581
582 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
583 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
584
585 /*
586 * Initialize node length ranges which are mostly needed for node
587 * length validation.
588 */
589 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
590 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
591 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
592 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
593 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
594 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
595 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
596 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
597 UBIFS_MAX_HMAC_LEN;
598 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
599 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
600
601 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
602 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
603 c->ranges[UBIFS_ORPH_NODE].min_len =
604 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
605 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
606 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
607 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
608 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
609 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
610 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
611 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
612 /*
613 * Minimum indexing node size is amended later when superblock is
614 * read and the key length is known.
615 */
616 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
617 /*
618 * Maximum indexing node size is amended later when superblock is
619 * read and the fanout is known.
620 */
621 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
622
623 /*
624 * Initialize dead and dark LEB space watermarks. See gc.c for comments
625 * about these values.
626 */
627 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
628 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
629
630 /*
631 * Calculate how many bytes would be wasted at the end of LEB if it was
632 * fully filled with data nodes of maximum size. This is used in
633 * calculations when reporting free space.
634 */
635 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
636
637 /* Buffer size for bulk-reads */
638 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
639 if (c->max_bu_buf_len > c->leb_size)
640 c->max_bu_buf_len = c->leb_size;
641
642 /* Log is ready, preserve one LEB for commits. */
643 c->min_log_bytes = c->leb_size;
644
645 return 0;
646 }
647
648 /**
649 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
650 * @c: UBIFS file-system description object
651 * @lnum: LEB the write-buffer was synchronized to
652 * @free: how many free bytes left in this LEB
653 * @pad: how many bytes were padded
654 *
655 * This is a callback function which is called by the I/O unit when the
656 * write-buffer is synchronized. We need this to correctly maintain space
657 * accounting in bud logical eraseblocks. This function returns zero in case of
658 * success and a negative error code in case of failure.
659 *
660 * This function actually belongs to the journal, but we keep it here because
661 * we want to keep it static.
662 */
bud_wbuf_callback(struct ubifs_info * c,int lnum,int free,int pad)663 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
664 {
665 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
666 }
667
668 /*
669 * init_constants_sb - initialize UBIFS constants.
670 * @c: UBIFS file-system description object
671 *
672 * This is a helper function which initializes various UBIFS constants after
673 * the superblock has been read. It also checks various UBIFS parameters and
674 * makes sure they are all right. Returns zero in case of success and a
675 * negative error code in case of failure.
676 */
init_constants_sb(struct ubifs_info * c)677 static int init_constants_sb(struct ubifs_info *c)
678 {
679 int tmp, err;
680 long long tmp64;
681
682 c->main_bytes = (long long)c->main_lebs * c->leb_size;
683 c->max_znode_sz = sizeof(struct ubifs_znode) +
684 c->fanout * sizeof(struct ubifs_zbranch);
685
686 tmp = ubifs_idx_node_sz(c, 1);
687 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
688 c->min_idx_node_sz = ALIGN(tmp, 8);
689
690 tmp = ubifs_idx_node_sz(c, c->fanout);
691 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
692 c->max_idx_node_sz = ALIGN(tmp, 8);
693
694 /* Make sure LEB size is large enough to fit full commit */
695 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
696 tmp = ALIGN(tmp, c->min_io_size);
697 if (tmp > c->leb_size) {
698 ubifs_err(c, "too small LEB size %d, at least %d needed",
699 c->leb_size, tmp);
700 return -EINVAL;
701 }
702
703 /*
704 * Make sure that the log is large enough to fit reference nodes for
705 * all buds plus one reserved LEB.
706 */
707 tmp64 = c->max_bud_bytes + c->leb_size - 1;
708 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
709 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
710 tmp /= c->leb_size;
711 tmp += 1;
712 if (c->log_lebs < tmp) {
713 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
714 c->log_lebs, tmp);
715 return -EINVAL;
716 }
717
718 /*
719 * When budgeting we assume worst-case scenarios when the pages are not
720 * be compressed and direntries are of the maximum size.
721 *
722 * Note, data, which may be stored in inodes is budgeted separately, so
723 * it is not included into 'c->bi.inode_budget'.
724 */
725 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
726 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
727 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
728
729 /*
730 * When the amount of flash space used by buds becomes
731 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
732 * The writers are unblocked when the commit is finished. To avoid
733 * writers to be blocked UBIFS initiates background commit in advance,
734 * when number of bud bytes becomes above the limit defined below.
735 */
736 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
737
738 /*
739 * Ensure minimum journal size. All the bytes in the journal heads are
740 * considered to be used, when calculating the current journal usage.
741 * Consequently, if the journal is too small, UBIFS will treat it as
742 * always full.
743 */
744 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
745 if (c->bg_bud_bytes < tmp64)
746 c->bg_bud_bytes = tmp64;
747 if (c->max_bud_bytes < tmp64 + c->leb_size)
748 c->max_bud_bytes = tmp64 + c->leb_size;
749
750 err = ubifs_calc_lpt_geom(c);
751 if (err)
752 return err;
753
754 /* Initialize effective LEB size used in budgeting calculations */
755 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
756 return 0;
757 }
758
759 /*
760 * init_constants_master - initialize UBIFS constants.
761 * @c: UBIFS file-system description object
762 *
763 * This is a helper function which initializes various UBIFS constants after
764 * the master node has been read. It also checks various UBIFS parameters and
765 * makes sure they are all right.
766 */
init_constants_master(struct ubifs_info * c)767 static void init_constants_master(struct ubifs_info *c)
768 {
769 long long tmp64;
770
771 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
772 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
773
774 /*
775 * Calculate total amount of FS blocks. This number is not used
776 * internally because it does not make much sense for UBIFS, but it is
777 * necessary to report something for the 'statfs()' call.
778 *
779 * Subtract the LEB reserved for GC, the LEB which is reserved for
780 * deletions, minimum LEBs for the index, and assume only one journal
781 * head is available.
782 */
783 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
784 tmp64 *= (long long)c->leb_size - c->leb_overhead;
785 tmp64 = ubifs_reported_space(c, tmp64);
786 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
787 }
788
789 /**
790 * take_gc_lnum - reserve GC LEB.
791 * @c: UBIFS file-system description object
792 *
793 * This function ensures that the LEB reserved for garbage collection is marked
794 * as "taken" in lprops. We also have to set free space to LEB size and dirty
795 * space to zero, because lprops may contain out-of-date information if the
796 * file-system was un-mounted before it has been committed. This function
797 * returns zero in case of success and a negative error code in case of
798 * failure.
799 */
take_gc_lnum(struct ubifs_info * c)800 static int take_gc_lnum(struct ubifs_info *c)
801 {
802 int err;
803
804 if (c->gc_lnum == -1) {
805 ubifs_err(c, "no LEB for GC");
806 return -EINVAL;
807 }
808
809 /* And we have to tell lprops that this LEB is taken */
810 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
811 LPROPS_TAKEN, 0, 0);
812 return err;
813 }
814
815 /**
816 * alloc_wbufs - allocate write-buffers.
817 * @c: UBIFS file-system description object
818 *
819 * This helper function allocates and initializes UBIFS write-buffers. Returns
820 * zero in case of success and %-ENOMEM in case of failure.
821 */
alloc_wbufs(struct ubifs_info * c)822 static int alloc_wbufs(struct ubifs_info *c)
823 {
824 int i, err;
825
826 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
827 GFP_KERNEL);
828 if (!c->jheads)
829 return -ENOMEM;
830
831 /* Initialize journal heads */
832 for (i = 0; i < c->jhead_cnt; i++) {
833 INIT_LIST_HEAD(&c->jheads[i].buds_list);
834 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
835 if (err)
836 return err;
837
838 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
839 c->jheads[i].wbuf.jhead = i;
840 c->jheads[i].grouped = 1;
841 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
842 if (IS_ERR(c->jheads[i].log_hash)) {
843 err = PTR_ERR(c->jheads[i].log_hash);
844 goto out;
845 }
846 }
847
848 /*
849 * Garbage Collector head does not need to be synchronized by timer.
850 * Also GC head nodes are not grouped.
851 */
852 c->jheads[GCHD].wbuf.no_timer = 1;
853 c->jheads[GCHD].grouped = 0;
854
855 return 0;
856
857 out:
858 while (i--)
859 kfree(c->jheads[i].log_hash);
860
861 return err;
862 }
863
864 /**
865 * free_wbufs - free write-buffers.
866 * @c: UBIFS file-system description object
867 */
free_wbufs(struct ubifs_info * c)868 static void free_wbufs(struct ubifs_info *c)
869 {
870 int i;
871
872 if (c->jheads) {
873 for (i = 0; i < c->jhead_cnt; i++) {
874 kfree(c->jheads[i].wbuf.buf);
875 kfree(c->jheads[i].wbuf.inodes);
876 kfree(c->jheads[i].log_hash);
877 }
878 kfree(c->jheads);
879 c->jheads = NULL;
880 }
881 }
882
883 /**
884 * free_orphans - free orphans.
885 * @c: UBIFS file-system description object
886 */
free_orphans(struct ubifs_info * c)887 static void free_orphans(struct ubifs_info *c)
888 {
889 struct ubifs_orphan *orph;
890
891 while (c->orph_dnext) {
892 orph = c->orph_dnext;
893 c->orph_dnext = orph->dnext;
894 list_del(&orph->list);
895 kfree(orph);
896 }
897
898 while (!list_empty(&c->orph_list)) {
899 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
900 list_del(&orph->list);
901 kfree(orph);
902 ubifs_err(c, "orphan list not empty at unmount");
903 }
904
905 vfree(c->orph_buf);
906 c->orph_buf = NULL;
907 }
908
909 /**
910 * free_buds - free per-bud objects.
911 * @c: UBIFS file-system description object
912 */
free_buds(struct ubifs_info * c)913 static void free_buds(struct ubifs_info *c)
914 {
915 struct ubifs_bud *bud, *n;
916
917 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
918 kfree(bud);
919 }
920
921 /**
922 * check_volume_empty - check if the UBI volume is empty.
923 * @c: UBIFS file-system description object
924 *
925 * This function checks if the UBIFS volume is empty by looking if its LEBs are
926 * mapped or not. The result of checking is stored in the @c->empty variable.
927 * Returns zero in case of success and a negative error code in case of
928 * failure.
929 */
check_volume_empty(struct ubifs_info * c)930 static int check_volume_empty(struct ubifs_info *c)
931 {
932 int lnum, err;
933
934 c->empty = 1;
935 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
936 err = ubifs_is_mapped(c, lnum);
937 if (unlikely(err < 0))
938 return err;
939 if (err == 1) {
940 c->empty = 0;
941 break;
942 }
943
944 cond_resched();
945 }
946
947 return 0;
948 }
949
950 /*
951 * UBIFS mount options.
952 *
953 * Opt_fast_unmount: do not run a journal commit before un-mounting
954 * Opt_norm_unmount: run a journal commit before un-mounting
955 * Opt_bulk_read: enable bulk-reads
956 * Opt_no_bulk_read: disable bulk-reads
957 * Opt_chk_data_crc: check CRCs when reading data nodes
958 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
959 * Opt_override_compr: override default compressor
960 * Opt_assert: set ubifs_assert() action
961 * Opt_auth_key: The key name used for authentication
962 * Opt_auth_hash_name: The hash type used for authentication
963 * Opt_err: just end of array marker
964 */
965 enum {
966 Opt_fast_unmount,
967 Opt_norm_unmount,
968 Opt_bulk_read,
969 Opt_no_bulk_read,
970 Opt_chk_data_crc,
971 Opt_no_chk_data_crc,
972 Opt_override_compr,
973 Opt_assert,
974 Opt_auth_key,
975 Opt_auth_hash_name,
976 Opt_ignore,
977 Opt_err,
978 };
979
980 static const match_table_t tokens = {
981 {Opt_fast_unmount, "fast_unmount"},
982 {Opt_norm_unmount, "norm_unmount"},
983 {Opt_bulk_read, "bulk_read"},
984 {Opt_no_bulk_read, "no_bulk_read"},
985 {Opt_chk_data_crc, "chk_data_crc"},
986 {Opt_no_chk_data_crc, "no_chk_data_crc"},
987 {Opt_override_compr, "compr=%s"},
988 {Opt_auth_key, "auth_key=%s"},
989 {Opt_auth_hash_name, "auth_hash_name=%s"},
990 {Opt_ignore, "ubi=%s"},
991 {Opt_ignore, "vol=%s"},
992 {Opt_assert, "assert=%s"},
993 {Opt_err, NULL},
994 };
995
996 /**
997 * parse_standard_option - parse a standard mount option.
998 * @option: the option to parse
999 *
1000 * Normally, standard mount options like "sync" are passed to file-systems as
1001 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1002 * be present in the options string. This function tries to deal with this
1003 * situation and parse standard options. Returns 0 if the option was not
1004 * recognized, and the corresponding integer flag if it was.
1005 *
1006 * UBIFS is only interested in the "sync" option, so do not check for anything
1007 * else.
1008 */
parse_standard_option(const char * option)1009 static int parse_standard_option(const char *option)
1010 {
1011
1012 pr_notice("UBIFS: parse %s\n", option);
1013 if (!strcmp(option, "sync"))
1014 return SB_SYNCHRONOUS;
1015 return 0;
1016 }
1017
1018 /**
1019 * ubifs_parse_options - parse mount parameters.
1020 * @c: UBIFS file-system description object
1021 * @options: parameters to parse
1022 * @is_remount: non-zero if this is FS re-mount
1023 *
1024 * This function parses UBIFS mount options and returns zero in case success
1025 * and a negative error code in case of failure.
1026 */
ubifs_parse_options(struct ubifs_info * c,char * options,int is_remount)1027 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1028 int is_remount)
1029 {
1030 char *p;
1031 substring_t args[MAX_OPT_ARGS];
1032
1033 if (!options)
1034 return 0;
1035
1036 while ((p = strsep(&options, ","))) {
1037 int token;
1038
1039 if (!*p)
1040 continue;
1041
1042 token = match_token(p, tokens, args);
1043 switch (token) {
1044 /*
1045 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1046 * We accept them in order to be backward-compatible. But this
1047 * should be removed at some point.
1048 */
1049 case Opt_fast_unmount:
1050 c->mount_opts.unmount_mode = 2;
1051 break;
1052 case Opt_norm_unmount:
1053 c->mount_opts.unmount_mode = 1;
1054 break;
1055 case Opt_bulk_read:
1056 c->mount_opts.bulk_read = 2;
1057 c->bulk_read = 1;
1058 break;
1059 case Opt_no_bulk_read:
1060 c->mount_opts.bulk_read = 1;
1061 c->bulk_read = 0;
1062 break;
1063 case Opt_chk_data_crc:
1064 c->mount_opts.chk_data_crc = 2;
1065 c->no_chk_data_crc = 0;
1066 break;
1067 case Opt_no_chk_data_crc:
1068 c->mount_opts.chk_data_crc = 1;
1069 c->no_chk_data_crc = 1;
1070 break;
1071 case Opt_override_compr:
1072 {
1073 char *name = match_strdup(&args[0]);
1074
1075 if (!name)
1076 return -ENOMEM;
1077 if (!strcmp(name, "none"))
1078 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1079 else if (!strcmp(name, "lzo"))
1080 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1081 else if (!strcmp(name, "zlib"))
1082 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1083 else if (!strcmp(name, "zstd"))
1084 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1085 else {
1086 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1087 kfree(name);
1088 return -EINVAL;
1089 }
1090 kfree(name);
1091 c->mount_opts.override_compr = 1;
1092 c->default_compr = c->mount_opts.compr_type;
1093 break;
1094 }
1095 case Opt_assert:
1096 {
1097 char *act = match_strdup(&args[0]);
1098
1099 if (!act)
1100 return -ENOMEM;
1101 if (!strcmp(act, "report"))
1102 c->assert_action = ASSACT_REPORT;
1103 else if (!strcmp(act, "read-only"))
1104 c->assert_action = ASSACT_RO;
1105 else if (!strcmp(act, "panic"))
1106 c->assert_action = ASSACT_PANIC;
1107 else {
1108 ubifs_err(c, "unknown assert action \"%s\"", act);
1109 kfree(act);
1110 return -EINVAL;
1111 }
1112 kfree(act);
1113 break;
1114 }
1115 case Opt_auth_key:
1116 if (!is_remount) {
1117 c->auth_key_name = kstrdup(args[0].from,
1118 GFP_KERNEL);
1119 if (!c->auth_key_name)
1120 return -ENOMEM;
1121 }
1122 break;
1123 case Opt_auth_hash_name:
1124 if (!is_remount) {
1125 c->auth_hash_name = kstrdup(args[0].from,
1126 GFP_KERNEL);
1127 if (!c->auth_hash_name)
1128 return -ENOMEM;
1129 }
1130 break;
1131 case Opt_ignore:
1132 break;
1133 default:
1134 {
1135 unsigned long flag;
1136 struct super_block *sb = c->vfs_sb;
1137
1138 flag = parse_standard_option(p);
1139 if (!flag) {
1140 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1141 p);
1142 return -EINVAL;
1143 }
1144 sb->s_flags |= flag;
1145 break;
1146 }
1147 }
1148 }
1149
1150 return 0;
1151 }
1152
1153 /*
1154 * ubifs_release_options - release mount parameters which have been dumped.
1155 * @c: UBIFS file-system description object
1156 */
ubifs_release_options(struct ubifs_info * c)1157 static void ubifs_release_options(struct ubifs_info *c)
1158 {
1159 kfree(c->auth_key_name);
1160 c->auth_key_name = NULL;
1161 kfree(c->auth_hash_name);
1162 c->auth_hash_name = NULL;
1163 }
1164
1165 /**
1166 * destroy_journal - destroy journal data structures.
1167 * @c: UBIFS file-system description object
1168 *
1169 * This function destroys journal data structures including those that may have
1170 * been created by recovery functions.
1171 */
destroy_journal(struct ubifs_info * c)1172 static void destroy_journal(struct ubifs_info *c)
1173 {
1174 while (!list_empty(&c->unclean_leb_list)) {
1175 struct ubifs_unclean_leb *ucleb;
1176
1177 ucleb = list_entry(c->unclean_leb_list.next,
1178 struct ubifs_unclean_leb, list);
1179 list_del(&ucleb->list);
1180 kfree(ucleb);
1181 }
1182 while (!list_empty(&c->old_buds)) {
1183 struct ubifs_bud *bud;
1184
1185 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1186 list_del(&bud->list);
1187 kfree(bud);
1188 }
1189 ubifs_destroy_idx_gc(c);
1190 ubifs_destroy_size_tree(c);
1191 ubifs_tnc_close(c);
1192 free_buds(c);
1193 }
1194
1195 /**
1196 * bu_init - initialize bulk-read information.
1197 * @c: UBIFS file-system description object
1198 */
bu_init(struct ubifs_info * c)1199 static void bu_init(struct ubifs_info *c)
1200 {
1201 ubifs_assert(c, c->bulk_read == 1);
1202
1203 if (c->bu.buf)
1204 return; /* Already initialized */
1205
1206 again:
1207 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1208 if (!c->bu.buf) {
1209 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1210 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1211 goto again;
1212 }
1213
1214 /* Just disable bulk-read */
1215 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1216 c->max_bu_buf_len);
1217 c->mount_opts.bulk_read = 1;
1218 c->bulk_read = 0;
1219 return;
1220 }
1221 }
1222
1223 /**
1224 * check_free_space - check if there is enough free space to mount.
1225 * @c: UBIFS file-system description object
1226 *
1227 * This function makes sure UBIFS has enough free space to be mounted in
1228 * read/write mode. UBIFS must always have some free space to allow deletions.
1229 */
check_free_space(struct ubifs_info * c)1230 static int check_free_space(struct ubifs_info *c)
1231 {
1232 ubifs_assert(c, c->dark_wm > 0);
1233 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1234 ubifs_err(c, "insufficient free space to mount in R/W mode");
1235 ubifs_dump_budg(c, &c->bi);
1236 ubifs_dump_lprops(c);
1237 return -ENOSPC;
1238 }
1239 return 0;
1240 }
1241
1242 /**
1243 * mount_ubifs - mount UBIFS file-system.
1244 * @c: UBIFS file-system description object
1245 *
1246 * This function mounts UBIFS file system. Returns zero in case of success and
1247 * a negative error code in case of failure.
1248 */
mount_ubifs(struct ubifs_info * c)1249 static int mount_ubifs(struct ubifs_info *c)
1250 {
1251 int err;
1252 long long x, y;
1253 size_t sz;
1254
1255 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1256 /* Suppress error messages while probing if SB_SILENT is set */
1257 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1258
1259 err = init_constants_early(c);
1260 if (err)
1261 return err;
1262
1263 err = ubifs_debugging_init(c);
1264 if (err)
1265 return err;
1266
1267 err = ubifs_sysfs_register(c);
1268 if (err)
1269 goto out_debugging;
1270
1271 err = check_volume_empty(c);
1272 if (err)
1273 goto out_free;
1274
1275 if (c->empty && (c->ro_mount || c->ro_media)) {
1276 /*
1277 * This UBI volume is empty, and read-only, or the file system
1278 * is mounted read-only - we cannot format it.
1279 */
1280 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1281 c->ro_media ? "UBI volume" : "mount");
1282 err = -EROFS;
1283 goto out_free;
1284 }
1285
1286 if (c->ro_media && !c->ro_mount) {
1287 ubifs_err(c, "cannot mount read-write - read-only media");
1288 err = -EROFS;
1289 goto out_free;
1290 }
1291
1292 /*
1293 * The requirement for the buffer is that it should fit indexing B-tree
1294 * height amount of integers. We assume the height if the TNC tree will
1295 * never exceed 64.
1296 */
1297 err = -ENOMEM;
1298 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1299 GFP_KERNEL);
1300 if (!c->bottom_up_buf)
1301 goto out_free;
1302
1303 c->sbuf = vmalloc(c->leb_size);
1304 if (!c->sbuf)
1305 goto out_free;
1306
1307 if (!c->ro_mount) {
1308 c->ileb_buf = vmalloc(c->leb_size);
1309 if (!c->ileb_buf)
1310 goto out_free;
1311 }
1312
1313 if (c->bulk_read == 1)
1314 bu_init(c);
1315
1316 if (!c->ro_mount) {
1317 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1318 UBIFS_CIPHER_BLOCK_SIZE,
1319 GFP_KERNEL);
1320 if (!c->write_reserve_buf)
1321 goto out_free;
1322 }
1323
1324 c->mounting = 1;
1325
1326 if (c->auth_key_name) {
1327 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1328 err = ubifs_init_authentication(c);
1329 if (err)
1330 goto out_free;
1331 } else {
1332 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1333 " authentication support");
1334 err = -EINVAL;
1335 goto out_free;
1336 }
1337 }
1338
1339 err = ubifs_read_superblock(c);
1340 if (err)
1341 goto out_auth;
1342
1343 c->probing = 0;
1344
1345 /*
1346 * Make sure the compressor which is set as default in the superblock
1347 * or overridden by mount options is actually compiled in.
1348 */
1349 if (!ubifs_compr_present(c, c->default_compr)) {
1350 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1351 ubifs_compr_name(c, c->default_compr));
1352 err = -ENOTSUPP;
1353 goto out_auth;
1354 }
1355
1356 err = init_constants_sb(c);
1357 if (err)
1358 goto out_auth;
1359
1360 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1361 c->cbuf = kmalloc(sz, GFP_NOFS);
1362 if (!c->cbuf) {
1363 err = -ENOMEM;
1364 goto out_auth;
1365 }
1366
1367 err = alloc_wbufs(c);
1368 if (err)
1369 goto out_cbuf;
1370
1371 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1372 if (!c->ro_mount) {
1373 /* Create background thread */
1374 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1375 if (IS_ERR(c->bgt)) {
1376 err = PTR_ERR(c->bgt);
1377 c->bgt = NULL;
1378 ubifs_err(c, "cannot spawn \"%s\", error %d",
1379 c->bgt_name, err);
1380 goto out_wbufs;
1381 }
1382 }
1383
1384 err = ubifs_read_master(c);
1385 if (err)
1386 goto out_master;
1387
1388 init_constants_master(c);
1389
1390 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1391 ubifs_msg(c, "recovery needed");
1392 c->need_recovery = 1;
1393 }
1394
1395 if (c->need_recovery && !c->ro_mount) {
1396 err = ubifs_recover_inl_heads(c, c->sbuf);
1397 if (err)
1398 goto out_master;
1399 }
1400
1401 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1402 if (err)
1403 goto out_master;
1404
1405 if (!c->ro_mount && c->space_fixup) {
1406 err = ubifs_fixup_free_space(c);
1407 if (err)
1408 goto out_lpt;
1409 }
1410
1411 if (!c->ro_mount && !c->need_recovery) {
1412 /*
1413 * Set the "dirty" flag so that if we reboot uncleanly we
1414 * will notice this immediately on the next mount.
1415 */
1416 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1417 err = ubifs_write_master(c);
1418 if (err)
1419 goto out_lpt;
1420 }
1421
1422 /*
1423 * Handle offline signed images: Now that the master node is
1424 * written and its validation no longer depends on the hash
1425 * in the superblock, we can update the offline signed
1426 * superblock with a HMAC version,
1427 */
1428 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1429 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1430 if (err)
1431 goto out_lpt;
1432 c->superblock_need_write = 1;
1433 }
1434
1435 if (!c->ro_mount && c->superblock_need_write) {
1436 err = ubifs_write_sb_node(c, c->sup_node);
1437 if (err)
1438 goto out_lpt;
1439 c->superblock_need_write = 0;
1440 }
1441
1442 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1443 if (err)
1444 goto out_lpt;
1445
1446 err = ubifs_replay_journal(c);
1447 if (err)
1448 goto out_journal;
1449
1450 /* Calculate 'min_idx_lebs' after journal replay */
1451 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1452
1453 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1454 if (err)
1455 goto out_orphans;
1456
1457 if (!c->ro_mount) {
1458 int lnum;
1459
1460 err = check_free_space(c);
1461 if (err)
1462 goto out_orphans;
1463
1464 /* Check for enough log space */
1465 lnum = c->lhead_lnum + 1;
1466 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1467 lnum = UBIFS_LOG_LNUM;
1468 if (lnum == c->ltail_lnum) {
1469 err = ubifs_consolidate_log(c);
1470 if (err)
1471 goto out_orphans;
1472 }
1473
1474 if (c->need_recovery) {
1475 if (!ubifs_authenticated(c)) {
1476 err = ubifs_recover_size(c, true);
1477 if (err)
1478 goto out_orphans;
1479 }
1480
1481 err = ubifs_rcvry_gc_commit(c);
1482 if (err)
1483 goto out_orphans;
1484
1485 if (ubifs_authenticated(c)) {
1486 err = ubifs_recover_size(c, false);
1487 if (err)
1488 goto out_orphans;
1489 }
1490 } else {
1491 err = take_gc_lnum(c);
1492 if (err)
1493 goto out_orphans;
1494
1495 /*
1496 * GC LEB may contain garbage if there was an unclean
1497 * reboot, and it should be un-mapped.
1498 */
1499 err = ubifs_leb_unmap(c, c->gc_lnum);
1500 if (err)
1501 goto out_orphans;
1502 }
1503
1504 err = dbg_check_lprops(c);
1505 if (err)
1506 goto out_orphans;
1507 } else if (c->need_recovery) {
1508 err = ubifs_recover_size(c, false);
1509 if (err)
1510 goto out_orphans;
1511 } else {
1512 /*
1513 * Even if we mount read-only, we have to set space in GC LEB
1514 * to proper value because this affects UBIFS free space
1515 * reporting. We do not want to have a situation when
1516 * re-mounting from R/O to R/W changes amount of free space.
1517 */
1518 err = take_gc_lnum(c);
1519 if (err)
1520 goto out_orphans;
1521 }
1522
1523 spin_lock(&ubifs_infos_lock);
1524 list_add_tail(&c->infos_list, &ubifs_infos);
1525 spin_unlock(&ubifs_infos_lock);
1526
1527 if (c->need_recovery) {
1528 if (c->ro_mount)
1529 ubifs_msg(c, "recovery deferred");
1530 else {
1531 c->need_recovery = 0;
1532 ubifs_msg(c, "recovery completed");
1533 /*
1534 * GC LEB has to be empty and taken at this point. But
1535 * the journal head LEBs may also be accounted as
1536 * "empty taken" if they are empty.
1537 */
1538 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1539 }
1540 } else
1541 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1542
1543 err = dbg_check_filesystem(c);
1544 if (err)
1545 goto out_infos;
1546
1547 dbg_debugfs_init_fs(c);
1548
1549 c->mounting = 0;
1550
1551 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1552 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1553 c->ro_mount ? ", R/O mode" : "");
1554 x = (long long)c->main_lebs * c->leb_size;
1555 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1556 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1557 c->leb_size, c->leb_size >> 10, c->min_io_size,
1558 c->max_write_size);
1559 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1560 x, x >> 20, c->main_lebs, c->max_leb_cnt,
1561 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1562 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1563 c->report_rp_size, c->report_rp_size >> 10);
1564 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1565 c->fmt_version, c->ro_compat_version,
1566 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1567 c->big_lpt ? ", big LPT model" : ", small LPT model");
1568
1569 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1570 dbg_gen("data journal heads: %d",
1571 c->jhead_cnt - NONDATA_JHEADS_CNT);
1572 dbg_gen("log LEBs: %d (%d - %d)",
1573 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1574 dbg_gen("LPT area LEBs: %d (%d - %d)",
1575 c->lpt_lebs, c->lpt_first, c->lpt_last);
1576 dbg_gen("orphan area LEBs: %d (%d - %d)",
1577 c->orph_lebs, c->orph_first, c->orph_last);
1578 dbg_gen("main area LEBs: %d (%d - %d)",
1579 c->main_lebs, c->main_first, c->leb_cnt - 1);
1580 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1581 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)",
1582 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1583 c->bi.old_idx_sz >> 20);
1584 dbg_gen("key hash type: %d", c->key_hash_type);
1585 dbg_gen("tree fanout: %d", c->fanout);
1586 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1587 dbg_gen("max. znode size %d", c->max_znode_sz);
1588 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1589 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1590 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1591 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1592 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1593 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1594 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1595 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1596 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1597 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1598 dbg_gen("dead watermark: %d", c->dead_wm);
1599 dbg_gen("dark watermark: %d", c->dark_wm);
1600 dbg_gen("LEB overhead: %d", c->leb_overhead);
1601 x = (long long)c->main_lebs * c->dark_wm;
1602 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1603 x, x >> 10, x >> 20);
1604 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1605 c->max_bud_bytes, c->max_bud_bytes >> 10,
1606 c->max_bud_bytes >> 20);
1607 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1608 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1609 c->bg_bud_bytes >> 20);
1610 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1611 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1612 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1613 dbg_gen("commit number: %llu", c->cmt_no);
1614 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1615 dbg_gen("max orphans: %d", c->max_orphans);
1616
1617 return 0;
1618
1619 out_infos:
1620 spin_lock(&ubifs_infos_lock);
1621 list_del(&c->infos_list);
1622 spin_unlock(&ubifs_infos_lock);
1623 out_orphans:
1624 free_orphans(c);
1625 out_journal:
1626 destroy_journal(c);
1627 out_lpt:
1628 ubifs_lpt_free(c, 0);
1629 out_master:
1630 kfree(c->mst_node);
1631 kfree(c->rcvrd_mst_node);
1632 if (c->bgt)
1633 kthread_stop(c->bgt);
1634 out_wbufs:
1635 free_wbufs(c);
1636 out_cbuf:
1637 kfree(c->cbuf);
1638 out_auth:
1639 ubifs_exit_authentication(c);
1640 out_free:
1641 kfree(c->write_reserve_buf);
1642 kfree(c->bu.buf);
1643 vfree(c->ileb_buf);
1644 vfree(c->sbuf);
1645 kfree(c->bottom_up_buf);
1646 kfree(c->sup_node);
1647 ubifs_sysfs_unregister(c);
1648 out_debugging:
1649 ubifs_debugging_exit(c);
1650 return err;
1651 }
1652
1653 /**
1654 * ubifs_umount - un-mount UBIFS file-system.
1655 * @c: UBIFS file-system description object
1656 *
1657 * Note, this function is called to free allocated resourced when un-mounting,
1658 * as well as free resources when an error occurred while we were half way
1659 * through mounting (error path cleanup function). So it has to make sure the
1660 * resource was actually allocated before freeing it.
1661 */
ubifs_umount(struct ubifs_info * c)1662 static void ubifs_umount(struct ubifs_info *c)
1663 {
1664 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1665 c->vi.vol_id);
1666
1667 dbg_debugfs_exit_fs(c);
1668 spin_lock(&ubifs_infos_lock);
1669 list_del(&c->infos_list);
1670 spin_unlock(&ubifs_infos_lock);
1671
1672 if (c->bgt)
1673 kthread_stop(c->bgt);
1674
1675 destroy_journal(c);
1676 free_wbufs(c);
1677 free_orphans(c);
1678 ubifs_lpt_free(c, 0);
1679 ubifs_exit_authentication(c);
1680
1681 ubifs_release_options(c);
1682 kfree(c->cbuf);
1683 kfree(c->rcvrd_mst_node);
1684 kfree(c->mst_node);
1685 kfree(c->write_reserve_buf);
1686 kfree(c->bu.buf);
1687 vfree(c->ileb_buf);
1688 vfree(c->sbuf);
1689 kfree(c->bottom_up_buf);
1690 kfree(c->sup_node);
1691 ubifs_debugging_exit(c);
1692 ubifs_sysfs_unregister(c);
1693 }
1694
1695 /**
1696 * ubifs_remount_rw - re-mount in read-write mode.
1697 * @c: UBIFS file-system description object
1698 *
1699 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1700 * mode. This function allocates the needed resources and re-mounts UBIFS in
1701 * read-write mode.
1702 */
ubifs_remount_rw(struct ubifs_info * c)1703 static int ubifs_remount_rw(struct ubifs_info *c)
1704 {
1705 int err, lnum;
1706
1707 if (c->rw_incompat) {
1708 ubifs_err(c, "the file-system is not R/W-compatible");
1709 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1710 c->fmt_version, c->ro_compat_version,
1711 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1712 return -EROFS;
1713 }
1714
1715 mutex_lock(&c->umount_mutex);
1716 dbg_save_space_info(c);
1717 c->remounting_rw = 1;
1718 c->ro_mount = 0;
1719
1720 if (c->space_fixup) {
1721 err = ubifs_fixup_free_space(c);
1722 if (err)
1723 goto out;
1724 }
1725
1726 err = check_free_space(c);
1727 if (err)
1728 goto out;
1729
1730 if (c->need_recovery) {
1731 ubifs_msg(c, "completing deferred recovery");
1732 err = ubifs_write_rcvrd_mst_node(c);
1733 if (err)
1734 goto out;
1735 if (!ubifs_authenticated(c)) {
1736 err = ubifs_recover_size(c, true);
1737 if (err)
1738 goto out;
1739 }
1740 err = ubifs_clean_lebs(c, c->sbuf);
1741 if (err)
1742 goto out;
1743 err = ubifs_recover_inl_heads(c, c->sbuf);
1744 if (err)
1745 goto out;
1746 } else {
1747 /* A readonly mount is not allowed to have orphans */
1748 ubifs_assert(c, c->tot_orphans == 0);
1749 err = ubifs_clear_orphans(c);
1750 if (err)
1751 goto out;
1752 }
1753
1754 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1755 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1756 err = ubifs_write_master(c);
1757 if (err)
1758 goto out;
1759 }
1760
1761 if (c->superblock_need_write) {
1762 struct ubifs_sb_node *sup = c->sup_node;
1763
1764 err = ubifs_write_sb_node(c, sup);
1765 if (err)
1766 goto out;
1767
1768 c->superblock_need_write = 0;
1769 }
1770
1771 c->ileb_buf = vmalloc(c->leb_size);
1772 if (!c->ileb_buf) {
1773 err = -ENOMEM;
1774 goto out;
1775 }
1776
1777 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1778 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1779 if (!c->write_reserve_buf) {
1780 err = -ENOMEM;
1781 goto out;
1782 }
1783
1784 err = ubifs_lpt_init(c, 0, 1);
1785 if (err)
1786 goto out;
1787
1788 /* Create background thread */
1789 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1790 if (IS_ERR(c->bgt)) {
1791 err = PTR_ERR(c->bgt);
1792 c->bgt = NULL;
1793 ubifs_err(c, "cannot spawn \"%s\", error %d",
1794 c->bgt_name, err);
1795 goto out;
1796 }
1797
1798 c->orph_buf = vmalloc(c->leb_size);
1799 if (!c->orph_buf) {
1800 err = -ENOMEM;
1801 goto out;
1802 }
1803
1804 /* Check for enough log space */
1805 lnum = c->lhead_lnum + 1;
1806 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1807 lnum = UBIFS_LOG_LNUM;
1808 if (lnum == c->ltail_lnum) {
1809 err = ubifs_consolidate_log(c);
1810 if (err)
1811 goto out;
1812 }
1813
1814 if (c->need_recovery) {
1815 err = ubifs_rcvry_gc_commit(c);
1816 if (err)
1817 goto out;
1818
1819 if (ubifs_authenticated(c)) {
1820 err = ubifs_recover_size(c, false);
1821 if (err)
1822 goto out;
1823 }
1824 } else {
1825 err = ubifs_leb_unmap(c, c->gc_lnum);
1826 }
1827 if (err)
1828 goto out;
1829
1830 dbg_gen("re-mounted read-write");
1831 c->remounting_rw = 0;
1832
1833 if (c->need_recovery) {
1834 c->need_recovery = 0;
1835 ubifs_msg(c, "deferred recovery completed");
1836 } else {
1837 /*
1838 * Do not run the debugging space check if the were doing
1839 * recovery, because when we saved the information we had the
1840 * file-system in a state where the TNC and lprops has been
1841 * modified in memory, but all the I/O operations (including a
1842 * commit) were deferred. So the file-system was in
1843 * "non-committed" state. Now the file-system is in committed
1844 * state, and of course the amount of free space will change
1845 * because, for example, the old index size was imprecise.
1846 */
1847 err = dbg_check_space_info(c);
1848 }
1849
1850 mutex_unlock(&c->umount_mutex);
1851 return err;
1852
1853 out:
1854 c->ro_mount = 1;
1855 vfree(c->orph_buf);
1856 c->orph_buf = NULL;
1857 if (c->bgt) {
1858 kthread_stop(c->bgt);
1859 c->bgt = NULL;
1860 }
1861 kfree(c->write_reserve_buf);
1862 c->write_reserve_buf = NULL;
1863 vfree(c->ileb_buf);
1864 c->ileb_buf = NULL;
1865 ubifs_lpt_free(c, 1);
1866 c->remounting_rw = 0;
1867 mutex_unlock(&c->umount_mutex);
1868 return err;
1869 }
1870
1871 /**
1872 * ubifs_remount_ro - re-mount in read-only mode.
1873 * @c: UBIFS file-system description object
1874 *
1875 * We assume VFS has stopped writing. Possibly the background thread could be
1876 * running a commit, however kthread_stop will wait in that case.
1877 */
ubifs_remount_ro(struct ubifs_info * c)1878 static void ubifs_remount_ro(struct ubifs_info *c)
1879 {
1880 int i, err;
1881
1882 ubifs_assert(c, !c->need_recovery);
1883 ubifs_assert(c, !c->ro_mount);
1884
1885 mutex_lock(&c->umount_mutex);
1886 if (c->bgt) {
1887 kthread_stop(c->bgt);
1888 c->bgt = NULL;
1889 }
1890
1891 dbg_save_space_info(c);
1892
1893 for (i = 0; i < c->jhead_cnt; i++) {
1894 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1895 if (err)
1896 ubifs_ro_mode(c, err);
1897 }
1898
1899 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1900 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1901 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1902 err = ubifs_write_master(c);
1903 if (err)
1904 ubifs_ro_mode(c, err);
1905
1906 vfree(c->orph_buf);
1907 c->orph_buf = NULL;
1908 kfree(c->write_reserve_buf);
1909 c->write_reserve_buf = NULL;
1910 vfree(c->ileb_buf);
1911 c->ileb_buf = NULL;
1912 ubifs_lpt_free(c, 1);
1913 c->ro_mount = 1;
1914 err = dbg_check_space_info(c);
1915 if (err)
1916 ubifs_ro_mode(c, err);
1917 mutex_unlock(&c->umount_mutex);
1918 }
1919
ubifs_put_super(struct super_block * sb)1920 static void ubifs_put_super(struct super_block *sb)
1921 {
1922 int i;
1923 struct ubifs_info *c = sb->s_fs_info;
1924
1925 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1926
1927 /*
1928 * The following asserts are only valid if there has not been a failure
1929 * of the media. For example, there will be dirty inodes if we failed
1930 * to write them back because of I/O errors.
1931 */
1932 if (!c->ro_error) {
1933 ubifs_assert(c, c->bi.idx_growth == 0);
1934 ubifs_assert(c, c->bi.dd_growth == 0);
1935 ubifs_assert(c, c->bi.data_growth == 0);
1936 }
1937
1938 /*
1939 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1940 * and file system un-mount. Namely, it prevents the shrinker from
1941 * picking this superblock for shrinking - it will be just skipped if
1942 * the mutex is locked.
1943 */
1944 mutex_lock(&c->umount_mutex);
1945 if (!c->ro_mount) {
1946 /*
1947 * First of all kill the background thread to make sure it does
1948 * not interfere with un-mounting and freeing resources.
1949 */
1950 if (c->bgt) {
1951 kthread_stop(c->bgt);
1952 c->bgt = NULL;
1953 }
1954
1955 /*
1956 * On fatal errors c->ro_error is set to 1, in which case we do
1957 * not write the master node.
1958 */
1959 if (!c->ro_error) {
1960 int err;
1961
1962 /* Synchronize write-buffers */
1963 for (i = 0; i < c->jhead_cnt; i++) {
1964 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1965 if (err)
1966 ubifs_ro_mode(c, err);
1967 }
1968
1969 /*
1970 * We are being cleanly unmounted which means the
1971 * orphans were killed - indicate this in the master
1972 * node. Also save the reserved GC LEB number.
1973 */
1974 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1975 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1976 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1977 err = ubifs_write_master(c);
1978 if (err)
1979 /*
1980 * Recovery will attempt to fix the master area
1981 * next mount, so we just print a message and
1982 * continue to unmount normally.
1983 */
1984 ubifs_err(c, "failed to write master node, error %d",
1985 err);
1986 } else {
1987 for (i = 0; i < c->jhead_cnt; i++)
1988 /* Make sure write-buffer timers are canceled */
1989 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1990 }
1991 }
1992
1993 ubifs_umount(c);
1994 ubi_close_volume(c->ubi);
1995 mutex_unlock(&c->umount_mutex);
1996 }
1997
ubifs_remount_fs(struct super_block * sb,int * flags,char * data)1998 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1999 {
2000 int err;
2001 struct ubifs_info *c = sb->s_fs_info;
2002
2003 sync_filesystem(sb);
2004 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2005
2006 err = ubifs_parse_options(c, data, 1);
2007 if (err) {
2008 ubifs_err(c, "invalid or unknown remount parameter");
2009 return err;
2010 }
2011
2012 if (c->ro_mount && !(*flags & SB_RDONLY)) {
2013 if (c->ro_error) {
2014 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2015 return -EROFS;
2016 }
2017 if (c->ro_media) {
2018 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2019 return -EROFS;
2020 }
2021 err = ubifs_remount_rw(c);
2022 if (err)
2023 return err;
2024 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2025 if (c->ro_error) {
2026 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2027 return -EROFS;
2028 }
2029 ubifs_remount_ro(c);
2030 }
2031
2032 if (c->bulk_read == 1)
2033 bu_init(c);
2034 else {
2035 dbg_gen("disable bulk-read");
2036 mutex_lock(&c->bu_mutex);
2037 kfree(c->bu.buf);
2038 c->bu.buf = NULL;
2039 mutex_unlock(&c->bu_mutex);
2040 }
2041
2042 if (!c->need_recovery)
2043 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2044
2045 return 0;
2046 }
2047
2048 const struct super_operations ubifs_super_operations = {
2049 .alloc_inode = ubifs_alloc_inode,
2050 .free_inode = ubifs_free_inode,
2051 .put_super = ubifs_put_super,
2052 .write_inode = ubifs_write_inode,
2053 .drop_inode = ubifs_drop_inode,
2054 .evict_inode = ubifs_evict_inode,
2055 .statfs = ubifs_statfs,
2056 .dirty_inode = ubifs_dirty_inode,
2057 .remount_fs = ubifs_remount_fs,
2058 .show_options = ubifs_show_options,
2059 .sync_fs = ubifs_sync_fs,
2060 };
2061
2062 /**
2063 * open_ubi - parse UBI device name string and open the UBI device.
2064 * @name: UBI volume name
2065 * @mode: UBI volume open mode
2066 *
2067 * The primary method of mounting UBIFS is by specifying the UBI volume
2068 * character device node path. However, UBIFS may also be mounted without any
2069 * character device node using one of the following methods:
2070 *
2071 * o ubiX_Y - mount UBI device number X, volume Y;
2072 * o ubiY - mount UBI device number 0, volume Y;
2073 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2074 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2075 *
2076 * Alternative '!' separator may be used instead of ':' (because some shells
2077 * like busybox may interpret ':' as an NFS host name separator). This function
2078 * returns UBI volume description object in case of success and a negative
2079 * error code in case of failure.
2080 */
open_ubi(const char * name,int mode)2081 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2082 {
2083 struct ubi_volume_desc *ubi;
2084 int dev, vol;
2085 char *endptr;
2086
2087 if (!name || !*name)
2088 return ERR_PTR(-EINVAL);
2089
2090 /* First, try to open using the device node path method */
2091 ubi = ubi_open_volume_path(name, mode);
2092 if (!IS_ERR(ubi))
2093 return ubi;
2094
2095 /* Try the "nodev" method */
2096 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2097 return ERR_PTR(-EINVAL);
2098
2099 /* ubi:NAME method */
2100 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2101 return ubi_open_volume_nm(0, name + 4, mode);
2102
2103 if (!isdigit(name[3]))
2104 return ERR_PTR(-EINVAL);
2105
2106 dev = simple_strtoul(name + 3, &endptr, 0);
2107
2108 /* ubiY method */
2109 if (*endptr == '\0')
2110 return ubi_open_volume(0, dev, mode);
2111
2112 /* ubiX_Y method */
2113 if (*endptr == '_' && isdigit(endptr[1])) {
2114 vol = simple_strtoul(endptr + 1, &endptr, 0);
2115 if (*endptr != '\0')
2116 return ERR_PTR(-EINVAL);
2117 return ubi_open_volume(dev, vol, mode);
2118 }
2119
2120 /* ubiX:NAME method */
2121 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2122 return ubi_open_volume_nm(dev, ++endptr, mode);
2123
2124 return ERR_PTR(-EINVAL);
2125 }
2126
alloc_ubifs_info(struct ubi_volume_desc * ubi)2127 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2128 {
2129 struct ubifs_info *c;
2130
2131 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2132 if (c) {
2133 spin_lock_init(&c->cnt_lock);
2134 spin_lock_init(&c->cs_lock);
2135 spin_lock_init(&c->buds_lock);
2136 spin_lock_init(&c->space_lock);
2137 spin_lock_init(&c->orphan_lock);
2138 init_rwsem(&c->commit_sem);
2139 mutex_init(&c->lp_mutex);
2140 mutex_init(&c->tnc_mutex);
2141 mutex_init(&c->log_mutex);
2142 mutex_init(&c->umount_mutex);
2143 mutex_init(&c->bu_mutex);
2144 mutex_init(&c->write_reserve_mutex);
2145 init_waitqueue_head(&c->cmt_wq);
2146 c->buds = RB_ROOT;
2147 c->old_idx = RB_ROOT;
2148 c->size_tree = RB_ROOT;
2149 c->orph_tree = RB_ROOT;
2150 INIT_LIST_HEAD(&c->infos_list);
2151 INIT_LIST_HEAD(&c->idx_gc);
2152 INIT_LIST_HEAD(&c->replay_list);
2153 INIT_LIST_HEAD(&c->replay_buds);
2154 INIT_LIST_HEAD(&c->uncat_list);
2155 INIT_LIST_HEAD(&c->empty_list);
2156 INIT_LIST_HEAD(&c->freeable_list);
2157 INIT_LIST_HEAD(&c->frdi_idx_list);
2158 INIT_LIST_HEAD(&c->unclean_leb_list);
2159 INIT_LIST_HEAD(&c->old_buds);
2160 INIT_LIST_HEAD(&c->orph_list);
2161 INIT_LIST_HEAD(&c->orph_new);
2162 c->no_chk_data_crc = 1;
2163 c->assert_action = ASSACT_RO;
2164
2165 c->highest_inum = UBIFS_FIRST_INO;
2166 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2167
2168 ubi_get_volume_info(ubi, &c->vi);
2169 ubi_get_device_info(c->vi.ubi_num, &c->di);
2170 }
2171 return c;
2172 }
2173
ubifs_fill_super(struct super_block * sb,void * data,int silent)2174 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2175 {
2176 struct ubifs_info *c = sb->s_fs_info;
2177 struct inode *root;
2178 int err;
2179
2180 c->vfs_sb = sb;
2181 /* Re-open the UBI device in read-write mode */
2182 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2183 if (IS_ERR(c->ubi)) {
2184 err = PTR_ERR(c->ubi);
2185 goto out;
2186 }
2187
2188 err = ubifs_parse_options(c, data, 0);
2189 if (err)
2190 goto out_close;
2191
2192 /*
2193 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2194 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2195 * which means the user would have to wait not just for their own I/O
2196 * but the read-ahead I/O as well i.e. completely pointless.
2197 *
2198 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2199 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2200 * writeback happening.
2201 */
2202 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2203 c->vi.vol_id);
2204 if (err)
2205 goto out_close;
2206 sb->s_bdi->ra_pages = 0;
2207 sb->s_bdi->io_pages = 0;
2208
2209 sb->s_fs_info = c;
2210 sb->s_magic = UBIFS_SUPER_MAGIC;
2211 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2212 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2213 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2214 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2215 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2216 sb->s_op = &ubifs_super_operations;
2217 sb->s_xattr = ubifs_xattr_handlers;
2218 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2219
2220 mutex_lock(&c->umount_mutex);
2221 err = mount_ubifs(c);
2222 if (err) {
2223 ubifs_assert(c, err < 0);
2224 goto out_unlock;
2225 }
2226
2227 /* Read the root inode */
2228 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2229 if (IS_ERR(root)) {
2230 err = PTR_ERR(root);
2231 goto out_umount;
2232 }
2233
2234 sb->s_root = d_make_root(root);
2235 if (!sb->s_root) {
2236 err = -ENOMEM;
2237 goto out_umount;
2238 }
2239
2240 import_uuid(&sb->s_uuid, c->uuid);
2241
2242 mutex_unlock(&c->umount_mutex);
2243 return 0;
2244
2245 out_umount:
2246 ubifs_umount(c);
2247 out_unlock:
2248 mutex_unlock(&c->umount_mutex);
2249 out_close:
2250 ubifs_release_options(c);
2251 ubi_close_volume(c->ubi);
2252 out:
2253 return err;
2254 }
2255
sb_test(struct super_block * sb,void * data)2256 static int sb_test(struct super_block *sb, void *data)
2257 {
2258 struct ubifs_info *c1 = data;
2259 struct ubifs_info *c = sb->s_fs_info;
2260
2261 return c->vi.cdev == c1->vi.cdev;
2262 }
2263
sb_set(struct super_block * sb,void * data)2264 static int sb_set(struct super_block *sb, void *data)
2265 {
2266 sb->s_fs_info = data;
2267 return set_anon_super(sb, NULL);
2268 }
2269
ubifs_mount(struct file_system_type * fs_type,int flags,const char * name,void * data)2270 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2271 const char *name, void *data)
2272 {
2273 struct ubi_volume_desc *ubi;
2274 struct ubifs_info *c;
2275 struct super_block *sb;
2276 int err;
2277
2278 dbg_gen("name %s, flags %#x", name, flags);
2279
2280 /*
2281 * Get UBI device number and volume ID. Mount it read-only so far
2282 * because this might be a new mount point, and UBI allows only one
2283 * read-write user at a time.
2284 */
2285 ubi = open_ubi(name, UBI_READONLY);
2286 if (IS_ERR(ubi)) {
2287 if (!(flags & SB_SILENT))
2288 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2289 current->pid, name, (int)PTR_ERR(ubi));
2290 return ERR_CAST(ubi);
2291 }
2292
2293 c = alloc_ubifs_info(ubi);
2294 if (!c) {
2295 err = -ENOMEM;
2296 goto out_close;
2297 }
2298
2299 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2300
2301 sb = sget(fs_type, sb_test, sb_set, flags, c);
2302 if (IS_ERR(sb)) {
2303 err = PTR_ERR(sb);
2304 kfree(c);
2305 goto out_close;
2306 }
2307
2308 if (sb->s_root) {
2309 struct ubifs_info *c1 = sb->s_fs_info;
2310 kfree(c);
2311 /* A new mount point for already mounted UBIFS */
2312 dbg_gen("this ubi volume is already mounted");
2313 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2314 err = -EBUSY;
2315 goto out_deact;
2316 }
2317 } else {
2318 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2319 if (err)
2320 goto out_deact;
2321 /* We do not support atime */
2322 sb->s_flags |= SB_ACTIVE;
2323 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2324 ubifs_msg(c, "full atime support is enabled.");
2325 else
2326 sb->s_flags |= SB_NOATIME;
2327 }
2328
2329 /* 'fill_super()' opens ubi again so we must close it here */
2330 ubi_close_volume(ubi);
2331
2332 return dget(sb->s_root);
2333
2334 out_deact:
2335 deactivate_locked_super(sb);
2336 out_close:
2337 ubi_close_volume(ubi);
2338 return ERR_PTR(err);
2339 }
2340
kill_ubifs_super(struct super_block * s)2341 static void kill_ubifs_super(struct super_block *s)
2342 {
2343 struct ubifs_info *c = s->s_fs_info;
2344 kill_anon_super(s);
2345 kfree(c);
2346 }
2347
2348 static struct file_system_type ubifs_fs_type = {
2349 .name = "ubifs",
2350 .owner = THIS_MODULE,
2351 .mount = ubifs_mount,
2352 .kill_sb = kill_ubifs_super,
2353 };
2354 MODULE_ALIAS_FS("ubifs");
2355
2356 /*
2357 * Inode slab cache constructor.
2358 */
inode_slab_ctor(void * obj)2359 static void inode_slab_ctor(void *obj)
2360 {
2361 struct ubifs_inode *ui = obj;
2362 inode_init_once(&ui->vfs_inode);
2363 }
2364
ubifs_init(void)2365 static int __init ubifs_init(void)
2366 {
2367 int err;
2368
2369 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2370
2371 /* Make sure node sizes are 8-byte aligned */
2372 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2373 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2374 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2375 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2376 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2377 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2378 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2379 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2380 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2381 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2382 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2383
2384 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2385 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2386 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2387 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2388 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2389 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2390
2391 /* Check min. node size */
2392 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2393 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2394 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2395 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2396
2397 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2398 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2399 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2400 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2401
2402 /* Defined node sizes */
2403 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2404 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2405 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2406 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2407
2408 /*
2409 * We use 2 bit wide bit-fields to store compression type, which should
2410 * be amended if more compressors are added. The bit-fields are:
2411 * @compr_type in 'struct ubifs_inode', @default_compr in
2412 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2413 */
2414 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2415
2416 /*
2417 * We require that PAGE_SIZE is greater-than-or-equal-to
2418 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2419 */
2420 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2421 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2422 current->pid, (unsigned int)PAGE_SIZE);
2423 return -EINVAL;
2424 }
2425
2426 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2427 sizeof(struct ubifs_inode), 0,
2428 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2429 SLAB_ACCOUNT, &inode_slab_ctor);
2430 if (!ubifs_inode_slab)
2431 return -ENOMEM;
2432
2433 err = register_shrinker(&ubifs_shrinker_info);
2434 if (err)
2435 goto out_slab;
2436
2437 err = ubifs_compressors_init();
2438 if (err)
2439 goto out_shrinker;
2440
2441 dbg_debugfs_init();
2442
2443 err = ubifs_sysfs_init();
2444 if (err)
2445 goto out_dbg;
2446
2447 err = register_filesystem(&ubifs_fs_type);
2448 if (err) {
2449 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2450 current->pid, err);
2451 goto out_sysfs;
2452 }
2453 return 0;
2454
2455 out_sysfs:
2456 ubifs_sysfs_exit();
2457 out_dbg:
2458 dbg_debugfs_exit();
2459 ubifs_compressors_exit();
2460 out_shrinker:
2461 unregister_shrinker(&ubifs_shrinker_info);
2462 out_slab:
2463 kmem_cache_destroy(ubifs_inode_slab);
2464 return err;
2465 }
2466 /* late_initcall to let compressors initialize first */
2467 late_initcall(ubifs_init);
2468
ubifs_exit(void)2469 static void __exit ubifs_exit(void)
2470 {
2471 WARN_ON(!list_empty(&ubifs_infos));
2472 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2473
2474 dbg_debugfs_exit();
2475 ubifs_sysfs_exit();
2476 ubifs_compressors_exit();
2477 unregister_shrinker(&ubifs_shrinker_info);
2478
2479 /*
2480 * Make sure all delayed rcu free inodes are flushed before we
2481 * destroy cache.
2482 */
2483 rcu_barrier();
2484 kmem_cache_destroy(ubifs_inode_slab);
2485 unregister_filesystem(&ubifs_fs_type);
2486 }
2487 module_exit(ubifs_exit);
2488
2489 MODULE_LICENSE("GPL");
2490 MODULE_VERSION(__stringify(UBIFS_VERSION));
2491 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2492 MODULE_DESCRIPTION("UBIFS - UBI File System");
2493